
University of Vermont
ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2017

Integrating Human Population Genetics And
Genomics To Elucidate The Etiology Of Brain
Disorders
Arvis Sulovari
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

Part of the Genetics and Genomics Commons

This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for
inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact
donna.omalley@uvm.edu.

Recommended Citation
Sulovari, Arvis, "Integrating Human Population Genetics And Genomics To Elucidate The Etiology Of Brain Disorders" (2017).
Graduate College Dissertations and Theses. 781.
https://scholarworks.uvm.edu/graddis/781

https://scholarworks.uvm.edu?utm_source=scholarworks.uvm.edu%2Fgraddis%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/etds?utm_source=scholarworks.uvm.edu%2Fgraddis%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=scholarworks.uvm.edu%2Fgraddis%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/781?utm_source=scholarworks.uvm.edu%2Fgraddis%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu


 
 

INTEGRATING HUMAN POPULATION GENETICS AND GENOMICS TO 
ELUCIDATE THE ETIOLOGY OF BRAIN DISORDERS 

 

 

 

A Dissertation Presented 
 
 

by 
 

Arvis Sulovari 
 

to 
 

The Faculty of the Graduate College 
 

of 
 

The University of Vermont 
 

 
In Partial Fulfillment of the Requirements 
For the Degree of Doctor of Philosophy 

Specializing in Cellular, Molecular, and Biomedical Sciences 
 

 
October, 2017 

 

 
Defense Date: June 14, 2017 

Dissertation Examination Committee: 
 

Dawei Li, Ph.D., Advisor 
James J. Hudziak, M.D., Chairperson 

Russell P. Tracy, Ph.D. 
Jeffrey P. Bond, Ph.D. 

Cynthia J. Forehand, Ph.D., Dean of Graduate College 
 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Arvis Sulovari 
October 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ABSTRACT 

Brain disorders present a significant burden on affected individuals, their families and 
society at large. Existing diagnostic tests suffer from a lack of genetic biomarkers, 
particularly for substance use disorders, such as alcohol dependence (AD). Numerous 
studies have demonstrated that AD has a genetic heritability of 40-60%. The existing 
genetics literature of AD has primarily focused on linkage analyses in small family 
cohorts and more recently on genome-wide association analyses (GWAS) in large case-
control cohorts, fueled by rapid advances in next generation sequencing (NGS). 
Numerous AD-associated genomic variations are present at a common frequency in the 
general population, making these variants of public health significance. However, known 
AD-associated variants explain only a fraction of the expected heritability. In this 
dissertation, we demonstrate that systems biology applications that integrate evolutionary 
genomics, rare variants and structural variation can dissect the genetic architecture of AD 
and elucidate its heritability. 

We identified several complex human diseases, including AD and other brain 
disorders, as potential targets of natural selection forces in diverse world populations. 
Further evidence of natural selection forces affecting AD was revealed when we 
identified an association between eye color, a trait under strong selection, and AD. These 
findings provide strong support for conducting GWAS on brain disorder phenotypes. 
However, with the ever-increasing abundance of rare genomic variants and large cohorts 
of multi-ethnic samples, population stratification becomes a serious confounding factor 
for GWAS. To address this problem, we designed a novel approach to identify ancestry 
informative single nucleotide polymorphisms (SNPs) for population stratification 
adjustment in association analyses. Furthermore, to leverage untyped variants from 
genotyping arrays – particularly rare variants – for GWAS and meta-analysis through 
rapid imputation, we designed a tool that converts genotype definitions across various 
array platforms. 

To further elucidate the genetic heritability of brain disorders, we designed 
approaches aimed at identifying Copy Number Variations (CNVs) and viral insertions 
into the human genome. We conducted the first CNV-based whole genome meta-analysis 
for AD. We also designed an integrated approach to estimate the sensitivity of NGS-
based methods of viral insertion detection. For the first time in the literature, we 
identified herpesvirus in NGS data from an Alzheimer’s disease brain sample. 

The work in this dissertation represents a three-faceted advance in our 
understanding of brain disease etiology: 1) evolutionary genomic insights, 2) novel 
resources and tools to leverage rare variants, and 3) the discovery of disease-associated 
structural genomic aberrations. Our findings have broad implications on the genetics of 
complex human disease and hold promise for delivering clinically useful knowledge and 
resources.
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CHAPTER 1: INTRODUCTION 

 
Brain disorders represent a major burden around the world, affecting at least 35% of the 

global population1. These disorders are often categorized into two primary types: 

psychiatric and neurological (e.g., neurodegenerative, neurobehavioral, neurocognitive 

and neurodevelopmental)1. In this dissertation, we focus primarily on alcohol dependence 

(AD) as a model for psychiatric disorders, and expand our search into Alzheimer’s 

disease as a model for neurological disorders. Genomics and population genetics methods 

were developed and applied to samples ascertained for AD (Chapters 2-4) and 

Alzheimer’s disease (Appendix A) to identify new disease-associated variants. In this 

introduction we review the genetic literature on AD and the most recent scientific 

paradigms of brain disease genetics, as they relate to the scope and purpose of our work. 

  

Prevalence 
 

Psychiatric disorders present an extreme burden to the health and overall well-

being of affected individuals, their families, and indeed, our society as a whole. 

Specifically, alcohol use disorders represent one of the most costly diseases, with over 

$249 billion spent by USA alone, and around 3.3 million deaths across the globe (2010 

statistics, NIAAA). According to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM IV), AD is characterized as a “syndrome of persistent problems 

involving physiological tolerance, psychological cravings and behaviors centered around 
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alcohol use or the consequences of alcohol use” with an onset of mid-twenties2. 

According to the same source, the general population prevalence in the USA ranges from 

13%, for alcohol abuse, to 5% for AD. Among adults, variations in prevalence exist 

across ethnicities, with the highest rates found among Native Americans and Native 

Alaskans (12.1%), European Americans (8.9%), Hispanics (7.9%), African Americans 

(6.9%) and Asian Americans and pacific islanders (4.5%).  

 

Neurobiology 

 
The negative effect of alcohol on human health became acknowledged as early as 

1923 where physicians had noticed that pneumonia diagnoses was 32% higher in 

moderate alcohol users compared to abstainers (Capps and Coleman, 1923). Later, 

several psychoanalytic studies held the view that all men were born addicted, however, 

“alcoholics are notoriously slow to get over it” (Goodwin, 1968). However, the role of 

alcohol use on mental health was not clarified until early 1980, when individuals with 

problematic drinking behavior were observed to have been “depressed and unable to 

cope”3. Advances in physiology and functional neuroanatomy from the clinic and animal 

studies revealed a crucial pathway in the brain involved in etiology of AD and other 

addictive behaviors: the brain reward circuit. 

One of the most well-annotate brain reward circuits comprises of dopaminergic 

neurons in the ventral tegmental area (VTA) projecting to the nucleus accumbens (NAc). 

The dopaminergic neurons of VTA-NAc innervate the prefrontal cortex, central and 
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basolateral amygdala, the hippocampus as well as other areas, making this circuit very 

important for the recognition and “consumption” of stimuli4. This area of the brain, well-

conserved across mammalian brains, tells the organism if a stimulus is rewarding or 

aversive. The primary types of neurons in this area of the brain are GABAergic; however, 

there’s input from other areas of the brain with glutamatergic neurons from hippocampus, 

basolateral and extended amygdala, pre-frontal cortex, and Orexinergic neurons from 

lateral hypothalamus. Amygdala is important in establishing whether an experience (e.g. 

food, stress, drug or abuse) is rewarding or aversive, while hippocampus plays a crucial 

role in declarative memory, i.e., association of places and experiences, therefore, playing 

a key role in drug use or abuse relapse. The least understood areas of the brain interacting 

with VTA-NAc are the pre-frontal cortex areas, such as medial, anterior cingulate cortex 

and orbitofrontal cortex, all of which may play a crucial role in the decision-making 

process, e.g., seeking reward. 

Figure 1 demonstrates the interactions of ethanol in the VTA-NAc circuit of the 

brain under three different scenarios: control, acute and chronic ethanol exposure. As 

shown, ethanol molecules interact with both glutamate and dopamine axonal projections. 

Specifically, under the acute ethanol exposure scenario, ethanol molecules effect the 

brain on multiple fonts: inside the pre-synaptic terminal, GABAergic neuronal activity is 

decreased, leading to an increase in dopaminergic activity, ultimately increasing 

dopamine release in the synaptic cleft; meanwhile, in the synaptic cleft, ethanol acts as a 

blocker of N-methyl D-aspartate glutamate receptor (NMDA-R), further preventing Ca2+ 

influx into post-synaptic neuron, inhibiting synaptic plasticity induction in the post-
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synaptic neuron. Lastly, in the post-synaptic neuron, prodynorphin (PDYN) is 

upregulated, downstream from CREB (Cyclic AMP-Responsive Element-Binding Protein 

1, a transcription factor) upregulation, leading to decreased ethanol intake. 

 

 

Figure 1: A molecular model for alcohol dependence (diagram from Kyoto Encyclopedia 
of Genes and Genomes; accessed on 05/01/2017) 
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However, under a chronic exposure scenario (Figure 1), GABAergic neurons in 

the VTA become increasingly excited, leading to a decrease in dopamine. Thus, less 

dopamine is released in synaptic cleft. On the surface of the post-synaptic neuron, 

NMDA-R has become resistant to ethanol inhibition, and Ca2+ influx into the post-

synaptic neuron activates MAPK signaling, ultimately decreasing CREB function, and 

ultimately abnormal reward mechanisms and excessive drinking behaviors.  

 

Genetic heritability  

 
According to offspring data of adopted children registries from alcoholic parents, 

AD has an estimated heritability h2 ≈ 39% 5 and according to twin studies h2 ≈  64% 6. 

Additionally, the authors identified heritability across a period of 20 years, and found that 

their heritability estimate was consistent across different years. Another notable study7 

found heritability estimates consistent with Heath et al., and twin resemblance (i.e., 

phenotype concordance) was attributed to genetic factors (54%) and environmental 

factors (14%). It is important to note that AD is comorbid with other substance abuse and 

psychiatric disorders (such as antisocial personality disorder). It has been shown that this 

comorbidity has a heritability of 80%8.  
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Genome-wide linkage studies 

 
The first genome-wide linkage analyses were published by investigators in the 

intramural program of National Institute on Alcohol Abuse and Alcoholism (NIAAA)9 

and the Collaborative Study on Genetics of Alcoholism (COGA) group10. The NIAAA 

group ascertained southwestern American Native American tribe samples for A, while 

COGA recruited samples in six different sites across the United States. Both groups 

reported AD risk loci with LOD scores of 2 or higher, residing in vicinity of the alcohol 

dehydrogenase (ADH) gene on chromosome 4q. The only genome-wide linkage analysis 

of AD in African Americans was conducted in 2009 and reported genome-wide 

statistically significant loci in chromosome 10. 

 

Candidate gene studies 

 
The most abundant findings have come from candidate gene association studies. 

These genes were initially chosen based on their role in alcohol metabolism. For instance, 

the product of ALDH2, acetaldehyde dehydrogenase 2, is one of the primary acetaldehyde 

dehydrogenases involved in clearing the metabolic intermediary acetaldehyde. 

Acetaldehyde is known to produce a “flushing reaction”, characterized by nausea and 

overall physiological discomfort. Thus, a variant known to decrease ALDH2 function 

(commonly present in East Asian populations) is a protective variants for AD11. A highly 

replicated finding is that of an ADH4 12 12 . One of the identified variants in this gene, 
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A75C, was shown to decrease promoter activity by more than twofold. Variants in 

ADH1B were also shown to be robustly associate with AD diagnosis, in the first meta-

analysis for this gene13.  

Other candidate genes were selected due to their function in neurotransmission. In 

the 1990s several genes were reported, including dopamine receptor 2 (DR2)14 and 

gamma amino-butyric acid (GABA) gene cluster, including GABAβ2, GABAα6 and 

GABAγ215.However, some of these genes were not replicated; the DR2 locus created 

much controversy after its publication16. Fine mapping of GABA gene cluster identified 

haplotypes and single alleles associated in the GABRA2 gene to AD. Non-association 

studies were also reported for GABRA2 17 18. We performed the first meta-analysis of the 

GABA gene cluster with AD19, where GABRA2 gene provided the best evidence of 

association, i.e., association p-value P = 9 × 10−6 and odds ratio (OR) 95% confidence 

interval (CI) = 1.27 (1.15, 1.4) for SNP rs567926.  

In addition to genes involved in alcohol metabolism and neurotransmission, 

several other genes have been published from candidate gene studies, including CHRM2 

(encoding muscarinic acetylcholine receptor M2) 20 and OPRM1 (encoding the µ opiod 

receptor). The OPRM1 gene contains a polymorphism resulting in amino acid 

substitution Asn40Asp, previously associated with AD; however, a meta-analysis found 

no overall association to AD. Interestingly, the same allele has been shown to lead to 

differential response to drug treatment, which will be discussed in further detail below. 
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Genome-wide association studies (GWAS) 

 
After the completion of the human genome reference in 200021, and the rapid 

development of sequencing technologies, the genome-wide association studies (i.e., 

GWAS) era began22. The first GWAS of a substance dependence phenotype was carried 

out in nicotine dependence cohorts23. After Nicotine dependence, AD is the most studied 

substance dependence phenotype. The first GWAS of AD was conducted in 2009, in 

samples of German ancestry24, and it reported nominal associations between AD and two 

previously associated genes, CDH13 and ADH1C. The same study found a genome-wide 

significant locus rs7590720, located in the intergenic region of chromosome cytoband 

2q35. Later studies identified autism-related gene AUTS225, intergenic variants in the 

previously published ADH gene cluster26, intergenic region between NKAIN1 and 

SERINC227. The first GWAS in an African American study was conducted in 201428 and 

novel loci crossing genome-wide significance threshold were reported in METAP and 

rs1437396 in the intergenic space between MTIF2 and CCDC88A. 

The most recent catalogue of GWAS reports a total of 50 genes, each harboring 

association signals to AD that have been independently replicated at least once. The risk 

alleles found in these 50 genes are mostly common, with an average allele frequency (± 

standard deviation) of 0.29 ± 0.2. 
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Gene by environment interaction  

 
Unlike other complex traits and diseases, the environment is a necessary 

component to AD onset. One cannot develop AD without exposure to alcohol. For other 

brain-related diseases, such as Alzheimer, no environmental factors are required to 

observe onset. The first gene-by-environment (G x E) study was conducted between an 

allele in the promoter region of the serotonin transporter gene (5-HTT), also known as of 

the s allele, and family relations using a Swedish cohort of adolescents between 16 and 

19 years of age. The study reported an increase in alcohol intoxication frequency of 12-

14 fold higher between carriers of the s allele with bad family relations and those with 

good family relations. A study conducted two years later reported a similar finding where 

college students carrying the s allele and experiencing stressful life events where at 

higher risk of abusing alcohol than s allele carriers who were not experiencing stressful 

life events 29. 

 

Gene by drug interaction  

 
The OPRM1 gene has been assessed for mediating effects of opiod antagonist 

naltrexone. The Asp40 status on this gene was used to recruit patients and conduct a 

double blind study in a placebo-controlled trial where individuals were treated with 

placebo or naltrexone prior to intravenous alcohol challenge session30. Individuals 

heterozygous or homozygous for the Asp40 allele reported lower levels of alcohol 
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cravings; naltrexone weakened the positive effect of alcohol response, particularly in 

those carrying the Asp40 allele.  

After several decades of ambiguity and controversy surrounding AD biology, 

work in the late 1980s and early 1990s suggested that drugs that activate neuronal 

production of 5HT (5 hydroxytryptamine receptors, also known as serotonin receptors) 

and block its re-uptake may reduce alcohol intake, particularly when combining 

psychopharmacological approaches with psychosocial therapies31.  

 

Missing heritability 

 
For most complex human traits and disorders, relatives are more alike than 

unrelated individuals. This correlation between phenotypes of relatives underlies the 

fundamental premise of genetics of complex human diseases. However, this correlation is 

not fixed for a given phenotype, and the variation in its value is determined by many 

genetic and non-genetic components, thus it becomes necessary to specify which type of 

genetic component one is measuring. For instance, the total variance of a phenotype (VP) 

is determined by variance in genetic components (VG) and environmental components 

(VE): 

VP = VG + VE 

The genetic components are further divided into additive (VA), dominant (VD), and 

interaction (VI) components, while the environmental components are divided into 
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common (VC) and non-common (VE) (i.e., everything else, that is, the remainder of 

environmental factors): 

VP = VA + VD + VI + VC + VE 

The additive genetic component (VA) is usually the major contributor of 

resemblance between relatives. The proportion of phenotypic variance explained by this 

specific genetic component is known as narrow-sense heritability (h2): 

h2 = VA / VP 

From here onwards, h2 will be referred to simply as genetic heritability. The additive 

genetic factors are presumed to have been passed down from parents to children. 

Importantly, additive genetic effect is difficult to ascertain; it’s only when VG = VA that 

dominant and epistatic effects of genes on the phenotype can be ignored, allowing for an 

empirical ascertainment of the VA
32.  

A commonly used method of estimating heritability is to use registries of twins 

(monozygotic, MZ, and dizygotic, DZ) data ascertained for the phenotype of interest. In 

this case, we assume that the phenotype is dichotomous, e.g., cases and controls, with a 

population prevalence of 8%. For MZ pairs we expect concordant cases n11 = 62, 

discordant pairs, n10 = 791, and concordant controls n00 = 4,147; while for DZ pairs, we 

observe n11 = 45, n10 = 740, and n00 = 4,21532. Assuming VD = 0, we apply the following 

formula for the measurement of intra-class correlation coefficient (t):  
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𝑡 =
𝑛11𝑛00 − �𝑛102 �

2

𝑛11𝑛00 +  �𝑛102 �
2 

Next, we obtain 𝑡𝑀𝑀 = 0.24 and 𝑡𝐷𝐷 = 0.16. Finally, genetic heritability is h2 = 2(𝑡𝑀𝑀 - 

𝑡𝐷𝐷) = 0.16 = 16%.  

 

Strategies for elucidating missing heritability 

 
Using GWAS results, we could estimate the “explained heritability” by each 

associated variant using approaches discussed in detail elsewhere33. Studies of AD have 

demonstrated that only a fraction of AD heritability34 is accounted for by the current 

association findings. The rest of the genetic heritability, i.e., the “missing heritability”, is 

yet to be elucidated and novel disease-associated loci are being reported at an increasing 

rate. Next, we discuss the two major approaches used to discover new disease-associated 

genes, representing the two most significant aspects of this dissertation.  

 

Rare variants 

 
Several studies have demonstrated that common variants (primarily SNPs) 

capture <10% of genetic heritability of complex human diseases35. Alternative 

approaches have been designed to address this limitation of common variants, including 

association tests for rare variants and structural variations36. The current GWAS findings 



 

13 
 

of AD consist of 50 genes, with variants that have allele frequencies of 29% on average 

(see above), thus leveraging rare variants is a worthwhile effort to elucidate the missing 

heritability of this disease. 

The advent and increased feasibility of NGS has enabled the discovery of 

genomic variants that are individually rare but commonly frequent. Since these variants 

are too rare to observe segregation in affected families, the traditional family study 

designs used during the linkage analysis era (see above) are not appropriate for 

association testing. Thus, a range of statistical methods have been developed, from 

methods that focus on comparison of cases-exclusive variants to controls-exclusive 

variants (RVE 37) to combined multivariate and collapsing methods (CMC 38) to weighted 

sum statistics (WSS 39). The latter two methods have a power advantage over the RVE 

method. Intuitively, these methods rely on the concept of burden-testing, i.e., collapsing 

rare variants that fall within a pre-defined region, e.g., gene region to increase the 

“effective sample size” of that region. Nuances of this idea exist in the literature, where 

the collapsing is done for different minor allele frequency (MAF) categories. However, 

one common limitation of all these tests is that they assume the magnitude and direction 

of all rare variants under study is similar. To address this limitation, sequencing-based 

rare variation association testing with the sequence kernel association test or SKAT was 

developed 40.  
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Structural variants 

 
Although the methods discussed above are not variant-specific, most studies of 

rare and common variants are focused on SNPs. After the discovery of CNVs in the 

general population in 200441, a plethora of studies started focusing on identification and 

association of CNVs with human diseases. Soon after the CNVs were found as ubiquitous 

sources of genomic variation across human populations, within two years, over 3,000 

population-wide CNVs were identified42.  Soon afterwards, both common (e.g., MAF > 

5%) and rare (e.g., MAF ≤ 5%) CNVs were being associated with complex human 

diseases, with some of the most successful associations being observed in autism43 and 

other neurodevelopmental disorders44. 

Importantly, common CNVs were observed to be in strong linkage disequilibrium 

(LD) with GWAS SNPs, while rare CNVs were located in regions with a paucity of 

GWAS SNPs. This observation had considerable impact on the efforts to elucidate the 

missing genetic heritability, since rare CNVS were more likely to reveal novel disease-

associated loci than common CNVs. Thus, the next frontier of human genetics research 

was deemed to be the study and disease-association of rare CNVs45. In the recent years, 

several studies have demonstrated association of rare or de-novo CNVs to psychiatric46 

and neurodevelopmental disorders47 through enrichment-based approaches. In addition to 

rare frequency CNVs being relatively independent of GWAS SNPs, they tend to be 

longer, and thus more likely to overlap with a gene region and have a pathogenic effect.  
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Scope and purpose 

 
A common problem with the existing methodology and study paradigm of “rare 

variants - common disease” is population structure and inability to distinguish between 

neutral and truly disease-associated variants36. To identify genes under putative positive 

selection, we designed a novel method that identifies genes, pathways and complex 

diseases enriched with highly-differentiated alleles within populations of the same 

continent (Chapter 2.1). Next we demonstrate that eye color, a well-known pigmentation 

trait under positive selection, is associated with AD in European American population, 

further supporting the potential influence of natural selection forces on AD risk loci 

(Chapters 2.2 and 2.3).  

One continuing challenge in population genetics is population structure, particularly 

for rare variants, or candidate gene sequencing studies. To address this issue, in Chapter 

3.1 we present a set of 325 panels of ancestry informative markers (AIMs) that may be 

used to adjust for population structure in a hierarchical fashion, representing a departure 

from traditional application of AIMs panels. We also report a novel method used for 

standardizing allele information, crucial for genotype imputation and meta-analyses 

(Chapter 3.2).  

We expand on the existing post-GWAS studies by conducting the first CNV-based 

GWAS meta-analysis of AD in five cohorts of European and African ancestry (Chapter 

4.1). Lastly, we present a framework for viral integrations from paired-end sequencing 
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data (Chapter 4.2) and a case study where we detected Human Herpesvirus 6 in the brain 

of an Alzheimer’s disease patient (Appendix A). 
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Abstract 

 
Background: Genetic variants with extreme allele frequency differences (EAFD) may 

underlie some human health disparities across populations.  

 

Method: To identify EAFD loci, we systematically analyzed and characterized 81 

million genomic variants from 2,504 unrelated individuals of 26 world populations 

(phase III of the 1000 Genomes Project). 

 

Results: Our analyses revealed a total of 434 genes, 15 pathways, and 18 diseases and 

traits influenced by EAFD variants from five continental populations. They included 

known EAFD genes, such as LCT (lactose tolerance), SLC24A5 (skin pigmentation), and 

EDAR (hair morphology). We found many novel EAFD genes, including TBC1D2B 

(autophagy mediator), TRIM40 (gastrointestinal inflammatory regulator), KRT71, KRT75, 

KRT83 and KRTAP10-1 (hair and epithelial keratin synthesis), PIK3R3 (insulin receptor 

interaction), DARS (neurological disorders), and NACA2 (skin inflammatory response). 

Our results also showed four complex diseases significantly enriched with EAFD loci, 

including asthma (adjusted enrichment P = 4 × 10-8), type I diabetes (P = 6 × 10-9), 

alcohol consumption (P = 0.0002), and attention-deficit/hyperactivity disorder (P = 

0.003).  

 

Conclusion: This study provides a comprehensive atlas of genes, pathways, and human 

diseases significantly influenced by EAFD variants. 
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Keywords: Missing heritability, Genomic variation, Fixation index (FST), Extreme allele 
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Introduction 
 

Evolutionary events such as migration, natural selection, and genetic drift have 

cumulatively changed the allele frequency spectrum of genomic variants in human 

populations. Sometimes, extreme allele frequency differences (EAFD) will exist even 

between pairs of closely related populations, e.g., populations from the same continent48. 

Due to their shared recent migration history, EAFD loci between related populations are 

unlikely driven by migration, but rather by genetic drift or selection. An allele under 

genetic drift with negative impact on fitness does not remain for long in a population due 

to purifying selection. Thus, disease-associated or pathogenic EAFD variants may be 

driven by balancing selection49 (i.e., the heterozygote has selective advantage, such as the 

resistance to malarial infection50-52) or recent drift (i.e., random deleterious events that 

have either not been purified from the population yet53, such as Tay-Sachs54 disease, or 

have little effect on fitness55). An atlas of complex diseases influenced by EAFD would 

be of interest to many, as it could enable an improved understanding of the origins of 

various diseases as well as promote the discovery of novel etiological factors through 

evolutionary-driven hypotheses. To our knowledge, no such resource exists yet. 
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In this study, we identified a comprehensive list of diseases and traits influenced 

by EAFD in a global reference of human populations. In order to measure the 

relationship between EAFD and disease susceptibility, we designed an unbiased approach 

to systematically identify variants with EAFD between populations of a continent at the 

whole-genome level, and then determine associated genes, biological pathways, and 

complex phenotypes. An unbiased population differentiation estimator (fixation index or 

FST), specifically designed for sequencing data with abundance of rare variants, was used 

to identify EAFD loci. We analyzed over 81 million single nucleotide polymorphisms 

(SNPs) and small insertions and deletions (indels) from 2,504 unrelated individuals in the 

1000 Genomes Project, Phase 3. These samples represent 26 world populations or five 

major post-migratory populations: African (AFR), European (EUR), East Asian (EAS), 

South Asian (SAS), and admixed American (AMR, Supplementary Table 1). We 

compared characteristics of whole-genome variants in different populations, and then 

identified genetic markers with EAFD. Then, we conducted systematic and rigorous 

enrichment analyses to identify genes, pathways, diseases and traits influenced by EAFD 

in the five major human populations (Figure 1). 

 

Results 

 
Whole-genome scans for EAFD 
 
All of the biallelic variants (Supplementary Table 2) were used to estimate the fixation 

index (FST) for each of the 325 population pairs (see Methods; Supplementary Tables 4 
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and 5). To identify EAFD, we selected high-FST variants, i.e., those with FST values 

greater than the threshold (θH, which was the FST value at the 99.9th percentile; see 

Methods). The variation of θH across chromosomes was minimal (range 5.8×10-6 - 

0.0056). Our results showed that the θH values of our selected high-FST variants were 

well-correlated with population geographic distances (e.g., ρ = 0.93 and R2 = 0.87 in 

Africans after removal of admixture samples; Supplementary Table 6 shows both 

genetic and geographic distances for all the 325 population pairs; Supplementary Figure 

1 and Supplementary Note 1), and thus θH was considered a proxy for genetic distance 

between populations. As expected, we found that the θH values were significantly lower 

within (mean ± SD = 0.11 ± 0.05) than between continental groups (mean ± SD = 0.51 ± 

0.16; Welch’s two-sample t-test P = 1 × 10-54). To elucidate the structure of all 26 

populations in detail, we analyzed each of the 325 population pairs by using θH as a proxy 

for their genetic distance. Figure 2 shows the θH-based genetic distances among the 26 

populations (Supplementary Note 2). Populations from the same continental group 

clustered closer to each other than those from different continental groups, with the 

exception of the admixed Americans. This structure was confirmed by principal 

component analysis (PCA, Supplementary Figure 2). 

 

To screen for EAFD loci we identified variants with extreme allelic differentiation using 

θH as a threshold (see Methods). EAFD was applied only to populations that share 

continental origin, and each continental group was analyzed separately. As a result, we 

identified a total of 774,187 candidate EAFD loci across the five continental groups for 
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further analyses. The total number of EAFD variants was comparable to the 762,000 

variants identified by 1000 Genomes Project, where an alternative method was used to 

identify alleles with large allele frequency differences 48. Among our EAFD variants, 

32,295 were shared by at least two continental groups (30,644, 1,489, 135, and 27 were 

shared by two, three, four, and five continental groups, respectively). Supplementary 

Table 7 indicates that 19-33% of the EAFD variants were recurrent across population 

pairs. Supplementary Table 8 and Supplementary Figure 3 present the numbers of 

variants shared by different sets of populations.  

 

Allele frequencies  
 

Among our identified EAFD variants (high-FST variants within each continental group), 

we observed relatively more rare than common variants. Africans revealed the highest 

proportion of rare variants (product-moment correlation ρ = -0.75 and adjusted R2 = 0.56) 

while Americans contained the lowest; the other three populations revealed a linear 

decline in abundance of EAFD variants with increasing allele frequencies (ρ = -0.86 and 

R2 = 0.73 in EUR; ρ = -0.80 and R2 = 0.64 in EAS; ρ = -0.86 and R2 = 0.75 in SAS; 

Figure 3A). The allele frequency distribution of EAFD variants was vastly different from 

that of whole-genome variants (mean = 0.29 (AFR), 0.33 (EUR), 0.36 (EAS), 0.33 

(SAS), and 0.38 (AMR) for the former, compared to 0.04 for whole-genome variants; ρ = 

-0.05 and R2 = 0.002). The EAFD variants contained fewer rare variants (derived allele 

frequency, DAF < 5%) than whole-genome variants; i.e., only 0.6 % in Africans, 0.3% in 
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Europeans, 0.3% in East Asians, and 0% in South Asians and Americans, compared to 

84.6% on the whole-genome level. This difference persisted for variants with DAF < 

10%, i.e., 28% (AFR), 20% (EUR), 17% (EAS), 21% (SAS), and 6% (AMR), compared 

to whole-genome of 91.6%. Thus, both rare and common variants are targeted by EAFD; 

however, common variants are enriched. This observation supports the conclusion that 

our EAFD variant selection was not inflated by rare variants. 

 

Among all EAFD variants, we observed a total of 506 indels, including 332 (0.09% of 

EAFD loci) from Africans, 62 (0.051%) from Europeans, 56 (0.053%) from East Asians, 

235 from South Asians (0.17%), and 56 (0.063%) from Americans, compared to 3.7% 

indels from whole-genome. Among them, only one indel was genic (frameshift insertion 

rs111905334 in the ITIH5 gene). This result reflects the potential preference of EAFD 

forces for SNPs against indels. Consistently, the EAFD indels showed markedly higher 

DAF (mean = 44%) than whole-genome (mean = 12%). 

 

Linkage disequilibrium and physical proximity  
 

We compared the linkage disequilibrium (LD) between EAFD and random SNPs (see 

Methods for the generation of matched random SNPs). We found that EAFD SNPs had 

longer LD ranges than random SNPs (OR = 1.72 (1.39 – 2.12) and P = 2 × 10-7; 

Supplementary Figure 4). This was consistent with the well-known property of 

extended haplotype homozygosity around positive selection variants56.   
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The distances between consecutive EAFD variants followed a lognormal distribution 

(mean = 7,829 bp and SD = 59,795). These EAFD variants were more densely clustered 

than expected (e.g., 12% of the EAFD variants in Africans were in 100bp clusters; by 

comparison, only 7.2% of random variants were in such clusters; OR = 1.7 (1.67 – 1.72) 

and χ2 test P < 2 × 10-16; Supplementary Figure 5).  

 

Biological functions and disease susceptibility implications 
 
Functional annotation  
 
EAFD loci were enriched in genic regions: 28% of these loci were genic, compared to 

only 2.9% from whole-genome variants (χ2 test odds ratio (95% confidence interval) or 

OR = 9.62 (9.56 - 9.7) and P < 2 ×10-16). Overall, the pathogenicity of the EAFD 

variants, as measured by their GERP scores, was lower than that of whole-genome 

variants (Wilcoxon rank sum test P < 2 × 10-16). As expected, on the whole-genome 

level, the coding regions had larger GERP scores than non-coding regions (P < 2 × 10-16, 

Figure 3B); however, for the EAFD variants, the two categories exhibited similar scores 

in all populations except East Asian (P = 0.02, Figure 3B). When the coding EAFD loci 

were decomposed into more specific functional categories, we observed a depletion of 

the most damaging variants (Figure 3C and 3D); for instance, depletion for missense 

(OR = 0.6 (0.56 - 0.65) and P < 2 ×10-16), “stop gain” (OR = 0.3 (0.13 - 0.55) and P < 2 × 

10-16), and the 3-prime untranslated region or 3’UTR (OR = 0.63 (0.59 - 0.67) and P < 2 
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× 10-16), as well as a decrease of the missense/synonymous variant ratio relative to all 

genic variants (e.g., 1.0, 1.3, 1.2, 1.1, and 1.1 for AFR, EAS, EUR, SAS, AMR, 

respectively, in comparison to a 1.9 ratio for genic variants).  

 

The EAFD loci were enriched in the 5’UTR region (OR = 2.8 (2.45 - 3.1) and P = 2 × 10-

5) and with synonymous variants (OR = 1.2 (1.10 - 1.26) and P = 1.8 ×10-5); Figure 3D). 

This reflects a possible preference of EAFD for regions that impact gene expression (e.g., 

5’UTR), comparable to previous findings on local adaption drivers57,58. These findings 

were consistent among populations (P > 0.05 for all continental group pairs; 

Supplementary Note 3). The proportion of missense variants increased with decreasing 

genetic distance (P = 0.002, Supplementary Table 9). Overall, we found that EAFD loci 

were approximately 10 times more likely to be genic, and were less damaging on average 

than whole-genome variants; however, some of these loci might compromise gene 

expression through regulatory regions such as 5’UTR. 

 

Enrichment analyses of EAFD genes  
 
We identified 434 EAFD genes: 138, 88, 91, 103 and 65 from Africans, Europeans, East 

Asians, South Asians, and Americans (Supplementary Table 10). These genes represent 

a highly distilled list from the total of 29,061 genes and pseudogenes containing at least 

one EAFD; of these, 21,614, 9,045, 7,875, 10,039 and 7,316 genes were found in 

Africans, Europeans, East Asians, South Asians and Americans, respectively. Each of the 

EAFD genes was significantly enriched with EAFD variants (Supplementary Figure 6 
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and Supplementary Table 11) and contained at least one nonsynonymous EAFD variant 

(average of 1.9 SNPs per gene)). The six EAFD genes containing the most damaging 

variants (i.e., prematurely halted protein synthesis and had CADD score ≥ 20) were 

involved in autoimmune (HLA-DRB1, HLA-DRB5 and LILRA3), viral (FUT2) and 

parasite (CD36) infection response and olfaction (OR52J3) (Table 1). The well-known 

malarial resistance locus rs321193859 was identified in Africans, with the largest allele 

frequency difference in YRI and ESN. Of the other five damaging EAFD loci, the most 

striking allele frequency difference was observed in two East Asian populations with 

SNP rs138741442, which had allele frequencies of 0 and 12% in CDX and CHB, 

respectively.  

 

Enrichment analyses of EAFD pathways  
 
We found strong evidence of EAFD influence on pathways across all continental 

populations, such as asthma (e.g., R = 70 and adjusted P = 4 × 10-8), type I diabetes (e.g., 

R = 59 and P = 6 × 10-9) and autoimmune thyroid disease (e.g., R = 49 and P = 2 × 10-8, 

Table 2). In addition, we observed several population-specific pathways, including fat 

digestion and absorption in Africans (R = 14 and P = 0.02), endocytosis in Europeans (R 

= 7.5 and P = 0.008), osteoclast differentiation in East Asians (R = 7.6 and P = 0.03), 

type II diabetes in South Asians (R = 18 and P = 0.008), and primary immunodeficiency 

in Americans (R = 38 and P = 0.004; Supplementary Table 12). Table 2 shows the 

identified pathways influenced by EAFD forces that replicated in all five continental 

groups. 
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Enrichment analyses of EAFD diseases and traits  
 

To evaluate the influence of EAFD on disease susceptibility, we matched identified 

EAFD SNPs to diseases and trait associations maintained in the GWAS Catalogue60. 

After manual curation of the most recent GWAS Catalogue (Supplementary Table 13), 

we obtained 7,523 unique SNPs, each of which was associated with at least one of the 

726 diseases and traits, and was replicated at least once. Among them, we found that 

from a total of 1,003 SNPs, 13% of these associations, were EAFD loci (i.e., 397, 204, 

215, 181, and 135 SNPs from AFR, EUR, EAS, SAS, and AMR, respectively). To further 

identify diseases or traits significantly influenced by EAFD, we carried out enrichment 

analyses, identifying a total of 18 GWAS diseases and traits were significantly enriched 

with EAFD variants (after adjustment for multiple testing, Table 3).  

 

These include 1) pigmentation traits, such as hair color (four among the six known hair 

color SNPs were EAFD SNPs or denoted as 4/6, R = 25 and adjusted P = 0.0008); 2) 

brain disorders, including attention deficit hyperactivity disorder (5/25, R = 11 and P = 

0.003), alcohol consumption (4/5, R = 28 and P = 0.0002), drinking behavior (2/3, R = 23 

and P = 0.04), frontotemporal dementia (both of the two associated SNPs were EAFD 

SNPs, R = 35 and P = 0.018), and white matter hyperintensity burden (both of the two 

associated SNPs were EAFD SNPs, R = 37 and P = 0.02); 3) metabolic traits, including 

trans fatty acid levels (34/131, R = 9.1 and P = 1 × 10-21; replicated in another continental 
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group: 23/131, R = 8.9 and P = 5 × 10-15), triglycerides (10/91, R = 3.8 and P = 0.01), 

gamma glutamyl transpeptidase (3/7, R = 15 and P = 0.018), glycemic traits (3/6, R = 17 

and P = 0.016), and comprehensive strength and appendicular lean mass (both of the two 

associated SNPs were EAFD SNPs and this was consistent using data from two different 

populations, R = 55.8 and P = 0.0078); 4) infectious diseases, including chronic hepatitis 

B infection (3/9, R = 12 and P = 0.03), and response to hepatitis C treatment (2/3, R = 23 

and P = 0.036); 5) nasopharyngeal carcinoma (3/11, R = 10 and P = 0.04), and 6) others, 

such as corneal curvature (3/8, R = 21 and P = 0.0078; Table 3). Supplementary Table 

14 shows the complete results of enrichment analyses of GWAS diseases and traits 

targeted by EAFD. Sharing patterns of EAFD genes, pathways, diseases and traits across 

the five continental groups are shown in Supplementary Figure 7. 

 

All of the four alcohol consumption-associated SNPs identified as EAFD SNPs in East 

Asians (i.e., rs10849915 in intron of CCDC63, rs12229654 nearby MYL2, rs2074356 in 

intron of HECTD4, and rs2072134 in the 5’ UTR of OAS2) originated from GWASs of 

also an East Asian population61. This concordance supports a strong relationship between 

EAFD and alcohol consumption or exposure, potentially due to local adaptation; e.g., 

environmental presence of fermented fruits62. All of the alcohol consumption-EAFD loci 

were in the same direction with respect to trait-increasing alleles. Furthermore, the 

derived allele showed protective effect, and this was true for all of the four EAFD SNPs 

(effect sizes61 = -0.55, -1.06, -0.61, and -0.79 for the four derived alleles rs10849915-C, 

rs2074356-A, rs2072134-A, and rs12229654-G, respectively). Some of the EAFD 
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biological pathways converged with enriched GWAS diseases. For example, type I 

diabetes and glycemic traits63 were identified via our pathway and disease/trait analyses, 

respectively. The EAFD SNPs used in both analyses were from East Asians; and the 

same was true for frontotemporal dementia (Supplementary Table 12) and neurotrophin 

signaling64 (Supplementary Table 14).  

 

To estimate the extent of the relationship between EAFD and disease susceptibility, we 

calculated the proportion of the cumulative effect sizes (i.e., odds ratios) explained by 

EAFD variants among the total effect sizes of all identified disease variants using data 

from the GWAS Catalogue (population matched). We found that the EAFD SNPs 

accounted for 26% and 70% of the total effects sizes of all known associated SNPs for 

alcohol consumption61 and pigmentation traits65, respectively. The results indicate local 

EAFD is likely to have considerable influences on traits and disease genetic heritability. 

In all, EAFD forces have influenced genes, biological pathways, and further affected 

traits and the susceptibility to a wide range of diseases - including infections, brain 

diseases, metabolic functions, and potentially cancer - across five major human 

populations.  

 

Discussion 
 

In this study, we characterized over 81 million whole-genome biallelic SNPs and indels 

from 26 human populations. With this data we were able to identify 434 candidate genes, 
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15 pathways, and 18 GWAS diseases and traits influenced by EAFD. We identified many 

known positive selection genes such as LCT66 (lactose tolerance), SLC24A567 (skin 

pigmentation) and EDAR68 (hair morphology). More importantly, we also detected novel 

EAFD genes (Supplementary Table 10), such as OR52J3 (smell perception), TBC1D2B 

(autophagy mediator 69), TRIM40 (gastrointestinal inflammatory regulator 70), KRT71, 

KRT75, KRT83 and KRTAP10-1 (hair and epithelial keratin synthesis), PIK3R3 (insulin 

receptor interaction 71), DARS72 (neurological disorders) and NACA2 (skin inflammatory 

response73). Each of our novel genes was enriched with EAFD variants, where at least 

one was nonsynonymous, providing a tractable list for experimental validations. The 

individual gene functions converged with pathway and disease enrichment analyses.  

 

We have identified a total of 15 pathways, such as olfactory transduction, asthma, type I 

diabetes, rheumatoid arthritis, viral myocarditis, allograft rejection, immune system 

disorders (Table 2), as well as 18 diseases and traits (Table 3). Most of the disease and 

traits are known for differential prevalence or disease risks across populations, such as 

nasopharyngeal carcinoma74, alcohol consumption75, and body strength and appendicular 

lean mass in East Asians, and skin pigmentation traits in Europeans (Supplementary 

Note 4). More importantly, we found evidence suggesting that EAFD may play an 

important role in population differences with regard to illnesses such as ADHD, 

dementia, brain white matter hyperintensity, trans fatty acid levels, and response to 

hepatitis C treatment (Table 3).  
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The EAFD genes presented in this study were enriched with targets of recent localized 

adaptation. We compared our approach with an independent approach: the FST-based 

population branch statistic (PBS), reported in the latest 1000 Genomes Project paper76 

(Supplementary Figure 8). Large PBS scores indicate possible positive selection or 

local adaptation77. The mean PBS score for our EAFD genes (427 of the 434 genes were 

matched) was 7.2, significantly higher than the mean score from whole-genome(1000 

Genomes Project primary paper76, mean = 4, Wilcoxon rank-sum P < 2 × 10-16) and mean 

scores of 373 adaptation genes from two well-known studies (mean = 5.1 and P < 2 × 10-

16)57,78. These results suggest that our approach may be used to complement existing 

methods for identifying genes under positive selection. Ultimately, to identify putative 

selection loci among our EAFD loci, independent tests that rely on haplotype structure 

and frequency79, or a mixture of independent tests78 followed by functional analyses, are 

required. 

 

We hypothesized that the drivers of pathogenic EAFD variants between two related 

populations were likely balanced selection and recent genetic drift. Firstly, we found that 

many EAFD variants are associated with both beneficial traits and diseases. For instance, 

rs1393350 (in intron of TYR), an EAFD SNP that we identified in South Asians, is 

associated with both eye color and melanoma 80,81 (Supplementary Table 15). Similarly, 

rs174547 (in intron of FADS1), an EAFD SNP from East Asians and Americans, is 

associated with both height and trans fatty acid levels82,83, while rs1042602 (missense in 

TYR), another EAFD locus, is associated with both skin pigmentation and nicotine 
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dependence84-87. Supplementary Table 15 indicates function of six EAFD SNPs 

potentially maintained in the population by balanced selection. Secondly, we identified 

numerous EAFD complex disorders that are non-lethal (e.g., alcohol consumption) or 

have a late onset (e.g., frontotemporal dementia), which supports the action of genetic 

drift on genetic loci of little effect on fitness55. The EAFD loci identified in this study are 

likely driven by a combination of balancing selection and genetic drift. Finally, we 

observed enrichment of EAFD in genic regions (28% versus 2.9% from whole-genome). 

This enrichment is unlikely biased by higher sequencing coverage in genic versus non-

genic regions, since proportion of genic variants represents the actual proportion of gene 

regions in the genome (~2%). 

 

In this study, we recognized and overcame several challenges and biases. For example, 

first, we adopted a recently evaluated, non-traditional derivation of the fixation index, 

FST
88, such that our approach adequately incorporated the effects of rare variants. 

Although it was previously shown that this FST estimator is appropriate for use in 

sequencing studies with abundance of rare variants88, it is worth noting that the sample 

size determines the minimum frequency of alleles that may be analyzed (e.g., we cannot 

observe alleles with DAF<0.01 if sample size = 100). The FST estimator used here is 

robust to sample size, even for rare variants. For example, if allele frequency of a SNP is 

0.01 and 0.04 in two populations of size 500 individuals each, the FST index will be 

0.019; if sample sizes from both populations increased two-fold (to 1,000), the FST index 

remains 0.019. Second, instead of using a fixed threshold to define EAFD, such as FST = 
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0.65 as reported previously89 we used a dynamic, data-driven approach, which 

determined reasonable thresholds based on each population, i.e., θH (Supplementary 

Tables 5 and 6). The 99.9th percentile of FST values represents a reasonably high 

threshold for selection of extremely differentiated alleles; we showed that this threshold 

resulted in a balanced number of genes, since lower or higher thresholds would have 

produced markedly higher or lower numbers of genes, respectively (Supplementary 

Figure 9). Third, due to rare variant inclusion and unbiased ascertainment, whole-

genome sequencing data has higher power for demographic inference than SNP array 

data, used by many previous studies90. Rare variants have been shown to potentially 

inflate fixation index, but only marginally so, when ascertaining in the population in the 

pair (e.g., from 0.103 to 0.108 in CEU-CHB pair when ascertaining in CEU88). Fourth, 

we used four independent, but complementary, analyses to measure biological effects of 

EAFD, including the VEP91, CADD92, KEGG93, and a curated GWAS Catalogue60. We 

confirmed our variant functional annotation94 results using ANNOVAR95.  

  

In summary, we have demonstrated that a large number of genes, diseases, and traits are 

influenced by functional EAFD loci. We have provided a catalogue of highly distilled 

EAFD genes with functionally important variants for experimental validation. Future 

studies may demonstrate that a considerable portion of the genetic missing heritability in 

some complex human diseases is attributed to EAFD. 
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Methods 
 

Whole-genome single nucleotide polymorphisms and small insertions and deletions  
 

The SNP and indel data were derived from the most recent Phase 3 release of the 1000 

Genomes Project (accessed as of August 20 2014). The program Tabix96 was used to 

extract genotypes from the variant call format (VCF version 4.1) files, created using the 

human genome reference (build 37). The resulting 2,504 unrelated individuals represent a 

total of 26 world populations (Supplementary Table 1). Only autosomal biallelic SNPs 

and indels were used. All other structural variants (e.g., copy number variants) and multi-

allelic variants, which occupied only 0.5% of the total variants, were excluded from the 

analyses.  

 

Whole-genome fixation index 
 

Fixation index (FST) is a measurement of genetic differentiation between two populations 

at a specific genetic locus. The conventional FST estimation methods by Weir and 

Cockerham97 and Weir and Hill98,99 have been widely used. In this study, we adopted a 

modified Hudson FST-estimation method88 because this method does not overestimate FST 

and has adequate power for analysis of both common and rare variants, due to its 

insensitivity to sample size differences between populations. The latter is important since 

sample sizes between some populations are not well-matched (Supplementary Table 1). 

This new FST estimator is defined as: 
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𝐹𝑆𝑆 =
(𝑝̅1 − 𝑝̅2)2 − 𝑝̅1(1 − 𝑝̅1)

(𝑛1 − 1) − 𝑝̅2(1 − 𝑝̅2)
(𝑛2 − 1)

𝑝̅1(1 − 𝑝̅2) +  𝑝̅2(1 − 𝑝̅1)           (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 1) 

, where 𝑝̅1 and 𝑝̅2 refer to derived allele frequencies (DAF) in samples from populations 

1 and 2, and 𝑛1 and 𝑛2 refer to sample sizes of populations 1 and 2, respectively. The 

fixation index utilizes the DAF to measure allele frequency, instead of minor allele 

frequency (MAF), since it measures divergence of non-reference (i.e., derived) alleles. 

Intuitively, this estimator represents an average of the population specific FST estimators 

proposed by Weir and Hill98, and has been shown to be independent of sample 

composition and not overestimate FST
88. Bhatia et al. evaluated this estimator at depth 

and observed that when rare variants were used to calculate FST between CEU and CHB, 

FST was marginally inflated compared to when using common SNPs. The authors 

attribute this behavior to population bottlenecks being strong in both CEU and CHB, 

rather than recent population expansion. However, allele frequency dependence was 

removed when SNPs were ascertained in YRI.  

 

We selected "high-FST" SNPs and indels based on population pair specific FST 

distributions, i.e., the threshold (defined here as θH) for high-FST SNPs was the FST value 

at the 99.9th percentile, consistent with previous studies89. Therefore, biallelic SNPs and 

indels with FST > θH between populations of same continental groups are referred as 

EAFD SNPs and indels, respectively, or variants (jointly). For computational reasons, the 

genome-wide θH between two populations was estimated as the weighted average θ𝐻 

across autosomes: 
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θ𝐻 =
∑ (𝑛𝑖 × 𝜃𝐻𝐻) 22
𝑖=1
∑ 𝑛𝑖22
𝑖=1

          (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 2) 

, where ni is the number of analyzed biallelic SNPs and indels in chromosome i 

(Supplementary Tables 2 and 3). The population pair specific θH analyzed in this study 

was the whole-genome θH (i.e., θ𝐻). For simplicity, we used the symbol θH to represent 

θ𝐻 throughout the study.  

 

The FST was evaluated within and between the 26 populations (Figure 1). Thus, a total of 

325 (i.e., 26C2 = 325) pairwise population comparisons were analyzed, including 268 

between continental groups pairs and 57 within continental group pairs (Supplementary 

Table 1), resulting in over 4.6 billion calculations of allelic differentiation (i.e., FST).  

 

Population genetic distances and visualization 
 

The (whole-genome) θH value was used to estimate genetic distances between any two 

populations. The programs, dendroscope 3100 and circos101, were adopted to draw 

population dendrogram and circos plots, respectively. To better visualize differences 

among population pairs, the θH values were exponentially transformed, i.e., width =

 𝑒20(1−𝜃𝐻), such that thicker connections correspond to more related populations, while 

thinner connections correspond to more distant populations. Furthermore, allele sharing 

was also adopted to evaluate genetic distances. PLINK/SEQ 0.10 

(http://atgu.atgu.mgh.harvard.edu/plinkseq) was used to estimate pair-wise allele sharing 
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for a total of 3,133,756 (i.e., (25042 – 2504) / 2) unique sample pairs. The heatmap of 

resulting allele sharing counts was constructed using the heatmap.2 function in the R 

statistical programming language (www.r-project.org).  

 

Geographic distances 
 

The geographic distances between populations were determined using the geosphere 

function in R. The latitude and longitude for the 26 populations were determined using 

the Google Earth (https://earth.google.com). The center of country, region or city was 

used to represent the point of origin for each population. 

 

Functional annotations of variants 
 

All SNPs and indels were annotated with potential biological consequence terms. The 

functional annotation information was extracted from Variant Effector Predictor tool 

(VEP)91. The VEP database contains a total of 34 unique annotation categories, also 

known as sequence ontologies or SO terms. For comparison, all variants were also 

annotated using the latest version of ANNOVAR95 (July 14 2014) and CADD92. The 

evolutionary conservation scores defined by the GERP102 method were used to evaluate 

functional impacts of the variants. A positive GERP score represents conservation across 

mammals, and therefore, the greater the GERP score of the variant, the greater the level 

of evolutionary conservation at the particular genomic site102. Similarly, a high CADD 

score represents potential pathogenicity. 
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Linkage disequilibrium 
 

We measured LD between consecutive variants for both the identified EAFD variants and 

random matched variants, using the African population. For the random matched 

variants, we randomly sampled variants from the whole genome while controlling for 1) 

the total number of markers (i.e., 10,000 EAFD and 10,000 random variants) and 2) their 

derived allele frequency (DAF) distribution. The DAF distribution of the randomly 

sampled variants had to match that of the EAFD variants (see Results). High LD was 

defined as r2 > 0.8. We took each variant X and identified the length of genome until we 

encountered the first other variant Y such that r2 (X,Y) ≤ 0.8 (defined as “LD range 

length”). This process led to exclusion of 40%-45% of variants in both EAFD and 

random matched variants since rare variants have r2 < 0.8. The distributions of LD range 

lengths were compared between the EAFD and random matched variants. The LD 

calculations were conducted using SNAP103. 

 

Enrichment analyses of genes and biological pathways influenced by EAFD 
 

EAFD variants refer to those with FST ≥ θH within a continental group. Genic EAFD 

variants were identified for each of the five continental groups. Gene-level density of 

EAFD variants, i.e., 𝐻𝐻𝐻ℎ−𝐹𝑆𝑆 𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

, was used to establish the genes that were likely 

influenced by EAFD forces. Specifically, genes under EAFD had to meet three criteria; 
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they had to: 1) have more than 1% of their variants designated as EAFD variants, 2) be 

significantly enriched with EAFD variants, and 3) contain at least one nonsynonymous 

variant. The significance of enrichment was evaluated using the hypergeometric 

probability model. To ensure minimal type I error (false positives), Bonferroni correction 

for multiple testing was set at 1.7 × 10-6 (0.05/29,061, the total number of genes). We 

only retained genes above genome-wide significant level for further analyses. 

 

To identify EAFD enrichment in biological or disease pathways maintained in the latest 

version of Kyoto Encyclopedia of Genes and Genomes (KEGG)93, the toolkit 

WebGestalt104 was used. The statistical significance of enrichment was evaluated under 

the hypergeometric probability of the overlap between our gene sets and all the gene sets 

in the KEGG database (accessed on June 10, 2016). To correct for multiple testing, 

enrichment P values were adjusted using the false discovery rate (FDR) method105. 

 

Enrichment analyses of diseases and traits influenced by EAFD 
 

We curated the genome-wide association findings of the latest GWAS Catalogue60 

(accessed on November 13, 2015) using multiple criteria (see Result section for a full list 

of quality controls). We mapped the EAFD variants that we identified to the curated 

GWAS Catalogue, and carried out enrichment analyses. The hypergeometric probability 

was used to calculate the statistical significance of enrichment. For instance, for each 

disease or trait d, there are ld variants in the curated GWAS catalogue (set G) and kd of 
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them are under EAFD (set F). The sizes of sets F and G are m and n, respectively. The 

null hypothesis H0 states that the ratio of expected size of set F for disease d (i.e., 

E(|𝐹(𝑘𝑑)|)) to observed size (i.e., O(|𝐹(𝑘𝑑)|)) is at most equal to one: 𝐸(|𝐹(𝑘𝑑)|)
𝑂(|𝐹(𝑘𝑑)|)

 ≤ 1. The 

probability P of observing enrichment for disease d in set F (i.e., 𝐸(𝑘𝑑)
𝑂(𝑘𝑑)

 > 1) is estimated 

using the hypergeometric probability distribution function: 

𝑃 �  
𝐸(|𝐹(𝑘𝑑)|)
𝑂(|𝐹(𝑘𝑑)|)

 >  1 | 𝐻0� = 1 − 𝑃 �
𝐸(|𝐹(𝑘𝑑)|)
𝑂(|𝐹(𝑘𝑑)|)

 ≤ 1 | 𝐻0  � 
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�𝑙𝑑𝑖 � ∙ �

𝑛 − 𝑙𝑑
𝑚 − 𝑖�
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𝑘𝑑−1

𝑖=0
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, where the expected number of variants for disease d is: 𝐸(|𝐹(𝑘𝑑)|) =  𝑙𝑑
𝑛

×  𝑚. 

Intuitively, 𝐸(|𝐹(𝑘𝑑)|)
𝑂(|𝐹(𝑘𝑑)|)

 represents the ratio between expected and observed disease-

associated variants, taking values <1 in case of depletion and >1 in case of enrichment. 

The resulting P value was adjusted using the FDR method105. 
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Tables 
 

Table 3 Annotation of EAFD genes containing most pathogenic EAFD variants. (see 
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 

Table 4 Replicated pathways influenced by EAFD. (see 
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 

Table 5 Diseases and traits influenced by EAFD. (see 
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 

https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
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Figure Legends 

 
Figure 1 Identification of EAFD targets. From top to bottom: for each of the five 
continental groups, a population is represented by a circle, and the number inside the 
circle is the sample size. All possible population pairs, represented by solid black arrows, 
were considered in each continental group (21, 10, 10, 10, and 6 from the left to right), 
and for each pair, around 81 million loci (i.e., biallelic SNPs and indels) were used for 
fixation index (FST) estimation. For comparison, the average FST thresholds (averaged 
values of combined θH in populations of the same continental group) were 0.1, 0.11, 0.07, 
0.09, and 0.2 for African, East Asian, South Asian, European, and American, 
respectively. An EAFD variant candidate is selected if its FST value is larger than θH. The 
overall range of the resulting FST values was consistent with previous estimates from 
HapMap samples88,89. Numbers in the following four rows are total numbers of identified 
variants, genes, pathways, and traits and diseases. The numbers in brackets correspond to 
the percentages of the population counts shared by at least one other population.  
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Figure 2 EAFD and population structure. A) Dendrogram of all populations defined 
by the θH values between population pairs. B) Circos plot of population pairwise θH for 
all of the 325 population pairs. Each colored segment corresponds to a different 
population. The width of each ribbon (i.e., connection) corresponds to an exponential 
transformation of the whole-genome θH value. The thicker the ribbon, the more similar 
the two populations.  
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Figure 3 EAFD and functional annotation. A) Distributions of derived allele 
frequencies of EAFD variants identified within each continental group (K, thousand and 
M, million). By comparison, the high-FST variants identified between continental groups 
revealed more common variants. B) Comparison of GERP scores between coding (C) and 
non-coding (N) variants. From left to right: the whole-genome variants, the EAFD 
variants in African, European, East Asian, South Asian, and American. The P values 
were estimated using the rank sum test. The dotted red horizontal line represents GERP 
score of 1. C) Decomposition of functional categories of the coding variants under EAFD 
in each continental group, corresponding to B. D) Violin plots with y-axis representing 
GERP scores and x-axis indicating variant functional categories. The five rows of violin 
plots correspond to five different continental groups. The x-axis labels, variant functional 
categories, were ordered based on their relative genomic positions. The colors of the 
violin plots correspond to the degrees of mean GERP scores (yellow = low and red = 
high). The numbers on top of the violins correspond to the total number of variants 
represented by each violin. Around 93% of all variants had a GERP score. The boxplot in 
the center of the violin shows the quantiles, with the grey dot in the center being the 
median value. The two rows at the bottom show the P value and odds ratio (OR) from 
tests between EAFD and whole-genome variant counts (χ2 test) using data from African 
samples. An OR < 1 represents depletion, while OR > 1 represents enrichment. NS, not 
significant.  
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Supplementary Results, Tables, and Figures 

Supplementary Results 
 

Supplementary Note 1 
Associations between genetic and geographic distances 
We found evidence of strong association between the populations’ genetic (θH) and 

geographic distances. Particularly, when adjusted for recent migratory events, the 

geographic distance well reflected the genetic distances between populations. The 

association was moderate (ρ = 0.67 and R2 = 0.45) when all African populations were 

combined; however, it became stronger (ρ = 0.93 and R2 = 0.87) when the two admixed 

populations, ACB and ASW, were excluded. The admixed Americans showed no 

significant association, likely due to both recent migration and admixture patterns. A 

stronger association unraveled among Europeans after removal of the CEU samples (ρ = 

0.77 and R2 = 0.6). These results showed that θH was a reasonable proxy for genetic 

distances between populations.  

Supplementary Note 2 
Whole-genome scan for EAFD 
The number of total high-FST variants decreased as the populations in pairs became 

distant, i.e., increased θH (ρ = -0.52 and P = 0.05, Supplementary Table 9). Population 

pairs CDX-ESN and ESN-YRI had the largest and smallest θH values, respectively. 

Supplementary Table 9 shows three main population pairs while Supplementary Table 

10 shows θH for each of the 325 population pairs. All of the 268 between continental 

group pairs had θH > 0.1 while the 57 within continental group pairs showed θH < 0.1. 
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The variants with highest allele frequency difference between populations of the same 

continental group may, thus, be considered candidates of EAFD.  

Supplementary Note 3 
Functional annotation of EAFD variants 
Genic annotation groups were affected equally by EAFD across the five continental 

groups (Figure 3D). However, when within- and between-population pairs were 

considered jointly (a total of 15 population pairs), the functional abundance differed 

across pairs. We carried out association analyses between the abundance of 14 common, 

variant functional annotation categories and θH values for each continental group pair 

(Supplementary Table 9). We found that the abundance significantly decreased (P ≤ 

0.05) as θH increased for several categories, particularly missense (ρ = -0.73), missense 

NMD (ρ = -0.55), intergenic (ρ = -0.54), upstream (ρ = -0.51), splice donor (ρ = -0.51), 

and 5’UTR (ρ = -0.44). After adjusting for multiple testing, the association remained 

significant for missense variants (ρ = -0.73 and adjusted P = 0.03). The ratio of 

missense/synonymous variants significantly associated with θH (ρ = -0.77 and adjusted P 

= 0.01). To our knowledge, this is the first report of a dose-dependent decrease in 

missense SNP abundance in response to increase in population genetic distance.  

 

We estimated the number of times that the same high-FST variant was identified in 

different population pairs (i.e., recurrence). High recurrence is observed when a high-FST 

variant is observed multiple times in different population pairs, signifying that this 

variant is more likely a candidate of EAFD. In pairs of populations from different 
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continental groups, the recurrence (adjusted by number of samples in the population pair) 

was significantly higher than in pairs from the same continental group (KS-test, P = 

0.0025; Supplementary Table 7). Thus, high-FST variants within continental groups are 

better candidates of EAFD that those between continental groups. This observation 

strongly supports the approach used in this study, where EAFD referred to within (but not 

between) continental group pairs.  

 Supplementary Note 4 

Population-specific traits and diseases of high-prevalence or pathogen exposures 
The findings from our enrichment analyses of the diseases and traits under EAFD were 

consistent with epidemiological reports, and reflected the published reports on disease or 

trait prevalence or exposure, for instance, in Africans: asthma106, prostate cancer107, 

breast cancer108, chronic hepatitis infections (B and C)109, African trypanosomiasis 

(WHO, March 2014), Malaria110, Nephropathy52, pathogenic E. coli infection110, 

meningococcal disease111, sickle cell anemia (haemolysis)112, toxoplasmosis113, 

sarcoidosis114, AIDS110; in Europeans: Alzheimer’s disease115, Parkinson’s disease116, 

eye, hair and skin-color traits81, male-pattern baldness117, melanoma118, Paget’s 

disease119, and cystic fibrosis severity120; in East Asians: biliary atresia121, hepatitis B and 

C infections (WHO, March 2014), esophageal cancer (and related nasopharyngeal 

carcinoma)122, type II diabetes (and related trait: retinol metabolism)123; in South Asians: 

type 2 diabetes and related trait, i.e., insulin signaling pathways123 (most of the 

epidemiological literature grouped East and South Asians).  
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Supplementary Tables 
 

Supplementary Table 1 Sample sizes of all 26 populations analyzed in this study 

Continental 

groups 

Populations Sample sizes Total 

AFR ACB,  ASW, ESN, GWD, 

LWK, MSL, YRI 

96, 61, 99, 113, 99, 85, 108 

661 

AMR CLM, MXL, PEL, PUR 94, 64, 85, 104 347 

EAS CDX, CHB, CHS, JPT, KHV 93, 103, 105, 104, 99 504 

EUR CEU, FIN, GBR, IBS, TSI 99, 99, 91, 107, 107 503 

SAS BEB, GIH, ITU, PJL, STU 86, 103, 102, 96, 102 489 

The three-letter codes represent the following populations: EAS, East Asian; SAS, South 
Asian; AMR, admixed populations from the Americas; EUR, European populations; 
AFR, African populations. The order of sample sizes corresponds to the populations 
order. Population codes correspond to African Carribbeans in Barbados (ACB); 
Americans of African Ancestry in Southwest of USA (ASW); Esan in Nigeria (ESN); 
Gambian in Western Divisions in the Gambia (GWD); Luhya in Webuye, Kenya (LWK); 
Mende in Sierra Leone (MSL); Yoruba in Ibadan, Nigeria (YRI); Columbians from 
Medellin, Colombia (CLM); Mexican Ancestry from Los Angeles USA (MXL); 
Peruvians from Lima, Peru (PEL); Puerto Ricans from Puerto Rico (PUR); Chinese Dai 
in Xishuangbanna, China (CDX); Han Chinese in Beijing, China (CHB); Southern Han 
Chinese (CHS); Japanese in Tokyo, Japan (JPT); Kinh in Ho Chi Minh City, Vietnam 
(KHV); Utah residents with Northern and Western European Ancestry (CEU); Finnish in 
Finland (FIN); British in England and Scotland (GBR); Iberian Population in Spain 
(IBS); Toscani in Italy (TSI); Bengali from Bangladesh (BEB); Gujarati Indian from 
Houston, Texas (GIH); Indian Telugu from the UK (ITU); Punjabi from Lahore, Pakistan 
(PJL); Sri Lankan Tamil from the UK (STU). 
 

Supplementary Table 2 Summary of the total variants in the 1000 Genomes Project 
Phase 3 subjects 
Variant Types Counts Percentages 

SNPs 78,136,341 96.1% 

Indels 3,135,424 3.9% 

Biallelic SNPs and 

indels 
80,800,311 99.4% 
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Multiallelic SNPs 259,370 0.3% 

Multiallelic sites 416,023 0.5% 

Others 58,671 0.1% 

All 81,271,745 100% 

 

Supplementary Table 3 Numbers of biallelic SNPs and indels by chromosomes 

Chromosomes SNPs indels SNPs + 

indels 

1 6,196,151 236,961 6,433,722 

2 6,786,300 256,128 7,043,032 

3 5,584,397 214,796 5,799,690 

4 5,480,936 217,939 5,699,315 

5 5,037,955 197,094 5,235,493 

6 4,800,101 194,243 4,994,802 

7 4,517,734 171,699 4,689,864 

8 4,417,368 152,173 4,569,905 

9 3,414,848 124,884 3,540,028 

10 3,823,786 145,438 3,969,564 

11 3,877,543 144,615 4,022,530 

12 3,698,099 147,887 3,762,572 

13 2,727,881 113,548 2,841,649 

14 2,539,149 100,450 2,639,834 

15 2,320,474 90,444 2,411,151 

16 2,596,072 84,920 2,681,201 

17 2,227,080 88,730 2,316,023 

18 2,171,378 82,671 2,254,259 

19 1,751,878 69,034 1,821,116 

20 1,739,315 63,315 1,802,809 

21 1,054,447 43,974 1,098,537 



 

58 
 

22 1,055,454 41,022 1,096,558 

Total 77,818,346 2,981,965 80,800,311 

The average length of indels were three nucleotides (minimum length = 1 and maximum 

length = 60). 

 

Supplementary Table 4 FST values across each chromosome in three representative 
population pairs 

Chrs CEU-YRI 

µ , se  (θH) 

CEU-CHB 

µ , se (θH) 

YRI-CHB 

µ , se (θH) 

1 0.056, 6.4 × 10-5 

(0.67) 

0.044, 6.9 × 10-5 

(0.62) 

0.061, 7.1 × 10-5 

(0.73) 

2 0.056, 6.1 × 10-5 

(0.66) 

0.045, 6.8 × 10-5 

(0.64) 

0.062, 7.0 × 10-5 

(0.75) 

3 0.057,  6.7 × 10-5 

(0.66) 

0.044, 7.1 × 10-5 

(0.56) 

0.062, 7.6 × 10-5 

(0.76) 

4 0.058, 6.8 × 10-5 

(0.68) 

0.043, 6.8 × 10-5 

(0.56) 

0.063, 7.5 × 10-5 

(0.75) 

5 0.055, 6.8 × 10-5 

(0.66) 

0.043, 7.2 × 10-5 

(0.58) 

0.06, 7.6 × 10-5 (0.74) 

6 0.056, 6.8 × 10-5 

(0.65) 

0.043, 7.1 × 10-5 

(0.58) 

0.061, 7.8 × 10-5 

(0.73) 

7 0.056, 7.2 × 10-5 

(0.67) 

0.044, 7.6 × 10-5 

(0.55) 

0.061, 8.1 × 10-5 

(0.74) 

8 0.058, 7.8 × 10-5 

(0.67) 

0.042, 7.6 × 10-5 

(0.54) 

0.063, 8.6 × 10-5 

(0.74) 

9 0.056, 8.4 × 10-5 

(0.66) 

0.045, 9.2 × 10-5 

(0.59) 

0.060, 9.2 × 10-5 

(0.71) 

10 0.056, 7.9 × 10-5 

(0.66) 

0.046, 8.7 × 10-5 

(0.60) 

0.061, 8.6 × 10-5 

(0.74) 
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11 0.056, 7.8 × 10-5 

(0.65) 

0.042, 8.0 × 10-5 

(0.56) 

0.060, 8.7 × 10-5 

(0.74) 

12 0.057, 8.4 × 10-5 

(0.70) 

0.047, 9.2 × 10-5 

(0.62) 

0.061, 9.1 × 10-5 

(0.74) 

13 0.055, 9.1 × 10-5 

(0.65) 

0.044, 0.0001 (0.60) 0.062, 0.00011 (0.71) 

14 0.057, 0.0001 

(0.68) 

0.045, 0.0001 (0.56) 0.06, 0.00011 (0.72) 

15 0.059, 0.00011 

(0.73) 

0.046, 0.00011 (0.63) 0.061, 0.00012 (0.72) 

16 0.056, 9.9 × 10-5 

(0.66) 

0.043, 0.0001 (0.60) 0.061, 0.00011(0.74) 

17 0.058, 0.00011 

(0.74) 

0.043, 0.00011 (0.58) 0.063, 0.00012 (0.81) 

18 0.057, 0.00011 

(0.66) 

0.041, 0.0001 (0.50) 0.061, 0.00011 (0.70) 

19 0.057, 0.00011 

(0.66) 

0.043, 0.00012 (0.56) 0.061, 0.00013 (0.71) 

20 0.057, 0.00012 

(0.68) 

0.043, 0.00013 (0.62) 0.063, 0.00014 (0.76) 

21 0.058, 0.00015 

(0.65) 

0.043, 0.00015 (0.58) 0.063, 0.00017 (0.71) 

22 0.058, 0.00015 

(0.64) 

0.045, 0.00016 (0.57) 0.065, 0.00018 (0.77) 

µ, the mean FST values across the entire chromosome, which are consistent with FST 
values reported previously88,89.  
se, the standard error, which increases as the length of chromosomes decreases.  
θH, the threshold for identifying EAFD SNPs, which is the 99.9th percentile of all FST 
values for a given population pair.  
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Supplementary Table 5 Estimates of θH values for each population pair on both 
chromosome- and genome-wide levels  
(see https://link.springer.com/article/10.1007%2Fs00439-016-1734-y). 
 

 

Supplementary Table 6 Pair-wide physical distances and corresponding θH values (see 
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 
 

Supplementary Table 7 Recurrence of genome-wide EAFD variants  

Population 

pairs 

Total 

variants/sample 

Recurrent 

variants/sample 

Recurrence 

rates (%) 

Within-

population 
   

AFR-AFR 403 133 33% 

EUR-EUR 153 32 21% 

SAS-SAS 174 33 19% 

EAS-EAS 144 40 28% 

AMR-AMR 168 40 24% 

Between-

population 
   

AFR-EUR 760 687 90% 

AFR-SAS 806 727 90% 

AFR-EAS 764 697 91% 

AFR-AMR 692 585 85% 

EUR-SAS 438 330 75% 

EUR-EAS 425 367 86% 

EUR-AMR 426 267 63% 

SAS-EAS 447 371 83% 

SAS-AMR 475 313 66% 

EAS-AMR 453 343 76% 

https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
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Recurrence rate refers to the percentage of recurrent variants (i.e. observed more than 
once in the corresponding population pairs) relative to the total EAFD variants. The 
numbers of variants were normalized by total sample size in the corresponding 
population pairs. As expected, the levels of recurrent variants were higher between than 
within continental groups, most likely due to common (between) versus rare frequency 
(within) variants by EAFD. Specifically, within African populations we observed the 
largest counts of genomic variants targeted by EAFD, as well as the highest level of 
recurrent EAFD (33%). Between continental groups, African - South Asian pair 
contained the largest count of EAFD variants and the African-East Asian pair contained 
the highest levels of recurrent variants. 
 

 

 

 

 

Supplementary Table 8 The number of unique or shared EAFD variants across different 
continental groups 
Population set No. EAFD variants  

without LD 

correction 

(no. unique 

variants) 

No. EAFD 

variants 

with LD 

correction 

(no. unique 

variants) 

AFR 356,846 (333,814) 219,988 (209,874) 

EUR 121,970 (106,577) 70,739 (64,020) 

EAS 104,420 (90,856) 58,482 (52,835) 

SAS 138,129 (121,609) 81,481 (73,881) 

AMR 88,960 (78,537) 54,690 (49,870) 

AFR ∩ EUR 6,623 (5,449) 2,828 (2,367) 

AFR ∩ EAS 5,312 (4,278) 2,017 (1,537) 

AFR ∩ SAS 7,546 (6,399) 3,593 (3,083) 

AFR ∩ AMR 3,551 (2,814) 1,676 (1,319) 

EUR ∩ EAS 3,167 (2,327) 1,400 (1,054) 
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EUR ∩ SAS 3,276 (2,503) 1,489 (1,189) 

EUR ∩ AMR 2,327 (1,742) 1,002 (775) 

EAS ∩ SAS 3,119 (2,412) 1,306 (980) 

EAS ∩ AMR 1,966 (1,413) 924 (660) 

SAS ∩ AMR 2,579 (2,104) 1,212 (916) 

AFR ∩ EUR ∩ EAS 424 (308) 197 (136) 

AFR ∩ EUR ∩ SAS 486 (398) 173 (122) 

AFR ∩ EUR ∩ AMR 264 (161) 91 (37) 

AFR ∩ EAS ∩ SAS 399 (269) 177 (91) 

AFR ∩ EAS ∩ AMR 211 (67) 106 (56) 

AFR ∩ SAS ∩ AMR 262 (203) 160 (81) 

EUR ∩ EAS ∩ SAS 191 (118) 70 (23) 

EUR ∩ EAS ∩ AMR 225 (138) 79 (29) 

EUR ∩ SAS ∩ AMR 96 (37) 57 (17) 

EAS ∩ SAS ∩ AMR 117 (16) 79 (4) 

AFR ∩ EUR ∩ EAS ∩ SAS 51 (30) 29 (13) 

AFR ∩ EUR ∩ EAS ∩ AMR 65 (44) 32 (16) 

AFR ∩ EUR ∩ SAS ∩ AMR 37 (16) 22 (6) 

EUR ∩ EAS ∩ SAS ∩ AMR 22 (1) 18 (2) 

AFR ∩ EAS ∩ SAS ∩ AMR 79 (58) 57 (41) 

AFR ∩ EUR ∩ EAS ∩ SAS ∩ 

AMR 

21 (21) 16 (16) 

Linkage disequilibrium (LD) correction was done by keeping only one EAFD variant 

within a window of 1,000bp. 

Supplementary Table 9 Percentages of EAFD SNPs in different variant functional 

categories (see https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 

 

Supplementary Table 10 List of the 805 nonsynonymous EAFD variants found within 

434 EAFD genes (see https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 

https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
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Supplementary Table 11 Results of gene enrichment analyses (see 

https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 

 

Supplementary Table 12 Results of KEGG pathway enrichment analysis (see 

https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 

 

Supplementary Table 13 GWAS catalogue quality control procedure 

Filtering steps 

Before QC 

(number of 

SNPs) 

After QC 

(number of 

SNPs) 

Pre-filtering - 22,895 

Non-missing P-values 22,895 22,521 

GWAS significance P ≤ 5 × 

10-5 
22,895 22,500 

Replicated association only 22,500 10,168 

rs SNP IDs only 10,168 10,120 

Non-missing SNP IDs  10,120 10,118 

Unique Disease-SNP pair 10,118 8,690 

After quality control, the curated GWAS catalogue data contained information on 726 

traits and 7,523 SNPs from 1,313 unique publications.  

 

Supplementary Table 14 Results of enrichment analyses using EAFD SNPs matched to 
curated GWAS catalogue disease-associated SNPs (see 
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y) 
 
 
 
 
 
 

https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
https://link.springer.com/article/10.1007%2Fs00439-016-1734-y
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Supplementary Table 15 EAFD SNP with known associations with both a “beneficial” 
trait and a “harmful” disease 
GWAS traits GWAS diseases EAFD SNPs Population(s) 

Eye color Vitiligo, Melanoma rs139335080,81 SAS 

Hair color 

Non-melanoma skin 

cancer, Progressive 

supranuclear palsy 

rs1220359265,124,125 EUR 

Skin 

pigmentation 

Lung cancer, Smoking 

behavior, Nicotine 

dependence 

rs104260284-87 EUR 

Height Psoriasis rs206680883,126,127 AFR 

Height Pulmonary function rs228474683,128,129 AFR 

Height Trans fatty acid levels rs17454782,83 EAS, AMR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

65 
 

Supplementary Figures 
 

 

 
Supplementary Figure 1 Geography meets genetics: geographic distance versus θH. In 
each continental group the geographic distance between each population pair was 
estimated using the geosphere package in R. The correlation coefficients (ρ) and R2 
values are shown for each population pair. The African continental group underwent the 
same analysis twice, i.e., with and without the admixed sample of ACB and ASW. In the 
latter case, the correlation was stronger and more significant. For the European 
continental group, we excluded CEU, since these Europeans migrated to the USA, and 
their distance to continental European countries does not reflect their genetic distance. 
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Supplementary Figure 2 PCA of the five continental groups. All 2,504 samples were 
included in the PCA. The most differentiated variants, those with extreme FST within and 
between continental groups, were used in the PCA. Four populations (AFR, EUR, EAS 
and SAS) separated very well from each-other, while American samples clustered closest 
to SAS, followed by EUR, AFR, and EAS. 
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Supplementary Figure 3 Venn diagrams of variants shared among the five continental 
groups. Variant sharing patterns are shown before (A) and after LD correction (B), which 
was done by keeping one variant for any given window of 1,000bp. 

 

 
Supplementary Figure 4 Stacked bars of linkage disequilibrium (LD) range length 
distributions. Light and dark blue bars correspond to random matched and EAFD SNPs, 
respectively. The x-axis represents the lengths (up to 500,000bp) of the longest LD range 
for a SNP, while the y-axis represents proportion of total SNPs from each group. High 
LD was defined by r2 > 0.8. The EAFD SNPs from the YRI population of 1000 Genomes 
Project (phase I) were used to measure the LD scores. The numbers of total SNPs under 
each bar, from left to right, are 3,766, 2,484, 1,585, 1,043, 740, 511, and 411, 
respectively. 
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Supplementary Figure 5 Clustering of EAFD variants. Random matched variants (mean 
= 7,854 and SD = 57,318) were those randomly sampled from the whole-genome 
variants, and matched to the EAFD variants by 1) total variants (10,000) and 2) derived 
allele frequency distribution (the distribution of Africans in Figure 3A was used as 
reference). More than 12% of the EAFD variants, compared to only 7% of the matched 
random variants, were located within 100bp regions.  
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Supplementary Figure 6 Genes enriched with EAFD variants. The x-axis represents the 
proportion (logarithmic scale) of EAFD (or high-FST) variants among the total variants 
for each gene, and y-axis is the minus logarithmic (base 10) value of the raw enrichment 
P value. The hypergeometric distribution-based enrichment analysis was used (see 
Methods) and the significance threshold was 1.7 × 10-6 (horizontal line). The vertical line 
corresponds to the second threshold (i.e., proportion > 1%). Genes on the upper right 
quadrant underwent further analyses, and if a nonsynonymous EAFD variant was 
identified in them, it was selected as EAFD gene and retained for the further analyses. 
Selected genes were labelled and colored to indicate continental groups where they were 
identified.  
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Supplementary Figure 7 Venn diagrams of genes (A), pathways (B) and diseases and 
traits (C) shared among the five continental groups.  
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Supplementary Figure 8 EAFD genes are enriched with positive selection targets. Large 
PBS scores are indicative of positive selection or local adaptation. The mean PBS score 
for our EAFD genes was significantly higher (7.2) than the whole-genome scores (mean 
= 4, Wilcoxon rank-sum P < 2 × 10-16) and those from 373 adaptation genes from a 
combined list of two well-known studies on positive selection78,130 (mean = 5.1 and P < 2 
× 10-16).  
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Supplementary Figure 9 Robustness of FST threshold. The FST threshold was varied 289 
times, from 0.045 to 0.333, by increments of 0.001. Each time, the overlap with genes 
from the lowest overlap, was measured (e.g., at threshold 0.045, the gene overlap is 
100%). We carried out these measurements for a representative population pair, CEU – 
IBS. The 99.9th FST percentile (i.e., θH) for this population pair was 0.0634. 
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Abstract 

 
Light-eyed individuals have been found to consume more alcohol than dark-eyed 

individuals in archival samples of European-ancestry males and females. No published 

population-based studies have directly tested for an association between alcohol 

dependence (AD) and eye color. We hypothesize that light-eyed individuals have a 

higher prevalence of AD than dark-eyed individuals. A mixture model was used for 

selection of homogeneous sample and control for population stratification. After quality 

control, we conducted an association study using logistic regression, adjusting for 

confounders (age, sex, and genetic ancestry) in a sample of 1,263 European-Americans. 

We found evidence of association between AD and blue eye color (P = 0.0005 and odds 

ratio = 1.83 (1.31 - 2.57)), supporting light eye color as a risk factor relative to brown eye 

color. Network-based analyses revealed a statistically significant (P = 0.02) number of 

genetic interactions between eye color genes and AD-associated genes. We found 

evidence of linkage disequilibrium between AD-associated GABA receptor gene cluster, 

GABRB3/GABRG3, and eye color genes, OCA2/HERC2 as well as between AD-

associated GRM5 and pigmentation- associated TYR. Our population-phenotype, 

network, and linkage disequilibrium analyses support a possible association between blue 

eye color and AD. Although we controlled for stratification we cannot exclude 

underlying occult stratification as a contributor to this observation. While replication is 

needed, our findings suggest that eye pigmentation information may be useful in future 

research of alcohol addiction. Further characterization of this association may unravel 

new AD etiological factors. 
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Key words: Alcohol Dependence; Drinking; Eye Pigmentation; Association; Ethanol; 

Melanogenesis 

Introduction 

 
Eye and hair color diversity is higher among Europeans than among any other 

populations, and these traits follow distinct geographic distributions. The blue eye color 

phenotype is more common in northern Europe than in the rest of Europe or, indeed, the 

rest of the world. A clear gradient of eye colors subsists across Europe, from dark-eyed 

populations in the south to light-eyed populations in the north. This gradient may be 

indicative of strong selection pressures that have acted on multiple genetic loci over a 

short evolutionary period131. Sexual selection, and adaptation to diet or climate partially 

explain the pigmentation diversity in Europe; e.g., the latter may have led to the observed 

correlation between ultraviolet radiation and skin pigmentation132. Recent research has 

indicated that positive selection on pigmentation variants in humans vary from 2% to 

10% per generation, representing the strongest selection signals in humans132. A positive 

selection of this magnitude implicates multiple selection forces acting on pigmentation-

related traits, such as eye color. Some selection pressures that affect eye color may be 

personality related. For instance, blue-eyed European individuals have been shown to be 

less agreeable than brown-eyed133. 
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The main physiological determinant of eye color is the presence and distribution of 

melanin pigments within melanocytes of the uveal tract134. A molecular driver of melanin 

biogenesis pathway is the G-protein coupled receptor melanocortin 1 receptor (MC1R), 

which was found on the surface of melanocytes134. The MC1R gene is a key determinant 

of photosensitivity and harbors many variant alleles in European populations135,136. 

Penetrance of MC1R is mediated by oculocutaneous albinism type II (OCA2) 134. Around 

74% of the eye color variation is explained by a quantitative trait locus on intron 1 of 

OCA2137. Moreover, epistatic interactions between OCA2 and MC1R have been reported 

to influence within-population skin pigmentation differences 138. The melanogenesis 

cascade involves adenylyl cyclase 8 (encoded by ADCY8), which is to respond to MC1R 

and other factors in the cytosol of the melanocyte and convert ATP (adenosine 

triphosphate) to cAMP (cyclic adenosine monophosphate)139. Adenylyl cyclase 8 belongs 

to the family of adenylyl cyclase enzymes, which have been shown to play a role in 

substance addiction 140,141. Interestingly, ADCY8 has been reported to be associated with 

major depressive disorder and alcohol dependence (AD)139, implying a possible 

connection between melanogenesis and etiological mechanisms of AD. 

 

Northern Europeans may have evolved the blue eye trait as an adaptation to their darker 

environment (compared to southern Europeans) because blue eyes confer greater 

sensitivity to natural light142. However, heightened sensitivity to light might also confer a 

higher propensity for seasonal affective disorder (SAD), which is often comorbid with 

AD143, via abnormal melatonin changes in response to varying light intensities144. Light-
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eyed individuals have been found to consume more alcohol than dark-eyed individuals in 

archival samples of European-ancestry males and females145. Despite the indirect or 

sporadic evidence supporting the connection between eye color and alcohol drinking, no 

published population-based studies have directly tested for biological interactions, 

appropriately correcting for population stratification. In this study, we tested the 

hypothesis that light-eyed individuals have a higher prevalence of AD than dark-eyed 

individuals in European Americans (EAs).  

 

Methods 

 
Subjects 
 
The samples analyzed in this study were recruited in multiple centers for alcohol and 

drug dependence studies, as described recently146. Subjects were ascertained using 

Diagnostic and Statistical Manual of Mental Disorders-fourth edition (DSM-IV) 

criteria147 for substance use (e.g., alcohol, opioid, and cocaine dependence) or major 

psychiatric disorders. After a complete description of the study, written informed consent 

was obtained from each subject, as approved by the institutional review board at each 

site. All participants were interviewed using the Semi-Structured Assessment for Drug 

Dependence and Alcoholism (SSADDA). Control subjects had no diagnosed substance 

use or major psychotic disorders. Eye color was determined at interview, and by self-

report. A total of 5,222 samples of European ethnicity underwent multiple quality control 

or filtering procedures to obtain homogenous groups with respect to population group, 
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exposure to alcohol (for controls), and the availability of phenotype and genotype 

information. The samples were filtered based on the exclusion criteria listed in 

Supplementary Table 1. Control subjects who had never been exposed to alcohol were 

excluded from the analysis. 

 

Population Stratification 
 

To explicitly model sample ancestry differences, we carried out principal component 

analysis (PCA) using the genotype data28,146 from Illumina HumanOmni1 single 

nucleotide polymorphism (SNP) genotyping arrays. We adopted a mixture model 

approach to correct for structure and maximize genetic homogeneity. First, the noise was 

initialized by a Poisson method, which determined whether data points were noise or part 

of a cluster based on a Poisson-based process148. Second, the expectation-maximization-

fitted Gaussian mixture model clustering method149 was used to determine the boundary 

between the cluster and the noise. The first three components from PCA were used to 

evaluate the number of samples categorized as noise. The number of PCA dimensions 

that were selected as covariates in logistic regression analyses was determined on the 

basis of their contribution to genetic variation across samples. PCA and regression tests 

were applied independently to each population.  
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Association Analyses 
 
Logistic regression was employed adjusting for confounding factors (age, sex, and 

genetic ancestry). The independent variable, eye color, was treated as categorical measure 

under three models. Model 1: each of the five categories (brown, blue, green, grey, and 

brown in the center) was analyzed separately; model 2: the three less-frequent light color 

categories (green, grey, and brown in the center) were combined as one group; and model 

3: all of the four light color categories (blue, green, grey, and brown in the center) were 

combined as one group. In each of the three models, the eye color categories were 

regressed simultaneously. The first three principal components, which explained the vast 

majority of genetic ancestry variation, were used to correct for potential ancestry-based 

population stratification in the EA samples. The logistic regression model associates odds 

of AD and eye color, correcting for all of the aforementioned covariates: 

ln
𝑝

1 − 𝑝
=  𝛽0 +�𝛽𝑖𝑥𝑖

𝑚

𝑖=1

+ 𝛽𝑚+1𝑎𝑎𝑎 + 𝛽𝑚+2𝑠𝑠𝑠𝑗 + 𝛽𝑚+3𝑝𝑝1 + 𝛽𝑚+4𝑝𝑝2

+ 𝛽𝑚+5𝑝𝑝3            (1) 

, where 𝑝 is probability of AD, 𝑥 = {𝑏𝑏𝑏𝑏𝑏, 𝑏𝑏𝑏𝑏, 𝑔𝑔𝑔𝑔𝑔, 𝑔𝑔𝑔𝑔, 𝑏𝑏𝑏𝑏𝑏 − 𝑐𝑐𝑐𝑐𝑐𝑐}, 

𝑚 = {2,3,5} corresponds to the three eye-color models (described above) and 

𝑎𝑎𝑎, 𝑠𝑠𝑠𝑗, 𝑝𝑝1, 𝑝𝑝2 and 𝑝𝑝3 are the covariates with 𝑝𝑝 representing principal components 

and 𝑗 = {1,2} denoting that sex is a categorical variable. The predictive capacity of eye 

color (i.e., 𝑥) towards odds of disease 𝑝
1−𝑝

  can be measured by: 𝑜𝑜𝑜𝑜𝑥 =  𝑒𝛽0+𝑅, where R 

= ∑ 𝛽𝑖𝑥𝑖𝑚
𝑖=1 + 𝛽𝑚+1𝑎𝑎𝑎 + 𝛽𝑚+2𝑠𝑠𝑠𝑗 + 𝛽𝑚+3𝑝𝑝1 + 𝛽𝑚+4𝑝𝑝2 + 𝛽𝑚+5𝑝𝑝3. The brown 
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color is considered as the reference color when calculating odds ratio (OR): 

𝑂𝑂𝑥=𝑏𝑏𝑏𝑏𝑏 =  𝑒𝛽0 = 1, for brown eye color and: 𝑂𝑂𝑥≠𝑏𝑏𝑏𝑏𝑏 = 𝑒𝑅 for non-brown eye 

color. The glm package in R (v. 3.1.1) was used. 

 

Network Analyses 
 

A total of 26 AD-associated genes and 21 pigmentation genes were selected as the AD 

and eye color candidate genes, respectively, based on our previous meta-analyses19,150-155 

of genetic association studies and the literature156 (Supplementary Table 2). The 

GeneMania database157 was used to evaluate the number of genetic interactions between 

the 26 AD genes and 21 pigmentation genes (Supplementary Table 3 and Supplementary 

Figure 5). Here, two genes are considered to interact under “genetic interactions” if the 

effects of perturbing one gene are modified by perturbations to a second gene. To assess 

statistical significance, we randomly sampled 21 genes across the whole genome to 

replace the actual 21 pigmentation-related genes, and then measured their connectivity to 

AD genes. This procedure was repeated 1,000 times to generate a random distribution of 

genetic interaction connections. The significance levels were measured using Z scores. 

The statistical analysis was carried out and the histograms generated using R (version 

3.1.1). The networks were simulated using Cytoscape158. 

 

Linkage Disequilibrium and Haplotype Analyses 
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HaploView159 was used to calculate and visualize the linkage disequilibrium (LD) blocks 

in the selected chromosomal regions using genotype data from the HapMap samples of 

Utah residents of western and northern European ancestry (CEU) and Toscans in Italy 

(TSI). The D’, r2, and LOD metrics were used to calculate LD blocks. Besides these 

parameters, the method described by Gabriel et al.160 was also applied for LD-block 

identification when intergenic distance was short (i.e., around 100 kilo base-pairs (bps)). 

Supplementary Figure 3 outlines the three different approaches used to test our 

hypothesis at the population, network, and genetic levels. 

 

Results 
 

A total of 1,263 unrelated AD cases and controls of EAs were analyzed in this study after 

quality control. The filtering procedure is shown in details in Supplementary Table 1. 

Supplementary Figure 1 shows a scatter plot of the first three principal components of the 

EA samples, indicating that our samples are moderately homogenous. This implied that 

there was a modest risk of observing false positive findings due to population 

stratification. Figure 1 shows the results of the model-based clustering method in 

combination with a Poisson-based process (see Methods). In our samples, the number of 

outliers was within < 5% of the total samples size (i.e., 4.2%), further indicating that our 

samples are relatively homogenous. The first three principal components were used to 

correct for potential population stratification in all of our association tests between eye 

color and AD.   
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We found evidence of significant phenotypic association between eye color and AD (P = 

0.003; OR = 1.54 (1.15-2.04)) when compared the combined light eye colors (blue, 

green, grey, and brown-center) to brown eye color. Evidence of stronger association was 

observed between blue eye and AD when the blue eye color was analyzed separately (P = 

4.7 × 10-4; OR = 1.83 (1.31-2.57) under model 1; and P = 4.9 × 10-4; OR = 1.82 (1.30-

2.56) under model 2; Table 1). This result indicates that blue eye color is the most likely 

risk factor for AD among various light eye colors in EAs. Additionally, for the African 

Americans (AAs) included in our cohort, only 0.18% individuals (2,279) had blue eyes, 

indicating insufficient statistical power for the association tests (data available upon 

request).  

 

To examine biological relevance, we carried out gene-gene interaction network analyses 

and LD measurements between known eye color genes and AD genes. We found 

evidence of a significant enrichment of genetic interactions between eye color genes and 

AD-associated genes (P = 0.02; Figure 2). Among these genes, the MC1R and gamma-

aminobutyric acid A receptor α1 (GABRA1) genes showed the strongest genetic 

interaction (Supplementary Table 2). Genetic interactions may reflect complex biological 

interactions that include, but are not limited to, protein-protein interactions and possibly 

complex epistatic interactions161.  

 



 

84 
 

Furthermore, we measured the LD between the chromosome 15q12 GABA receptor gene 

cluster, which has previously been reported to be involved in AD etiology19 

(Supplementary Table 2), and two eye color genes, OCA2 and the ECT and RLD domain 

containing E3 ubiquitin protein ligase 2 gene (HERC2), which are also located on 

chromosome 15q12 at a distance of 221,887 bps (Supplementary Figure 2). We identified 

five strong LD blocks (r2 > 0.8 and D’ > 0.8), spanning a distance of around 200 kilo bps 

within the intergenic region between the GABA gene cluster (i.e., gamma-aminobutyric 

acid A receptor γ3, GABRG3) and eye color genes (i.e., OCA2). We used the similar 

approach to analyze all pairs of the AD and eye color genes residing on same 

chromosome (Supplementary Table 2) and found that the glutamate receptor, 

metabotropic 5 gene (GRM5; associated with AD) and tyrosinase gene (TYR; associated 

with pigmentation color of skin, hair, and eyes) were 111,507 bps apart on 11q14.3. This 

intergenic distance is spanned by five strong LD blocks, two of which overlap with the 5’ 

UTR regions of GRM5 and TYR (Supplementary Figure 6). 

 

Additionally, SNPs from known AD-associated genes, including ADCY8, were tested for 

association with eye color, and vice versa, eye color genes were tested for association 

with AD. These tests revealed no evidence of statistically significant associations after 

correcting for multiple testing (P > 0.05, data not shown), suggesting that more 

investigation is needed regarding the underlying genes responsible for the potential AD-

eye color association.  

 



 

85 
 

In all, the results from the three different types of analyses, i.e., population-phenotype, 

network, and LD, support that blue eye color may be associated with AD. The presence 

of genetic interactions between eye color genes and AD genes (Figure 3) implied a 

complex, potentially epistatic, genetic model. Figure 3 summarizes the results from these 

three approaches.  

 

Discussion 
 

In this study, we found a significant phenotypic association of AD with light eye colors, 

particularly blue eye color (Table 1), significant enrichment of genetic interactions 

between selected eye color genes and AD genes (Figure 2), and strong LD between 

pigmentation genes and AD-associated genes on chromosomes 15q12 and 11q14 

(Supplementary Figures 2 and 6). The strengths of this study include 1) extensive control 

for potential population stratification of all samples using genome-wide SNP information, 

2) leverage of genomic data to assess the extent of biologically relevant interactions 

between eye color genes and AD candidate genes, and 3) multilevel (i.e. population-

phenotype, network and genetics) approaches to test our hypothesis.  

 

Population stratification is a well-established source of false positive findings in 

association studies. To address this issue and assess the genetic homogeneity of our 

samples, we carefully selected only individuals who self-identified as EA and excluded 

admixed outliers such as individuals who were Hispanic based on self-report and our 
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principal component analysis. These quality control procedures are likely to lead to 

moderately homogenous samples (Figure 1 and Supplementary Figure 1). It should be 

noted that the PCA-based correction may not adequately correct for the south-north eye 

color cline in Europe or for the potential variation of this trait within countries of origin.  

 

A few other lines of research support the observed AD-eye color association. Firstly, 

there is evidence of association between light eye color and SAD162 (Supplementary 

Figure 4). SAD is often comorbid with AD143. While the relationship between eye color 

and SAD could plausibly be explained by varying light sensitivity, there is no readily 

available explanation for the association between eye color and AD. One possible 

physiological mechanism connecting eye color and AD is as follows: blue-eyed 

individuals have greater light sensitivity than brown-eyed individuals; and heightened 

sensitivity to varying light intensities has been associated with abnormal changes in 

endogenous melatonin production162. The latter has also been associated with SAD, 

which is often comorbid with AD (Supplementary Figure 4). Thus, we hypothesize that 

AD and eye color may have partially shared etiological factors. Terman et al. showed that 

light-eyed individuals were less likely to develop SAD than brown-eyed individuals 

during the winter163. However, this conclusion did not exclude the possibility that light-

eyed individuals are at a higher risk for SAD than their dark-eyed counterparts when 

exposed to varying light intensities, which is known to alter endogenous levels of 

serotonin and melatonin in light-supersensitive individuals162. Furthermore, our results 

complement a recent paper where sunshine was shown to influence behavior 164. This 
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study suggested that sunshine might facilitate suicidal behavior during the ten day period 

prior to suicide. Since AD is a known risk factor for suicidal behavior165-167, our results 

imply that individuals with light eye color might be at higher susceptibility of sunshine-

triggered behavior alteration (e.g., mood, aggression and impulsiveness) than dark-eye 

individuals. In sum, the inconsistent findings144,162 in the literature reflect an incomplete 

understanding of the connection between eye color and psychiatric disorders. 

 

Secondly, we observed strong LD blocks between eye color genes and GABA genes on 

chromosome 15q12. Interestingly, the 15q12 cytoband lies within the Prader-Willi 

syndrome (PWS) region. PWS presents with two relevant clinical features: 

hypopigmentation of the eyes and behavioral and psychiatric disturbances168, which 

demonstrates that mutations in the 15q12 region can lead to both phenotypes. Similarly, 

we also observed strong LD between the GRM5 (AD-associated) and TYR (pigmentation-

associated) genes in cytoband 11q14.3. Interestingly, microdeletions in this region have 

been associated with leukodystrophy, a group of central nervous system disorders 

affecting the brain’s white matter169. Additionally, variation in this region, specifically in 

TYR, has been associated with melanin production170. Overall, these observations support 

that two independent gene regions in the human genome may be concurrently associated 

with pigmentation variation and brain function. 

 

Thirdly, animal experiments have also shown that hypopigmentation may correlate with 

behavioral changes (e.g., in the Astyanax cavefish model171). Despite lack of direct 
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evidence, these reports support the association between blue eye color and AD in EAs 

(Figure 3).  

 

To conclude, our findings complement the existing research on the connection between 

eye color and mental illnesses and behavioral problems. Our study is the first to report an 

association between blue eye color and AD in EAs using well-diagnosed subjects and a 

moderate sample size. Our findings indicate that the selection pressures acting on the 

genetics of pigmentation might not only have implications for personality features, as 

previously reported133, but also for AD susceptibility. Thus, integration of population-

phenotype and gene and network analyses is helpful for the identification of risk factors 

in AD, and a broad range of mental illnesses, in general. Although we carefully 

controlled for stratification, we cannot exclude underlying occult stratification as a 

contributor to this observation. While replication is needed, our findings suggest that eye 

pigmentation information may be useful in the future research of AD and related alcohol 

consumption behaviors. Further characterization of this association may unravel novel 

etiological factors in alcohol addiction. 
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Tables 
Table 1 Association results between eye colors and alcohol dependence in European-
Americans 

 
 

Model 1 

 

Model 2  

 

Model 3  

 

Eye 

colors 

Cases/ 

Controls 
OR P OR P OR P 

Brown 368/130 - - - - - - 

Blue 377/70 1.83 (1.31-2.57) 
4.7 ×  

10-4 

1.82  

(1.30- 

2.56) 

4.9 

× 

10-4 1.54  

(1.15- 

2.04) 

0.003 Green 223/64 1.28 (0.90-1.83) 0.17 
1.26  

(0.90- 

1.78) 

0.19 
Grey 5/5 0.34 (0.09-1.30) 0.11 

Brown- 

center 
19/2 3.76 (1.04-24.14) 0.08 

Brown eye color is the reference color in the three models. Logistic regression analysis 
includes age, sex and the first three principal components as covariates. The OR column 
contains the OR values and 95% confidence intervals in brackets. The dotted vertical 
lines indicate the groupings of eye colors under Model 2 and 3. The P values in bold 
represents P < 0.05. In all three tests, blue eye color only (models 1 and 2) or all light eye 
colors together (model 3) were significantly associated with AD outcome. The three non-
blue light eye colors represent a relatively small portion of the EA samples, which may 
explain their lack of statistical significance.  
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Figure Legends 
 

 
Figure 1 Pair plots of cluster analysis results in the EA population. The first three 
principal components from PCA were used as inputs for an EM-fitted Gaussian mixture 
model clustering method with Poisson-based noise initialization. Each point represents 
one of the 1,263 EA sample and the labels for all axes are either diagonally or on the 
sides of the plot. The blue points (1,211) represent the core cluster while the red points 
(53) represent potential outliers. The size of the two ellipses in each plot represents the 
covariance of the two mixture components (i.e., blue and red clusters). 
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Figure 2 Distributions of genetic interactions between AD and eye color genes. 
Histogram represents distribution of connections (i.e., edges) between AD gene-set 
(vertical red line) and random gene-sets of 1,000 simulated networks (dark grey 
columns). The number of random genes was kept the same as the number of eye color 
genes in all simulations. There was evidence of enrichment of genetic interactions among 
the AD gene-set (P = 0.02).  
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Figure 3 Summary of the association between eye color and alcohol dependence. Our 
study complements knowledge regarding associations between eye color and behavior 
problems. Our major observation is that blue eye color is a potential risk factor for 
alcohol dependence. Labels a-e correspond to the following evidence: a) association 
between blue eye phenotype and AD after adjustment for sex, age and ethnicity in our 
samples (Table 1); b) finding that light-eyed individuals consumed more alcohol than 
dark-eyed individuals in two archival samples from 1974 (10,860 Caucasian male prison 
inmates and 1,862 Caucasian females from a national survey)145; c) evidence of genetic 
interactions between addiction proteins and eye color proteins (Figure 2); d) literature 
evidence connects melanosome and dopamine synthesis using Astyanax cavefish 
model171; and e) evidence of LD between GABRG3 and OCA2 (Supplementary Figure 2) 
and LD between GRM5 and TYR (Supplementary Figure 6).  
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Supplements 

Supplementary Tables 
Supplementary Table 1 The cumulative filtering procedure for the EA samples. 

Steps 
Samples 

sizes 

All  5,222 

Unrelated  4,726 

Exposed to alcohol  4,643 

Non-missing 

phenotype 
3,862 

Non-missing genotype 1,263 

The first column displays the remaining samples after each step of the quality control 

process. 

 

Supplementary Table 2: Summary of the AD and eye color genes paired from genetic 
interaction network analyses. 
AD genes Eye color genes Numbers of 

Interactions 

GABRA1 MC1R 1 

ADH1B HERC2,ADCY8,TYR 3 

ALDH2 SLC24A5,TTC3,FBXL17,TYRP1 4 

MREG OCA2,VASH2,FBXL17 3 

GABRG2 EFR3A 1 

NXPH2 TYR,SLC24A5 2 

METAP1 TYRP1,ADCY8 2 

FAM44B NPLOC4 1 

TPK1 OCA2,HERC2,TYRP1,EFR3A 4 

NXPH2 TYR,SLA24A5 2 

PDLIM5 KITLG,TTC3,FBXL17,SLC45A2,ADCY8,EFR3A 6 
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GABRA6 OCA2,SLC24A5 2 

GABRA3 SLC24A4 1 

COL8A1 TYRP1,EFR3A 2 

NOMO2 EFR3A 1 

GRM5 OCA2,FBXL17 2 

E2F8 EFR3A,TYRP1,FBXL17 3 

PDLIM5 EFR3A,ADCY8,SLC45A2,FBXL17,TTC3,KITLG 5 

GABRA2 OCA2,SLC24A4,FBXL17,TTC3 4 

MREG OCA2,VASH2,FBXL17 3 

The set of 26 AD genes 
(ADH1A,ADH1B,ALDH1A1,ALDH1B1,ALDH2,CC2D2B,COL8A1,E2F8, 
FAM44B,GABRA1,GABRA2,GABRA3,GABRA4,GABRA5,GABRA6,GABRG2,GRM5,ME
TAP1,MREG, NOMO2,NXPH2, PDLIM5,PKNOX2,SH3BP5,TPK1,ZNF285A) and that 
of 21 eye color genes 
(ADCY8,ASIP,EFR3A,FBXL17,HERC2,HGS,IRF4,KITLG,MC1R,NPLOC4,OCA2,POLS,
SLC24A4,SLC24A5,SLC45A2,TPCN2,TTC3,TYR,TYRP1,VASH2,PAX6) were found to 
have a significant number of genetic interactions using GeneMANIA (P = 0.02, Figure 2; 
Supplementary Table 3). Genetic interactions are inferred from a database of radiation 
hybrid networks161. For each AD gene in the first column, the interacting eye color genes 
are shown in the second column with the total number of their connections in the third 
column. The table contains only gene pairs with non-zero interactions between the two 
gene sets. Interacting gene pairs are ordered by strength of genetic interaction, such as 
GABRA1-MCR1 holds the highest weight. 
 

Supplementary Table 3: The results of genetic interaction network analyses. 
(see http://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32316/abstract)  

http://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32316/abstract
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Supplementary Figures and Legends 
 

 

Supplementary Figure 1 Scatter plot of first three principal components for the EA and 
AA populations. 
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Supplementary Figure 2 Linkage disequilibrium blocks of the region encompassing 
GABRG3 and OCA2. Yellow triangles mark the five linkage disequilibrium blocks. 
Bottom panel: the color of each pixel inside LD-blocks represents D’/LOD values (white 
(D’ < 1 and LOD < 2), blue (D’ = 1 and LOD < 2); shades of pink/red (D’ < 1 and LOD 
≥ 2), and bright red (D’ = 1 and LOD ≥ 2)). Top panel: color of each pixel inside the LD-
blocks represents r2 values varying from 0 (white) to 1 (black).  Of these five blocks, 
three lie exclusively intergenicly between GABRG3 and OCA2, and two lie in the 3’ and 
5’ UTR regions of GABRG3 and OCA2. 
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Supplementary Figure 3 Approaches to testing the association between AD and eye 
color. The first type was at the population-phenotype level, connecting the eye color trait 
to AD in EAs. Then, the HapMap genetic data were utilized to measure the linkage 
disequilibrium between eye color gene regions and the GABA receptor genes regions on 
15q12 and between the GRM5-TYR gene regions on 11q14 (genetic level). Finally, 
network analysis that leveraged genomic databases (GeneMANIA) provided insight into 
the type of biological interactions between selected AD candidate genes and eye color 
genes (network level). 
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Supplementary Figure 4 Proposed possible connections between eye color, light 
sensitivity, SAD and AD. Dotted lines represent our findings and solid lines represent 
literature evidence. Pointed arrows indicate positive association and flathead arrows 
indicate negative association. Single point mutations in the OCA2/HERC2 (anc = 
ancestral, der = derived allele) region are determinants of blue-brown eye color trait in 
humans172. Blue eyed individuals are more sensitive to light when compared to brown 
eyed, which has been shown to infer significant melatonin production differences144. 
Melatonin production is one of several physiological factors that has been associated with 
supersensitivity to light variation in SAD subjects, via circadian-rhythm alterations162. 
SAD has been described to be comorbid with AD143. Another line of evidence supports 
the connection between light sensitivity and SAD, through melanopsin gene (OPN4) 
mutations173. The term “normal” refers to either ancestral allele or brown eye individuals’ 
light sensitivity and melatonin levels, i.e., the base-lines. 
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Supplementary Figure 5 The gene-gene interaction network of selected AD-associated 
and eye color genes. The circle in the middle of the network corresponds to the AD gene 
set while the genes in the outer part are the eye color genes. The green lines depict the 
genetic interactions in gene pairs. Thickness of the green line corresponds to the strength 
of the interaction. Not all genes interact with each other and not all genes from one set 
have an interaction with genes in the other set. Supplementary Tables 2 and 3 show a list 
of all interacting gene pairs. 
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Supplementary Figure 6 Linkage disequilibrium blocks of the region encompassing 
GRM5 and TYR. A total of five strong LD blocks span the intergenic distance between 
GRM5 and TYR. Each pixel’s color corresponds to D’/LOD values (white (D’ < 1 and 
LOD < 2), blue (D’ = 1 and LOD < 2); shades of pink/red (D’ < 1 and LOD ≥ 2), and 
bright red (D’ = 1 and LOD ≥ 2)). The number inside each pixel corresponds to the r2 
value ranging from 0 (i.e., 0.0) to 100 (i.e., 1.0). 
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Dear Editors, 

 

We recently reported an association of eye color and alcohol dependence (AD)174, on 

which Manzardo175 commented. We agree with the author175 that the identification of a 

benign trait like eye color as a risk factor for a complex disorder like AD warrants careful 

scrutiny of the study parameters and conclusions. To address the possible issues 

identified by Manzardo176, we conducted additional analyses. The results continue to 

support the hypothesized association. 

 

We assessed more fully the population structure of our research subjects. Ancestry 

information on great-grandparents, i.e., eight per subject, was used to evaluate the 

composition of the ancestral pool of our 1,263 European American (EA) subjects. This 

pool consisted of 8,075 ancestors, representing 24 European countries. Three European 

regions, Northern, Central, and Southern Europe, accounted for 41%, 30%, and 29% of 

the ancestral pool, respectively (see supplementary information for the definition of these 

regions). We assigned each sample to one of the three regions based on having more than 

one-third of their ancestry from that region. Samples with equal ancestry proportions in 

two groups, e.g., 40% northern and 40% southern, were removed from analysis. This 

process led to selection of 913 EA samples where ancestry could be defined. No evidence 

of significant heterogeneity was found among the three regions (Cochran's Q test P = 

0.65). Meta-analysis of the datasets across the three regions showed evidence of 

significant association between light eye color and AD with OR (95% CI) = 1.44 (1.04 - 
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2.01) and P = 0.029 (Figure 1A). The results remained similar when the Northern and 

Central groups were merged. However, when the Central and Southern groups were 

merged, we observed evidence of stronger association with OR (95% CI) = 1.58 (1.14 - 

2.18) and P = 0.0059 (Table 1, Supplementary Table 1, and Figure 1A). Figure 2 shows 

the results of principal component analysis where pink, blue, and green represent 

Northern, Central, and Southern Europe, respectively. 

 

We assessed the diversity of genetic influences on AD by using the list of 334 genes 

reported by Manzardo176. First, we searched for pair-wise linkage disequilibrium (LD) 

between the 334 AD-related genes and the 21 eye color genes. We found two additional 

instances of LD: the F-box and leucine rich repeat protein 17 (FBXL17) and ephrin A-5 

(EFNA5) genes on cytoband 5q21.3 (80kb apart, 15 LD blocks in the intergenic region, 

Figure 1B); and the nuclear protein localization protein 4 homolog (NPLOC4) and actin 

gamma 1 (ACTG1) genes on cytoband 17q25.3 (30kb apart, one strong LD block the 

intergenic region, Figure 1C). These findings complement our previous report of strong 

LD between eye color and AD-associated genes in 15q12 and 11q14.3. Second, we 

matched the 334 genes to the GeneMANIA157 database (331 genes were mappable). 

Compared to our previously reported P value of 0.02, we observed evidence of more 

significant genetic interactions between the 21 eye color genes and 331 AD-related genes 

(P = 0.0038 and Figure 1D). 
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Additionally, we added two potential confounding parameters, household income and 

education level, in our logistic regression analysis to the previous covariates (which were 

age, sex, and the first three principal components). The association between blue eye 

color and alcohol dependence remained significant with OR = 1.86 (1.31 - 2.46) and P = 

5.2 × 10-4 (Table 2). 

 

Despite the lack of a readily available clinical explanation for the association, the 

additional analyses presented here provide more evidence supporting the hypothesis that 

light eye color may be a risk factor for alcohol dependence. Although we included 

several known potential confounders, we cannot exclude the possibility that our findings 

were affected by other population stratification factors or other unidentified confounders. 

Further investigation may clarify the contributions of genetic, behavioral, and cultural 

components to the reported association. 
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Tables 
Table 1 Meta-analyses of the selected samples with ancestry information 

 

OR (95% CI) P(Z) P(Q) 

Northern + Central + 

Southern 

1.44 (1.04-

2.01) 0.029 0.66 

(Northern+Central) + 

Southern 

1.43 

(1.03,1.98) 0.033 0.78 

Northern + 

(Central+Southern) 

1.58 (1.14-

2.18) 0.0059 0.21 

 

Table 2 Association results between eye color and alcohol dependence before (model 1) 
and after (model 1*) controlling for household income and education level 

  

Model 1 

Model 1*  

(Income and education) 

Eye colors Cases/Controls OR P OR P 

Brown 368/130 - - - - 

Blue 377/70 

1.83 

(1.31-

2.57) 

4.7 ×  

10-4 

1.86 

(1.31-

2.46) 5.2 × 10-4 

Green 223/64 

1.28 

(0.90-

1.83) 0.17 

1.35 

(0.94-

1.95) 0.11 

Grey 5/5 

0.34 

(0.09-

1.30) 0.11 

0.43 

(0.01-

1.78) 0.24 

Brown-

center 19/2 

3.76 

(1.04-

24.14) 0.08 

3.76 

(0.99-

24.8) 0.09 
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Figure Legends 
 

 
Figure 1 Panel of results from three analyses. A) Forrest plot of the meta-analysis of 
three major European regions: northern, central and southern. B-C) Linkage 
disequilibrium (LD) blocks in the regions encompassing FBXL17 and EFNA5 (B) and 
NPLOC4 and ACTG1 (C). Genotype data from the CEU and TSI populations of the 
HapMap project were used to estimate LD. The LD values are represented using D-prime 
(black and white) or R-square estimates (red and white). D) Distribution of genetic 
interactions between the 331 AD-related genes176 and each of 1000 simulated gene sets of 
the 21 eye color genes. The vertical red line represents the number of genetic interactions 
between the 331 AD-related genes and 21 eye color genes, which are significantly higher 
than the 1,000 simulated genetic interactions (P = 0.0038). 
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Figure 2 Results of principal component analysis. Pink, blue, and green represent 
Northern, Central, and Southern Europe, respectively. The 4th, 5th, and 6th principal 
components were used.  
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Supplementary Information 
The three major European regions were defined according to the following nationality 
groupings: 
Northern Europe: Danish, English, Finnish, Irish, Norwegian, Russian, Scottish, Swedish, 
and Welsh. Central Europe: Austrian, Belgian, Czechoslovakian, Dutch, French, German, 
Hungarian, Polish, Swiss. Southern Europe: Eastern Europeans (e.g., Albanian, 
Bulgarian), Greek, Italian, Portuguese, Spanish and Yugoslavian. 
 

Supplementary Table  
Supplementary Table 1 Results of individual association analyses of the selected 
samples with ancestry information 

 

Light  

(Case) 

Light  

(Control) 

Dark  

(Case) 

Dark  

(Control) 

OR  

(95% CI) P 

Northern 230 53 87 24 1.2 (0.7-2.06) 0.52 
Central 136 23 74 22 1.76 (0.92-3.37) 0.089 
Southern 80 29 100 55 1.52 (0.89-2.6) 0.13 
Northern+Central 366 76 161 46 1.38 (0.91,2.07) 0.1275 
Central+Southern 216 52 174 77 1.84 (1.23-2.75) 0.0032 
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Abstract 

 
Population stratification is a well-known source of false positive findings of disease 

genes in genetic association studies, particularly when research cohorts are genetically 

heterogeneous. With an increasing sample recruitment of multi-ethnic or international 

populations, it is necessary to identify powerful ancestry informative markers (AIMs) that 

can better capture between- and within-continental ancestry compositions. We analyzed 

2,504 samples from the 1000 Genomes Project, representing five continental groups and 

26 populations, and for each of the 325 possible population pairs we employed 

exhaustive whole-genome screen for new AIMs using the informativeness (IN), fixation 

index (FST), and allele frequency difference (ΔDAF) methods. We constructed 325 AIMs 

panels, one for each population pair, with sizes from 136 to 735 markers per panel. 76 

AIMs were highly recurrent in more than 120 population pairs. The panels have been 

demonstrated to separate population pairs of the same continental origin. The fine 

population structures inferred by our AIMs panels were also replicated by other methods, 

including principal component analysis, admixture analysis, and allele sharing. Our 

robust, multilevel AIMs panels can be used hierarchically to elucidate fine population 

structures in various studies using multi-ethnic or international samples.  

 

Keywords: Ancestry informative marker (AIM), Genomic variation, Population 

structure, Ancestry prediction, Single nucleotide polymorphism (SNP), Genetic 

association study  
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Introduction 

 
Genetic association studies have identified a large number of loci associated with 

complex human diseases, including those by us152,177-179. It is well-known that population 

genetic structure between cases and controls can confound associations leading to false 

positive or negative findings180-182. The increasing use of multi-ethnic or admixed 

populations in recent years has presented an unprecedented challenge due to the complex 

genetic heterogeneity . Ancestry informative markers (AIMs) are a set of genetic 

polymorphisms that exhibit substantial allele frequency differences between populations 

from different geographical regions of the world. AIMs have been widely used in genetic 

association studies to estimate the geographical origins of research subjects, such as 

continent-of-origin, and to evaluate the overall admixture proportions efficiently and 

inexpensively.  

 

To correct for confounding factors by population stratification or estimate admixture, 

principal component analysis (PCA) of unlinked genotypes is commonly carried out in 

genetic association studies174,183-185. PCA captures latent variables that maximize 

variation between samples in high-dimensionality genotype data, serving as proxy for 

population structure and easily visualizing it based on allele frequency differences. This 

type of analysis can be conducted in studies with genome-wide genotypes; however, it is 

often not possible in studies with a smaller number of variants, such as candidate gene-

based association studies186 and targeted gene resequencing where only a small number 

of variants are genotyped or sequenced. Consequently, a panel of AIMs is required to 
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conduct PCA or similar analyses. In addition to inferring ancestry and controlling for 

population structure, AIMs panels have been proven to have a wide range of other 

applications, particularly in the identification of disease-associated genes. For example, 

population-specific AIMs have been successfully applied to associate sample admixture 

proportions to disease phenotypes, such as uterine blood flow in Andean samples187 and 

breast cancer in Mexican women188.  

 

There are at least 21 recently-developed and widely-used AIM panels189; however, most 

of them were designed to identify only continent-of-origin190-192 or for a specific 

population, e.g., Han Chinese193 or Europeans186. For instance, a study of European and 

East Asian samples will use AIMs panels designed by different studies to capture 

ancestry differences between and within populations from the two continental groups. 

Multiple panels may exist for each scenario (e.g., European panels); however, they were 

likely designed using different approaches and genetic data sources, leading to a poor 

consensus across them. Indeed, a recent study identified an unexpectedly small overlap of 

4% among ≥3 panels189, and the overlapping markers could only predict continent-of-

origin, but not the specific population-of-origin. This issue may be addressed by 

developing a multilevel set of AIMs panels for both between- and within-continent 

ancestry ascertainments using the same source of multi-ethnic genetic data. To our 

knowledge, no such panels have been published. Thus, a set of comprehensive AIMs 

panels that can ascertain sample ancestry or admixture proportion at global, continental, 

population, and particularly sub-population levels, is highly desirable.  
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Recently, we identified a large number of single nucleotide polymorphisms (SNPs) with 

large differences in allele frequencies between two or more continental populations from 

78 million SNPs194, most of which captured well the population structures. In this study, 

we systematically developed and validated a robust set of 325 AIMs panels (i.e., one per 

each possible population pair) for a total of 26 human populations195. All panels were 

built and calibrated using three different statistical methods, and their ancestry prediction 

value was evaluated on human samples from diverse populations. 

 

Materials and Methods  

 
Research subjects 
 

The 1000 Genomes project included 2,504 unrelated individuals, representing 26 world 

populations from five continental groups (Supp. Table S1). The sample sizes were 

reasonably balanced with an average of 96 samples (standard deviation of 12) for each 

population.  

 

Whole-genome single nucleotide polymorphisms (SNPs)  
 

The SNP data was extracted from the most recent 1000 Genomes Project (Phase 3, last 

accessed on August 20 2015). The program Tabix96 was used to extract genotypes from 
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the variant call format (VCF version 4.1) files, created using the human genome 

reference GRCh37. Only autosomal biallelic SNPs were used (Supp. Table S2).  

 

Panels of ancestry informative markers (AIMs) 
 

To identify informative and new ancestry markers, we employed three independent 

methods, including informativeness (IN), fixation index (FST), and allele frequency 

difference (ΔDAF). Each of the 26 populations was paired to every other population, 

resulting in a total of 325 population pairs. For each pair, we calculated IN, FST, and 

ΔDAF using over 78 million SNPs, resulting in 76 billion calculations conducted in 

parallel on a high performance computing cluster, using in-house algorithms. First, 

genome-wide SNPs with FST value above the 99.9th percentile were identified, separately 

for each population pair. FST was calculated using an estimator, specifically derived for 

variants from sequencing studies, known to harbor large abundance of rare variants88. 

The FST estimator is defined as: 

𝐹𝑆𝑆 =
(𝑝̅1 − 𝑝̅2)2 − 𝑝̅1(1 − 𝑝̅1)

(𝑛1 − 1) − 𝑝̅2(1 − 𝑝̅2)
(𝑛2 − 1)

𝑝̅1(1 − 𝑝̅2) +  𝑝̅2(1 − 𝑝̅1)  

, where 𝑝̅1 and 𝑝̅2 refer to allele frequencies in samples from populations 1 and 2, and 𝑛1 

and 𝑛2 refer to sample sizes of populations 1 and 2, respectively. This method does not 

overestimate FST and has adequate power for analysis of both common and rare variants, 

due to its insensitivity to sample size differences between populations. The latter is 

important since sample sizes in real studies are often not perfectly matched between 
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populations (Supp. Table S1). Second, we calculated the IN score for each SNP using the 

formula196: 

𝐼𝑁 = ��−𝑝𝑗 log 𝑝𝑗 + �
𝑝𝑖𝑖
𝐾

log 𝑝𝑖𝑖

𝐾

𝑖=1

�
𝑁

𝑗=1

 

 , where 𝑝𝑗is the average frequency of allele j over two populations (i.e., K=2), and 𝑝𝑖𝑖 is 

the frequency of allele j in population i; log represents natural logarithm with 0 log 0 = 0 

196. Then, the SNPs were ranked based on their IN score. Third, only the highest IN-

scoring SNP in LD-blocks as defined by r2 > 0.8 were kept for further analyses. 

Cumulative informativeness was estimated using the top n markers for each population 

pair, such that the sum of top n IN scores was varied from 5 to 50 in increments of 5. We 

pruned the AIMs by excluding markers with linkage disequilibrium r2 > 0.8197. Lastly, 

ΔDAF (i.e., difference of derived allele frequencies) was calculated (i.e., ΔDAFm 

=�𝑝𝑖 − 𝑝𝑗�𝑚, where pi and pj are frequencies of SNP m in populations i and j) for each 

SNP. To ensure that the final AIMs had the largest difference in allele frequency, every 

SNP was required to satisfy ΔDAFm ≥ 0.05. The AIMs with consensus results from all 

three methods were used for further analyses. If an AIM appeared in ≥ 120 population 

pairs, it was designated as a highly-recurrent AIM. 

 

Evaluation of the AIMs panels 
 

To measure the accuracy of our AIMs panels, three approaches were adopted for each 

population pair. First, we used the genotypes from each AIM panel, conducted PCA on 
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the respective samples, and assessed how well the AIMs panels clustered and assigned 

the samples in the two populations. Second, we carried out PCA on a new, validation set 

of 31 samples using the same AIMs panels. These were the relatives of the 2,504 

unrelated samples used for the discovery of AIMs and they represent all five continental 

groups and 14 different populations. The k-means clustering was used to assign 

population-of-origin to each validation sample. Third, we repeated these analyses using 

randomly selected SNPs as a “negative control”. The random sampling was conducted so 

that the probability of choosing a position on a given chromosome was proportional to its 

length, and the number of SNPs in the “negative control” panels was the same as that in 

the actual AIMs panel. Only SNPs with allele frequency ≥1% in both populations in the 

pair were used in the “negative control” set. The performance between our AIMs panels 

and the negative control panels was further compared by measuring the total variance in 

genetic ancestry explained by the first two principal components (i.e., PC1 and PC2). We 

focused on the population pairs within the same continental group (57 pairs in total), as 

those from different continental groups are known to be much easier to distinguish.  

 

Principal component analysis (PCA) 
 

The high performance computing toolset, SNPrelate198, was used to carry out PCA using 

the VCF files of our identified AIMs. From the output of SNPrelate, the resulting 

eigenvectors and variance estimates of each principal component were utilized. PCA was 

conducted for each population pair, individual continental group, and all samples 



 

125 
 

combined. Since only unrelated samples underwent PCA, from the 31 validation samples, 

one (NA20336) was removed; in the 2,504 training samples, the relative, parent, child or 

siblings of the 31 validation samples were removed.  

 

Population structures 
 

In addition to the PCA plots, we employed STRUCTURE199 on our identified AIMs 

panels to further elucidate the population structure. The program ADMIXTURE200 was 

used to estimate the number of ancestries and genetic structures using the genotypic data 

from our AIMs panels in VCF. All statistical analyses and plots were conducted in the R 

statistical programming language (www.r-project.org). 

 

Population genetic distances and visualization 
 

To confirm the population structure indicated by PCA, allele sharing was measured as a 

proxy for genetic distances between all population pairs. PLINK/SEQ 0.10 

(http://atgu.atgu.mgh.harvard.edu/plinkseq) was used to estimate pair-wise allele sharing 

for a total of 3,133,756 (i.e., (25042 – 2504) / 2) unique sample pairs. The heatmap of 

resulting allele sharing counts was constructed using the heatmap.2 function in the R 

statistical programming language.  
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Results 

 
Identification of AIMs  
 

After exhaustively screening all ten cumulative informativeness thresholds (see Methods) 

for each population pair, a threshold of 30 was selected as it produced a small number of 

markers and high population clustering accuracy. We identified a total of 325 AIMs 

panels with number of AIMs ranging from 136 (in PEL-JPT panel) to 735 (in CEU-GBR 

panel) in each panel. On average, each within- (i.e. populations of one continental group) 

and between-population (i.e. populations of different continental groups) pair had 415 (± 

standard deviation = 118) and 328 (± 73) AIMs, respectively, indicating that more AIMs 

are required to elucidate within- than between-population structures. Cumulatively, 

2,919, 2,761, 1,910, 2,353 and 1,022 SNPs were identified specifically in Africans, 

Europeans, East Asians, South Asians, and Americans, respectively (Supp. Table S3). 

Most of the AIMs from population pairs within the same continental group were common 

SNPs with average allele frequencies of 42%, 33%, 38%, 32% and 37% in Africans, 

Europeans, East Asians, South Asians and Americans, respectively (Supp. Figure S1). 

Among these panels, 76 AIMs were recurrent in more than 120 population pairs, where 

the top two, rs7187359 and rs802566, occurred in 137 and 136 pairs (> 95% were 

between-population pairs), respectively.  

 

Evaluation of AIMs panels 
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Each of the 57 within-population pairs underwent PCA using the respective AIMs panels. 

Overall, 44 of the population pairs (77%) separated perfectly from each other, while the 

rest have an almost perfect separation, in plots of the first two principal components (i.e., 

PC1 and PC2) with a very small number of exceptions (Figure 1). By comparison, the 

“negative control” AIMs produced PCA plots that did not distinguish between 

populations of the same continental group (Supp. Figure S2). To quantify differences in 

performance between AIMs panels, we calculated the cumulative genetic ancestry 

variance explained by the first two principal components. On average, the first two 

principal components of our AIMs panels explained nearly 24% more of the genetic 

ancestry variation (27.2 ± 11.5%) than the random set of SNPs (3.3 ± 1%). In addition, 

we assessed the accuracy of our AIMs panels by predicting ancestry of 30 different 

samples within each of the 14 respective populations. We found that 100% of the samples 

were correctly clustered (Supp. Figure S3). 

 

Population structures from PCA  
 

The first two principal components derived from all our identified AIMs were able to 

separate the samples very well by continental groups (Supp. Figure S4). As expected, 

the admixed American populations grouped closest to South Asians based on the 

principal component distances, followed by Africans, Europeans and East Asians. Next, 

each continental population was analyzed separately by combining AIMs panels from 

population pairs of the same continent, to identify fine population structures. In Africans, 
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all populations with exception of the admixed samples from ACB and ASW clustered in 

distinct regions. In Europeans, all populations grouped in distinct regions. Southern 

Europeans (TSI and IBS) were distinguishable from northern Europeans (GBR and 

CEU). In East Asians, we observed a relatively clear separation of the Japanese (JPT) 

samples from the Chinese populations. In South Asians, Gujarati separated distinctly 

from the other populations. In Americans, Puerto Ricans and Peruvians separated clearly 

from each other, while Mexicans in Los Angeles and Columbians displayed more 

heterogeneity. Supp. Table S4 shows the contribution of first 10 principal components to 

genetic variance within each population. 

 

Population structures from ADMIXTURE 
 

The fine population structures describe above were well replicated by the admixture 

analyses200. Figure 2 shows the estimated proportions of each ancestral group for a given 

genome. Under the assumption of two ancestral populations (i.e., K = 2) among the 

analyzed samples, Africans were separated from the rest of the populations. At K = 3, 

East Asians were separated from other non-Africans. At K = 4, South Asians became 

distinguishable from the rest. At K = 5, within- population structures appeared, e.g., 

Gujarati Indian from Texas became distinguishable from the rest of South Asians. At K = 

7, non-admixed Africans separated from admixed Africans (ACB and ASW). At K = 8, 

Japanese became distinct from the rest of East Asians. The admixture plots using our 

AIMs panels produced consistent population structures to those from PCA. 



 

129 
 

 

American populations had average proportions of 53%, 35%, 8%, and 4% of European, 

East Asians, African, and South Asian ancestries, respectively (Supp. Table S5 and 

Supp. Figure S5). The highest European, African, and South Asians ancestry proportions 

were all found in Puerto Ricans (65%, 16% and 6.4%, respectively), whereas the highest 

East Asian ancestry proportion was observed in Peruvians (62%). Furthermore, Peruvians 

contained the lowest European and African ancestries (33% and 3.5% respectively). 

 

Population structures from allele sharing  
 

Rare variants and distant ancestry 
The abundance of rare alleles in the 1000 Genomes variants (84.6% of SNPs had DAF < 

1%) allows us to asses rare allele sharing patterns between samples as a measure of 

population structure. The numbers of rare alleles shared by two individuals from the same 

continental group were significantly higher than those from different groups (Figure 3 

upper triangle; t-test P < 2 × 10-12), reflecting the more recent shared ancestry within a 

continental group. 

 

Doubletons and recent ancestry 
Doubletons are genetic variants shared by any two of the 2,504 individuals. Doubleton 

sharing, i.e., the proportion of doubleton variants shared by two individuals among total 

doubletons observed in both, elucidates recent ancestry90,201. High levels of doubleton 

sharing reflect identity-by-descent, i.e., genetic homogeneity, due to shared, recent, 
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population history. As expected, we observed higher doubleton sharing within the same, 

rather than between different, continental groups (Figure 3 lower triangle). For instance, 

the average doubleton sharing between two African individuals was 3.3%, while it was 

only 0.0002% between an African and a non-African. All five continental groups 

revealed similar patterns of doubleton sharing (P > 0.05); however, inclusion of admixed 

samples significantly decreased doubleton sharing. For instance, the doubleton sharing in 

the total African samples, including the admixed ASW and ACB samples, were 

significantly lower when compared to doubleton sharing within Europeans (P = 8 × 10-6), 

East Asians (P = 9 × 10-6) or South Asians (P = 1 × 10-6). Therefore, combining admixed 

samples with samples from their ancestral population will exacerbate effects of 

population stratification.  

 

Allele sharing patterns (Figure 3) clearly portray the recent admixture of European and 

African ancestries in modern Americans. The ancestral lineages (upper triangle) of 

Colombians and Puerto Ricans contained higher African components than those of 

Mexicans from Los Angeles and Peruvians (except one Peruvian individual). This 

observation was consistent with our admixture analysis results (Supp. Table S5), where 

Colombians and Puerto Ricans showed average African ancestry proportions of 9% and 

16%, compared to 4.5% and 3.5% in Mexicans and Peruvians. The data also suggested 

that Japanese had rapid and recent population growth (the second strongest doubleton 

sharing among all 26 populations). Our results also support a recent admixture of East 
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Asians and South Asians (lower triangle). The fine population structures revealed by 

allele sharing analyses were consistent with those inferred by the AIMs panels. 

 

Discussion 

 
In the present study, we analyzed over 78 million biallelic SNPs and created a total of 

325 panels of AIMs, corresponding to all possible pairs of 26 world populations from 

five continental groups. Each of these panels can be applied flexibly to discriminate 

between any specific population pair in genetic association studies, depending on sample 

ancestry composition. We have demonstrated the robustness of our panels based on the 

near-perfect separation of samples from closely related populations (e.g., CHS and CHB), 

and perfect prediction accuracy of validation samples.  

 

On average, each panel had 343 ± 89 AIMs (range from 136 to 735), and 76 AIMs were 

highly recurrent among these panels. Our panels distinguished particularly well 

population pairs within continental groups, as demonstrated by the reasonably 

homogenous sample clusters by PCA (Figure 1). The resulting fine population structures 

and admixture proportions were consistent with the expected geographic and cultural 

differences in these samples. For instance, the Japanese (JPT) and Han Chinese (CHB) 

samples were separated more easily than the southwestern Chinese (CDX) and 

Vietnamese (KHV) samples. On the other hand, around 96% of the AIMs identified in 

this study are non-coding, common SNPs. However, we also found some 
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nonsynonymous AIMs located in genes that have been reported for positive selection, 

such as rs1871534 (L347V) in SLC39A4202, rs16891982 (L374F) in SLC45A2132, 

rs60910145 (I366M) in APOL152, and rs3827760 (V370A) in EDAR 68. Additionally, two 

of the AIMs were recently published by our group194 as highly pathogenic variants with 

extreme allele frequency differences in populations of the same continental group: 

rs200071340 (Gln39Ter) in Europeans and rs3211938 (Tyr325Ter) in Africans. 

 

To build these AIMs panels, we adopted three statistical scoring systems, i.e., IN, FST, and 

ΔDAF, which yielded highly correlated results in our study (Supp. Figure S6). The 

AIMs panels developed here were highly informative for ancestry, as measured by IN. For 

example, among the top 12 AIMs of a recently published Han Chinese panel193, four 

overlapped with our panel of the equivalent population pairs, i.e., CHB-CHS; however, 

our panel contained a larger number of high IN markers, i.e., 192 AIMs with IN ≥ 0.028 in 

our panel compared to only two in the published panel. A detailed comparison between 

our panel and the one published by Qin et al. revealed that our panel has more 

informative markers, as measured by both FST and IN statistics (Supp. Figure S7). 

 

A recent study evaluated 21 published AIMs panels and found 1%, i.e., 14 AIMs, overlap 

among four or more panels or 3%, i.e., 46 AIMs, overlap among three or more panels189. 

By comparison, our panels contained all of the 14 AIMs or 42 of the 46 AIMs (markers 

in strong LD were also considered a match), indicating high consistency. It should be 

noted that in this study, only 2,504 whole-genomes were analyzed for our AIMs 
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development, and it is anticipated that future research with larger sample size may 

identify more new markers.  

 

Regarding applications of our AIMs panels, we recommend using these panels 

hierarchically. For instance, a study that analyzes samples of African and East Asian 

ancestry may first use one or more of our AIMs panels that were designed for separating 

Africans from East Asian populations, then use the panels that separate specific African 

populations from one another, and those that separate specific East Asian populations 

from one another. This strategy prevents inclusion of AIMs designed for populations that 

are not represented in the underlying study. To the best of our knowledge, this study 

provides the first set of AIMs panels that can ascertain sample ancestry or admixture 

proportion with high accuracy at multiple resolutions, i.e., global, continental, population, 

and sub-population levels.  

 

To conclude, in this study we have identified and validated a new set of multilevel AIMs 

panels. They have various potential applications, including ancestry inference at sub-

population resolution, and gene-disease fine mapping studies in admixed or multi-ethnic 

cohorts. 

  

Data archiving 

 
The AIMs markers are available at: http://www.uvm.edu/genomics for download. 

http://www.uvm.edu/genomics
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Figure Legends 

 

 
Figure 1 PCA plots of all 57 population pairs within the same continental group 
inferred using our AIMs panels. Every possible pair of populations was separated from 
each other at almost perfect levels. Some of the exceptions included CDX (Chinese Dai 
in Xishuangbanna, China) – KHV (Kinh in Ho Chi Minh City, Vietnam), and to a smaller 
degree CHS (Southern Han Chinese) – CHB (Han Chinese in Bejing, China) and MXL 
(Mexican ancestry from Los Angeles, USA) – CLM (Colombians from Mendellin, 
Colombia) pairs. In all three cases, the geographical proximity, admixture status or 
shared recent ancestry of these populations may account for the slight difficulty in 
distinguishing them. The order of population pairs is consistent with that on the official 
1000 Genomes Project website (http://www.1000genomes.org/category/population). 
 
 
 
 
 
 
 
 
 
 

http://www.1000genomes.org/category/population
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Figure 2 A population structure based on our AIMs panels. All of the 10,243 AIMs 
were used. Each color corresponds to an estimated ancestral group (referred to as K). The 
order of plots from top to bottom corresponds to K values of 2 to 9. The program 
ADMIXTURE was used to measure ancestral proportions in each sample. The order of 
populations was determined by genetic distance between them, based on pairwise FST 
measurements.  
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Figure 3 Allele sharing between individual pairs. Two allele sharing analyses between 
all possible unique pairs of unrelated individuals (3,133,756 sample pairs in total). The 
lower triangle of the heatmap corresponds to the recent ancestry measured by the 
doubleton sharing pattern defined in Plink/Seq (http://atgu.mgh.harvard.edu/plinkseq) 
(e.g., sample A has 1,000 doubletons and sample B has 2,000 doubletons; of these, 500 
are shared by both; thus their doubleton sharing = (2 × 500)/(2000+1000) = 0.34 or 34%). 
The upper diagonal corresponds to the more ancient ancestry as measured by the sharing 
of variants with DAF < 1% between each sample pair. The blue (low), white (average), 
and red (high) color scheme is used in both halves of the heatmap. 
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Supplementary Tables and Figures 

Supplementary Tables 

 
Supp. Table S1 Summary of the samples analyzed in this study 

Continental 

groups 

Populations of each continental 

group 

Sample sizes Total 

AFR ACB, ASW, ESN, GWD, LWK, 
MSL, YRI 

96, 61, 99, 113, 99, 85, 
108 661 

AMR CLM, MXL, PEL, PUR 94, 64, 85, 104 347 
EAS CDX, CHB, CHS, JPT, KHV 93, 103, 105, 104, 99 504 
EUR CEU, FIN, GBR, IBS, TSI 99, 99, 91, 107, 107 503 
SAS BEB, GIH, ITU, PJL, STU 86, 103, 102, 96, 102 489 

The three-letter codes represent the following continental groups: EAS, East Asian; SAS, 
South Asian; AMR, admixed populations from the Americas; EUR, European 
populations; AFR, African populations. The order of sample sizes corresponds to the 
populations order. Codes of populations within each continental group correspond to 
African Carribbeans in Barbados (ACB); Americans of African Ancestry in Southwest of 
USA (ASW); Esan in Nigeria (ESN); Gambian in Western Divisions in the Gambia 
(GWD); Luhya in Webuye, Kenya (LWK); Mende in Sierra Leone (MSL); Yoruba in 
Ibadan, Nigeria (YRI); Columbians from Medellin, Colombia (CLM); Mexican Ancestry 
from Los Angeles USA (MXL); Peruvians from Lima, Peru (PEL); Puerto Ricans from 
Puerto Rico (PUR); Chinese Dai in Xishuangbanna, China (CDX); Han Chinese in 
Beijing, China (CHB); Southern Han Chinese (CHS); Japanese in Tokyo, Japan (JPT); 
Kinh in Ho Chi Minh City, Vietnam (KHV); Utah residents with Northern and Western 
European Ancestry (CEU); Finnish in Finland (FIN); British in England and Scotland 
(GBR); Iberian Population in Spain (IBS); Toscani in Italy (TSI); Bengali from 
Bangladesh (BEB); Gujarati Indian from Houston, Texas (GIH); Indian Telugu from the 
UK (ITU); Punjabi from Lahore, Pakistan (PJL); Sri Lankan Tamil from the UK (STU). 
 

Supp. Table S2 Summary of the total variants in the 1000 Genomes Project Phase 3 
subjects 

Variant Types Counts Percent of total 
variants 

SNPs 78,136,341 96.1% 
Indels 3,135,424 3.9% 
Biallelic SNPs and 
indels 80,800,311 99.4% 
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Supp. Table S3 AIMs for population pairs among the primary CEU, CHB, JPT, and YRI 
populations (see https://www.uvm.edu/genomics/publications.html). The data contains 
positional information (build 37), IN, FST and ΔDAF scores for each AIM. Additional 
AIMs are available upon request.  
 

Supp. Table S4 Genetic variance explained by our AIMs panels 

Principal 

component 

Variance* explained (%) 

All AFR EUR EAS SAS AMR 

1 11.7 8.79 4.14 5.82 8.76 18.72 
2 6.26 4.04 2.37 4.14 2.16 8.77 
3 2.79 2.08 1.95 2.85 1.83 1.96 
4 1.93 1.79 1.81 2.18 1.36 1.70 
5 0.81 1.29 1.66 1.81 1.21 1.06 
6 0.68 0.99 1.09 1.61 1.11 0.84 
7 0.66 0.84 0.95 1.43 0.97 0.80 
8 0.59 0.80 0.79 1.41 0.74 0.77 
9 0.51 0.64 0.72 1.26 0.70 0.70 
10 0.44 0.62 0.68 1.10 0.62 0.66 
*Variation in genetic ancestry among the 2,504 samples. All, 10,243 SNPs; AFR, 2,919; 
EUR, 2,761; EAS, 1,910; SAS, 2,353; and AMR, 1,022 SNPs.  
 

Supp. Table S5 The four major ancestral proportions of four American populations. 

Ancestral 

group 

MXL PEL CLM PUR 

European 52 (±14)% 33 (±9)% 62 (±12)% 65 (±11)% 

East Asian 42 (±15)% 62 (±11)% 23 (±9)% 13 (±5)% 

African 4.5 (±3)% 3.5 (±6)% 9 (±8)% 16 (±9)% 

South Asian 1.7 (±4.4)% 2.1 (±4)% 6 (±9)% 6.4 (±7.5)% 

The average (±standard deviation) ancestry proportions were estimated using results from 
ADMIXTURE, at K=4. 
 

https://www.uvm.edu/genomics/publications.html
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Supplementary Figures 
 

 
Supp. Figure S1 Allele frequency histograms for AIMs of each continental group. 
The values on the y-axis correspond to the number of markers with a specific derived 
allele frequency, denoted on the x-axis. 
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Supp. Figure S2 PCA plots of all 57 population pairs within the same continental 
group using random SNPs. The same numbers of randomly-selected SNPs as in the 
AIMs panel were used to conduct PCA on each within-population pair. The “negative 
control” panels failed to reveal expected population structures. The only populations pairs 
that seemed to separate well using the negative control set of AIMs were LWK (Luhya in 
Webuye, Kenya) – MSL (Mende in Sierra Leone), FIN (Finnish in Finland) – IBS 
(Iberian Population in Spain) and TSI (Toscani in Italy) – FIN (Finnish in Finland). The 
reason that these populations (i.e., 5%) separated from each other might be due to 
sufficiently large differences in genetic background or large number of markers applied. 
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Supp. Figure S3 PCA plots of population pairs with new, validation samples. All of 
the 30 new samples were successfully clustered with the appropriate population. Each of 
these samples is a relative, parent, child or sibling of at least one of 2,504 unrelated 1000 
Genomes Project samples. The sample IDs (shown in blue font) were clustered in the 
correct population in all possible within-population pairs.  
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Supp. Figure S4 PCA plots of population pairs with new, testing samples. PCA was 
used to estimate first two principal components (PC) and their respective contribution to 
explained variance. For each continental group, PC1 vs PC2 and PC2 vs PC3 were 
plotted to show finer structures within populations. Our AIMs panels elucidated the 
global and fine within-population structures. 
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Supp. Figure S5 Structure of the American populations based on our AIMs panels. 
The analysis revealed differential levels of admixture in the four populations.  
 
 

 
Supp. Figure S6 Correlation of the three AIM identification methods. The three 
statistical scoring systems used to identify AIMs were highly correlated to each other, 
particularly FST and ΔDAF. 
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Supp. Figure S7 AIMs panels quality differences between our findings and 
published panel of southern and northern Han Chinese samples. The IN and FST 
values of the top 50, 100, 150 and 200 SNPs (ranked by IN or FST, accordingly) were 
compared between our panel and that by Qin et al.  
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Abstract 

 
Background: Genome-wide association studies (GWAS) have successfully identified 

genes associated with complex human diseases. Although much of the heritability 

remains unexplained, combining single nucleotide polymorphism (SNP) genotypes from 

multiple studies for meta-analysis will increase the statistical power to identify new 

disease-associated variants. Meta-analysis requires same allele definition (nomenclature) 

and genome build among individual studies. Similarly, imputation, commonly-used prior 

to meta-analysis, requires the same consistency. However, the genotypes from various 

GWAS are generated using different genotyping platforms, arrays or SNP-calling 

approaches, resulting in use of different genome builds and allele definitions. Incorrect 

assumptions of identical allele definition among combined GWAS lead to a large portion 

of discarded genotypes or incorrect association findings. There is no published tool that 

predicts and converts among all major allele definitions.  

 

Results: In this study, we have developed a tool, GACT, which stands for Genome build 

and Allele definition Conversion Tool, that predicts and inter-converts between any of 

the common SNP allele definitions and between the major genome builds. In addition, we 

assessed several factors that may affect imputation quality, and our results indicated that 

inclusion of singletons in the reference had detrimental effects while ambiguous SNPs 

had no measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 

0.001 (40% of study SNPs) showed no significant decrease of imputation quality (even 
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significantly higher when compared to the imputation with singletons in the reference), 

especially for rare SNPs.  

 

Conclusion: GACT is a new, powerful, and user-friendly tool with both command-line 

and interactive online versions that can accurately predict, and convert between any of 

the common allele definitions and between genome builds for genome-wide meta-

analysis and imputation of genotypes from SNP-arrays or deep-sequencing, particularly 

for data from the dbGaP and other public databases.  

 

GACT software: www.uvm.edu/genomics/software/gact 

 

Keywords: Allele definition (nomenclature); Genome build; Genome-wide association 

study (GWAS); Imputation; Meta-analysis  
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Background 

 
Genome-wide association studies (GWASs) and next-generation deep sequencing studies 

have successfully identified genes associated with human diseases and traits, yet they 

suggest that the identified variants cumulatively explain a small percentage of the 

estimated inherited risk to develop these diseases. Combining samples from multiple 

GWASs or deep sequencing datasets of the same phenotype for large-scale meta-analyses 

will increase the statistical power to identify new or rare associated variants203, 

particularly for complex traits where the disease variants may have moderate effect sizes, 

which may account for some of the missing heritability204. However, the raw single 

nucleotide polymorphism (SNP) genotype datasets might have been generated using 

different genotyping or sequencing platforms, array types205 or SNP calling procedures, 

resulting in the use of different genome builds or allele definitions (nomenclatures). Thus, 

combining multiple GWASs or deep sequencing studies (e.g. the 1000 Genomes 

Project206) requires conversions of inconsistent allele definitions and genome builds 

between the datasets, as demonstrated in a large number of NHGRI (www.genome.gov) 

GWAS meta-analyses203. Likewise, imputation, one of the commonly-used approaches to 

predict the genotypes for un-assayed loci, requires the same consistency between the 

study and reference datasets, for example, imputation has been applied to almost half of 

the GWASs203 in the NHGRI GWAS Catalog. 

 

Four common nomenclatures exist for reporting biallelic SNPs, including: probe/target or 

A/B, Plus (+)/Minus (-), TOP/BOT, and Forward/Reverse207. The genotype data from 

http://www.genome.gov/
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different studies are often not consistent or matched for genome builds or allele 

definitions, and thus, genotype and build conversions are required if an investigator 

combines multiple GWASs or imputes a reference dataset (e.g., the 1000 Genome data) 

into a study GWAS. For example, different genome builds, primarily build 36 (b36) and 

b37, and various allele definitions were adopted in the 15,541 NHGRI GWAS Catalog 

datasets. The solutions that disregard mismatched SNPs, i.e., direct allele-flipping or 

removal of mismatches208, will lead to undesirable consequences. For example, allele-flip 

(i.e., from A1 to A2 and vice versa) ignores the allele frequencies of study population and 

may make the downstream analyses of the flipped SNPs irrelevant to the sample 

population; and genotype removal may significantly lower the SNP density of relevant 

regions. Thus, the build of the human genome that was used to call the study SNPs (or 

true-genotypes) and the allele definition have to be determined and converted where 

necessary prior to imputation and meta-analysis. 

 

To our knowledge, there is no available tool that simultaneously predicts and converts 

human genome builds and allele definitions. The existing tools either convert between 

selected allele definitions alone (such as GenGen (www.openbioinformatics.org/gengen) 

where the Plus (+)/Minus (-) definition is not included) or between genome builds alone 

(such as the UCSC Genome Browser LiftOver (genome.ucsc.edu/cgi-bin/hgLiftOver)). In 

this study, we have developed a new and powerful genotype conversion tool, GACT, 

which stands for Genome build and Allele definition Conversion Tool, to aid in 

imputation, meta-analysis or both (Figure 1). GACT (Figure 2) directly inter-converts 

http://www.openbioinformatics.org/gengen
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among any of the four allele definitions and between the b36 and b37 genome builds. 

Since investigators who use datasets from existing GWAS repositories, such as the 

dbGaP, may not immediately know what allele definitions were used to call the SNPs, we 

built an artificial neural network (ANN) within GACT to predict the allele definitions. 

For next-generation sequencing (NGS) projects, since the sequence reads are aligned and 

mapped to the human reference genome, which is often in the Plus (+)/Minus (-) 

definition, the SNP genotypes will be of the same one definition. GACT can convert and 

match the SNP data from genotyping arrays to NGS data (SNP calls) for data merge and 

meta-analyses. Our example conversions from A/B definition b36 to Plus/Minus 

definition b37 consistently yielded high matches with the phased 1000 Genomes 

genotypes (Table 1), demonstrating the accuracy of our tool for converting the genome 

builds and allele definitions. GACT can be used as a powerful command line application 

as well as a user-friendly interactive web tool. 

 

Imputation is often desirable before combining multiple genotype datasets from different 

recourses for meta-analysis. Our imputation analysis revealed higher quality for imputed 

SNPs when GACT was used, compared to when mismatched SNPs were excluded (Table 

S1).  While GACT aims to convert between allele definitions and maximize the number 

of correctly matched alleles to a reference, there are many other factors that can affect 

imputation quality. Hence, we measured the effects of selected variant types (such as 

singletons (i.e. SNPs with only one copy of the minor allele among all samples), 

monomorphic SNPs, and ambiguous SNPs) and GWAS quality control procedures (such 
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as genotype missing rate) on imputation quality. We found that the exclusion of 

singletons and monomorphic SNPs from the reference improved imputation quality of 

rare SNPs with minor allele frequency (MAF) < 0.005 (the mean quality score increased 

from 0.52 to 0.57, which was the highest increase across all MAF ranges) but had no 

effect on SNPs with MAF > 0.005 (the mean score remained 0.91). The ambiguous SNPs 

had no measurable effect on imputation, while imputation quality decreased as the 

genotype missing thresholds became more conservative. Surprisingly, for imputed 

common SNPs (MAF > 0.1), the decrease in imputation quality started to emerge under 

very stringent genotype missing thresholds (0.004-0.001, instead of the commonly-used 

0.05); by comparison, the imputation of relatively rare SNPs (MAF < 0.1) was even more 

robust, the decrease was not significant until the missing threshold reached a more 

stringent threshold of 0.0005 (corresponding to removal of 61.4% of the genotypes). 

Moreover, the physical locations of the SNPs that were excluded under these missing 

thresholds were distributed uniformly across the chromosomes. Our analyses provide 

novel insight into imputation insensitivity to genotype missingness, particularly for rare 

SNPs.     

 

Implementation 
 

Subjects and genotype data  
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A cohort of 3,096 subjects of Ashkenazi Jewish ethnicity were genotyped using the 

Illumina Human Omni 1 Quad arrays. The GWAS genotype data were obtained through 

the NIH dbGaP [phs000448].  

 

GACT pipeline 
 

GACT was designed for matching allele definitions between the study GWAS and 

reference data before imputation or merging multiple genome-wide genotype datasets 

before meta-analysis, where the genotypes were generated from SNP-arrays or deep-

sequencing platforms (Figure 1). Figure 2 shows the study design and GACT pipeline, 

which can be directly connected to other commonly-used methods, including genotype 

phasing of GWAS (or deep sequencing) data, imputation, data merging, and meta-

analysis (Figure 1). The proper execution in command line of GACT requires PLINK209, 

GenGen, and the genotyping array annotation files in the same directory, which can be 

downloaded from our website. The command line follows this syntax (example): ./gact 

b36 b37 ab plus o1qd map_file_name. The arguments represent the current genome build 

(b36), desired genome build (b37), current allele definition (ab), desired allele definition 

(plus), annotation file of SNP genotyping array (o1qd = Human Omni 1 Quad Duo), and 

input map file name, respectively. The input file should be in the same format as the 

PLINK binary map file, containing chromosome location and reference alleles of each 

SNP. The web version accesses the same command line options on the server-end after 

user uploads the input file, a PLINK format map file, and chooses the preferred options 
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on the web interface. Moreover, the web tool allows the user to view in real time a log of 

every step in the conversion process. The command line has no pre-defined limit on the 

input file size while the web tool has a limit of 40 megabytes (MB), which is sufficient 

for most SNP arrays (e.g, the entire map file of the Illumina Human Omni 1 Quad array 

is < 30 MB).  

 

To build the allele definition prediction model, the 1000 Genomes data (2,046,145 SNPs 

on chromosome 1), dbSNP data (51,864 SNPs on chromosome 1), and our GWAS data 

(964,554 SNPs on chromosome 1) were used to extract the allele properties of the Plus 

(+)/Minus (-), Forward/Reverse, and TOP/BOT definitions, respectively (our findings 

were consistent across all chromosomes). The three genotypes (CT, TC, and GA, Figure 

3) that showed the largest amount of differential enrichment among the allele definitions 

were used as the inputs for a feed-forward, back propagation, ANN with 3 input neurons, 

2 hidden layers, and 1 output neuron. This ANN was trained using 10 random samples of 

various sizes (from 1,000 to 2,000,000 SNPs) from each of the three genotype sources. 

The ai4r ruby gem (ai4r.org) was used to implement the ANN. Similarly, the coordinates 

of selected common SNPs in both b36 and b37 datasets were used as the references to 

predict genome builds. We assessed the quality of implementing our tool to the GWAS 

data by counting the number of allele matches between the study data and 1000 Genomes 

Project data using SHAPEIT210. GACT was written using a set of Python, Ruby, 

Hypertext Preprocessor (PHP), and bash scripts. More details and frequently asked 

questions are available on our website. 
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Imputation quality assessment 
 

The GWAS genotype data of the 3,096 Ashkenazi Jewish samples was in b36 genome 

build and A/B allele definition. GACT was used to convert the allele definition and 

genome build to the b37 and PLUS allele to keep them consistent with the 1000 Genomes 

panel. The genotype match rates between the study and reference datasets and imputation 

quality scores were used as primary measurements to assess conversion quality of GACT. 

After converting the genome builds and allele definitions in the map files using GACT, 

we recoded all the genotypes of the GWAS data using PLINK. The genotype phasing and 

imputation were carried out using SHAPEIT and Impute2211, respectively. The latest 

phased 1000 Genomes genotypes of the European population (Phase 1 integrated release 

version 3) were used as the imputation reference. Imputation quality was assessed using 

the Impute2 information scores of the reference SNPs. The scores (equivalent to the r-

squared metric reported by MaCH212 and BEAGLE213) vary between 0 and 1, where 

values closer to 1 represent imputation with high certainty. The mean and standard 

deviation of these scores were used as measures of overall imputation quality of SNPs at 

specific MAF ranges. To compare the imputation quality between different MAFs, we 

used the Welch two sample t-test. All the statistical analyses and graphs were generated 

using the latest version of R (version 3.0.2), and the imputations were conducted using 

the multi-core cluster at the Vermont Advanced Computing Center. 
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Results 
 

GACT prediction of genome build and allele definition 
 

We measured the frequencies of all 16 possible genotype patterns under three allele 

definitions, including Plus (+)/Minus (-), Forward/Reverse, and TOP/BOT (the A/B or 

probe/target definition is differently coded). The distributions (Figure 3) were clearly 

distinguishable, and thus used to predict all the four designations. We observed the 

enrichment of two patterns A/G and G/A, two patterns A/G and C/T, and four patterns 

A/G, G/A, C/T and T/C for TOP/BOT, Forward/Reverse, and Plus/Minus, respectively. 

The prediction model matches relative ratios of the input genotypes to the expected ratios 

in each definition by measuring the proportions of CT, TC and GA alleles present. These 

three values acted as the input neurons into a multilayer perceptron that classified the 

input map file into one of the four SNP definitions (Figure S1). Thus, for users who have 

no knowledge about the allele definitions and (or) genome build, GACT will first notify 

the user of the predicted definition and build of the input SNPs prior to actual conversion. 

The prediction module is particularly useful when the datasets are obtained from public 

genotype repositories, such as the dbGaP. 

 

GACT conversion of genome build and allele definition 
 

GACT has been demonstrated to identify and clean all the convertible allele mismatches. 

Table 1 shows the amounts of genotypes that should be discarded if we incorrectly 
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assumed versus correctly converted the allele definitions between our GWAS data and 

the 1000 Genome data (Plus/Minus) during imputation. For instance, if we incorrectly 

converted our GWAS genotypes to the “Forward/Reverse” or “TOP/BOT” definition, 

and imputed with the 1000 Genome data, we had to discard 21.7% and 51.5% of the 

genotypes, respectively, due to mismatch. By comparison, if we correctly converted our 

genotypes to “Plus/Minus” by using GACT, only 7% needed to be discarded across all 

the chromosomes (Table 1). Moreover, since 3,344 SNPs existed in our data but not in 

the reference, when only the SNPs that existed in both datasets were used in the 

calculation, the discarded genotypes only accounted for 3.3%, which was significantly 

lower than commonly-observed mismatch rates in the literature. The reasons for the 3.3% 

mismatches are described in the discussion. 

 

As expected, the imputation quality decreased when the mismatch rate increased (Table 

S1), which was primarily due to the decrease of SNP density in the study data. Figure 4 

clearly shows evidence of a significant increase in the SNP density (P = 3.2 × 10-144 

based on 2-sided paired t-test) of the study data across the entire chromosome. Likewise, 

the imputation quality (information scores) consistently increased by 1% across all MAFs 

after we converted the genome build and allele definition of our GWAS data from the 

Forward/Reverse definition (to the Plus/Minus definition) using GACT (Table S1). 

However, it should be noted that the improvement would be much higher if we converted 

the TOP/BOT definition (to the Plus/Minus definition) since without conversions (Table 
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1) the mismatch rate between the TOP/BOT and Plus/Minus definitions was larger than 

that between the Forward/Reverse and Plus/Minus definitions. 

 

Imputation quality 
 

We measured the effects of multiple SNP types and GWAS quality control procedures on 

imputation quality (i.e., using the information scores). The results (Table 2) showed that 

the imputation quality increased from 0.52 to 0.57 for the variants with 0.001 < MAF < 

0.005 when both the monomorphic variants and singletons were removed from the 

reference panel, however, no significant change was observed for more common variants 

with MAF > 0.005. When both of the ambiguous and singleton SNPs were removed from 

the study data (prior to phasing and imputation), the imputation quality showed no 

significant changes, which was consistent with previous studies214.  

 

Our results further showed that there was no noticeable effect on the imputation quality 

when the SNPs with genotype missing rate > 0.01 (667 SNPs) or 0.03 (939 SNPs) were 

excluded, regardless of the decrease of SNP density, when compared to the commonly-

used genotype missing rate threshold of 0.05. This might be partially due to the fact that 

the assayed SNPs were of high quality, indicated by low genotype missing rates. For 

instance, the mean genotype missing rate was < 0.005 across all the SNPs with 0.001 < 

MAF < 0.5 on chromosome 1 (Figures S2 and S3). We repeated the imputation 

procedures under new missing rate thresholds and measured their effects on imputation 
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quality (Figure 5). The new thresholds included 0.004, 0.002, 0.001, and 0.0005, 

corresponding to the removals of 10,279 (13.8%), 17,785 (23.8%), 29,307 (39.3%), and 

45,856 (61.4%) SNPs, respectively. Table 2 and Figure 5 show the comparisons of 

imputation quality measurements at the four missing thresholds across six different MAF 

ranges. As the missing threshold became more conservative (i.e. < 0.05), we observed a 

decrease in imputation quality where the higher MAFs exhibited more sensitivity to less 

stringent thresholds. For instance, the decrease emerged for the most common SNP group 

(0.1 < MAF < 0.5) at the missing threshold of 0.004, for the SNP group with 0.05 < MAF 

< 0.5 at the threshold of 0.002, and for the group containing rare SNPs (0.001 < MAF < 

0.5) at the threshold of 0.0005. Surprisingly, we found that imputation of the rarest SNPs 

into genotyped genome regions tolerated very low SNP density (up to 39.3% lower when 

the missing threshold was 0.001) as long as the genotypes were of high quality (i.e. low 

missing rate). Moreover, exclusion of the SNPs with missing rate > 0.001 did not worsen 

imputation compared to the scenario where singletons were included in the reference 

(missing threshold = 0.05), particularly for SNPs with 0.001 < MAF < 0.005 (Figure S4). 

Importantly, the locations of excluded SNPs (under the most conservative threshold) 

were distributed uniformly across the chromosome (Figure 6), indicating that the changes 

in imputation quality are very likely due to global, rather than local, changes in the SNP 

density of the genotype scaffold.  

 

Discussion 
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Both genome builds and allele definitions should be well-matched before combing or 

imputing one genotype data with another. In this study, we have developed a new, 

powerful, and user-friendly tool that can predict, and convert the genome builds and 

allele definitions simultaneously between multiple GWAS or deep sequencing genotype 

datasets for meta-analyses, imputations or both. Our GWAS data demonstrated the 

accuracy of predictions and performance of conversions. Our further imputations showed 

that the inclusion of singletons in the reference panel significantly decreased imputation 

quality. However, the exclusion of SNPs with missing rate > 0.001 led to comparably 

high imputation quality with the commonly-used threshold of 0.05 for rare SNPs (Table 2 

and Figures 5 and S5), which implied that approximately 600,000 well-typed SNPs were 

likely to be sufficient for high quality genome-wide imputation of rare SNPs in our 

GWAS data. 

 

GACT pipeline 
 

GACT achieved as low as 3.3% discarded genotypes (Table 1), which was significantly 

lower than commonly-observed mismatch rates. It should be noted that we always 

observe genotype mismatches in real datasets, particularly when one dataset is from 

microarray-based study and the other is from deep-sequencing-based study, like the case 

in Table 1. This is likely to be attributed to various factors, such as different experimental 

protocols, genotyping error rates, and disease statuses of research subjects. Interestingly, 

the genotype mismatch rates between different platforms are not significantly higher than 
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those within same platforms. For instance, a recent study215 showed 0.6-1.6% genotype 

mismatch rate within two deep-sequencing studies(Li et al’s data and the 1000 

Genomes); by comparison, the 3.3% mismatch rate between two different 

platforms/samples is reasonably low. All these results demonstrated that it is required to 

correctly convert allele definitions prior to imputation or meta-analysis. 

 

Table 3 shows the comparisons GACT with some of the existing tools that also include 

genome build and (or) allele definition conversion functions, including GWAMA216, 

GenGen, METAL217, and PLINK. The strengths of our tool include that it 1) can be 

easily connected to other commonly-used GWAS approaches (Figure 1); 2) can convert 

between any of the four commonly-used SNP allele definitions; 3) provides both  the 

powerful command-line software and user-friendly web interface, where the latter can be 

easily used by biologists (no informatics training required except access to the internet); 

4) can accurately predict allele definitions (and genome builds), which is particularly 

useful for investigators who use GWAS data from the dbGaP or other publicly available 

database; and 5) is computationally efficient, e.g., a typical conversion can be completed 

in a few seconds. In addition, the microarray-specific SNP definition information is used 

in GACT to flip the alleles and strands. Because it can convert data prior to association 

testing, meta-analysis and imputation, GACT complements existing tools and ensures 

allele definition and genome build consistency before using any of these tools. The 

limitation of our tool is that currently, the supported microarrays (primarily Illumina 

platforms) and genome-builds of the web version of GACT are not exhaustive (the 
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command-line version has no such limitation; users can convert between any platforms 

and arrays using the command-line version of GACT). However, we will actively include 

conversions of other existing allele definitions, e.g., numerical alleles. We will provide 

continued scientific and technical support, and expand the list of arrays, genome builds, 

and new modules as new technologies and platforms become available.  

 

Imputation after GACT Conversion 
 

Imputation before combining GWAS datasets is desirable because of 1) increased power 

for identifying disease-associated variants, e.g. by more than 10% as suggested 

previously218; 2) higher SNP coverage for fine-mapping disease genes; 3) additional rare 

SNPs and applicability to other variants such as copy number variations or classical 

leukocyte antigen alleles208; and 4) cost- and time-efficiency compared with the 

molecular genotyping or sequencing experiments. Various studies have been carried out 

to evaluate or identify the factors that might affect imputation quality214,219, including 

ambiguous, monomorphic, and singleton SNPs. Phasing of singletons is known to be 

challenging, and imputation becomes faster with no burden in the downstream 

association tests when singletons are removed from the reference. We found that, 

additionally, the removal of either ambiguous or monomorphic SNPs alone from the 

study data prior to phasing and imputation had no detectable effect on imputation. 

However, the exclusion of monomorphic and singleton SNPs from the reference 

increased imputation quality, which is in accordance with previous studies214,219. We 
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further found that SNPs with very low MAF (0.001-0.005) showed the most significant 

increase of the imputation quality compared with the other MAF ranges (Table 2). This 

finding is important, particularly, for the rare variants, which are of increasing interest in 

the genetic studies of complex diseases and traits. 

 

Balancing between genotype quality and genome coverage is important for imputation. 

The genotype missing thresholds of 0.05 to 0.02219 are generally recommended for 

quality controls in GWAS. However, no published studies have explicitly evaluated the 

effects of more conservative missing thresholds (than the commonly-used values) on 

imputation quality. Our assessments might provide a new perspective on the selection of 

genotype missing thresholds in imputation. Based on our GWAS data, an approximate 

number of 600 thousand well-typed SNPs are likely to be sufficient for high quality 

genome-wide imputation of rare SNPs (high quality assayed SNPs may compensate for 

low true-genotype density). However, further analyses are warranted to replicate the 

findings in additional arrays. It should be noted that only the data on chromosome 1 were 

used for most of the analyses based on our observation of similar genotype missing 

patterns or comparable results across all the chromosomes (Figures S5 and S6).  

 

Conclusion 
 

Ignorance of inconsistent allele definitions and genome builds or incorrect conversions 

lead to incorrect genetic association “findings”. In this study, we developed a 
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comprehensive tool, GACT, with both powerful command-line and user-friendly web 

interface versions to predict, and convert both genome builds and allele definitions 

between multiple GWAS (or deep sequencing) genotype data, which is required for all 

imputations and genome-wide meta-analyses. GACT will facilitate and ease a broad use 

of the GWAS data from the dbGaP and other publicly available genotype repositories for 

large-scale secondary analyses and multi-laboratory collaborations in the genetic 

association studies of human diseases.  

 

Availability and requirements 
 

Project name: GACT: Genome build and Allele definition Conversion Tool 

Project homepage:  http://www.uvm.edu/genomics/software/gact 

Operating system(s): Linux, UNIX (for command version) and Windows (for 

interactive web version) 

Programming language: Python, Ruby, Hypertext Preprocessor (PHP), and Bash scripts 

License: GPL-3 

Availability: GACT (both command-line and web versions), including source code, 

documentation, and examples, is freely available for non-commercial use with no 
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Tables 
Table 1 Genotype mismatches between the GWAS and 1000 Genomes datasets. 

Study  
GWAS 

1000 
Geno
mes Types 

Incorrect  
conversions 

Correct 
conversio

n 

   Fwd-Plus 
Top-
Plus Plus-Plus 

T/C C/T FLIP  0 0 0 
T/C A/G CSF 5,048 9,875 301 

T/C G/A 
FLIP & 
CSF 8,556 27,648 1,840 

T/A */* AMBIG 432 432 432 
*/* -/- NAR 3,344 3,344 3,344 

Matches (%) 
  

62,793 (78.3) 
(81.7)† 

38,875 
(48.5) 

74,256 
(92.6) 
(96.7)† 

FLIP: switch both alleles with one another (from A1 to A2 and vice versa); 
CSF: complimentary strand flip; 
AMBIG: ambiguous SNPs in study GWAS;  
NAR: not available in the reference; 
*/*: any genotype;  
-/-: missing genotype;  
Fwd: Forward/Reverse; 
Top: TOP/BOT; 
Plus: Plus (+)/Minus (-); 
†, percentages of matched genotypes after excluding the NAR genotype counts. 
Both the “GWAS” (the 3,096 Ashkenazi Jewish samples) and “1000 Genome” columns 
show the example alleles in the A1/A2 order. The “Type” column indicates the changes 
required to match the study SNP to the reference. The last three columns refer to numbers 
of genotype mismatches on chromosome 1 (80,173 SNPs in total). The “Fwd-Plus” and 
“Top-Plus” columns show the numbers of genotype mismatches between the “Fwd” and 
“Top” definitions of our GWAS data (we first generated two versions of the same GWAS 
data: “Fwd” and “Top”) and the “Plus” definition of the 1000 Genome data, respectively, 
while the “Plus” column refers to the numbers after we converted the GWAS data to 
“Plus” using GACT. The last row shows the numbers (percentages) of correct genotype 
matches (e.g., “T/C” and “T/C”) between the GWAS and 1000 Genome data, where the 
(%) and (%)† represent the percentages measured by including and excluding the SNPs 
(NAR) unique to our GWAS data, respectively. Similar ratios were observed in other 
chromosomes.  



 

173 
 

Table 2 Quality scores of the imputed (I) and study (S) SNPs for each MAF category 

(see https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-610). 

 
 
Table 3 Comparisons of tools for genome build and allele definition conversions. 

Complementary 

Functionality 

GenGen GWAMA METAL PLINK GACT 

Allele definition prediction No No No No Yes 

Uninformed strand/allele flip1 No Yes Yes Yes No 

Informed allele conversion2 Yes3 No No No Yes 

Automatic allele conversion Yes3 No No No4 Yes 

Genome build prediction No No No No Yes 

Genome build conversion No No No Yes4 Yes 

Command line Yes Yes Yes Yes Yes 

Interactive web interface No No No No Yes 
1“Uninformed” refers to flipping without SNP allele annotation knowledge.  
2“Informed” refers to use of the original SNP definition and microarray-specific 
annotation information. 
3GenGen converts between Top, Forward, A/B and 1/2 allele definitions; by comparison, 
GACT converts between Top, Forward, A/B and Plus definitions while the Plus 
definition is used by the 1000 Genomes Project and most next-generation sequencing 
studies. 
4PLINK can strand- or allele-flip but it cannot directly convert from one allele definition 
to another, unless the user manually extracts information from the microarray annotation 
file; by comparison, GACT automatically converts between genome builds and allele 
definitions.  

https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-610
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Legends 
 

 
Figure 1 Study design and GACT functionality. The left side of the figure indicates 
that microarray data can be used to call SNPs in any of the four listed SNP definitions. 
Often, when genotypes are obtained from public repositories (e.g. dbGaP), allele 
definitions may not be immediately known to investigators. GACT will predict allele 
definition and genome build, and convert to any new definitions or builds. Since the SNP 
definition in the NGS data is determined during alignment to the human reference 
genome (Plus is a commonly-used definition), the SNP alleles from genotyping 
microarrays can be converted and matched to those from NGS. After GACT’s 
conversion, imputation, meta-analysis and (or) other analyses may be carried out using 
the commonly-used tools such as GWAMA, METAL, PLINK, and IMPUTE2. 
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Figure 2 GACT pipeline. The flow diagram shows the major procedures in the GACT 
design. The bottom left panel shows the prediction model of allele definitions based on 
the distribution of each definition (Figure 2). The bottom right panel shows the allele 
conversion pathway among the four allele definitions. The input file to be uploaded is a 
PLINK format map file. This pipeline is implemented in both command-line and web 
interface. 
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Figure 3 Frequencies and distributions of all possible genotypes of biallelic SNPs. 
The data were generated for the Plus/Minus, Forward/ Reverse, A/B, and TOP/BOT 
definitions based on the 1000 Genomes, dbSNP, and our GWAS datasets for the last two, 
respectively. The prediction model of allele definitions was trained using these 
distributions. 
 

 

Figure 4 Comparison of SNP density plots before (“Top” allele definition; black 
line) and after (“Plus” allele definition; red line) GACT conversion. The SNP density 
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was measured per 500,000 bp window. It is clear that the SNP count (or density) increase 
after GACT converts all the mismatched loci, e.g., from 61.05 (median) to 117 SNPs per 
window. Moreover, it is evident that the increase is not biased with regard to physical 
location, which indicates that the allele definition mismatches are uniformly distributed 
across the chromosome. The dotted horizontal lines represent the median of values of 
each line matched by color. The median, instead of mean, was used since the former was 
less vulnerable to outliers (e.g. zero counts in the centromere region). The 
“Forward/Reverse” allele definition showed a similar distribution of mismatches with the 
1000 Genomes, however, only the “TOP” definition is shown due to its higher level of 
mismatches (51.5% mismatches in “TOP” versus 21.7% mismatch in “Forward”). Other 
chromosomes showed similar patterns, and thus only the results of chromosome 1 are 
shown. 
 

 

Figure 5 Comparison of imputation quality of imputed SNPs. The quality score 
columns list three SNP minor allele frequency (MAF) categories: very rare (0.001 < 
MAF < 0.05), rare (0.05< MAF <0.1), and common (0.1 < MAF < 0.5). The results under 
the missing thresholds of 0.03 and 0.01 showed the similar patterns to those under the 
threshold of 0.05, and thus are not shown. Bold indicates P < 0.05 in the Welch two 
sample t-test between the missing rate of 0.05 (black line) and the other thresholds. 
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Figure 6 Distribution of SNP missing genotypes. The green histograms represent the 
numbers of remaining SNPs after removing the SNPs with missing rate > 0.05% while 
the plain histograms represent the total numbers of SNPs (on chromosome 1). The red 
circles represent the fractions of SNPs that passed the threshold. It is clear that the range 
of the fractions is narrow (i.e. 0.3-0.5).  
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Supplements 

Supplementary Table 
Table S1 Comparison of imputation quality before and after genotype conversion using 
GACT 
MAFs Before After 

0.001-

0.005 0.56 (.30) 0.57 (.30) 

0.005-0.01 0.72 (.22) 0.73 (.22) 

0.01-0.05 0.84 (.18) 0.85 (.17) 

0.05-0.1 0.93 (.12) 0.94 (.12) 

0.1-0.3 0.96 (.09) 0.97 (.09) 

0.3-0.5 0.97 (.08) 0.98 (.07) 

Imputation is the process of using a reference haplotype panel at a dense set of SNPs (i.e., 
the 1000 Genomes Project) to impute into a sample of individuals genotyped for a subset 
of these SNPs (i.e., the GWAS data). The numbers in this table represent the mean 
imputation quality scores after the basic quality control of removing SNPs with missing 
genotype rate > 0.05. The standard deviations are shown in brackets. Imputing into less 
dense SNP regions (i.e. before GACT conversion) revealed lower imputation scores than 
denser SNP regions (i.e. after GACT conversion). This table shows the increase 
(improvement) of imputation quality based on our GWAS data (“Forward/Reverse”) and 
the 1000 Genomes data (“Plus/Minus”). However, it should be noted that the 
improvement would be much higher if data with the “TOP/BOT” definition were used 
since the mismatch rate between the “TOP/BOT” and “Plus/Minus” definitions was 
larger (Table 1). Other chromosome showed similar patterns, and thus only the results of 
chromosome 1 are shown.  
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Supplementary Figures 
 

 

Figure S1 The feed-forward backpropagation neural network. The 3 input neurons 
correspond to the proportion of CT, TC and GA. The number in black next to each edge 
represents the weight of that edge. The numbers in blue represent the activation threshold 
for each hidden node, as defined by the activation function of the neural network, after 
training. There were three such networks in GACT, where each was trained to make an 
independent prediction on the likelihood that the input map file was using one of the 
three allele definitions: Plus (using the 1000 Genomes), Forward (using dbSNP) and Top 
(using our GWAS data). The artificial neural network that generated the largest 
likelihood determined the final allele definition. The A/B definition, which can be 
distinguished directly, was not included in the network. 
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Figure S2 Imputation quality and genotype missing rate across allele frequencies. 
The missing frequency measurement is the average of missing genotype rates for all the 
SNPs at a given MAF. The numbers of the SNPs that were excluded were 45,856, 
29,307, 17,785, 10,279, 4,667, and 939 (out of 74,638) when the genotype missing rate 
thresholds were set at 0.0005, 0.001, 0.002, 0.004, 0.01, and 0.03, respectively. The red 
curve shows the information (quality) scores of the imputed genotypes across the full 
allele frequency range (0-1). The green histogram shows the genotype missing rate 
distribution across the full range of MAFs (0-0.5) under the missing genotype threshold 
of 0.05. The MAF scale (0-0.5) was adopted, instead of a full scale (0-1), based on our 
autocorrelation analyses of the imputation quality curves which showed that the head-
10% and tail-10% were significantly correlated (Figure S2). Other chromosome showed 
the similar patterns, and thus only the results of chromosome 1 are shown. 
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Figure S3 Autocorrelation plots of mean imputation scores. This figure corresponds 
to the full range of allele frequencies that is shown in Figure S1 (red line). The Lag axis 
represents the shift of the data points, one number at a time at a rate of 0.001, while the 
ACF axis represents an adjusted correlation factor between the “shifted” data and the 
original data. The histograms outside of the dotted blue lines represent the regions with 
higher correlation than expected by chance alone (at confidence level > 95%). Moreover, 
this autocorrelation plot indicated that the regions of allele frequency < 0.1 and > 0.9 
were significantly correlated at the confidence level of > 0.95. Based on this result we 
combined both the upper and lower halves to generate MAFs (0-0.5), instead of the full 
range of allele frequencies (0-1). 
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Figure S4 Changes of imputation quality across different genotype missing 
thresholds. When singleton and monomorphic sites were excluded from the reference, 
the highest imputation quality was achieved compared to other scenarios. When the entire 
reference was used, the imputation quality was particularly low for very rare SNPs (0.001 
< MAF < 0.005; red line). The less rare and common SNPs (MAF > 0.005, i.e., green, 
blue, orange, yellow, and black lines) were not influenced as much by the removal of 
singletons and monomorphs in reference panel. Moreover, for very rare SNPs the 
exclusion of as many as 39.3% of the SNPs (i.e., “0.1per_NoSM” in the figure) led to a 
smaller decrease of imputation quality than inclusion of singletons and monomorphic 
SNPs in reference panel. NoSin: no reference singletons; NoAm: no reference ambiguous 
SNPs; NoSM: no reference singletons or monomorphs; *per: after removing study SNPs 
with genotype missing rate higher than *%. 
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Figure S5 Imputation quality versus missing threshold across 21 autosomes. The 
green histograms represent genotype missing levels for SNPs that are measured using 
MAFs from 0.001 to 0.5 while the red curves represent imputation qualities for SNPs that 
are measured using the full allele frequency from 0.001 to 1.  
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Figure S6 Pearson correlations of mean imputation quality scores between the MAF 
windows of 0-0.1 and 0.9-1.0. The plots show that the head 10% of the imputation 
curves is correlated with its tail 10% for all chromosomes, suggesting it is necessary to 
convert the allele frequencies of imputed SNPs from the range of 0.001-1 to range of 
0.001-0.5. 
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Abstract 
 

Genetic association studies and meta-analyses of alcohol dependence (AD) have reported 

AD-associated single nucleotide polymorphisms (SNPs). These SNPs collectively 

account for a small portion of estimated heritability in AD. Recent genome-wide copy 

number variation (CNV) studies have identified CNVs associated with AD and substance 

dependence, suggesting that a portion of the missing heritability is explained by CNV. 

We applied PennCNV and QuantiSNP CNV calling algorithms to identify consensus 

CNVs in five AD cohorts of European and African origins. After rigorous quality control, 

genome-wide meta-analyses of CNVs were carried out in 3,243 well-diagnosed AD cases 

and 2,802 controls. We identified nine CNV regions, including a deletion in chromosome 

5q21.3 with a suggestive association with AD (OR = 2.15 (1.41 - 3.29) and P = 3.8 × 10-

4) and eight nominally significant CNV regions. All regions were replicated with 

consistent effect sizes across studies and populations. Pathway and gene-drug interaction 

enrichment analyses based on the resulting genes indicated mitogen-activated protein 

kinase signaling pathway (MAPK) and two drugs, recombinant insulin and hyaluronidase 

drugs, all relevant to AD biology or treatment. To our knowledge, this is the first 

genome-wide meta-analysis of CNVs with addiction. Further investigation of the AD-

associated CNV regions will provide better understanding of the AD genetic mechanism. 

 

Keywords: Copy number variation (CNV); Genome-wide meta-analysis; Alcohol 

dependence; Missing heritability; Structural variation  
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Introduction 
 

Substance use disorders cost the United States over $200 billion a year (National Institute 

on Drug Abuse). Alcohol dependence (AD) is one of the most common substance use 

disorders. Twin studies have reported a genetic heritability of 50-60%34. Many genetic 

association studies and meta-analyses of AD, by our group and others19,26,28,150-153,220-223, 

have reported AD-associated single nucleotide polymorphisms (SNPs). Each of the 

reported SNPs is likely to account for less than 1% of the AD heritability224, and 

collectively, they explain a small portion of the estimated heritability in AD, leading to 

the phenomenon of missing heritability. Copy number variation (CNV) is the gain or loss 

of a segment of DNA sequence and it may influence thousands of genes or an estimated 

12% of the human genome sequence225. CNV-based genome-wide association studies 

(GWASs) have identified CNVs associated with AD226,227 and/or other substance 

dependence146,228, suggesting that CNV also contributes to the missing heritability. 

Multiple large AD genetics projects have been established for sharing among the research 

community in the past year (Table 1), including the Study of Addiction: Genetics and 

Environment (SAGE), Collaborative Study on the Genetics of Alcoholism – Center for 

Inherited Disease Research (CIDR), and Genome-wide Association Study of Alcohol Use 

and Alcohol Use Disorder in Australian Twin-Families (OZALC). Individual case-

control studies based on these cohorts have identified CNVs associated with AD, such as 

CNVs in 16q12.2226 and 5q13.2227. However, it is unclear whether the associations can be 

replicated in other research cohorts or populations. A systematic meta-analysis is needed 
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to clarify the CNV associations. To our knowledge, no meta-analysis of CNV-based 

GWAS of AD has been published.  

 

In this study, we carried out the first genome-wide meta-analysis between AD and CNVs. 

We analyzed a total of 6,045 well-diagnosed samples of European and African origins, 

including 3,243 cases and 2,802 controls. We applied our in-house pipeline of multiple 

CNV calling algorithms229-231, which have been demonstrated to increase CNV calling 

accuracies compared to any single algorithm alone by our study146 and others231. We 

identified nine CNVs associated with AD, and all of them showed consistent effect 

direction and magnitude across populations. 

 

Materials and Methods 
 

Research Subjects 
 

The subjects were collected through three established studies, including SAGE, CIDR, 

and OZALC (the substance dependence cohort that we recently published146 was not 

included here because no probes were found in the microarray for the top regions 

reported in this meta-analysis). All samples were ascertained for alcohol dependence 

(AD) diagnosis using the Diagnostic and Statistical Manual of Mental Disorders fourth 

edition (DSM-IV) or third (revised) edition (DSM-IIIR) (American Psychiatry 

Association, 1994). Controls were individuals who were exposed to alcohol but did not 
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meet the AD criteria defined by the DSM. The self-reported ancestry information was 

confirmed using principal component analysis (PCA). In samples where principal 

components were not readily available from the original studies, we conducted PCA 

based on autosomal genotypes using the GCTA tool ‘--pca 20’ function232. PCA plots 

from this analysis identified two main ancestries, European and African, which were 

retained for further analysis. In total, we obtained 10,195 samples, including 3,953, 

1,740, and 4,502 samples from SAGE, CIDR, and OZALC, respectively. 

 

Genotyping 
 

DNA extraction and genotyping experiments were carried out by each respective study, 

while the raw signal intensity information of each sample was obtained via the database 

of genotypes and phenotypes (dbGaP). As described in Table 1, DNA was extracted 

from saliva, buccal swabs, whole blood or immortalized cell lines, and the genotyping 

was carried out by the Illumina beadchip arrays (Illumina, San Diego, California).  

 

CNV Calling 
 

The raw intensity files were first processed using GenomeStudio software (Illumina, San 

Diego, California) where multiple algorithms were employed, including internal quality 

controls. The B allele frequency (BAF) and log R ratio (LRR) information, which were 

required for our CNV calling, were generated by the final report module. Our in-house 

CNV calling pipeline combined PennCNV229 and QuantiSNP (version 2.0)230, based on 
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the published software CNVision231. The two CNV callers combine different parameters, 

including LRR, BAF, and distance between neighboring probes, into a hidden Markov 

Model (PennCNV) or Bayes hidden Markov Model (QuantiSNP). Figure 1 shows the 

workflow of our CNV detection and association analyses. 

 

Statistical Analyses 
 

Individual Cohort-Level Regression Analysis of Common CNVs 
 

Each CNV was mapped to the supporting probe loci of the genotyping array. For each 

locus, logistic regression was adopted to identify associations between AD and CNVs 

with frequency > 1%, i.e., the AD diagnosis (dependent variable) was regressed against 

the copy number status (independent variable) at each probe. To control for potential 

confounders, multiple covariates were applied, including age, sex, DNA source, 

genotyping batch (the genotyping batch groups were labelled as “geno.batch”, 

“Sample_group”, and “Sample.group” in the SAGE, CIDR and OZALC studies, 

respectively; and the results with genotyping batch adjustment were similar to those 

without adjustment in most of these tests), and first five principal components. The CNVs 

that exhibited both copy gain and loss were encoded with three categories, i.e., copy loss, 

normal copy and copy gain, and the copy number of two was used as the reference. From 

the association analysis, we obtained an effect size, i.e., odds ratio (OR) with 95% 

confidence interval (CI), and P value for each probe locus. Each of the five populations, 



 

195 
 

i.e., two African and three European populations, was analyzed separately. Male and 

female samples were also analyzed separately for CNVs on the X chromosome.  

 

Individual Study-Level Collapsing-based Analyses of Rare CNVs 
 

To identify AD-associated genes with rare CNVs, we projected all CNVs to the 51,509 

coding and non-coding gene region reference (UCSC Genome Browser, HG18/NCBI36, 

last accessed on April 28, 2016), and conducted permutation testing for each gene region 

using the PLINK209 label-swapping permutation function ‘--mperm’. The analysis was 

performed separately in four CNV frequency windows, i.e., 0-0.25%, 0-1%, 0-2% and 0-

5%. Our published tool, GACT233, was used to test the consistency of genome builds 

among datasets from the three cohorts.  

 

Random Effects Meta-analyses 
 

For each probe locus, a two-by-two table was populated with counts of cases and controls 

with or without CNVs. The random effects model, implemented in the DerSimonian-

Laird estimator234, was used in the meta-analyses. For each probe we obtained an OR 

with 95% CI, P value from meta-analysis, and P value from heterogeneity test (Q test). 

The package metaphor in the statistical programming language R (version 3.3.0) was 

used for all the meta-analyses235. Only the probes shared among the cohorts were 

included in the meta-analyses. The meta-analyses were conducted separately for deletions 

and duplications. The genome-wide significance threshold was α = 1.8 × 10-5, based on 
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the total number of CNV regions defined by the probes shared across the three studies; 

the suggestive threshold was α = 5 × 10-4, based on the distribution of P values from the 

meta-analyses. 

 

Analyses of Gene Pathways and Gene-Drug Interactions  
 

Pathway enrichment analysis was performed using all genes near or overlapping with 

CNV regions that showed meta-analysis P values ≤ 0.1 in Europeans or Africans. Since 

the effect of deletion is abolishment of gene activity, compared to the ambiguous effect 

of duplication, deletion CNVs were analyzed for enrichment both separately and in 

combination with duplication CNVs. WebGestalt104 (last accessed April 18, 2017) was 

used to test whether these genes were enriched in certain biological or disease pathways 

maintained in the Kyoto Encyclopedia of Genes and Genomes (KEGG)93. The statistical 

significance was evaluated under the hypergeometric probability of the overlap between 

our meta-analysis gene sets and KEGG pathway-specific gene sets (last accessed on April 

18, 2017), as described in our recent study194. Enrichment was calculated using all the 

genes  available in the Entrez Gene database236 as the background pool of genes, from 

which our query genes were presumed to have been sampled. Webgestalt104 was also 

applied to identify whether any of the meta-analysis gene sets were associated with 

known drugs based on its curated gene-drug interaction database (the drug terms and 

associated genes were obtained from PharmGKB237 and MEDLINE, respectively). The 

database consists of 758 drug terms with at least five associated genes for each drug104. 
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To correct for multiple testing, the resulting P values were adjusted using the false 

discovery (FDR) method105.  

 

The human genome is nonrandom, and genes from the same pathway tend to cluster 

together238. To replicate the results from pathway enrichment analyses of CNV-derived 

genes, we conducted permutation tests. Specifically, we generated 20 “null” datasets, 

where the phenotypes of all samples were permuted independently to generate random 

distributions. The phenotypes, instead of CNVs, were permuted since we had a fair 

sample size to produce independent shuffled phenotypes and to preserve the complex 

relationship between CNVs239. For each “null” dataset, we repeated the same meta-

analyses, identified “significant” genes, and carried out the exact same pathway 

enrichment analyses using these genes. For each significant pathway from the real data, 

we generated a permutation rank, which was defined as the rank of the observed P value 

among all 21 P values (20 from the “null” datasets and one from the real dataset, in 

ascending order).  

 

Results 
 

Sample-Level Quality Controls 
 

Among the 10,195 samples, a total of 504 samples were excluded due to large standard 

deviation of LRR or BAF, as described in Table 2; 1,866 samples were removed due to 
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family relationship based on identity by descent estimation; 330 samples were excluded 

due to missing AD diagnosis; and 1,252 samples were excluded because they were 

genotyped in both SAGE and CIDR. After these quality control measures were applied, a 

total of 6,243 samples remained.  

 

CNV-Level Quality Controls 
 

Each CNV had to 1) be identified by both PennCNV and QuantiSNP, and 2) contain at 

least two probes (93% of our identified CNV had at least 5 probes). If the overlap 

between the CNV regions from the two callers was ≥50%, the two CNVs were 

considered to be the same CNV, as previously described146,231. If a CNV region was 

designated as deletion by one caller but duplication by the other, it was excluded. Lastly, 

we removed all the CNVs that did not overlap with those identified by the 1000 

Genomes240 or ExAC241 projects, resulting in the removal of around 4% of all CNVs (i.e., 

7.8%, 7.8%, and 1.9% in SAGE, CIDR, and OZALC, respectively). Table 3 shows the 

number of CNVs before and after each CNV-level quality control. 

 

After all the sample- and CNV- level quality controls, we obtained a total of 6,045 

samples, including 1,229 Africans and 4,816 Europeans; 3,243 AD patients and 2,802 

controls or 3,880 males and 2,165 females (Table 4). These quality controls were 

effective at removing outliers, as indicated in Figure 2 (combined cohorts) and 

Supplementary Figure 1 (individual cohorts). Overall, after applying all quality control 
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measures, we obtained a total of 321,189 high-quality CNVs. On average, each genome 

contained 40 CNVs ± 22.5 standard deviation (48, 55, and 19 in SAGE, CIDR, and 

OZALC, respectively). The majority (i.e., 85%, 85%, and 75% in SAGE, CIDR and 

OZALC, respectively) of CNVs were between 1 kilo basepairs (kb) and 100kb, and the 

average CNV lengths were 50 ± 24kb (48kb, 45kb, and 71kb in SAGE, CIDR and 

OZALC, respectively; Supplementary Figure 2). As expected, the vast majority (93% - 

97%) of the CNVs were rare (frequency < 1%) with similar patterns in Europeans and 

Africans (Supplementary Figure 3). 

 

Reproducibility of CNV genotyping 
 

We identified a total of 1,252 samples that were genotyped in both CIDR and SAGE 

datasets. On average, 7.1% of the total CNVs derived from the 1,252 samples were 

discordant between CIDR and SAGE (Supplementary Figure 4). We randomly selected 

three samples and measured the percentages of CNV boundary concordance. Concordant 

CNV regions included those with identical start and end positions and those where the 

shorter CNV was entirely within the boundaries of the longer CNV. We found an average 

of 90.4% concordance of CNV boundaries based on all 327 CNVs derived from these 

samples (Supplementary Table 1).  

 

Burden Analyses 
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The CNV burden, i.e., the number of CNVs per sample, varied by study due to the 

density of microarray probes. The average burden was 48, 55, and 19 CNVs per sample 

for the SAGE, CIDR, and OZALC datasets, respectively. We found that in the same 

dataset, CNV burden was slightly higher in AD cases than controls (Table 4); across 

same-ethnicity cohorts, on average, 51.8 versus 49.3 in African cases and controls, 

respectively (t test P = 0.02). 

 

Individual Study-Level Association Analyses 
 

For the common CNVs (frequency > 1%), we found evidence of nominally significant 

associations with AD at five CNV regions (Supplementary Table 2). They included (1) 

a deletion on chromosome 5q21.3 in Europeans (OR = 3.05 (1.5-6.2) and P = 0.0019 in 

the SAGE cohort); (2) a 14q33.32 deletion in Europeans from CIDR (OR = 3.52 (1.25-

9.9) and P = 0.017); (3) a 8p23.2 deletion in Africans from SAGE (OR = 1.8 (1.07-3) and 

P = 0.03); (4) a 4p11 duplication in Europeans from CIDR (OR = 2.65 (1.14-7) and P = 

0.03; and (5) a 6p21.32 deletion in Europeans from CIDR (OR = 2.66 (1.05-7.66) and P 

= 0.05). For rare CNVs (frequency ≤1%), we found evidence of association with AD in 

the tyrosine phosphatase receptor type D gene (PPTRD) in Europeans from SAGE 

(Supplementary Table 3, FDR adjusted P = 0.02). PPTRD is involved in neuronal 

signaling and has been implicated in alcohol response242. 

 

Meta-analyses 
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Overall, the meta-analyses identified one CNV region, the 5q21.3 deletion (the same 

CNV described above), with suggestive association with AD (suggestive threshold α = 5 

× 10-4, see Methods). The OR was 2.15 (1.41-3.29) and P value was 3.8 × 10-4 (OR = 

4.13 (0.72-23.6) and P = 0.11 in Africans and OR = 2.07 (1.34-3.2) and P = 0.001 in 

Europeans; Table 5 and Supplementary Table 4). This deletion had a frequency of 

2.4% and 1.1% in cases and controls, respectively. It is 77.5kb in length, and located 

upstream of a Ras-oncogene family pseudogene (RAB9P1).  

 

We also identified eight additional CNV regions with nominally significant associations 

with AD (Figure 4). They included (1) a 4.3kb deletion in 8p23.2 with frequency of 

6.6% and 5.4% in cases and controls, respectively, and OR = 1.38 (1.11-1.73) and P = 

0.004. This deletion overlaps with CSMD1, a gene that has been associated with bipolar 

disorder243, autism spectrum disorder244, and cannabis dependence245; (2) a rare 221kb 

deletion in 14q32.33 with frequency of 1.8% and 0.6% in cases and controls, 

respectively, and OR = 2.4 (1.25-4.6) and P = 0.008. This region overlaps with an 

immunoglobulin heavy chain pseudogene, and has been associated with several 

psychiatric disorders, including intellectual disability246 and Dubowitz syndrome247; (3) a 

72.7kb duplication in 22q11.21 with frequency of 0.8% and 0.3% in cases and controls, 

respectively, and OR = 2.88 (1.24-6.69) and P = 0.014. This CNV overlaps with the 

gamma-glutamyltransferase gene (GGT2), which has been associated with alcohol 

consumption and addiction248; (4) a 26.7kb deletion in 9p21.1 with frequency of 0.4% 

and 0.2% in cases and controls, respectively, and OR = 2.8 (1.2-6.4) and P = 0.017. This 
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deletion overlaps with LINGO2, a gene that has been associated with essential tremor in 

Parkinson’s disease249; (5) a 65.8kb deletion in 9p13.1 with frequency of 0.1% and 0.5% 

in cases and controls, respectively, and OR = 0.3 (0.1-0.91) and P = 0.03. This deletion 

intersects with CNTNAP3, which has been associated with autism spectrum disorder250; 

(6) a 5.3kb deletion in 6p21.32 with frequency of 3.1% and 2.1% in cases and controls, 

respectively, and OR = 1.44 (1.03-2.01) and P = 0.03. The cytogenic region has been 

associated with alcoholism251; (7) a 44kb duplication in 16p11.2 with frequency of 1.8% 

and 1.5% in cases and controls, respectively, and OR = 1.88 (1.18-3.0) and P = 0.035. 

The cytogenic region has been associated with neuropsychiatric disorders252; and (8) a 

28.7kb duplication in 12p13.2 with frequency of 4.1% and 3.5% in cases and controls, 

respectively, and OR = 1.31 (1.0-1.72) and P = 0.05. This CNV overlaps with the basic 

salivary proline-rich protein gene cluster (PRB1, PRB2 and PRB3), which has been 

reported as important biomarkers in salivary-secretion related phenotypes253. Four of the 

deletions (i.e., 5q21.3, 14q32.33, 9p21.1, and 6p21.32) also showed nominal significance 

in the individual study-level association analyses (Supplementary Table 2).  

 

In silico validation of CNVs 
 

To visualize the CNVs, we plotted the raw LRR and BAF values of each probe to 

manually curate each CNV “call” reported in Table 5; these CNVs contained a range of 8 

to 131 probes. Figure 3 shows the results of the 5q21.3 deletion (28 probes) in three 

randomly-selected samples, and two samples had one-copy deletion and one had two-
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copies. Furthermore, all of the nine CNV regions in Table 5 were also observed in the 

1000 Genomes Project (phase III) samples240, and the CNV boundary coordinates as well 

as their population-level frequencies were almost 100% consistent. The converging 

results support an accurate in silico calling of our reported CNVs.  

  

Gene Pathways and Gene-Drug Interactions 
 

Our gene pathway analyses showed that the genes from meta-analyses were enriched in 

the MAPK signaling pathway (R = 6.6 and P = 0.05). Further permutation tests 

confirmed that this P value ranked at the top, compared to those from the 20 permutations 

(Supplementary Table 5). MAPK plays a pivotal role in signal transduction of alcohol 

across tissues254, and has been reported as a potential mediator of AD and opioid 

dependence255. The gene-drug interaction analyses based on the same gene set showed 

two associated drugs, recombinant insulin (enriched with CNVs, R = 13 and P = 0.02) 

and hyaluronidase (enriched with deletion CNVs, R = 138 and P = 9×10-5). Similarly, 

further permutation tests revealed that these P values ranked first, compared to those 

from permutations (Supplementary Table 6). Insulin secretion has been shown to 

increase in response to alcohol256 and associated with alcohol craving in AD patients 257; 

additionally, one of the drug-interacting genes harboring CNVs is PTPRN2, which was 

previously associated with response to amphetamines258, schizophrenia, and bipolar 

disorder259. Hyaluronidase is an enzyme and often used as an adjuvant to help increase 

absorption and dispersion of injected drugs and fluids260; one of the drug-interacting 
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genes harboring deletion CNVs is WWOX, which has been associated with smoking 

behavior261. Additionally, hyaluronidase cleaves hyaluronan, which interacts with the 

extracellular matrix (ECM); recent work has demonstrated the importance of the 

interaction between the brain ECM and alcohol in AD262. 

 

Discussion 
 

We report the first genome-wide meta-analysis between CNVs and AD. We 

systematically identified CNV regions based on three established substance use disorder 

cohorts. The CNVs were called using our in-house pipeline based on PennCNV229 and 

QuantiSNP(v2.0)230. Previous genome-wide CNV studies from our group and others have 

demonstrated that the consensus CNV regions independently genotyped by these two 

callers were highly replicated by qPCR experiments146,263. Our quality control procedures 

(Tables 2 and 3) effectively removed outlier samples and false positive CNVs, leading to 

the expected distribution of CNV burden across analyzed samples (Figure 2 and 

Supplementary Figure 1). Meta-analyses of the curated high-quality CNVs showed nine 

nominally significant regions with AD (Figure 4), six deletions and three duplications; 

although the individual studies might be underpowered, they collectively revealed 

consistent effect sizes, in both direction and magnitude (Table 5 and Supplementary 

Table 4). The nine CNVs ranged from 4.3kb to 221.7kb in size and had ORs from 1.31 to 

2.88; and eight of them had frequency ≤ 5% (no CNV imputation conducted in this study 

due to low frequencies of these CNVs). The most significant AD association was found 
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with the 5q21.3deletion (OR = 2.15 and P = 3.8 × 10-4). This cytogenetic band has been 

associated with alcohol cravings in a Native American population264. This meta-analysis, 

for the first time, identified a specific CNV in this region associated with AD.  

 

A careful review of the literature revealed that the majority of these CNV regions or 

intersecting genes identified in this meta-analysis have been associated with AD (e.g., 

5q21.3 and 6p21.32) or psychiatric disorders (e.g., 8p32.2, 14q32.33, 9p21.1, 9p13.1, and 

16p11.2), although not all of them were GWAS-replicated regions. The GGT2 gene, 

overlapping with the 22q11.21 duplication, has been associated with alcohol consumption 

and addiction248; CNTNAP3, overlapping with the 9p13.1 deletion, has been associated 

with autism spectrum disorder250; and CSMD1, overlapping with the 8p23.2 deletion, has 

been associated with bipolar disorder243, autism spectrum disorder244, and 

schizophrenia265. The PPTRD gene identified in our collapsing-based analyses has also 

been implicated in alcohol response242. Our findings support the roles of rare CNVs in 

addiction, as described in our recent CNV study of opioid dependence146. Interestingly, 

the gene-drug interaction analyses based on the meta-analysis genes revealed one drug 

(recombinant insulin) relevant to AD biology and another (hyaluronidase) known to 

interact with a gene associated with smoking behavior. 

 

Limitations of our study include lack of genome-wide significance and molecular 

validation. First, the lack of genome-wide statistical significance may indicate that our 

study was underpowered for the specific CNVs analyzed. Indeed, our analyses showed 
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that the statistical power for detection of the CNVs with frequencies from 0.5% to 3.5% 

and odds ratios from 1.3 to 2.8 at α = 1.8 × 10-5 was under 80% (Supplementary Table 

7), indicating that larger sample sizes are required in future studies. For instance, to 

achieve 80% power for detecting the CNVs with frequency = 0.5% and OR=2, a cohort 

of 11,838 samples is required. In addition to increasing sample sizes, collapsing rare 

CNVs may also increase power, particularly for rare CNVs266. Second, since the five 

cohorts analyzed in this meta-analysis were recruited by different institutions and 

investigators, a timely collection of sufficient DNA from all of these cohorts for 

molecular validation is complicated for most individual investigator. Future collaboration 

through related research consortium is needed. In all, replication of the findings in larger 

samples is warranted and further investigation of the reported structural variations may 

lead to identification of novel AD genes. 
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Tables 
 
Table 1 Description of the samples analyzed in the meta-analyses prior to quality 
controls (see http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html) 
 
Table 2 Summary of sample-level quality controls (see 

http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html) 

 

Table 3 Summary of CNV-level quality controls (see 

http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html)  

 

Table 4 Demographic information of all samples after sample- and CNV-level quality 
control procedures (see 
http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html) 
 
 
Table 5 Results of meta-analyses between CNV and AD (see 

http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html
http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html
http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html
http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html
http://www.nature.com/tpj/journal/vaop/ncurrent/full/tpj201735a.html
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Figure Legends 
 

 
Figure 1 Workflow for CNV calling and association analyses. The raw signal intensity 
data from Illumina GenomeStudio were used to call CNVs in a total of 10,195 samples 
using both PennCNV and QuantiSNP. After three rounds of quality controls, i.e., CNV 
calling, sample-level, and CNV-level, we obtained a total of 6,045 samples, in five 
populations. We only kept the consensus CNVs called by both algorithms for further 
analyses. For each individual population (study), logistic regression and gene collapsing 
methods were applied to analyze the common and rare CNVs, respectively. Meta-
analyses of the CNV regions were performed based on the probes shared by the two 
genotyping arrays. 
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Figure 2 Number of CNVs per sample before and after sample- and CNV-based quality 
controls. CNVs were pooled across the three cohorts, and the distribution of CNVs per 
sample was plotted before and after quality controls. Our quality control filters were 
effective at removing outlier samples, as indicated by the Gaussian shape of the plot on 
the right (after quality controls), i.e., lack of extreme outliers compared to plot on the left 
(before quality controls). Plot on the right indicates two genotyping arrays used, one by 
OZALC and the other by CIDR and SAGE. QC: quality controls. 
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Figure 3 Plots of log R ratio (LRR) and B allele frequency (BAF) of the 5q21.3 deletion. 
The plots show the LRR and BAF of this deletion in three samples: A, a European case 
(sample ID: 40721162398); B, a European control (sample ID: 4072116332); and C, a 
European case (sample ID: 1954615060). Each blue dot represents a microarray probe, 
and the highlighted window indicates the 5q21.3 deletion region. Plots A and B show 
single deletion events (copy number of one), while plot C represents normal copy number 
of two (i.e., negative control). A total of 28 probes were detected in this CNV region by 
both PennCNV and QuantiSNP. 
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Figure 4 Forrest plot of the individual studies and meta-analysis results. The detailed 
information of the nine CNVs is shown in Supplementary Tables 2 and 3. The odds 
ratios of each individual study were calculated using logistic regression with correction 
for appropriate covariates; while the odds ratios of meta-analysis, labelled as “Summary”, 
was calculated using the random effects model (see Methods). 
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Supplementary Tables and Figures 

Supplementary Tables 
 

Supplementary Table 1 Concordance of the CNV boundaries between the CIDR and 
SAGE datasets 
Sample ID #CNV regions in 

SAGE 

#CNV regions in 

CIDR 

Concordance 

4059931034 77 74 98% (100% of CIDR) 

4059931127 41 41 90.2% (90.2% of CIDR) 

4059931355 47 47 83% (83% of CIDR) 

The concordance is calculated as: Number of overlapped regions × 2 / total number of 
CNVs from both SAGE and CIDR. The numbers in brackets in the last column represent 
the concordance based on the calculation of number of overlapped regions / total number 
of CNVs from CIDR.  
 
 
Supplementary Table 2 Results of logistic regression analyses for nominally significant 
CNVs identified by individual studies or meta-analyses 
(http://www.nature.com/tpj/journal/vaop/ncurrent/suppinfo/tpj201735s1.html)  
 
 

Supplementary Table 3 P values of gene-base collapsing analysis of rare CNVs 

 

Gene 

CNV Frequency Bin 

0-0.25% 0-1% 0-2% 0-5% 

PTPRD 

(European, 

SAGE) 

0.1 0.021 0.023 0.02 

Four frequency bins of rare CNVs were collapsed to known gene regions. Numbers in the 
table represent the FDR adjusted P values based on 10,000 label-swapping permutation 
tests. P values ≤ 0.05 are in bold. 
 

 

Supplementary Table 4 Results of meta-analyses between CNV and AD (full version; 

http://www.nature.com/tpj/journal/vaop/ncurrent/suppinfo/tpj201735s1.html) 

http://www.nature.com/tpj/journal/vaop/ncurrent/suppinfo/tpj201735s1.html
http://www.nature.com/tpj/journal/vaop/ncurrent/suppinfo/tpj201735s1.html
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Supplementary Table 5 Results of pathway enrichment analyses using KEGG  

Biological 

pathway 

Contributing 

genes 

Enrichment 

ratio 

P value 

(FDR-adjusted) 

*Permutation 

Rank 

MAPK 

signaling 

HSPA1A, 

DUSP22 
6.6 0.05 

1/21 

Enrichment ratio is the ratio between the observed and expected numbers of genes for a 
given pathway. 
*, The permutation rank was calculated based on ranking of the observed enrichment P 
value against 20 null enrichment P values. 
Note: No pathway enrichment was observed when only the genes overlapping with 
deletion CNVs (meta-analysis P ≤ 0.1) were analyzed. 
 

 

Supplementary Table 6 Results of enrichment analyses of gene-drug interactions 

Drug pathway 
Contributing 

genes 

Enrichment 

ratio 

P value 

(FDR-

adjusted) 

*Permutation 

Rank 

†Hyaluronidase 
WWOX, 

CTDSPL 
138.4 9×10-5 

1/21 

Insulin 

recombinant 

PTPRN2, 

RLN1 
12.8 0.02 

1/21 

Enrichment ratio is the ratio between the observed and expected number of genes for a 
given pathway. 
*, The permutation rank was calculated based on ranking of the observed enrichment P 
value against 20 null enrichment P values.  
†, The enrichment analysis was carried out using deletion CNVs only (meta-analysis P ≤ 
0.1). 
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Supplementary Table 7 Results from statistical power analysis 

CNV frequency 

(%) 
Odds Ratio Power (%) 

0.005 1.4 0.07 

0.015 1.4 0.9 

0.035 1.3 1.8 

0.025 1.4 3.5 

0.005 2.1 7.6 

0.005 2.4 21.9 

0.005 2.8 51.2 

0.015 2.1 72.8 

The power analysis was carried out using our in-house scripts, designed to interact with 
the online tool PGC (pngu.mgh.harvard.edu/~purcell/gpc/). The prevalence of AD was 
set to 6.2%, as reported by the National Survey on Drug Use and Health (NIAAA, 2015), 
while the linkage disequilibrium (D prime) parameter was set to 0.8; the odds ratio and 
allele frequency varied according to the range of our reported CNVs in Supplementary 
Table 4. 
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Supplementary Figure Legends 

 

 
Supplementary Figure 1 Individual study-level number of CNVs per sample before and 
after sample- and CNV-based quality controls. All samples analyzed in this study were 
included with the exception of six samples (five unique IDs). Their IDs and respective 
number of CNVs were 4068221273 (1,844), 4072116227 (2,264), and 4068221885 
(3,366) in CIDR; and 4186068211 (820), 4192409004 (1,196), and 4072116227 (2,674) 
in SAGE. Our quality control filters were effective at removing outlier samples, as 
indicated by the Gaussian shape of the plots on the right (after quality controls), i.e., lack 
of extreme outliers compared to plots on the left (before quality controls). QC: quality 
controls. 
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Supplementary Figure 2 Distribution of lengths of CNVs discovered by our CNV 
calling pipeline. The x-axis and y-axis represent the log10 values of CNV lengths and 
their counts, respectively, for each of the three cohorts. 
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Supplementary Figure 3 Distribution of frequencies of CNVs discovered by our CNV 
calling pipeline. The African and European samples are displayed at the top and bottom 
plots, respectively. The x-axis represents the CNV frequencies (%) while the y-axis 
shows their sample count of each bin. The average CNV frequencies were 0.3 ± 1.1 (0.4 
± 1.4 and 0.2 ± 1 in Africans and Europeans, respectively). 
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Supplementary Figure 4 Distribution of the percentages of discordant CNVs in all the 
1,252 samples shared by the CIDR and SAGE datasets. The vertical line represents the 
average of 7.1% (i.e., a CIDR sample had an average of 7.1% discordant/more CNVs 
than a SAGE samples). The distribution is Gaussian, suggesting that there is no 
directional bias regarding the CNV calling between the two datasets. Discordance was 
measured as the difference of CNVs in the same sample from SAGE and CIDR, divided 
by the maximum number of CNVs that the sample had between the two datasets. 
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Abstract 
 

Viral integrations have been associated with many human diseases. Next-generation 

sequencing (NGS) allows for accurate detection of novel viral sequences integrated into 

the human genome. However, the experimental factors influencing the detection power of 

viral integration events using NGS data have not been well-characterized. We designed a 

novel viral integration detection framework, including in silico generation of paired-end 

human and viral sequencing reads, alignment to the human and viral reference genomes, 

and detection of viral integration events. A total of 15 selected key molecular and 

bioinformatics factors were incorporated into the power calculation. We found that the 

power for detecting viral integration events was significantly associated with six 

molecular and bioinformatics factors (P < 2×10-16), including the proportion of cells with 

viral integrations (Pearson’s ρ = 0.64), sequencing depth (ρ = 0.37), viral integration 

length (ρ = 0.37), NGS insert size (0.23), minimum number of supporting reads required 

to determine a viral integration (ρ = -0.19), and read length (ρ = -0.09). We developed 

VIpower for accurate and fast estimation of viral integration detection power. To detect 

viral integration events in the human genomes, we have designed VIpower to guide NGS 

library preparation, sequencing experiments, and bioinformatics analyses. The tool can be 

used in the general population and disease cohort or germline and somatic scenarios. 

VIpower is available as user-friendly web interface and command-line application 

(www.uvm.edu/genomics/software/VIpower). 

 

http://www.uvm.edu/genomics/software/VIpower
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Importance 
 

Viral etiologies have been speculated in various human diseases. Next-generation 

sequencing (NGS) allows for the detection of viral sequences integrated into the human 

genome. However, accurate identification of viral integrations remains challenging due to 

limited knowledge on how to better design NGS experiments and analyze the resulting 

data for viral integration identification. This study, for the first time, addresses these gaps 

in knowledge. Through a large amount of simulation and empirical data, we evaluated the 

key factors for experimental designs as well as bioinformatics analyses for viral 

integration detection. The results from this study, including the power calculation tool, 

allow investigators to design better NGS experiments for conducting viral integration 

screening in various disease samples. Additionally, in a separate study (manuscript in 

preparation), we have applied our approach to several disease cohorts and successfully 

identified (and validated) viral integrations in both germline and somatic scenarios. 

 

Keywords: Next-generation sequencing (NGS), Viral etiology, Viral integration (VI), 

Power analysis 
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Introduction 
 

Viral etiology has been speculated in various human diseases, such as cancers267,268, 

amyotrophic lateral sclerosis269, Alzheimer's disease270, chronic fatigue syndrome271, type 

I diabetes272,273, Crohn’s disease274, and asthma275. Many infectious viruses are able to 

insert their genetic material into host chromosomes276-279, and the resulting viral 

integrations may play roles in disease pathogenesis and development by disrupting or 

dysregulating gene functions. Use of next generation sequencing (NGS) allows for the 

discovery of viral integrations (i.e., virus-human-virus sequences) in both somatic and 

germline cells277. However, accurate identification of viral integrations in the human 

genome remains challenging due to limitations of the available bioinformatics 

methods280-284 and insufficient empirical data to guide experimental designs of viral 

integration detection and related data analyses. To accurately capture novel viral 

sequences integrated in the human genome, systematic research is required to determine 

the key molecular and bioinformatics factors that affect the power to detect viral 

integrations.  

 

In this study, we have carefully evaluated 15 selected key molecular and bioinformatics 

factors related to viral integration detection, and found six factors that was significantly 

associated with the viral integration detection power. We further developed the first tool 

for accurate and fast estimation of detection power of viral integrations for public use. 

The results and tool from this study allow biologists and physicians to design NGS 



 

230 
 

experiments for conducting virome-wide viral integration screening in various human 

disease and healthy samples. 

 

Results 
 

We identified a total of 15 key molecular and bioinformatics factors that were important 

to NGS-based viral integration detection. We first designed a viral integration detection 

framework, and then, developed an implementation pipeline. Based on this pipeline, we 

further developed a novel computational tool, VIpower, to estimate the viral integration 

detection power.  

 

To identify the molecular and bioinformatics factors that significantly influence viral 

integration detection power, we ran VIpower to estimate detection power for various 

expected values of the 15 key factors (a total of 23,040 combinations). We found that six 

factors were significantly associated with detection power (Figure 2), including cellular 

proportion (Pearson’s ρ = 0.64 and P < 2×10-16), sequencing depth (ρ = 0.37 and P < 

2×10-16), length of integrated viral sequence (ρ = 0.37, P = 1×10-13), insert size (ρ = 0.23 

and P < 2×10-16), minimum number of supporting reads required (threshold) to determine 

viral integration event (ρ = -0.19 and P < 2×10-16), and read length (ρ = -0.09 and P < 

2×10-16 when the total data volume/sequencing depth was fixed; ρ = 0.1 and P < 2×10-16 

when the total read number was fixed). The first molecular factor, cellular proportion, is 

particularly relevant when sequencing a heterogeneous population of cells, such as cancer 
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biopsies285. Additionally, we observed marginal association with minimum mappable 

length (ρ = -0.02 and P = 0.0003). Figure 3 shows the pairwise correlations among all 

these seven molecular and bioinformatics factors, numbers of supporting (chimeric and 

split) reads, and the resulting detection power. As expected, the observed numbers of 

supporting reads were strongly associated with detection power. Supplementary Figure 

7 shows the distributions of supporting reads and threshold to determine viral integration 

events. Moreover, we compared the detection power of rare and common viral 

integrations, and found no evidence of significant difference (r2 = 0.96; Supplementary 

Figure 8), implying the feasibility to study the roles of rare viral integration events in the 

etiologies of human diseases.  

 

We compared the power estimates from our viral integration detection framework with 

those from Virus-Clip286 for each of the six significant factors. We found our framework 

consistently showed higher power (Supplementary Figure 9). Our framework uses both 

split and chimeric reads to detect viral integrations while Virus-Clip uses split reads only. 

It should also be noted that our framework detects multiple viruses simultaneously (such 

as virome-wide) while Virus-Clip, like other similar tools, only detects one virus at a 

time.  

 

VIpower is available as a user-friendly web interface for live runs of power analyses 

(www.uvm.edu/genomics/software/VIpower/live). Users can also query the precomputed 

power estimates (Supplementary Table 2). This tool is also available as a Linux 

http://www.uvm.edu/genomics/software/VIpower/live
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command line version where advanced users may calculate power for other NGS 

scenarios by modifying the reference files, such as the viral integration profile, distance 

to repeats, and distribution of GC content-specific PE read coordinates. 

 

Discussion 
 

VIpower is the first viral integration detection power calculator. It can be used to guide 

NGS experimental designs and data analyses. Using VIpower, we have identified six 

factors significantly associated with the detection power. Compared to use of only slit 

reads, use of both chimeric and split reads, as used by VIpower, increased the detection 

power. VIpower also allows for testing of complex interactions among the key molecular 

and bioinformatics factors. For instance, when the sequencing read length increased from 

100 bp to 300 bp (the total sequence volume was fixed), the number of total supporting 

reads decreased by an average of 37%; however, the proportion of split reads increased 

4.7 fold (Supplementary Figure 10). This design may be beneficial for more precise 

mapping of integration breakpoints. Because it stores and processes viral integration 

information by genomic features, instead of actual sequences, VIpower has a very short 

runtime. For example, each of our simulations (Supplementary Table 2) can be 

completed by one standard laptop in an average of nine seconds (range from 0.6 to 62 

seconds). Similarly, the live web interface can conduct a power calculation within one 

minute. A limitation of this study was that the empirical viral integrations were derived 

from the clinical HBV integrations. However, VIpower allows replacement of the viral 
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integration references to any viruses or a combination of them. This makes it possible to 

conduct virome-wide viral integration screens of various human samples. We will update 

the VIpower viral integration references as soon as additional data becomes available.  

 

To conclude, we developed a fast computational framework to detect virome-wide viral 

integrations in the human genome, and validated six key molecular and bioinformatics 

factors significantly associated with the detection power. The results in this study provide 

the fundamental guidance to the NGS-based experimental designs and data analyses of 

viral etiological studies of various human diseases.  

 

Methods 
 

The detection of viral integration events was implemented in four modules (Figure 1), 

including modules 1 and 2: the simulation of virtual human and viral sequences, 

respectively; module 3: the simulation of paired-end (PE) sequencing reads and in silico 

alignment of the reads to the human and viral reference genomes; and module 4: the 

detection of viral integration events and power calculation. The whole-genome empirical 

distributions of four features, including GC content, length of repeat region, 

characteristics of known viral integrations (e.g., location and distance to repeat region), 

and GC-specific Illumina PE read positions287, were used for the simulation of viral 

integrations (Supplementary Figure 1).  
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Human sequence simulation 
 

The human sequences were simulated according to the whole-genome distributions of 

empirical GC content (Supplementary Figure 2) and repeat regions (Supplementary 

Figure 3). The GC content was calculated employing 200 base pair tiling windows using 

the human reference genome (Genome Browser, GRCh37/hg19)287. The lengths and 

frequencies (17 repeats/10,000 bp) of repeat regions were extracted from 

RepeatMasker288. The whole-genome distributions of the two features were randomly 

sampled with replacement, and assigned to our simulated human sequences. 

 

Viral integration simulation 
 

The viral integration events were simulated based on the properties of known viral 

integrations. The lengths of viral integrations were created based on the widely-studied 

and validated Hepatitis B virus (HBV) integrations maintained in the dr.VIS database289. 

The locations of the viral integrations were assigned according to the distances between 

the known viral integration sites and repeat regions provided by RepeatMasker 

(Supplementary Figure 4).  

 

In silico read alignment 
 

Each PE read was assigned physical coordinates according to the empirical distribution of 

sequencing depth by GC content (Supplementary Figure 5), which was generated using 
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known Illumina PE read counts measured  by 200 bp tiling windows across the human 

genome287. To remove low quality reads, several commonly-used quality control 

procedures were employed, including minimum mappable read length, read trimming, 

PCR duplicate removal, and non-uniquely mapped read removal (Supplementary Table 

1). In a simulated example with commonly-used NGS parameters, the quality controls 

removed low quality reads, particularly those mapped to regions with very high 

sequencing depth (Supplementary Figure 6). All of the remaining PE reads were further 

aligned to the hybrid human and viral reference genome. For somatic viral integration 

events, we adjusted the number of reads in the integrated viral sequence region to match 

the corresponding cellular proportion. 

 

Viral integration detection and power analysis 
 

Each PE read was labelled either chimeric or split when one entire read or a portion of a 

single read mapped to the viral reference genome, respectively, while the remaining 

portion mapped to the human genome. Both split and chimeric reads were used as 

supporting evidence to determine viral integration events. The power to detect viral 

integrations is defined as: 

Detection power (%) =
Number of identified viral integrations
Number of simulated viral integrations 

× 100 

 

Identification of factors associated with detection power 
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Pearson’s correlation test was used to measure the association between detection power 

and each of the key molecular and bioinformatics factors (Supplementary Table 2). The 

statistical significance threshold was adjusted for the number of multiple tests using 

Bonferroni correction, resulting in P < 0.0001.  

 

Evaluation of viral integration detection framework 
 

We compared the power of our viral integration detection framework with an existing 

viral integration detection tool Virus-Clip286. First, we randomly selected 100 sequences 

of equal lengths from the HBV reference sequences and inserted into randomly-selected 

positions of human chromosome 22 (hg19). This process was repeated with viral 

integration lengths of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 500, and 1,000 bp, and the 

resulting sequences were stored in FASTA format. Second, these FASTA files were used 

to generate PE sequencing reads (i.e., FASTQ format) of library designs with varying 

sequencing depths (1, 2, 4, 6, 8, 10, 20, and 40 fold), read lengths (75 and 100 bp), and 

insert sizes (600, 1,300, and 2,200 bp) using pIRS287. Third, we ran these FASTQ files to 

detect HBV integrations using Virus-Clip. As Virus-Clip was designed to use split reads 

only, we tested our framework by using split and chimeric reads as well as split reads 

only. Three replications, each corresponding to different HBV sequences and integration 

breakpoints, were carried out. The average detection powers were compared between the 

two approaches using in-house R scripts. 
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Web application 
 

The source code was written primarily in R (version 3.3.0). The web interface was 

designed using HTML and PHP (version 5.3.3) scripts. MySQL was used to store pre-

computed power estimates.  

 

Availability of data and software  

 

The web application can be accessed at www.uvm.edu/genomics/software/VIpower/live, 

or downloaded for command-line application at 

www.uvm.edu/genomics/software/VIpower/downloads. The database of results presented 

here can be accessed at www.uvm.edu/genomics/software/VIpower.  

 

The datasets supporting the conclusions of this article are included within the article and 

its additional files. 
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Figure Legends 

 

 
Figure 1 Overview of the VIpower flow diagram. The simulation and detection of viral 
integrations in the human genome are composed of four modules. The first two modules 
simulate features of human and viral sequences; while the last two align PE reads to the 
human and viral reference sequences and detect viral integration events.  
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Figure 2 Six factors significantly associated with viral integration detection power. 
The six factors are ordered by significance level of correlation. The box plots indicate 
five quantiles, and the star symbol (*) represents the average value. The correlation 
coefficients ρ and P values for each factor were (A) cellular proportion (ρ = 0.64, P < 
2×10-16), (B) sequencing depth (ρ = 0.37, P < 2×10-16), (C) viral integration length (ρ = 
0.37, P = 1×10-13) (D) insert size (ρ = 0.23, P < 2×10-16), (E) supporting reads threshold 
(ρ = -0.19, P < 2×10-16), (F) read length (the top panel represents a scenario where the 
sequencing depth is fixed, ρ = -0.09, P < 2×10-16; the bottom panel shows represents a 
scenario where the read number is fixed, ρ = 0.1, P < 2×10-16) , respectively. In each box 
plot, all other involved variables were simulated in equal proportion of representation to 
ensure balanced comparisons among data points.  
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Figure 3 Pairwise correlations of detection power with key molecular and 
bioinformatics factors. The color of each square corresponds to correlation coefficient ρ 
(darker color corresponds to stronger correlation) while the size corresponds to the P 
value (smaller P value corresponds to bigger square size). The six significant factors (P ≤ 
0.0001), ordered by their correlation coefficient with detection power, are cellular 
proportion, sequencing depth, viral integration length, insert size, supporting reads 
threshold, and read length. All parameters represent their average values, except 
minimum mappable length, cellular proportion, runtime, and detection power.  
  



 

245 
 

Supplementary Tables and Figures 

Supplementary Tables 

 
Supplementary Table 1 List of quality control procedures implemented in VIpower 

Quality control procedure 
Default 

value 
Note 

 Minimum mappable length* 20 bp 
Required minimum read 
length mappable to either 
human or viral genome 

Trim reads* 0.1 A proportion of the 3’ end 
of a read to be trimmed 

Remove PCR duplicates Yes Reads with identical 
coordinates are removed. 

Remove non-uniquely aligned PE 
reads  Yes 

Reads aligned in repeat 
regions (< 20 bp in non-
repeat regions) are 
removed. 

*, The parameter can be changed by users. 

 

Supplementary Table 2 Key molecular and bioinformatics factors and reference files 
used by VIpower 

Key factor Values Description 

Cellular 
proportion 0.01; 0.1; 0.2;1 

Proportion of cells with 
viral integrations (e.g., 
germline, 1 and somatic, 
<1) 

Human sequence 
length 1,000,000 

Total sequence length, 
including integrated viral 
sequences (bp) 

Number of viral 
integration 
events 

50 Number of viral 
integration events 

Length of 
integrated viral 
sequences 
(mean) 

500 Average length of viral 
integrations (bp) 
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Length of 
integrated viral 
sequences 
(standard 
deviation) 

5,000 
Standard deviation of 
lengths of viral 
integrations (bp) 

Length of 
integrated viral 
sequences 
(minimum) 

10; 50; 200 Minimum length of viral 
integrations (bp) 

Sequencing 
depth 1; 2; 4; 6; 8; 10; 20; 40 Sequencing depth (fold or 

X) 
Read length 75; 100; 120; 300 Read length (bp) 
Insert size 
(mean) 600; 1,300; 2,200 Average of insert size (bp) 

Insert size 
(standard 
deviation) 

read_insert_mean/20287 Standard deviation of 
insert size (bp) 

Supporting reads 
required 2; 4; 6; 8; 10 

Required minimum 
number of supporting 
(chimeric and split) reads 

Minimum 
mappable length 20; 40 Minimum read length uniquely mapped to 

either human or viral reference 

Reads in repeat 
regions 
(proportion) 

0.05 

Proportion of reads 
completely mapped inside 
repeat regions (whole-
genome). 

Reads to trim 
(proportion) 0.05 Proportion of number of 

reads that are trimmed 
Nucleotides of a 
read to trim 
(proportion) 

0.15 
Proportion of number of 
nucleotides (of a read) 
that is trimmed 

seed_value [random] Simulation seed (for 
reproducible results) 

Repeat regions  [matrix] 

Repeat sequence 
distribution (~5.2 million 
repeat regions from 
RepeatMasker) 

GC content [matrix] 
GC content distribution 
specific to the human 
genome 

A total of 23,040 unique combinations of the listed values involving 15 molecular and 
bioinformatics factors were used to measure their correlations with detection power. 
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Additionally, two reference files, i.e., repeat sequence information and GC content 
distributions, can also be modified by users.  
 

Supplementary Figures 

 
Supplementary Figure 1 Empirical features and data sources included in the 
simulation of viral integration events. 
 

 
Supplementary Figure 2 Whole-genome distribution of GC content. The whole-
genome GC content values were binned by 200 bp tiling windows, and then used to draw 
the distribution. Each of our simulated human sequences was assigned a GC content 
value according to this distribution. 
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Supplementary Figure 3 Whole-genome distribution of lengths of repeat regions. 
The ReapeatMasker (hg19 version) was used to extract over 5.2 million repeat regions. 
This empirical distribution was randomly sampled to assign repeat region characteristics, 
i.e., location, to our simulated human sequences.  
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Supplementary Figure 4 Empirical distribution of repeat regions around known 
viral integration sites. The RepeatMasker database (hg19 version) was used to build a 
reference of human repeat regions. The distributions of these repeat regions were further 
used in our simulation of human sequences. Distances from upstream (left) and 
downstream (right) of integrated viral sequence to the nearest repeat region were 
measured separately.  
 

 
Supplementary Figure 5 Influence of GC content on sequencing depth. The whole-
genome GC content (in 200 bp tiling windows) and sequencing depth were calculated 
based on a ~30X paired-end sequencing data287. This distribution was converted into a 
probability distribution function to determine sequencing depth for each 200 bp tiling 
window of the simulated human sequence. 
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Supplementary Figure 6 Distributions of mapped read depth before and after 
quality controls. We simulated a commonly-used sequencing library design: read length 
= 100 bp, insert size = 500 ± 25 bp, and average sequencing depth = 10. The resulting 
10,000 simulated PE reads were mapped to a 200,000 bp human region. The sequencing 
depth distributions were plotted before and after quality controls according to the quality 
control procedures described in Supplementary Table 1. For example, for the regions 
with depth >13 (75 percentile), the total sequence volume decreased by 17% after quality 
controls, demonstrating the effectiveness of the quality control procedures. 
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Supplementary Figure 7 Distribution of sequencing depth at viral integration 
breakpoints. The expected (red vertical line) and observed (grey bars) numbers of 
supporting PE reads of all simulated viral integration sites are shown for different 
sequencing depths and cellular proportions: (A) depth of 40X in germline viral 
integrations, (B) depth of 40X in somatic viral integrations (20% cellular proportion), (C) 
depth of 10X in germline integrations, and (D) depth of 10X in somatic integrations (20% 
cellular proportion). The dotted line represents a threshold of two supporting reads, which 
is one of the thresholds used in our detection; in this case, only viral integrations to the 
right of the dotted line are considered successfully detected. The expected number of 
supporting reads was calculated as: (insert size) × (number of reads) / sequence length. 
The distributions of numbers of supporting reads were consistent for different sequencing 
depths and cellular proportions. 
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Supplementary Figure 8 Comparison of detection power for common and rare viral 
integrations. Five and 50 viral integration events were simulated into a one million bp 
human sequence to represent (relatively) rare and common viral integrations, 
respectively. For each case, a total of 23,040 unique input combinations of the 15 factors 
(Supplementary Table 2) were used to estimate power. The power estimates in both 
cases were highly correlated (r2 = 0.96; the expected line corresponds to the perfect 
correlation of r2 = 1), indicating no significant difference in detection power between 
common and rare viral integrations.  
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Supplementary Figure 9 Evaluation of our viral integration detection framework. 
We compared the power of our viral integration detection framework with Virus-Clip. 
The overlap between predicted HBV (RefSeq access: NC_003977.2) integration positions 
and actual positions was used to calculate the detection power. Each plot corresponds to 
one of the six significant factors, while keeping the other factors fixed (sequencing depth 
= 6X, viral integration length = 1,000bp, insert size = 600bp, read length =100, cellular 
proportion = 1, and supporting reads threshold = 2). The three curves in each plot 
correspond to VIpower based on both split and chimeric reads (circle), VIpower based on 
split reads only (triangle), and Virus-Clip (square), respectively.  
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Supplementary Figure 10 Balance between integration breakpoint precision and 
detection power. The open and solid bars represent the total supporting reads, and 
proportion of split reads, respectively (all viral integrations were assumed to be 
germline). Based on the existing viral integrations from our 23,040 simulations 
(Supplementary Table 2), which combined PE reads from various sequencing library 
designs, under the assumption of fixed total sequence volume (sequencing depth), when 
read length increases, the total number of supporting reads decreases (Figure 3), 
however, both the proportion and actual number of split reads per viral integration 
increases.  
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CHAPTER 5: CONCLUSIONS 
 

The work presented in this dissertation describes three integrated approaches for 

elucidation of brain disorders: evolutionary genomics (chapter 2), bioinformatics tools 

and resources (chapter 3) and, identification and disease association of structural genomic 

aberrations (chapter 4). Below we discuss each of these contributions individually. 

In chapter 2 we demonstrated that a large number of genes, diseases, and traits are 

influenced by functional SNPs with extreme allele frequency differences (EAFD) 

between populations of the same continental origin. Some of the identified phenotypes 

included brain disorders, such as ADHD, frontotemporal dementia, white matter 

hyperintensity burden, alcohol consumption and drinking behavior. Future studies may 

demonstrate that indeed, a considerable portion of the genetic missing heritability in these 

complex brain disorders is attributed to EAFD. 

Next, we found that light eye color was significantly associated with AD; an 

association which held true after controlling for population stratification and socio-

economic factors. This finding supports the idea that selection forces may have indirectly 

acted on AD risk loci. Our findings complement the existing research on the connection 

between eye color and mental illnesses and behavioral problems. Our study is the first to 

report an association between blue eye color and AD in EAs using clinically-ascertained 

subjects and a moderate sample size. Our findings indicate that the selection pressures 

acting on the genetics of pigmentation might have implications for AD susceptibility. 

Thus, integration of population-phenotype and gene and network analyses is helpful for 
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the identification of risk factors in AD, and a broad range of mental illnesses, in general. 

While replication is needed, our findings suggest that eye pigmentation information may 

be useful in the future research of AD and related alcohol consumption behaviors. Further 

characterization of this association may unravel novel etiological factors in alcohol 

addiction. 

Findings presented in chapters 2.1-2.3 support the idea that positive selection may 

increase disease risk, a hallmark of antagonistic pleiotropy. Importantly, this mechanism 

is central to the theory of aging proposed by G. C. Williams in 1957, who observed that 

while high p53 gene activity (as a tumor suppressor) increased fitness early in life, it also 

led to increased aging-related disorders later in life (i.e., cellular senescence). Since the 

detrimental health effects occurred after reproductive age, negative selection would not 

be effective at removing the p53 alleles from the population. A well-known pleiotropic 

functional variant is located in the p53 gene, causing a Proline (Pro) to Arginine (Arg) 

amino acid change in residue 72. The Pro/Pro carriers were found to be at higher risk of 

developing cancer than the Arg/Arg carriers, by 2.54 fold290. However, the Pro/Pro 

carriers had a 41% increased longevity291. Thus, this p53 variant protects from cancer at a 

cost of shorter life span. Similarly, in chapter 2.1 we present other examples of 

antagonistic pleiotropy, derived from the GWAS catalogue, such as adaptation traits (skin 

color, or eye color) and Melanoma, or height and psoriasis. 

Since selection drives emergence of common allele frequencies with strong effect 

on phenotype, the statistical power for detecting these variants through GWAS is higher 

than it would be for neutral variants. Indeed, Sabeti and colleagues used the GWAS 
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catalogue to demonstrate that GWAS of variants under positive selection had a smaller 

association p-value than the rest of disease-associated variants in the catalog110. More 

recently, Scott Williams and colleagues demonstrated that populations with extreme 

disease resistance in the face of extensive pathogen exposure can increase the statistical 

power to detect associations with complex human diseases292. Similarly, Rasmus Nielsen 

and colleagues demonstrated that Greenlandic Inuit populations have had positive 

selection for genetic variants involved in omega-3 polyunsaturated fatty acids 

metabolism; thus, when this population was leveraged in a GWAS, novel fatty-acid 

metabolism risk loci were discovered293. Thus, whole-genome association studies hold a 

promise for discovery of disease-associated loci, particularly in populations where 

disease genes are expected to be under selection.  

In the post-GWAS era, the genetic etiology of brain diseases and other complex 

human diseases will likely be surveyed under the lens of rare variants and by leveraging 

multi-ethnic cohorts. Thus, we developed a new resource for genetic association analysis 

of multi-ethnic cohorts (chapter 3.1) and a tool to improve accuracy of inferring 

unassayed alleles in microarray data (i.e., genotype imputation) (chapter 3.2). 

 

Tools and resources for rare genomic variants 
 

To enable rapid discovery of disease-associated variants, particularly when using 

a multi-ethnic or other complex population structures, we constructed a panel of AIMs to 

control for population structure (chapter 3.1). The constructed AIMs panels were highly 
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informative for ancestry, as measured by IN. For example, among the top 12 AIMs of a 

recently published Han Chinese panel193, four overlapped with our panel of the 

equivalent population pairs, i.e., CHB-CHS; however, our panel contained a larger 

number of high IN markers, i.e., 192 AIMs with IN ≥ 0.028 in our panel compared to only 

two in the published panel. A detailed comparison between our panel and the one 

published by Qin et al. revealed that our panel has more informative markers, as 

measured by both FST and IN statistics.  

 

We recommend using these panels hierarchically. For instance, a study that 

analyzes samples of African and East Asian ancestry may first use one or more of our 

AIMs panels that were designed for separating Africans from East Asian populations, 

then use the panels that separate specific African populations from one another, and those 

that separate specific East Asian populations from one another. This strategy prevents 

inclusion of AIMs designed for populations that are not represented in the underlying 

study. To the best of our knowledge, this study provides the first set of AIMs panels that 

can ascertain sample ancestry or admixture proportion with high accuracy at multiple 

resolutions, i.e., global, continental, population, and sub-population levels. These panels 

would be particularly useful in two scenarios: target sequencing studies where whole-

genome data is not available to extract AIMs, and GWAS of complex population 

structures (e.g., multiethnic samples). 
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In chapter 3.2 we introduce a tool that improves quality of genotype imputation, 

and accuracy of downstream association analyses or meta-analyses. Importantly, we 

found that approximately 600 thousand well-typed SNPs are likely to suffice for high 

quality genome-wide imputation of rare SNPs. Inconsistent allele definitions and genome 

builds or incorrect conversions lead to incorrect genetic association “findings”. In this 

chapter, we developed a comprehensive tool, GACT, with both powerful command-line 

and user-friendly web interface versions to predict, and convert both genome builds and 

allele definitions between multiple GWAS (or deep sequencing) genotype data, which is 

required for all imputations and genome-wide meta-analyses. GACT will ease a broad 

use of the GWAS data from the dbGaP and other publicly available genotype repositories 

for large-scale secondary analyses and multi-laboratory collaborations in the genetic 

association studies of human diseases.  

The chapters above focused primarily on single nucleotide polymorphisms 

(SNPs). Thus, in the last part of this dissertation, we focused on identification and 

disease-association of two types of structural variants: CNVs (chapter 4.1) and viral 

insertions (chapter 4.2). 

 

Structural variation detection and disease-association 
 

In chapter 4.1 we identified CNVs using an integrated approach to discover CNVs 

de-novo, followed by the meta-analyses of the curated high-quality CNVs. We identified 

nine nominally significant regions with AD, six deletions and three duplications; 
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although the individual studies might be underpowered, they collectively revealed 

consistent effect sizes, in both direction and magnitude. The nine CNVs ranged from 

4.3kb to 221.7kb in size and had ORs from 1.31 to 2.88; and eight of them had frequency 

≤ 5% (no CNV imputation conducted in this study due to low frequencies of these 

CNVs). The most significant AD association was found with the 5q21.3deletion (OR = 

2.15 and P = 3.8 × 10-4). This cytogenetic band has been associated with alcohol cravings 

in a Native American population264; however, our meta-analysis, for the first time, 

identified a specific CNV in this region associated with AD.  

 

In chapter 4.2, we present an in-silico method to simulate viral insertions 

(VIpower), according to empirical genomic information. Our primary findings include 

the discovery of six factors that are most important at discovery of VIs: cellular 

proportion, sequencing depth, length of integrated viral sequence, insert size, minimum 

number of required supporting reads (user-defined), and read length. We also developed a 

fast computational framework to detect virome-wide viral integrations in the human 

genome, and validated the six factors above using an independent NGS tool. The results 

in this study provide the fundamental guidance to the NGS-based experimental designs 

and data analyses of viral etiological studies of various human diseases.  

In Appendix A, we applied an existing VI discovery approach to Alzheimer’s 

disease brain samples. We identified HHV6B of a very specific strain (Z29) present at 

sufficiently high-abundance that the entire virus genome was sequenced at around 15 fold 
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depth. Due to the complex integration mechanism, whereby HHV6 genome relies on 

homologous recombination to integrate into sub-telomeric regions of the human genome, 

we were unable to provide definitely proof of integration. Chimeric reads with perfect 

repeats of the motif (TAACCC) were challenging to designate as uniquely human or 

virus since the motif pattern is shared by both human and HHV genome.  To address this 

issue, we have proposed a statistical framework (borrowed from RNA-seq transcript 

quantification) to provide a probabilistic solution to the question of confidence of viral 

integration detection.  

 

Future directions 
 

Our work contributes to the “growing wave” of post-GWAS studies for brain 

disorders as well as complex human diseases. The post-GWAS era is a term coined 

around 2010, and it refers to the genetic and/or genomic analyses conducted to identify 

disease-causing variants, and not simply disease-associated variants. It is clear that the 

post-GWAS future of genetic research for human brain disease will rely on the well-

integrated application of multi-disciplinary approaches such as human evolution, 

anthropology, epidemiology, psychiatry, molecular genetics and genomics. Immediate 

next steps that will need to be taken in the near future to bring the impact of our work one 

step closer to the clinic are:  

 



 

262 
 

“Deep phenotyping” Collection of hundreds of phenotype data (i.e., biological 

phenotypes as well as environmental information) for each individual has several 

advantages. First and foremost, disease-predicting models would not be limited to just 

genetic information if phenotypic and environmental information was available. Second, 

we would be able to test for shared genetic causality or genetic architectures between 

phenotypes using Mendelian randomization and LD-score regression, respectively. For 

instance, our finding of eye color association with alcohol dependence could be further 

elucidated using the LD-score regression approach. More recently, Beirut and colleagues 

reported a genetic correlation between smoking behavior and schizophrenia using 

“deeply phenotyped” samples294. Third, the abundance of phenotypes would allow us to 

identify potentially beneficial phenotypes caused by the pleiotropic, disease-associated 

variants we reported in chapter 2.1. Further evidence supporting antagonistic pleiotropy 

would help pinpoint disease mechanisms for the brain disorders and other complex 

diseases identified in our study. Fourth, endophenotype information can be very valuable 

in discovering disease loci, particularly in brain disorders. For instance we may have a 

higher statistical power to detect associations with activity in different brain regions 

associated with substance addiction, rather than associations between genomic loci and 

the addiction diagnosis itself. This may occur due to the complex nature of addiction 

etiology, composed of genetic, epigenetic, environmental and socio-economic factors; all 

of the non-genetic factors may cause incomplete penetrance of the risk loci. Fifth, 

detailed phenotyping information would allow for testing gene-environment interaction 

hypotheses. Sixth, artificial intelligence methods would be able to find information that 



 

263 
 

traditional statistical approaches may not be able to easily identify, such as disease-

progression patterns, using unsupervised and semi-supervised learning. 

 

“Pathogenic structural variant map” Rare and de-novo CNVs with large effect 

sizes in brain disorders are being discovered at an increasing pace. The most recent 

catalog of such disorders includes nearly 33,000 de-novo CNVs discovered from 23,098 

trios295. Thus, current efforts to build a map of pathogenic CNVs are very promising at 

delivering disease-causing CNVs and genes with recurrent CNVs (i.e., hotspots). A 

similar map can be constructed for viral insertions. The primary advantage of having a 

reference for pathogenic CNVs or VIs, is that targeted (re)sequencing experiments can be 

carried out at ultra-high depth and lower cost than whole-genome sequencing, allowing 

for accurate genotyping, in the case of CNVs, or cellular proportion measurements in the 

case of VIs. 
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APPENDIX A: NGS-based Human-herpes 6 virus detection in Alzheimer brain 
 

Abstract  

 
The health burden of Alzheimer’s disease (AD) is significant with prevalence of 5%-8% 

among individuals over 65 years old, or 15%-20% among individuals over 75 (WHO 

2017). The biochemical pathways have been found to involve amyloid precursor genes 

which lead to an increase in Aβ aggregation and/or decrease in Aβ clearance, such as in 

the case of APOE- ε4 allele carriers296. However, around 40% of the genetic heritability 

of AD has not been accounted for. Recent studies have indicated a potential etiological 

role for viruses in AD297. However, no published studies have been able to identify fusion 

events between human and HHV6 DNA. In this study we identified one AD brain sample 

with HHV6 infection and potential integration, using whole-genome paired-end read 

NGS data. A statistical framework is proposed to estimate the probability of an 

integration event. This finding represents the first instance in the published literature of 

identifying a putative viral integration in AD brain. 

 

Introduction 

 
Viral etiologies in the context of brain disorders were initially described in 

multiple sclerosis298, mesial temporal lobe epilepsy299 and then Alzheimer disease297. The 

existing literature has focused on the use of polymerase chain reaction (PCR) methods to 

identify virus DNA for all these disorders. However, PCR presents several disadvantages: 
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(i) cannot conduct a hypothesis-free survey for viruses in brain tissue, (ii) it is not 

possible to sequence the entire genome of the virus that has been identified, and (iii) it is 

not possible to identify variations in the genome of the identified virus. All of these 

shortcoming can be addressed using NGS data. Here, we conducted alignment of 101bp 

paired-end reads from 20 brain samples to identify HHV-6B infection and/or insertion. 

 

Methods 

 
High-throughput alignment 
 

The sequencing reads (saved in fastq format) for all 20 Alzheimer diagnosed 

brains were accessed and downloaded into a local server from dbGAP (accession code: 

phs000572.v7.p4). The NGS library was prepared with 500bp fragment sizes and 

sequenced at 33-fold depth. Next, the fastq-formatted reads were aligned against the 

HHV-6B reference genome (NCBI Nucleotide database accession code: NC_000898.1) 

using bwa300. Both single-end and completely aligned reads aligning to HHV-6B were 

considered. The coverage was calculated using: 2 × (read-length) × (read number) / 

genome-length, where read-length was 101bp and genome-length is the virus reference 

length of 162,114bp. 

 

Local alignment 
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Since bwa chooses a random position between two or more equally likely 

alignments, we decided to use a conservative approach and align against the complete 

nucleotide NCBI database using BLAST301. For each read (i.e., each of the two read ends 

were considered independently), we kept only the most confident alignment result, as 

determined by the E-value. If and only if the read with the smallest E-value aligned to the 

virus (for different levels of virus specificity, see Table 1), it was considered to be a 

unique viral read. 

 

Splice junctions 
 

 First, we assign each paired-end read to one of three classes: human-only, human-

virus chimera, and virus only. A paired-end read (i.e., fragment) is a chimera if one end 

of the pair covers completely or partially a human-virus splice junction. The read 

alignment is examined together as reported in the SAM format, following bwa alignment. 

The following rules are applied to resolve multiple alignments for fragments, as 

previously described in the Cufflinks paper302.  Only fragments with the highest rank are 

reported. Let a and b be two fragment alignments of the same fragment (i.e., read-pair), 

such that a is ranked lower than b if any of the following are true (in this order): 

1) a is single end mapped, while b has both ends mapped, 

2) a crosses more splice junctions than b 
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3) The reads from a map significantly apart according to the library’s fragment 

length distribution (≥3 standard deviations), while the reads from b do not. 

4) The reads from a are significantly closer together than expected (following Z-

score normalization of the fragment size distribution), while reads from b are not. 

5) The reads in alignment a map more than a read-length (e.g., 100bp) apart than the 

b alignment 

6) a has more mismatches (reflected by a lower alignment score) than b. 

Note that alignments of equal quality are all reported (e..g, n alignments), and the 

probability of each of them being correct is 1/n. 

 

Likelihood of viral integrations 
 

The statistical framework underlying the Cufflings302 method for quantifying 

transcript abundance by RNA-seq was adopted for quantifying confidence of viral 

integration. Although the biology of RNA-seq is different from that of viral insertion, the 

statistical framework for estimating transcript abundance is similar. We assume that a 

region of the genome, for example a gene locus, is integrated by viral insertions at a 

certain cellular proportion ≤ 1. The integration results in formation of at least two 

isoforms: the human-only sequence and the human-virus chimeric sequence. More 

isoforms may form, if the integration site is a hotspot where multiple viruses can 

integrate. Since we do not know a priori the location of these integration sites, we slide a 
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window of a fixed size across the genome. Each window represents a distinct locus, 

labelled as g (from here onward we refer to the sliding window as locus g). The 

likelihood is a function of the relative isoform abundance (ρ) such that ∑ 𝜌𝑡 = 1𝑡∈𝑇 , 

where 𝜌𝑡 is the relative abundance for individual isoform t relative to the entire genome, 

and T is the set of all isoforms across the human genome. The length of each isoform, l(t), 

is fixed if locus g contains human-only reads, however, insertion of a viral sequence 

increases the value of l(t) by the same length as the integrated viral sequence. Since locus 

g is defined as a region that contains a set of overlapping isoforms; hence, 𝜌𝑡 = 𝛽𝑔𝛾𝑡, 

where 𝛽𝑔 is the relative abundance of locus g in which t is contained, and 𝛾𝑡 is the 

relative abundance of t within the g locus. The entire human genome is denoted by G.  

The probability of selecting a fragment from single isoform t, conditioned on 

locus g, such that 𝑡 ∈ 𝑔 , is the locus-specific relative abundance 𝛾𝑡, which is equal to:  

𝛾𝑡 =  
𝜏𝑡 ∙ 𝑙(𝑡)

∑ 𝜏𝑚𝑙(𝑢)𝑚∈𝑔
 

, where 𝜏𝑡represents the locus-specific proportion of isoform t (i.e., viral integration 

cellular proportion), such that 𝜏𝑡 =  𝜌𝑡
∑ 𝜌𝑡𝑡∈𝑔

 and 𝑙(𝑡) represents the adjusted isoform length 

such that: 𝑙(𝑡) =  ∑ 𝐹(𝑖) ∙ (𝑙(𝑡) − 𝑖 + 1)𝑙(𝑡)
𝑖=1 . The adjusted isoform length is required 

since the probability of selecting a fragment of length k from isoform t at one of the 

positions is: 1
𝑙(𝑡)−𝑘

. 
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The full likelihood model has been derived elsewhere for RNA-seq expression 

estimates303. The following likelihood function represents “the probability that a fragment 

selected at random originates from isoform t” 

 

     𝐿(𝜌|𝑅) = ∏ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑟)𝑟∈𝑅  

=  �� 𝛽𝑔
𝑋𝑔

𝑔∈𝐺
����� � 𝛾𝑡 ∙

𝐹(𝐼𝑡(𝑟))
𝑙(𝑡) − 𝐼𝑡(𝑟) + 1𝑡∈𝐺𝑟∈𝑅:𝑟∈𝑔

�
𝑔∈𝐺

� 

 

, where R is the complete set of aligned reads, F is the distribution of all fragment lengths 

(5’ and 3’ ends of a single fragment are sequenced by each read in a read-pair), such that 

F(i) represents the probability that a fragment has length i (although this is NGS-library 

specific, we assume F is normally distributed) and ∑ 𝐹(𝑖) = 1∞
𝑖=1 ; 𝑋𝑔 is the total number 

of fragments (i.e., read pairs) in a locus g, 𝐼𝑡(𝑓) is the implied length of a fragment f, 

assuming that it originated from the isoform t, and finally 𝑙(𝑡) is the length of the sliding 

window.  Remember that l(t) is fixed if locus g contains human-only reads, however, 

insertion of a viral sequence increases the value of l(t) by the same length as the 

integrated viral sequence.   
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Results 
 

In this study we identified 26,616 reads that aligned to the HHV-6B reference 

genome (Figure 1 and Table 1). Of these reads, 16,825 (63.2%) reads were confirmed to 

align uniquely to the HHV-6B strain Z29 (Table 1). In addition to the brain sample 

(sample ID SRR987641), we also identified a smaller coverage of the same viral genome 

in a blood sample of an Alzheimer patient (SRR1105833, no brain sample data was 

available for this sample). The average coverage of the HHV-6B genome from viral reads 

identified in the brain sample was around 16-fold, or 10-fold when considering the 

unique reads only (Table 1).  

 The unique reads were further used to construct contigs using the de-novo 

assembler Velvet304. A total of 154 contigs were generated, and each of them was found 

to uniquely align to a different positon on the reference genome. Thus, the entire genome 

of HHV6B (strain z29) was represented by the unique contigs we assembled. The 

assembled contigs were further used to identify SNPs and short indels in the virus’ 

genome. A total of 106 variants were identified, including 102 SNPs and 4 short indels. 

Lastly, we observed that 14 paired-end reads supported the existence of a circular 

episomal structure for the HHV6B genome. These were aligned with a high confidence to 

the reference genome (i.e., average alignment score of 96, out of 101). 
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Discussion 
 

In this study we have identified 16,825 NGS reads that uniquely align to the z29 

strain of the HHV-6B genome, leading to a uniquely-aligned coverage of around 10-fold. 

To our knowledge this is the first report of identifying a complete HHV-6B viral genome 

in an Alzheimer brain. The strengths of our study include: (i) identification of a complete 

HHV-6B genome in an Alzheimer’s disease brain tissue, (ii) identification of 106 virus-

specific variants (102 SNPs and 4 short indels). A weakness of our study is the lack of 

definitive evidence that we have observed a viral insertion. However, we have proposed a 

statistical framework that would allow us to quantify the confidence of the viral insertion 

into the human genome (see Methods).  

 Of particular interest is the integration mechanism by which HHV6B may infect 

or integrate into human neuron DNA. It is known that subtelomeric regions with the 

repeat signature of (TAACCC)n are preferred targets of herpesvirus integration via 

homologous recombination305. Furthermore, given that an NGS experiment is able to 

detect presence of HHV-6B implies that the cellular proportion (i.e., proportion of viral 

DNA copies out of all human and virus DNA copies) is from 10/33=30% (for uniquely-

aligned viral reads) to 16/33=48% (for all bwa virus-aligned reads).  

An immediate next step for our study would be the estimate the parameters  𝛽𝑔 

and 𝛾𝑡 in the likelihood function, using either a variable order markov model that 

leverages empirical sequencing data, or an analytical expectation maximization approach. 
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Tables and Figures 
 

 

 

 

 

Figure 1: Brain sample SRR987641 contains sequencing reads that align to the entire 
genome of HHV6 reference genome. All physical positions where paired-end reads 
‘anchored’ on the reference viral genome were collected and plotted into the histogram. It 
is clear from the figure that each position on the reference genome is ‘anchored’ around 
times by a paired end read. 

Table 1: The majority of NGS viral reads align with the highest confidence to HHV6B strain Z29. 

Reference sequence type % of BWA-aligned reads* 
SRR987641 SRR1105833 

All 100% (26,616) 100% (1,316) 
Virus 99.6% (26,513) 95.6% (1,258) 
Herpes virus 99% (26,329) 91.1% (1,199) 
Human herpesvirus 98.4% (26,198) 90.4% (1,190) 
Human herpesvirus 6 98.4% (26,190) 90.4% (1,189) 
Human herpesvirus 6B 89.3% (23,781) 81.4% (1,071) 
Human herpesvirus 6B strain Z29 72% (19,180) 64.5% (849) 
Human herpesvirus 6B strain Z29 only† 63.2% (16,825) 55.5% (730) 

Note: all NGS reads that were aligned to HHV6B virus (gi:9633069) by bwa, were aligned against the entire 
nucleotide database of NCBI using the blastn algorithm. 
*, a total of 27,932 NGS reads were available, 26,616 for sample SRR987641 and 1,316 reads for SRR1105833 
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Figure 2: The mapping of contigs built using the 16,825 uniquely mapped reads (Table 
1) to the HHV6 reference genome. The left side of the circle represents the 154 contigs 
and the right side represents the reference genome. The rainbow-colored ribbons indicate 
the position in the reference genome where each the contigs align.  
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