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Abstract: 

The attachment nonmetal and magnesium ethynyl terminated porphyrin (TEPP and MgTEPP) to 

glassy carbon electrode was achieved through voltammetry. These attached porphyrins were 

studied by cyclic voltammetry (CV) and UV-visible spectroscopy. Surface-bound TEPP 

displayed reversible oxidation and reduction (E1/2 = 0.52 V and E1/2 = -1.74 V vs. ferrocene), and 

absorbance peak of 425 nm on indium tin oxide (ITO). While surface-bound MgTEPP possessed 

two reversible oxidations (E1/2 = 0.61 V and E1/2 = 0.97 V vs. Ag/AgCl) and an irreversible (Epc 

= -1.65 V vs. Ag/AgCl). MgTEPP had an absorbance maximum at 431 nm on ITO. Both 

porphyrins had irreversible pre-waves, which could be regenerated. This is the first example of 

covalently-bound Mg porphyrin to an electrode surface.  

 

 

 



	 iii	

Acknowledgements: I would like to thank my advisor, Prof. William E. Geiger, for his 
unceasing support and guidance through my three and half years in his group. I would also like 
to thank my committee members, Prof. Peter Dodds and Prof. Rory Waterman. This research 
was funded by the National Science Foundation (under grants NSF-CHE 1212339 and CHE 
1565541). 
 



	 iv	

Table of Contents: 
 
Abstract........................................................................................................................................... ii 

Acknowledgements........................................................................................................................ iii  

Table of Tables ...............................................................................................................................  v  

Table of Figures.............................................................................................................................  vi 

Introduction..................................................................................................................................... 1 

Experimental..................................................................................................................................   3 

   Materials.....................................................................................................................................   3 

   Instrumentation...........................................................................................................................   3 

   Procedures..................................................................................................................................   4 

Results............................................................................................................................................ 7 

Discussion..................................................................................................................................... 11 

References..................................................................................................................................... 13  

 



	 v	

Table of Tables: 
 
 Table 1: Tabulated potentials of the studied porphyrins ....................................................... 28 
 

 



	 vi	

Table of Figures: 
  
Figure 1: UV-vis spectra of a solution of MgTPP and CoCl2....................................................... 15  
Figure 2: CV scans of TPP............................................................................................................ 16 
Figure 3: CV scans of MgTPP...................................................................................................... 17 
Figure 4: CV scans of CoTPP....................................................................................................... 18 
Figure 5: CV scans of TEPP..........................................................................................................19 
Figures 6-8: CV scans of surface-bound TEPP....................................................................... 20-22 
Figures 9-11: CV scans of surface-bound MgTEPP............................................................... 23-25 
Figure 12: UV-vis spectra of TEPP and MgTEPP on ITO........................................................... 26 
Figure 13: CV scans of CoTEPP.................................................................................................. 27 
 
  



	 1	

Introduction: 

The proliferation of hydrogen cells has been hindered for years by their requirement for 

platinum catalysts, due its high cost and low availability.1 Despite the expense, this technology 

has been used in specialized applications such as powering the electrical systems of Apollo 

spacecraft.2  

 
Scheme 1: Simplified diagram of a hydrogen fuel cell (Ref. 3). 

 
Inside a hydrogen fuel cell, molecular oxygen is reduced and molecular hydrogen is oxidized to 

produce only water and electricity. The reactions are shown with the following equations. 

Anode Reaction: 2H2 → 4H+ + 4e-  

Cathode Reaction: O2 + 4H+ + 4e- → 2H2O 

Overall Reaction: O2 + 2H2 → 2H2O 

The cathode reaction, or oxygen reduction reaction (ORR), is sluggish, due to the large kinetic 

barrier, unless a platinum electrode is used. There is a need for cheaper and more abundant 

metals as catalysts to increase the availability of fuel cells. Over the years, cobalt-based 

porphyrin catalysts have emerged as promising alternatives to platinum catalysts, showing 

limited production hazard and damaging hydrogen peroxide.3 Despite the low production of 

hydrogen peroxide, further work is required to reduce the overpotentials.  
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 Presented here is research towards the goal of producing cobalt porphyrins covalently 

bonded to an electrode. Protonated and metallated porphyrins were studied. Tetra-

phenylporphyrins (TPPs) were 

synthesized and characterized 

by electrochemistry to 

facilitate the understanding of 

ethynyl terminated 

porphyrins, tetra(ethynyl-

phenyl)-porphyrin. It has been 

previously demonstrated that 

porphyrins with terminal 

ethynyl groups can be covalently attached to a glassy carbon electrode through oxidation of their 

ethynyl groups.4 A single-electron oxidation of the ethynyl group leads to loss of a proton and 

the formation of a neutral carbon 

radical. This radical reacts with 

the glassy carbon surface to form 

a new covalent carbon-carbon 

bond, between the molecule and 

the electrode. This technique 

offers a simple and robust method 

of attachment, allowing the 

formation of ordered layer(s) of porphyrin species. The synthesis of surface-bound cobalt 

porphyrins was explored in this research. A synthetic route that was investigated was the 
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exchange of larger metal ions to produce cobalt porphyrins. Metal exchange have been shown to 

be 600 – 6700 times faster than preparation from protonated porphyrin.5 Magnesium porphyrins 

was used in this study because of its ease of preparation and magnesium’s covalent radius.6 The 

exchange of magnesium was found to be too sluggish under the condition used. Future research 

will vary the reaction condition and investigate the exchange of cadmium.  

Experimental:  

Materials: 

The materials were used as received unless otherwise noted. Commercial sources were 

used for: pyrrole (Sigma-Aldrich, St. Louis, MO, dried over CaH2 and distilled), 4-((trimethylsilyl) 

ethynyl)-benzaldehyde (Alfa Aesar, Ward Hill, MA), boron trifluoride diethyl etherate (Acros, 

Ceel, Belgium), p-chloranil (Alfa Aesar, Heysham, United Kingdom), potassium carbonate 

(Aldrich, Milwaukee, WI), tetraphenylporphyrin (H2TPP) (1-3% chlorin impurity, Frontier 

Scientific, Newark, DE), magnesium bromide diethyl etherate (Acros, Ceel, Belgium), 

triethylamine (Acros, Ceel, Belgium), anhydrous cobalt(II) chloride (Aldrich, Milwaukee, WI), 

silica gel (Sorbtech, Norcross, GA) and [NBu4][PF6] (Tokyo Chemical Industry). 

Dichloromethane for electrochemistry was purified and dried by passing it through an alumina-

based solvent system under argon. 

 

Instrumentation: 

Electrochemistry: 

The electrochemistry was carried out under nitrogen atmosphere in a Vacuum Atmospheres 

drybox. Three-electrode cells were used for voltammetry experiments. A platinum wire was used 

as the counter-electrode and was separated from the working compartment with a fine-porosity 
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frit. For use as the experimental reference electrode, a silver wire electroplated with silver chloride 

was used. This electrode was separated from the working compartment by another fine-porosity 

frit. Each working electrode, a glassy carbon (GC) disk 2 mm in diameter, was purchased from 

Bioanalytical Systems. Before each experiment, the electrodes were polished with diamond paste 

and washed with nanopure water and acetone. Potentials are reported versus the 

ferrocene/ferrocenium couple7 and were found by the in situ method.8 The potentiostat employed 

was EG&G PARC 273. All experiments were performed at ambient temperature.  

UV-visible spectroscopy: 

Solution-phase spectra were obtained in dichloromethane using a cell with a 1 cm path 

length. For surface spectra, the porphyrins were deposited on an indium tin oxide (ITO) slide. A 

background spectrum of the ITO slide was collected and then subtracted from the spectrum of the 

modified slide. An Olis 14 UV/VIS/NIR spectrophotometer was used for the UV-vis 

measurements. 

 

Procedures: 

Synthesis of tetra(trimethylsilyl-ethynyl-phenyl)-porphyrin (TTMSEPP)9:  

Pyrrole (0.14 mL, 2.0 mmol) and 4-((trimethylsilyl)ethynyl)benzaldehyde (0.420 g, 2.1 

mmol) were added to a 1000-mL round bottom flask (rbf). Dichloromethane (350 mL) and boron 

trifluoride diethyl etherate (70 µL, 0.55 mmol) were added to the rbf, yielding an orange solution. 

The solution was stirred under nitrogen at room temperature for three hours, yielding a reddish 

solution. Next, p-chloranil (0.377 g, 1.53 mmol) was added to the rbf. The solution was refluxed 

for one hour, yielding a nearly black solution. The solvent was evaporated, and the solids were re-

dissolved in the minimum amount of acetone. Silica gel (5 mL) was added to the acetone solution, 
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and the acetone was evaporated, leaving the solids on the silica gel. A 2-cm diameter column was 

filled with silica gel, and the silica gel with product was added on top. The product was purified 

on silica gel with dichloromethane as the eluent. The elution was followed by thin layer 

chromatography. The dichloromethane was evaporated yielding 240 mg (48.0%) porphyrin. UV-

vis (dichloromethane): lmax = 422 nm.  

 

Synthesis of tetra(ethynyl-phenyl)-porphyrin (TEPP)9:  

TTMSEPP (0.240 g, 0.240 mmol) was dissolved in a dichloromethane-methanol mixture 

(3:1, 20 mL). Potassium carbonate (0.192 g, 1.39 mmol) was added to the solution. The mixture 

was stirred under nitrogen at room temperature overnight. The solvents were removed in vacuo, 

and the solid was re-dissolved in dichloromethane (40 mL). The solution was washed with 10% 

aqueous sodium bicarbonate (60 mL) and dried with magnesium sulfate. The solvent was 

evaporated, and the solids were re-dissolved in acetone. Silica gel (5 mL) was added to the acetone 

solution, and the acetone was evaporated, leaving the solids on the silica gel. A 2-cm diameter 

column was filled with silica gel, and the silica gel with product was added on top. Product was 

eluted with 7:3 (v/v) dichloromethane-hexanes. The elution was followed by thin layer 

chromatography. The solvents were evaporated yielding 41 mg (24.1%) porphyrin. UV-vis 

(dichloromethane): lmax = 421 nm. 1H NMR (500 MHz, CDCl3, δ in ppm): 8.82 (s, 8H, Hβ-pyrrolic), 

8.15 (d, 8H, HAr), 7.87 (d, 8H, HAr), 4.24 (s, 4H, C2H), –2.88 (s, 2H, NH). 

Homogenous synthesis of magnesium tetra-phenylporphyrin (MgTPP)10: 

 TPP (0.117 g, 0.190 mmol) was dissolved in dichloromethane (10 mL). Magnesium 

bromide ethyl etherate (0.736 g, 2.85 mmol) was ground and added to the solution with 

triethylamine (0.5 mL, 3.58 mmol). The suspension was stirred at room temperature under nitrogen 
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for 4.5 hours. The suspension was diluted with dichloromethane (25 mL) and then washed with 

5% aqueous sodium carbonate (2 × 25 mL). The dichloromethane solution was separated and dried 

with magnesium sulfate. The dichloromethane was evaporated, and the solids were re-dissolved 

in the minimum amount of dichloromethane. A 2-cm diameter column was loaded with silica gel, 

and the product solution was added. The residue was purified on silica with 9:1 (v/v) hexanes-

ethyl acetate as the eluent. The elution was followed by thin layer chromatography. The solvents 

were evaporated yielding 113 mg (93.2%) porphyrin. UV-vis (dichloromethane lmax = 426 nm).  

Homogenous synthesis of cobalt tetra-phenylporphyrin (CoTPP)11: 

 TPP (48 mg, 0.078 mmol) was dissolved in methanol (10 mL). Anhydrous cobalt chloride 

(104 mg, .801 mmol) was dissolved in chloroform (15 mL). The solutions were combined, and the 

solution was refluxed for 3.5 hours. The solution was washed with a saturated aqueous sodium 

chloride solution (2 × 25 mL) and was dried with sodium sulfate. The organic solvent was 

evaporated. The yield was 53 mg (100%). UV-vis (dichloromethane lmax = 411 nm). 

Electrode modification: 

Using glassy carbon electrodes, cyclic voltammetry was performed on solutions containing 

an analyte with a terminal ethynyl group. Electrode modification was achieved by applying 

potentials greater than the oxidation potential of the ethynyl group. To maximize surface coverage, 

successive scans were used. The modified electrodes were washed with acetone and sonicated in 

dichloromethane for two minutes. The electrodes were electrochemically analyzed by performing 

voltammetry in a solution containing only supporting electrolyte. When ITO slides were used, they 

were tested by UV-vis, by obtaining scans before and after modification with the porphyrin.  

Hetrogenous synthesis of magnesium tetra(ethynyl-phenyl)-porphyrin (MgTEPP):  
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Magnesium bromide ethyl etherate (0.796 g, 2.85 mmol) was suspended in 

dichloromethane (10 mL). Triethylamine (0.5 mL, 3.58 mmol) was added to the suspension. An 

electrode modified with TEPP was fixed overnight in the suspension while it stirred. The electrode 

was added with acetone and sonicated in dichloromethane for two minutes, yielding a clean 

electrode modified with MgTEPP (30% yield, compared to original surface coverage). 

 

Results: 

Experiments were first performed with synthetic preparation and electrochemistry of 

magnesium and cobalt metalloporphyrins. The tetraphenylporphyrin (H2TPP) was purchased 

commercially. MgTPP and CoTPP were prepared by published methods,10-11 already outlined in 

this report. These non-ethynyl terminated porphyrins were used to aid the preparation and 

characterization of the ethynyl terminated porphyrins, which have been studied far less in the 

literature (Scheme 4).  

Scheme 4: Non-ethynyl terminated porphyrin (left) and ethynyl terminated porphyrin (right).  
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Synthesis of CoTPP was also attempted from MgTPP. Thus, MgTPP (1.9 mM) and 

anhydrous cobalt chloride (0.10 M) were stirred in 1:1 dichloromethane-methanol solution at 

room temperature. Figure 1 shows the UV-vis spectrum of MgTPP initially (blue) and 24 hours 

after addition of cobalt chloride (red). In both cases, the Soret band appears at 426 nm, which is 

consistent with MgTPP.12 The Soret band for CoTPP appears at 411 nm. Therefore, these data 

show that replacement of the Mg by Co had not occurred.  

Figure 2 displays the cyclic voltammetry of H2TPP. H2TPP yielded three reversible 

oxidations, the third of which is less prominent (Fig. 2, solid line). The first oxidation wave (E1/2 

= 0.54 V) shows the characteristics of a one-electron reversible system (Epa – Epc = 80 mV, Ep – 

Ep/2 = 80 mV). The second oxidation wave (E1/2 = 0.87 V) has a similar shape and was assumed 

to also rise from a reversible, one-electron process. These first two one-electron oxidations fall at 

potentials that are consistent with literature results, indicating successive oxidations of H2TPP.13 

The third oxidation (E1/2 = 1.09 V) has considerably smaller currents compared to the first two 

oxidations and is likely to rise from the known 1-3% chlorin contaminant in the H2TPP sample. 

The two reduction couples (E1/2 = –1.70 V, E1/2 = –2.02 V) are comparable to the oxidation 

couples and therefore are assumed to be reversible, one-electron processes (Fig. 2, dashed line).13 

The potentials measured for the redox processes of H2TPP and its metal derivatives are collected 

in Table 1.  

The oxidation behavior of MgTPP resembled that of H2TPP (Fig 3). MgTPP displayed 

two reversible one-electron oxidations (E1/2  = 0.19 V, E1/2 = 0.56 V).13c, 14 One chemically 

irreversible reduction wave (Epc = –1.98 at 0. 2 V/s) has the properties of a one-electron transfer 

(Ep – Ep/2 = 80 mV).13c, 14-15  
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CoTPP had more redox waves than the Mg complex (Fig. 4). Three reversible oxidations 

(Fig. 5, solid line) are present (E1/2  = 0.46 V, E1/2 = 0.69 V, E1/2 = 0.84 V). 14 As with H2TPP and 

MgTPP, each of these oxidations is a single-electron process. A partially reversible reduction 

was observed (E1/2 = –1.36 V) (Fig. 4, dashed line). Scans at 200 mV/s and 400 mV/s reveal a 

dependency of reversibility on the scan rate (ia/ic = 0.64 at 200 mV/s and ia/ic = 0.75 at 400 mV/s, 

where ia/ic = 1 is fully reversible). The final reduction is irreversible (Epc = –1.90 V) (Fig. 4, 

dotted line), attributed to the reduction to Co(II). An irreversible oxidation (Epa = –0.74 V) is 

seen on the back scan, after scanning through the second reduction and perhaps through the first 

reduction. The smaller redox waves are assumed to be spurious.14  

After studying the non-ethynyl terminated porphyrins, experiments were performed with 

the ethynyl terminated porphyrins. Electrochemistry was performed on TEPP with the goal of 

achieving electrode modification. In homogeneous solution, scanning to 1.2 V (Fig. 5, dashed 

line), revealed two partially reversible oxidations (E1/2 = 0.58 V, E1/2 = 0.94 V). The second 

oxidation has the characteristics of a multi-electron process, along with the reduction on the back 

scan at Epc = 0.52 V. The potentials of these oxidations are in close agreement with the 

oxidations of TPP (Table 1). Scanning to 1.5 V showed yet another small irreversible oxidation. 

This third multi-electron oxidation wave, near the background of the medium, is attributed to 

oxidation of the terminal ethynyl groups.4 This oxidation resulted in the attachment of porphyrin 

to the glassy carbon electrode surface; attachment is only seen when the potential is scanned 

through the third oxidation. The collection of reduction data was overlooked and will be included 

future reports. The surface coverage after two scans to 1.5 V is typically G = 3 × 10-9 mol/cm2.16 

Figures 6-8 show cyclic voltammograms of surface-bound TEPP while the electrode is immersed 

in a 0.1 M solution of [NBu4][PF6] in dichloromethane. The surface-bound TEPP has an 
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irreversible oxidation and a reversible oxidation (Table 1) (Fig. 6). A similar behavior is seen 

with the reductions; an irreversible reduction followed by a reversible reduction (Table 1) (Fig. 

6). The potentials of the first reversible oxidations of solution and bound TEPP are within 0.06 V 

of each other, suggesting a similar redox process. Figure 7 shows only the reversible redox 

waves. These cyclic voltammograms were collected after first scanning positive (solid line) or 

negative (dashed line) depending if oxidations or reductions, respectively, were being studied. 

The irreversible processes are dependent on each other; in other words, the irreversible reduction 

can be regenerated by scanning through the irreversible oxidation and vice versa. Figure 8 shows 

the same scan (both scan in the negative direction and then the positive direction) performed 

successively. The first scan (solid line) had very little current for the reduction, while ~6 µA was 

measured for the oxidation. With the second scan (dashed line), a current of ~6 µA was 

observed, and the oxidation had nearly the same current as the previous scan. The ratio of the 

amount of charge passed in the irreversible processes compared to the reversible process varies 

between electrodes, and they are generally similar in magnitude to the reversible redox 

processes. The same behavior is seen when the potential is scanned in the positive direction first. 

This demonstrates that the irreversible waves can be regenerated. 

Surface-bound TEPP went through a magnesium treatment outlined above to form 

surface-bound MgTEPP. The surface coverage of porphyrin decreased from G = 3 × 10-9 

mol/cm2 to G = 1 × 10-9 mol/cm2 after treatment. Figures 9, 10, and 11 are the cyclic 

voltammetry of the MgTEPP electrode in a solution of [NBu4][PF6] (0.1 M in dichloromethane). 

As with TEPP, an irreversible oxidation and reduction are seen (Table 1) (Fig. 10 and 11). These 

redox waves have the same dependency on each other; the oxidation wave regenerates the 

reduction wave and vice versa. Figures 10 and 11 show the results of consecutive scans; the large 
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irreversible waves are no longer present. Two reversible oxidations are observed (Table 1). The 

irreversible reduction (Table 1) was obscured by reduction seen in Figure 11, increasing the 

apparent current of the pre-wave. An ITO slide was modified with TEPP by the same method as 

the electrode. Figure 12 shows the UV-vis spectrum of the slide before (blue) and after (red) 

treatment with magnesium. The Soret bands for TEPP and MgTEPP are 425 nm and 431 nm, 

respectively, representing a 6-nm redshift. This is very similar to the 7-nm redshift seen with 

TPP and MgTPP.  

Preparation of CoTEPP was attempted by the same method used for CoTPP. Four 

reversible reductions are present (Table 1) (Fig. 13, solid line). The second and fourth reductions 

are considerably smaller than the other reductions. There are no oxidations present (Fig. 13, 

dashed line). Scans out to 1.85 V do not yield oxidations of ethynyl groups. Therefore, no 

electrode attachment was achieved for CoTEPP.   

 

Discussion:  

The primary interest of this study was the preparation and characterization of surface-

bound porphyrins. The prerequisite for surface attachment of a covalently-bounded porphyrins 

was the possession of terminal ethynyl groups. The syntheses, UV-vis spectra, and 

electrochemistry of TPP, MgTPP, CoTPP provided benchmarks for the ethynyl-terminated metal 

porphyrins, which are more difficult to obtain. Through oxidation of the ethynyl groups, the 

immobilization of porphyrins on a glassy carbon electrode was successfully achieved by methods 

outlined in the literature.4 The electrochemistry (Fig. 7) and UV-vis spectra (Fig. 12) are in close 

agreement with reported data.  
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The first of covalently-bound magnesium porphyrins is reported here with the attachment 

of MgTEPP to glassy carbon. The magnesium treatment on the surface-bound TEPP yielded a 

redshift, 6 nm, in the UV-vis spectrum. A nearly identical redshift, 7 nm, is observed in 

dichloromethane with TPP and MgTPP.12, 17 The attached MgTPP had similar redox properties 

as TEPP and was like the homogenous MgTPP, which had two reversible oxidations, ascribed to 

the ring, and an irreversible process, assigned to magnesium’s reduction.14 The separation 

between the first and second oxidations was 0.37 V and 0.36 V for MgTPP and surface-bound 

MgTEPP, respectively.  

The reversible behavior of surface-bound TEPP was in close agreement with previous 

results (Fig. 7).4 The irreversible waves were reported in supporting information of reference 4 

and were attributed to electrode history (Fig. 8). These redox processes have also been described 

as “remnant negative charges,”18 citing the existence of such waves with electrogenerated 

electroactive polymers.19 M. Picot and 

coworkers described the surface-bound 

porphyrin as a polymer. A polymer is 

not an adequate description of the 

surface-bound porphyrin; porphyrin 

molecules are bonded to the electrode 

surface not to other porphyrin 

molecules. Remnant charge suggests 

that the attached porphyrin has a 

specific capacity, but no correlation 

was found between surface coverage 
Scheme 5: 2D cut-away from the electrode surface, showing 
the hypothesized arrangement of the porphyrins. The 
p-stacking interactions shown with wavy bonds. 
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and the charge passed in the irreversible processes. Based on these data, we hypothesized that 

there are porphyrins immobilized near the electrode surface, which are not covalently attached. 

The sharp redox waves are reminiscent of adsorption/desorption waves.20 Because the wave can 

be fully regenerated, the species do not defuse away, suggesting another mechanism 

immobilizing them. As the porphyrins are believed to be bound perpendicularly to the electrode 

surface,21 we hypothesized that the porphyrins are prevented from defusing away by strong p-

stacking interactions between the arene rings of the porphyrins. The number of non-covalently 

versus covalently attached porphyrins would be taken to be a stochastic process.  

One of the goals of this project was the creation of surface-bound CoTEPP. It was 

originally hypothesized that a cobalt salt could be used to exchange MgTEPP’s magnesium, 

because it was assumed that magnesium’s large covalent radius6 would make it loosely bonded. 

While there is precedent in the literature for magnesium metal exchange,22 the kinetics are slow. 

When MgTPP was stirred with a 50-fold excess of CoCl2, after 24 hours there was no 

discernable conversion to CoTPP (Fig. 1). Therefore, simple inorganic cobalt salts will not 

exchange with magnesium. CoTEPP was attempted to be synthesized for direct attachment to the 

electrode. Although the same procedure was used for the synthesis of CoTPP, the 

electrochemistry of the product was of doubtful veracity (Fig. 13). The cyclic voltammograms 

had little resemblance to those of CoTPP (Fig. 4). Therefore, we believed it is unlikely CoTEPP 

was synthesized, and it cannot be ruled out that oxidation of CoTEPP’s ethynyl groups would 

yield attachment.  

For future studies, electrodes modified with TEPP or MgTEPP will be tested in different 

media, systematically varying the solvent and supporting electrolyte. Other methods will be used 
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to synthesize CoTEPP, such as exchange with CdTEPP23 or using the homogeneous synthesis 

methods.11  
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Figures and Table: 

  
Figure 1: UV-vis spectra of a solution of MgTPP and a 50-fold excess of Co(II)Cl2 initially 
(blue line) and after 24 hours (red line).  
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Figure 2: CV scans at 2 mm GC electrode, 0.2 V s-1, in dichloromethane/0.1 M [NBu4][PF6]: 1 
mM solution of TPP.  
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Figure 3: CV scans at 2 mm GC electrode, 0.2 V s-1, in dichloromethane/0.1 M [NBu4][PF6]: 0.6 
mM solution of MgTPP. 
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Figure 4: CV scans at 2 mm GC electrode, 0.2 V s-1, in dichloromethane/0.1 M [NBu4][PF6]: 1 
mM solution of CoTPP. 
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Figure 5: CV scans at 2 mm GC electrode, 0.2 V s-1, in dichloromethane/0.1 M [NBu4][PF6]: 1 
mM solution of TEPP. 
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Figure 6: CV scans at 2 mm GC electrode modified with TEPP, 0.2 V s-1, in 
dichloromethane/0.1 M [NBu4][PF6].  
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Figure 7:	CV scans at 2 mm GC electrode modified with TEPP, 0.2 V s-1, in 
dichloromethane/0.1 M [NBu4][PF6].	
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Figure 8:	CV scans at 2 mm GC electrode modified with TEPP, 0.2 V s-1, in 
dichloromethane/0.1 M [NBu4][PF6]: first scan (solid line), second scan (dashed line).	
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Figure 9:	CV scans at 2 mm GC electrode modified with MgTEPP, 0.2 V s-1, in 
dichloromethane/0.1 M [NBu4][PF6].	
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Figure 10:	CV scans at 2 mm GC electrode modified with MgTEPP, 0.2 V s-1, in 
dichloromethane/0.1 M [NBu4][PF6]: first scan (solid line), second scan (dashed line).	
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Figure 11:	CV scans at 2 mm GC electrode modified with MgTEPP, 0.2 V s-1, in 
dichloromethane/0.1 M [NBu4][PF6]: first scan (solid line), second scan (dashed line).	
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Figure 12: UV-vis spectra of an ITO slide modified with TEPP (blue line) and after Mg 
treatment (red line). 
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Figure 13:	CV scans at 2 mm GC electrode, 0.2 V s-1, in dichloromethane/0.1 M [NBu4][PF6]: 1 
mM solution of CoTEPP. 
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Table 1: The potentials versus ferrocene, unless otherwise noted, of the various redox processes for each 
compound. The measurements were made in dichloromethane/ 0.1 M [NBu4][PF6]. a: Irreversible process, 0.2 V s-

1. b: Surface-bound porphyrin. c: Referenced vs. Ag/AgCl.  
 TPP MgTPP CoTPP TEPP TEPPb MgTEPPb CoTEPP 

3rd Oxidation - - 0.84 V >1.50 V - 0.97 Vc - 

2nd Oxidation 0.87 V 0.56 V 0.69 V 0.94 V 0.52 V 0.61 Vc - 

1st Oxidation 0.54 V 0.19 V 0.46 V 0.58 V 0.28 Va 0.50 Va,c - 

1st Reduction -1.70 V -1.98 Va -1.36 V - -1.57 Va -1.62 Va,c -0.45 V 

2nd Reduction -2.02 V - -1.90 Va - -1.74 V -1.65 Va,c -1.25 V 
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