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Abstract

A significant component of recent space exploration has been unmanned mission to comets
and asteroids. The increase in interest for these bodies necessitates an increase in demand
for higher fidelity trajectory simulations in order to assure mission success. Most available
methods for simulating trajectories about asymmetric bodies assume they are of uniform
density. This thesis examines a hybrid method that merges a mass concentration (“mascon”)
model and a spherical harmonic model using the “Brillouin sphere” as the interface. This
joint model will be used for simulating trajectories about variable density bodies and, in
particular, contact binary asteroids and comets.

The scope of this thesis is confined to the analysis and characterization of the spherical
harmonic modeling method in which three bodies of increasing asymmetrical severity are
used as test cases: Earth, asteroid 101955 Bennu, and asteroid 25143 Itokawa. Since the
zonal harmonics are well defined for Earth, it is used as the initial baseline for the method.
Trajectories in the equatorial plane and inclined to this plane are simulated to analyze the
dynamical behavior of the environment around each of the three bodies. There are multiple
degrees of freedom in the spherical harmonic modeling method which are characterized as
follows: (1) The radius of the Brillouin sphere is varied as a function of the altitude of
the simulated orbit, (2) The truncation degree of the series is chosen based upon the error
incurred in the acceleration field on the chosen Brillouin sphere, and (3) The gravitational
potential and acceleration field are calculated using the determined radial location of the
Brillouin sphere and the truncation degree.

An ideal Brillouin sphere radius and truncation degree are able to be determined as a
function of a given orbit where the error in the acceleration field is locally minimized. The
dual-density model for a contact binary is found to more accurately describe the dynamical
environment around Asteroid 25143 Itokawa compared to the single density model.
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Chapter 1

Introduction

Unmanned missions to small celestial objects, including near-Earth asteroids and comets,

represent a significant component of the future of space exploration. These objects can

be highly irregular in shape and have non-homogeneous density distributions causing their

gravitational fields to be highly complex. Due to the close proximity of missions to these

objects, precise trajectory planning is needed and thus an accurate gravity model is essential

for mission success.

This thesis will address the challenges involved in modeling the gravitational field of

small celestial objects by implementing a spherical harmonic potential model. A mascon

distribution model is used as the baseline and input for the spherical harmonic series ex-

pansion. Details on the mascon distribution models used are available in the appendix

(Appendix A) and supplemental papers referenced.

Contact Binaries

Earth’s neighborhood is littered with the remnants of the early Solar System. These objects

are called “Near-Earth Objects” (NEOs) and are comprised of both asteroids and comets.

Due to their small scale and high quantity, the frequency of collisions between NEOs are

1



1.2. ONGOING AND FUTURE MISSIONS

Figure 1.1: Diagram of asteroid 25143 Itokawa highlighting its two, homogeneous density regions.
Credit: ESO [1].

high and cause them to constantly change in size and composition. When two objects

aggregate into one, they are referred to as “contact binaries”. Contact binaries are assumed

to contain two densities (one from each of the two bodies that collided).

Figure 1.1 highlights the possible differing density regions of asteroid 25143 Itokawa.

The “head” of Itokawa (red) has a slight higher density than that of the “body” (blue).

Ongoing and Future Missions

Over the last few decades, there have been a wide range of missions to small celestial

bodies such as comet 67P/Churyumov-Gerasimenko (67P/C-G), asteroid 101955 Bennu,

and asteroid 25143 Itokawa. The first asteroid flyby was conducted by the Galileo spacecraft

in 1991 [2]. Since then, dozens of comets and asteroids have been encountered and the

2



1.3. GRAVITATIONAL POTENTIAL

Table 1.1: Examples of missions to comets and asteroids.

Mission Name Space Agency Launch Date Target Mission
Galileo NASA October 1989 951 Gaspra Jupiter Orbiter [3]

NEAR Shoemaker NASA February 1996 Eros Orbiter [4]
Stardust NASA February 1999 81P/Wild & 9P/Tempel Flyby & Sample Return [5]
Hayabusa JAXA May 2003 25143 Itokawa Sample Return [6]
Rosetta ESA March 2004 67P/C-G Orbiter/Lander [7]

Deep Impact NASA January 2005 9P/Tempel & 103P/Hartley Flyby & Impactor [8]
Dawn NASA September 2007 Vesta & Ceres Orbiter [9]

Hayabusa 2 JAXA December 2014 162173 Ryugu Sample Return [10]
OSIRIS-REx NASA September 2016 101955 Bennu Sample Return [11]

intrigue of their origin and use has risen.

Table 1.1 lists various examples of previous missions to comets and asteroids and the ob-

jective of each mission. By returning samples and orbiting small bodies, our understanding

of space flight and the origins of our Solar System have greatly increased.

There are multiple missions planned and proposed for the next decade including: NASA’s

Asteroid Redirect Mission (ARM), NEOCam, and Lucy. Galileo gave a good example of the

necessity of understanding the dynamic environment around small bodies because although

the mission end game may not be an asteroid or comet, in order to reach any part of the

Solar System, asteroids/comets will be encountered.

Gravitational Potential

The gravitational potential induced on one spherical body from another can be calculated

continuously as,

Φ(r) = −Gm1m2
r (1.1)

where G is the gravitational constant (6.6741×10−11 m3kg−1s−2), m1 and m2 are the

respective masses of the two bodies, and r is the position vector from one body to the other

at any given instant. Typically the mass of the second body is considered negligible (as in

3



1.3. GRAVITATIONAL POTENTIAL

the case of an orbiting spacecraft) and equation 1.1 can be reduced to,

Φ(r) = −Gm1
r (1.2)

For the case of asymmetric, non-spherical bodies, the gravitational potential must be

computed by either appending perturbation forces to the point mass potential (Eq. 1.1) or

using a finite element approach,

Φ(r) = −G
N∑
i=0

dmi

|r− ri|
(1.3)

where dmi is the mass of the ith grid volume located within the body at position ri (Figure

1.2). The denominator of equation 1.3 can be expanded via the law of cosines or using

Legendre polynomials which will be discussed in Chapter 2.

γ

r
ri

dm

Figure 1.2: Diagram showing the gravitational potential an orbiting spacecraft experiences from a
differential mass element, dm.

The potential expressions shown must satisfy either Laplace’s or Poisson’s equation.

Poisson’s and Laplace’s Equations

Poisson’s equation describes the potential field induced by a given charge or density distri-

bution,

∇2Φ = −4πGρ (1.4)

4



1.3. GRAVITATIONAL POTENTIAL

where G is the gravitational constant and ρ is the density distribution of the given body.

If the density distribution is zero, equation 1.4 can be reduced to Laplace’s equation,

∇2Φ = 0 (1.5)

The solution to Laplace’s equation is a set of harmonic functions.

Available Gravity Field Models

The gravitational potential field of an asymmetric body is derived from a shape model of the

body and can either be calculated discretely from each component of that shape model or it

can be expanded as an infinite, convergent series. Both approaches hold merit, but are not

without flaws. Prior works have examined various modeling techniques including: approxi-

mating the shape as a dumbbell (two mascons tangent to one another) [12], a homogeneous

ellipsoid [13], the mascon model (filling the body with multiple small point masses) [14],

and the polyhedron model [15, 16]. Due to the idealized nature of the first two methods,

they can be applied to many bodies, but have the downside of oversimplifying the shape.

The last two methods have the ability to model most body shapes with a high degree of

accuracy, but this specification requires an in-depth knowledge of the characteristics of the

body which is not always readily available.

Werner [17] was the first person to analytically calculate the gravity and acceleration

fields of asteroids and comets by modeling the body as a constant-density polyhedron. In

order to obtain a higher degree of accuracy of the shape of the body, Chanut et al. [18]

presented two types of mass concentration (mascon) models: (1) A triangular face on the

surface is extended to the center of the body to form a tetrahedron, and (2) That tetrahedron

is split into three parts. This allowed for the volume of a given body to be modeled from

surface elements which leads to variable density representation within a body. The mascon

model decomposes the body into a collection of point masses and obtains the total potential

5



1.3. GRAVITATIONAL POTENTIAL

field by the principle of superposition. The attractiveness of this model lies in its robustness,

computational simplicity, and ability to be parallelized for speed. This approach has been

previously used to calculate the potential fields for asteroids 4769 Castalia [16] and 101955

Bennu [19], and comet 67P/Churyumov-Gerasimenko (67P/C-G) [20].

Pearl & Hitt [14] proposed a method for distributing mascons based on finite volume

meshes and examined the effects of mesh topology on the accuracy of the resultant mascon

distributions. The mascon model was found to be less accurate than the polyhedron model

at the surface of a body, but the accuracy is quickly skewed towards the mason model as

the distance from the surface increases. Also, the finite volume mesh distributes mascons

non-uniformly, allowing the volume of each mascon to vary, which speeds up the mesh

generation process.

Alternatively, the potential for an asymmetric body can, in principle, be represented as

a spherical potential augmented by the addition of a (finite) number of tesseral harmonics.

For highly asymmetric bodies the number of tesseral harmonics required and the complexity

of the model is significantly increased. The spherical harmonic-based approach has been

previously used to calculate the potential and acceleration fields for asteroids 4769 Castalia

and 101955 Bennu [19]. The method has been shown to model a body’s gravity field with

high accuracy, but when computing close proximity orbital trajectories, there is significant

error introduced into the acceleration field which is propagated through each time step of

the simulation [19, 21]. Takahashi & Scheeres [19] tried to mitigate the errors close to the

surface of a body by using spheres (“Brillouin spheres”) tangent to the body’s surface and

calculating series coefficients interior and exterior to the spheres. By using a polyhedral

base model for the spherical harmonic expansion of the gravity field, errors seen in using the

exterior gravity field were decreased with the use of interior gravity fields/tangent Brillouin

spheres. This method is shown to be useful for landing trajectories, but errors on the order

of 5% - 10% are still seen in the acceleration field on the surface of asteroids 101955 Bennu

6



1.3. GRAVITATIONAL POTENTIAL

and 4769 Castalia for degree n ≥ 5 and a total surface mapping using this method would

require a significant amount of time to simulate. Despite the higher accuracy seen in this

model compared to others, it’s utility lies in analyzing gravity field anomalies after the fact

and not in-situ, on the fly calculations.

7



Chapter 2

Spherical Harmonics

Spherical harmonic functions are the solution to Laplace’s equation on a spherical boundary

and are denoted as Y m
n (θ, φ) where θ is the polar angle that ranges from [0, π] and φ is the

azimuthal angle that ranges from [0, 2π]. Spherical harmonic functions are written in terms

of associated Legendre polynomials and can be normalized depending upon the application.

The associated Legendre polynomials have the form, Pmn (x) where n is the degree of the

polynomial and m is the order (Figure 2.1). For the special case of m = 0, the associated

Legendre polynomials are referred to as Legendre polynomials, Pn(x) (Figure 2.2).

Function Characteristics

Spherical Harmonics define an orthonormal basis on a sphere and are defined as,

Y m
n (θ, φ) = Km

n e
imφPmn (cosθ) (2.1)

where n ε [0,N], m ε [-n,n], and Km
n are the normalization constants.

In geodesy and spectral analysis applications, it is typical for the associated Legendre

8



2.1. FUNCTION CHARACTERISTICS

Figure 2.1: Visualization of real valued spherical harmonic modes ranging from n = m = [0,4].

Figure 2.2: Visual of the Legendre polynomials for degrees n = 0,...,7.

9



2.2. GRAVITATIONAL POTENTIAL

polynomials and thus, the spherical harmonic functions, to be normalized by 4π such that,

Km
n =

√
(2n+ 1)(n−m)!

(n+m)!

and, ∫∫
Ω
Ynm(θ, φ)Y ∗n′m′(θ, φ)dΩ = 4πδnn′δmm′

Only the real components of the spherical harmonic functions are considered in geodesy

and spectral analysis applications (the imaginary components of the functions are typi-

cally only used in Quantum Mechanical calculations). Therefore, the addition of a (−1)m

term (referred to as the “Condon-Shortley Phase”) in the spherical harmonic definition is

neglected.

By only considering the real components of the spherical harmonic functions, the series

undergoes an initial “triangular truncation”, as seen in Figure 2.1. Further truncation of

the series is required for practical applications of the infinite series. This truncation degree,

N, will be determined in a case-by-case manner.

Gravitational Potential

Referring back to equation 1.3, the denominator of this equation can be rewritten using the

law of cosines as,

|r− ri| =
√
r2 − 2r · ri + r2

i

= 1
r

√
1− 2ri

r
cos γ +

(
ri
r

)2

10



2.2. GRAVITATIONAL POTENTIAL

This is now the generating function for Legendre polynomials and can be rewritten again

as,
1
r

√
1− 2ri

r
cos γ +

(
ri
r

)2
= 1
r

∞∑
n=0

(
ri
r

)n
Pn(cos γ) (2.2)

and thus the gravitational potential of an axisymmetric body can be written as,

Φ(r) = −Gm
r

∞∑
n=0

(
ri
r

)n
Pn(cos γ) (2.3)

which reduces to Eq. 1.2 when n = 0.

x

y

z

φ

θ

In order to obtain the general form of the gravitational potential equation written in

spherical harmonics for asymmetric bodies, one of two methods can be used: MacCullagh’s

method [22] or spherical trigonometry [23]. The spherical trigonometry approach is more

applicable to this thesis so that derivation will be highlighted here.

From Eq. 2.3, cos(γ) can be expanded as,

cos(γ) = r · ri = sin(θ)sin(θ′) cos(φ− φ′) + cos(θ) cos(θ′)

where r = sin(θ) cos(φ)̂i + sin(φ) sin(θ)ĵ + cos(θ)k̂ and similarly for ri. Using the addition

11



2.2. GRAVITATIONAL POTENTIAL

theorem for Legendre polynomials, Pn(cos γ) can be written as,

Pn(cos γ) = Pn(cos θ)Pn(cos θ′) + 2
n∑

m=1

(n−m)!
(n+m)! [An,mA

′
n,m +Bn,mB

′
n,m] (2.4)

where

An,m = Pmn (cos θ) cos(mφ)

Bn,m = Pmn (cos θ) sin(mφ)

A′n,m = Pmn (cos θ′) cos(mφ′) := C ′n,m

B′n,m = Pmn (cos θ′) sin(mφ′) := S′n,m

and C ′n,m and S′n,m are the series coefficients normalized by the reference radius, rni , and

body mass.

Plugging Eq. 2.4 into Eq. 2.3 and simplifying gives the gravitational potential field for

axisymmetric and asymmetric modes,

Φ(r) =− Gm

r

[ ∞∑
n=0

(
ri
r

)n
C0
nPn(cos θ) +

∞∑
n=1

∞∑
m=1

(
ri
r

)n
Pmn (cos θ)[C ′n,m cos(mφ) + S′n,m sin(mφ)]

]
(2.5)

C0
n corresponds to the coefficients for the axisymmetric modes (zonal harmonics) and are

typically written as Jn, where Jn = −
( ri
r

)n
C0
n.
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Chapter 3

Computational Methods

A given body is decomposed into multiple, discrete, spherical mass concentrations (“mas-

cons”) (Appendix A). The gravitational potential of the body is then discretely calculated

from each finite element (Eq. 1.3) and projected onto a circumscribing spherical boundary

called a “Brillouin sphere”. The projected potential on the boundary can then be expanded

as an infinite series of spherical harmonic functions via,

Φ(r) =− µ

RS

[ N∑
n=0

n∑
m=0

(
RS
r

)(n+1)

Pmn (cos θ)[Cmn cos(mφ) + Smn sin(mφ)]
]

(3.1)

where RS is the radius of the Brillouin sphere. The Brillouin sphere boundary and differing

model regions can be seen in Figure 3.1. If the body contains regions of variable density, the

corresponding mascons will be tagged with the appropriate density when calculating the

gravitational potential induced by that mascon. For the case of contact binaries, the body

can be split into two, homogeneous density subsections and their potential fields can be

expanded individually. If the body is assumed to be of homogeneous density, each mascon

is tagged with the bulk density of the body and the potential field is calculated in its

entirety.

13



3.1. COEFFICIENT DETERMINATION

Once the coefficients of the spherical harmonic series expansion are calculated, the po-

tential fields can be numerically integrated to obtain orbital trajectories about the body.

Due to the linearity of spherical harmonic functions, if the body has been decomposed

into variable density subsections, the acceleration fields can be summed to obtain the full

acceleration field of the body and therefore a complete trajectory.

Mascon Distribution

Spherical Harmonics

Brillouin
Sphere

Figure 3.1: Diagram depicting the potential matching on the Brillouin sphere.

Coefficient Determination

The gravitational potential field of any body can be expressed in terms of a spherical

harmonic series expansion as long as the boundary of this field is a spherical surface. The

Brillouin sphere acts as this boundary.

The Brillouin sphere map is fully defined by its resolution, spacing, and radius. The

14



3.1. COEFFICIENT DETERMINATION

resolution of the Brillouin sphere is determined by the resolution of the base mascon dis-

tribution and must be spaced in such a way as to allow for the inversion technique used

to calculate the coefficients of the series. A Gauss-Legendre Quadrature inversion is used

here and requires a [θ, φ] ε [N+1,2N+1] spaced grid, where N is the maximum degree of the

spherical harmonic series.

Once the potential field is correctly projected onto the Brillouin sphere, the field can

undergo modal decomposition (via Gauss-Legendre Quadrature (GLQ)) to determine the

coefficients, Cmn and Smn , that uniquely define the system. A benefit of using this quadrature

method is that aliasing of the data is not a factor [24].

GLQ assumes that an integral of the form,

∫ b

a
f(x)dx

can be approximated as,
n∑
i=1

wif(xi)

where wi and xi are the weighting coefficients and the nodes of the series respectively. The

integral must be normalized such that a = −1 and b = 1. This definition can easily be

extended to multidimensional applications,

∫ 1

−1

∫ 1

−1
f(x, y)dxdy ≈

n∑
i=1

m∑
j=1

wi,jf(xi, yj) (3.2)

For the case of spherical harmonics,

f(θ, φ) =
∞∑
n=0

n∑
m=0

Amn Y
m
n (θ, φ) (3.3)

where Amn are the coefficients of the series (i.e. Cmn and Smn ) left to be determined.

Up to N coefficients are able to be calculated using this method, but in practice, this

15



3.2. ACCELERATION

many are not needed. The exact number of coefficients needed will be discussed in Chapter

4.

The open source python toolbox, SHTOOLS [25], is used to implement the GLQ inver-

sion. The coefficients are 4π-normalized and the Condon-Shortley phase is neglected.

Acceleration

Once the gravitational potential field is established as a finite series of spherical harmonics

(i.e. the coefficients of the series, Cmn and Smn , are determined), the acceleration of an

orbiting body can be expressed in Cartesian coordinates as,

a ≡−∇Φ(x, y, z) = − µ

RS

N∑
n=0

n∑
m=0

Rn+1
S (x2 + y2 + z2)

−(n+2)
2


xz

x2+y2

yz
x2+y2√

x2 + y2 + z2


(
(n−m+ 1)Pmn+1

(
z√

x2 + y2 + z2

)


cos(mζ) + sin(mζ)

cos(mζ) + sin(mζ)

sin(mζ)− cos(mζ)


Cmn
Smn

+
√
x2 + y2 + z2Pmn

(
z√

x2 + y2 + z2

)


−(Cmn x(n+ 1) + Smn my) (Cmn my − Smn x(n+ 1))

(Cmn y(n+ 1) + Smn mx) −(Cmn mx+ Smn y(n+ 1))

0 0


cos(mζ)

sin(mζ)

), (3.4)

ζ ≡ arctan( yx)

where µ is the gravitational parameter of the body and RS is the radius of the Brillouin

sphere. The acceleration field is converted from Spherical to Cartesian coordinates for

computational implementation.
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3.2. ACCELERATION

In order to account for a body’s rotation, a rotation tensor about the z-axis can be used.

For sake of comparison between models, rotation is ignored in the following chapters.

17



Chapter 4

Method Characterization

Two bodies of interest were chosen to characterize the utility and scope of this spherical

harmonic model: Earth and Asteroid 101955 Bennu. Earth was chosen because it’s zonal

harmonics are well defined and Bennu was chosen because of its smaller size and more

dynamical environment, as well as its current interest in the science community due to the

OSIRIS-REx launch last year.

Earth

Three trajectories are chosen to analyze the behavior of the model in different environments

around Earth: a low Earth orbit (LEO), medium Earth orbit (MEO), and an orbit inclined

to Earth’s equatorial plane. Each of these orbits are used to quantify and characterize the

error in the potential and acceleration fields derived from this spherical harmonic model in

comparison to the experimentally derived zonal harmonics for Earth. The orbits are also

used as a way to define an ideal location/radius for the Brillouin sphere.

LEO

A circular LEO orbit of altitude r = 200 km is simulated (Figure 4.1).
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4.1. EARTH

Figure 4.1: LEO orbit with altitude of 200 km.

Brillouin Sphere Radius

The radius of the Brillouin sphere is typically desired to be as close to the surface of a given

body as possible. This allows for close proximity trajectory calculations to be done using

the spherical harmonic model, but this radial location may not be ideal when it comes to

minimizing the error incurred in gravity and acceleration field calculations.

The radius of the Brillouin sphere, RS , is allowed to vary between 5% and 95% of

the orbital altitude of the trajectory being simulated with the constraint that periapsis

cannot cross the spherical boundary. At each location, the error in the potential field and

acceleration field is analyzed as a function of truncation degree of the spherical harmonic

series. Figure 4.2 shows the mean percent difference between the harmonic derived and

the theoretical potential field of Earth on each Brillouin sphere radius. The mean percent

difference error (MPE) is calculated from two series truncation degrees: N = 8 and 15.
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4.1. EARTH

Figure 4.2: Mean percent difference in the gravitational potential derived from spherical harmonic
model and degrees N = 8 and 15 on each Brillouin sphere.

These truncation degrees were chosen based on the limits of the known zonal harmonics

(up to J7) and the limits of the numerical inversion algorithm (up to N = 15 based on the

normalization of the series). The error in the derived potential field is shown to decrease as

the degree of the series is increased as well as the radius of the Brillouin sphere.

Figure 4.3 shows the error in the acceleration field on each Brillouin sphere radius using

the maximum truncation degree of N = 15. At R10 = R10/r = 95%, the error in the

acceleration field is at its lowest with a value of 5.88× 10−4%. The difference between the

acceleration field errors can be better seen in Figure 4.4 which shows the increasing trend

in the -log10(MPE) which correlates to a decreasing trend in error on spheres R8, R9, and

R10. The error in the acceleration field mirrors the results of the errors in the potential

field leading to the conclusion that the largest Brillouin sphere (the sphere closest to the

simulated trajectory), R10/r = 95%, will give the most accurate results.
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4.1. EARTH

Figure 4.3: The -log10 of the mean percent difference in the acceleration field derived from the
theoretical zonal harmonics of Earth and the spherical harmonic model on each Brillouin sphere for
the maximum truncation degree (N = 15).

Figure 4.4: Zoomed in view of error in the acceleration field on the three largest Brillouin sphere
radii analyzed: R8, R9, and R10.
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4.1. EARTH

Table 4.1: Comparison of the theoretical zonal harmonics and derived coefficients for a LEO orbit
on a Brillouin sphere of radius Rs/r = 95%.

Jn J10
n Percent Difference

J2 1.082 63× 10−3 1.082 92× 10−3 2.6787× 10−2

J3 −2.532 66× 10−6 2.875 67× 10−6 13.543
J4 −1.619 63× 10−6 −1.846 03× 10−6 13.979
J5 −2.272 98× 10−7 3.130 29× 10−7 37.717
J6 5.406 76× 10−7 4.498 11× 10−7 16.806
J7 3.523 64× 10−7 −3.078 61× 10−7 12.629

Series Coefficient Determination

The zonal harmonics, Jn, for Earth are compared to the derived coefficients for this orbit

using R10/r = 95% in Table 4.1. The theoretical zonal harmonics can be compared to the

derived harmonic coefficients via, Jn = −
(
RS
r

)n
C0
n := JSn where JSn = J10

n for the Brillouin

sphere used. There is a good correlation between the experimental and theoretical zonal

harmonics, but as the precision of the coefficients increases, the model has a harder time

matching the “true” value.

Similar to Figure 4.3, Figure 4.5 shows the error in the acceleration field on each Brillouin

sphere for this orbit, but now the relative errors in the truncation degree are also being

compared. Degrees N = 3, 5, 7, 10, 12, and 15 are shown. Their resultant acceleration field

errors on each sphere overlap almost completely. For the chosen Brillouin sphere, R10/r, N

= 5 gives the smallest error in the acceleration field with a value of 6.0718× 10−4%.

Orbital Parameters

A useful comparative tool for the accuracy of the final trajectory output by the model

is the time evolution of the orbital parameters. There are six Keplerian elements: semi-

major axis (a), specific true anomaly (ν), argument of perigee (ω), right ascension of the

ascending node (Ω), eccentricity (e), and inclination (i). The specific angular momentum
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4.1. EARTH

Figure 4.5: The -log10 of the mean percent difference in the acceleration field derived from the
theoretical zonal harmonics of Earth and the spherical harmonic model on each Brillouin sphere for
truncation degrees N = 3, 5, 7, 10, 12 and 15.

(h) is another useful metric for analyzing an orbital trajectory. Only three are plotted in

Figure 4.6 (h, e, and i) to reduce visual clutter. The relative differences between all of the

parameters and the “true” parameter values are listed in Table 4.2.

The change in inclination shown in Figure 4.6 shows the largest variances between the

output from each degree, N. N = 3 undershoots the “true” inclination and N = 5 overshoots

it. After N = 8, the values converge upon each other which means a higher accuracy output

based on increasing the truncation degree further is not possible. The specific angular

momentum and eccentricity plots are much less sensitive to perturbations in the data set

as there are no differences between the differing degree outputs.

Although N = 5 gave the highest precision acceleration field, it does not give the most

accurate orbital parameters. N = 8 is chosen as the ideal truncation point of the series for

this orbit. This truncation degree is expected based upon the defined zonal harmonics for

Earth (up to J7 = −
(
RS
r

)7
C0

7 ).
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4.1. EARTH

Figure 4.6: Comparison of the change in the time evolution of orbital parameters for a LEO orbit.
The dashed line shows the “true” output and the colored lines are derived from various truncation
degrees of the spherical harmonic series. A Brillouin sphere radius of RS/r = 95% was used.

Table 4.2: Mean differences between the “true” and harmonic model derived evolution of orbital
parameters for various truncation degrees, N.

Parameter N

3 5 7 8 10 12 15
h 0.3952668 0.3952678 0.3952676 0.3952674 0.3952674 0.3952674 0.3952674
e 0.000115309 0.000115473 0.000115608 0.000115607 0.000115629 0.000115613 0.000115615
i 3.241 544× 10−6 1.739 987× 10−6 1.124 686× 10−6 4.842 694× 10−7 4.275 196× 10−7 4.683 980× 10−7 4.367 380× 10−7

ω 3.0277318 3.0926497 3.0831996 3.0581932 3.0536532 3.0580166 3.0538196
Ω 3.0812163 3.1010139 3.1004807 3.0946122 3.0932406 3.0945655 3.0932855
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4.1. EARTH

Figure 4.7: MEO orbit with altitude of 2000 km.

MEO

A circular MEO orbit of altitude r = 2000 km is simulated. The behavior of this orbit is

analyzed in the same manner as the LEO orbit. The error in the gravitational potential

and acceleration fields are analyzed as a function of the radius of the Brillouin sphere and

truncation degree of the series. The time evolution of the orbital parameters is used as the

final characterization of the accuracy of the model for this orbit.

Brillouin Sphere Radius

Figure 4.8 shows the mean percent difference between the harmonic derived and the the-

oretical potential field of Earth on each of the ten Brillouin sphere radii (RS
r ε[5%, 95%]).

The same downward trend in error that was seen for the LEO orbit is seen here; as the

Brillouin sphere radius is increased and a higher degree of the series is used, the error in
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4.1. EARTH

Figure 4.8: Mean percent difference in the gravitational potential derived from spherical harmonic
model and degrees N = 8 and 15 on each Brillouin sphere.

the derived potential field decreases. There is a steeper downward slope seen here due to

the larger orbital altitude and thus a larger range of RS/r.

Figure 4.9 shows the error in the acceleration field on each Brillouin sphere radius using

the maximum truncation degree of N = 15. The downward trend in error seen in the

potential field is reversed for the acceleration field and the error at the smallest Brillouin

sphere, R1 = R1/r = 5%, is actually less than the largest. R1/r has a mean percent

difference error of 1.0 × 10−3% and at R10 = R10/r = 95%, the error in the acceleration

field is 7.0 × 10−3%. Although there is a slight increase in the amount of error incurred

in the acceleration calculations when using R10/r, the lower error in the potential field at

R10/r warrants the use of that radius. However, errors in the coefficients and resulting

orbital parameters for both radii will be considered in the following sections.

Series Coefficient Determination

The zonal harmonics, Jn, for Earth are compared to the derived coefficients for this orbit

using R1/r and R10/r in Tables 4.3 and 4.4. There is a good correlation between the exper-
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Figure 4.9: The -log10 of the mean percent difference in the acceleration field derived from the
theoretical zonal harmonics of Earth and the spherical harmonic model on each Brillouin sphere for
the maximum truncation degree (N = 15).

Table 4.3: Comparison of the theoretical zonal harmonics and derived coefficients for a MEO orbit
on a Brillouin sphere of radius Rs/r = 5%.

Jn J5
n Percent Difference

J2 1.082 63× 10−3 1.082 92× 10−3 2.6787× 10−2

J3 −2.532 66× 10−6 2.871 01× 10−6 13.359
J4 −1.619 63× 10−6 −1.839 83× 10−6 13.596
J5 −2.272 98× 10−7 3.094 48× 10−7 36.142
J6 5.406 76× 10−7 4.547 71× 10−7 15.888
J7 3.523 64× 10−7 −3.108 26× 10−7 11.788

imental and theoretical zonal harmonics, but as the precision of the coefficients increases,

the model has a harder time matching the “true” value. The coefficients derivations on

both spheres have the hardest time matching J5. J2 is matched with the highest accuracy

which proves well for the simulations seeing as that is the largest perturbation for Earth.

Figure 4.10 shows the error in the acceleration field across all Brillouin sphere radii, for

various truncation degrees of the series (N = 3, 5, 7, 10, 12 and 15). The errors from each

degree converge upon each other as the radius of the Brillouin sphere increases, so at R10/r,

there is no “optimal” choice for N when trying to minimize the error in the acceleration
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Table 4.4: Comparison of the theoretical zonal harmonics and derived coefficients for a MEO orbit
on a Brillouin sphere of radius Rs/r = 95%.

Jn J10
n Percent Difference

J2 1.082 63× 10−3 1.082 92× 10−3 2.6787× 10−2

J3 −2.532 66× 10−6 2.964 22× 10−6 17.039
J4 −1.619 63× 10−6 −1.979 81× 10−6 22.238
J5 −2.272 98× 10−7 4.014 49× 10−7 76.618
J6 5.406 76× 10−7 3.089 84× 10−7 42.852
J7 3.523 64× 10−7 −2.107 64× 10−7 40.186

field. Looking at R1/r though, N = 5 gives the smallest error at 9.957× 10−4%.

Orbital Parameters

Similar to the LEO orbit, the change in inclination shown in Figures 4.11 and 4.12 show the

largest deviations between the output from each degree, N. N = 3 undershoots the “true”

inclination and N = 5 overshoots it just as they did in the LEO orbit. After N = 8, the

values converge upon each other which means a higher accuracy output based on increasing

the truncation degree further is not possible. The inclination derived from the spherical

harmonic model using R10/r matches the true inclination by ∼ 2 times better on average

than that of R1/r. The specific angular momentum and eccentricity plots are much less

sensitive to perturbations in the data set as there are no differences between the differing

degree outputs.

The output eccentricity from R10/r undershoots the true eccentricity by ∼ 10−4 on

average whereas the spherical harmonic derived eccentricity using R1/r matches the true

eccentricity well for all truncation degrees.

A truncation degree of N = 8 is again chosen as the ideal point to terminate the series.

Although the orbital parameter outputs from both Brillouin sphere radii are very similar,

R10/r gives a higher accuracy in the output inclination, as well as the derived potential

field, so the largest radius will be designated as the ideal Brillouin sphere radius for this
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Figure 4.10: The -log10 of the mean percent difference in the acceleration field derived from the
theoretical zonal harmonics of Earth and the spherical harmonic model on each Brillouin sphere for
truncation degrees N = 3, 5, 7, 10, 12 and 15.

orbit.
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Figure 4.11: Comparison of the change in the time evolution of orbital parameters for a MEO orbit.
The dashed line shows the “true” output and the colored lines are derived from various truncation
degrees of the spherical harmonic series. A Brillouin sphere radius of RS/r = 5% was used.

Figure 4.12: Comparison of the change in the time evolution of orbital parameters for a MEO orbit.
The dashed line shows the “true” output and the colored lines are derived from various truncation
degrees of the spherical harmonic series. A Brillouin sphere radius of RS/r = 95% was used.
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Inclined Orbit

A circular orbit inclined to Earth’s equatorial plane by i = 45◦ is simulated.

Figure 4.13: Orbit inclined at 45◦ to the equatorial plane with altitude of ∼2828 km.

Brillouin Sphere Radius

Figure 4.14 shows the mean percent difference between the harmonic model derived and

the “true” potential field of Earth for degrees N = 8 and 15 of the harmonic series. Again

the lowest error is seen in the largest Brillouin sphere for a higher truncation degree of the

series (N = 15).

Figure 4.15 shows the error in the acceleration field on each of the ten Brillouin spheres

for degree N = 15. As with the MEO orbit, the error incurred in the acceleration field

calculations is less for the smaller Brillouin sphere, R1/r, than the largest, R10/r. R1/r

results in 0.0158 times less percent error in the acceleration field than R10/r.
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Figure 4.14: Mean percent difference in the gravitational potential field derived from the spherical
harmonic model and degrees N = 8 and 15 on each Brillouin sphere.

Figure 4.15: The -log10 of the mean percent difference in the acceleration field derived from the
theoretical zonal harmonics of Earth and the spherical harmonic model on each Brillouin sphere for
truncation degree N = 15.

Series Coefficient Determination

There again is a good correlation between the derived coefficients and the defined zonal

harmonics on R10/r = 95% where the most precise coefficient is J2. Again the spherical
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Table 4.5: Comparison of the theoretical zonal harmonics and derived coefficients for an inclined
orbit on a Brillouin sphere of radius Rs/r = 95%.

Jn J10
n Percent Difference

J2 1.082 63× 10−3 1.082 92× 10−3 2.6787× 10−2

J3 -2.532 66× 10−6 3.004 98× 10−6 18.649
J4 −1.619 63× 10−6 −2.051 70× 10−6 26.677
J5 −2.272 98× 10−7 4.567 70× 10−7 100.96
J6 5.406 76× 10−7 2.067 139× 10−7 61.768
J7 3.523 64× 10−7 −1.292 65× 10−7 63.315

harmonic model has the hardest time recreating the odd zonal harmonics, specifically J5,

which could be due to the fact that the odd zonal harmonics are not symmetric about the

equator causing the model to have a harder time matching their sign. This is could also be

attributed to very small numerical error due to the level of precision of the coefficients. All

magnitudes of the derived zonal harmonics match though.

Figure 4.16 shows the acceleration error for various truncation degrees on all ten Bril-

louin spheres. Across each sphere, the errors from each truncation point only differ by

∼ 10−4. This shows that the choice of a truncation degree does not have a strong effect on

the error in the acceleration field.

Orbital Parameters

Figures 4.17 and 4.18 show the time evolution of the orbital parameters using R1/r and

R10/r respectively. The choice of Brillouin sphere radius has minimal impact on the output

orbital parameters. The inclination using R10/r is 1.00006 times more accurate than the

inclination output from R1/r, the eccentricity derived from radius R1/r is 1.002 times more

accurate than R10/r, and finally the specific angular momentum derived from R1/r is 1.0007

times more accurate than that from R10/r.

For the case of a larger orbital radius such as the inclined orbit shown here, the large

perturbations in the gravitational field are greatly dampened and cause little turmoil in

33



4.1. EARTH

Figure 4.16: The -log10 of the mean percent difference in the acceleration field derived from the
theoretical zonal harmonics of Earth and the spherical harmonic model on each Brillouin sphere for
truncation degrees N = 3, 5, 7, 10, 12 and 15.

the choice of a Brillouin sphere radius and truncation degree of the harmonic series. If

this model is being used for an orbit such as this one, it is recommended that the smallest

Brillouin sphere (RS/r = 5%) be used with a truncation degree of either N = 8 or 15 based

upon the error in the potential field (Figure 4.14).
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Figure 4.17: Comparison of the change in the time evolution of orbital parameters for an inclined or-
bit. The dashed line shows the “true” output and the colored lines are derived from various truncation
degrees of the spherical harmonic series. A Brillouin sphere radius of RS/r = 5% was used.
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Figure 4.18: Comparison of the change in the time evolution of orbital parameters for an inclined
orbit. The dashed line shows the “true” output and the colored lines are derived from various trun-
cation degrees of the spherical harmonic series. A Brillouin sphere radius of RS/r = 95% was
used.
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4.2. ASTEROID 101955 BENNU

Figure 4.19: Reconstruction of Asteroid 101955 Bennu using a mascon distribution of the body.

Asteroid 101955 Bennu

Two orbits around asteroid 101955 Bennu are simulated using a mascon model of the body

and the spherical harmonic model. The first orbit is a low orbit (LO) of altitude r = 0.5

km and the second is a medium orbit (MO) with altitude r = 2.0 km. Bennu is ∼ 0.5

km in diameter, so it’s gravity field is relatively weak compared to that of Earth’s and the

dynamics around such a small body are very different. Bennu’s largest perturbation is a J2

perturbation which can be seen as the bulge at Bennu’s equator (Figure 4.19).

In the previous section, it was determined that a Brillouin sphere radius of 95% of the

orbital altitude gave the most accurate results compared to the smaller radii. Therefore,

that radius will be used to analyze orbits about Bennu. A sample of the derived series

coefficients are listed in Appendix B.

37



4.2. ASTEROID 101955 BENNU

Figure 4.20: LO with altitude of 0.5 km. The mascon derived output is in red and the spherical
harmonic model output is in blue.

LO

Figure 4.20 gives a qualitative comparison of the output trajectories from a mascon model

of Bennu and a spherical harmonic model. Visually there is a good overlap between the

two model outputs.

Looking at the time evolution of the orbital parameters for this trajectory (Figure 4.20),

it is seen that the dynamics of the orbit are never quite met, but after a point, there is a

convergence of the spherical harmonic output. This shows that the error in the harmonic

derived parameters goes to zero as the truncation degree of the series increases which is

what is expected of a converging series.

While the mascon and spherical harmonic derived parameters never match, the differ-

ences between the two are on the order of 10−1, 10−2, 10−3 for h, e, and i respectively. This

level of precision is high enough where it would not cause an issue for an orbiting spacecraft

that is using the spherical harmonic model to conduct maneuvers.

To get a better idea of the differences in the orbital parameter output, Figure 4.22 shows

the time evolution of just the inclination for both models using only N = 3, 5, 7, and 15. It
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Figure 4.21: Comparison of the change in time evolution of orbital parameters of a LO orbit about
asteroid Bennu. The dashed line shows the mason model derived parameters and the colored lines
are derived from various truncation degrees of the spherical harmonic model.

is quickly seen that N = 3 does not do a good job at modeling the inclination. N = 5 gives

a more accurate output compared to N = 3, but it is still ∼ 10−3 off of the mascon output.

N = 15 and 7 give almost identical outputs where the ratio of their errors is ∼0.991. Based

on this, a truncation degree of N = 7 is reasonable to use for further simulations.

Figure 4.23 shows the gravitational potential field on the Brillouin sphere used for this

orbit (top) compared to the “true” (mascon derived) potential field (bottom). There is a

7.05× 10−4% difference between the two fields when using N = 7.
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Figure 4.22: Comparison of the change in time evolution of the inclination of a LO orbit about
asteroid Bennu. The dashed line shows the mascon model output and the colored lines are derived
from the spherical harmonic model using N = 3, 5, 7, 15.

Figure 4.23: Comparison between the gravitational potential field of asteroid Bennu at RS/r = 95%
derived from the mascon distribution model (bottom) and spherical harmonic model (top) using N =
7.
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Figure 4.24: MO with altitude of 2.0 km. The mascon derived output is in red and the spherical
harmonic model output is in blue.

MO

The orbital altitude is now increased to 2 km above the surface of Bennu. The spherical

harmonic model and the mascon distribution model output line up well as seen in Figure

4.24 where the blue trajectory is derived from the harmonic model and the red from the

mascon model.

Figure 4.25 quantitatively compares the two MO orbits by looking at the change in the

time evolution of the orbit’s parameters. The dynamics in the specific angular momentum

(h) and the eccentricity (e) are mirrored between the two models, but the harmonic output

cannot quite match the amplitude of each parameter. The mean difference in h between

both models is ∼ 5× 10−3 and ∼ 5× 10−4 for e. After about N = 5, the harmonic derived

parameters converge upon each other for each of these parameters.

For the case of the change in inclination (i) though, the harmonic model output has

a harder time matching the mascon output. Figure 4.26 shows the time evolution of the

inclination alone for an extended number of truncation degrees (N = 5 - 50). Increasing

the truncation degree from N = 5 to N = 20 gives a slight increase in accuracy for the
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Figure 4.25: Comparison of the change in time evolution of orbital parameters of a MO orbit about
asteroid Bennu. The dashed line shows the mason model derived parameters and the colored lines
are derived from various truncation degrees of the spherical harmonic model.

inclination, but after N = 20, small oscillations appear in the data. This noise can be

attributed to numerical error based on the high precision of the coefficients being used in

these calculations ({Cmn , Smn |∀n ≥ 30,∀m = 0, ..., n}). Each curve gives a mean difference

error of ∼ 1× 10−5 where N = 30 gives the lowest mean difference error of 1.47× 10−5.

Based on the errors seen in all orbital parameters, a truncation degree of N = 5 will

offer a reasonable trade-off between the run-time of the simulation and the accuracy of the

output. Although N = 30 gave the lowest mean difference error in the inclination output,

the difference between N = 5 and N = 30 is essentially negligible (∼ 6× 10−7) which allows

for the choice of N = 5 in the overall calculations.

Figure 4.27 shows the gravitational potential field on the Brillouin sphere used for this

orbit (top) compared to the “true” (mascon derived) potential field (bottom). There is a

1.04× 10−3% difference between the two fields when using N = 5.
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Figure 4.26: Comparison of the change in the time evolution of the inclination of a MO orbit about
asteroid Bennu. The dashed line shows the mascon model output and the colored lines are derived
from the spherical harmonic model using N = 10, 15, 20, 30, 40 and 50.

Figure 4.27: Comparison between the gravitational potential field of asteroid Bennu at RS/r = 95%
derived from the mascon distribution model (bottom) and spherical harmonic model (top) using N =
5.
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Chapter 5

Modeling Contact Binaries

The spherical harmonic model was shown to accurately model homogeneous density bodies

in the previous chapter, but in reality, asteroids and comets will not be of one density and

a useful gravity model will need to be able to handle such variances.

Asteroid 25143 Itokawa was the subject of JAXA’s Hayabusa mission in 2003. From

data taken by the Hayabusa orbiter, it was determined that Itokawa is composed of two

densities at the least [26]. Itokawa is used as the test case for the variable density adaptation

of the model presented in this thesis.

Asteroid 25143 Itokawa

The spherical harmonic model is implemented in several steps: (1) The gravitational poten-

tial is calculated from the mascon distribution of the body, (2) This potential is projected

onto a Brillouin sphere, (3) The spherical harmonic series coefficients for the field are calcu-

lated, and (4) The acceleration field at a user defined radius is calculated and a trajectory

is output. The impacts of each of these steps will be discussed in relation to the dual-

density mascon model of Asteroid Itokawa which is assumed to be the true model of the

asteroid. For the sake of comparison, a rotational spherical harmonic potential field is not
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5.1. ASTEROID 25143 ITOKAWA

Figure 5.1: Variable density subsections of asteroid Itokawa. The body (blue) has a lower density
than that of the head (red).

implemented in the following results.

Mascon

Itokawa is modeled using mascons of variable volume (see Appendix A) to approximate

the true shape of the asteroid with a high precision. A polyhedral-dual mesh containing

∼15,000 elements was used in the calculations for the entire asteroid and ∼4,400 and 11,000

cell meshes were used for the individual head and body reconstructions of Itokawa. A

uniform density model of Itokawa is examined prior to a dual-density model to discern

the perturbations induced by this body on a spacecraft from its geometry alone. Two

trajectories were chosen to analyze this behavior, an inclined orbit and an equatorial orbit.
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Uniform Density

To illustrate the dynamical environment around asteroid Itokawa, two orbital trajectories

are examined using Itokawa’s bulk density (ρ = 1950 kg/m3) and rotational rate of ω =

1.4386× 10−4 rad/s about it’s z-axis. Figure 5.2a shows the trajectory of an orbit inclined

to the plane of rotation of Itokawa (i ≈ 50◦) and Figure 5.3a shows the evolution of a

body orbiting initially in the plane of rotation. Both trajectories are simulated for 10 days.

Itokawa is rotating about it’s z-axis and has a period of 12.13 hours [27]. The time evolution

of the orbital parameters are shown in Figure 5.3.

Although both trajectories are simulated for the same amount of time, the dynamics of

the equatorial orbit are more pronounced than those of the inclined orbit. As seen in Figure

5.3b, the eccentricity quickly deviates from circular as the orbiting spacecraft experiences a

slight increase in elevation and angular momentum throughout its orbit. Both trajectories

show an orbital resonance throughout the entire duration of the orbits. This pattern is

indicative of a smoothing of the gravitational perturbations induced by Itokawa.

Dual-Density

The dynamics seen in trajectories about Itokawa are heightened in the dual-density model.

As the spacecraft passes the “body” of Itokawa, the radius of the orbit increases (Figure

5.4a). This can be attributed to the lower density in this region compared to that of the

“head” of Itokawa.

Figure 5.4b shows the differences in the time variation in the orbital parameters derived

from the uniform (blue) and dual-density (red) models of asteroid Itokawa. The variations

in the parameters are much more pronounced for the dual-density model.
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(a) Inclined Orbit

(b) Inclined Orbital Parameters

Figure 5.2: Inclined orbit about Asteroid 25143 Itokawa and corresponding change in time evolution
of orbital parameters. A non-uniform mascon distribution model with homogeneous density was used.
The orbital parameters shown are, the specific angular momentum, eccentricity, right ascension of
the ascending node (RAAN), and inclination of the orbit.
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(a) XY-Planar Orbit

(b) XY-Planar Orbital Parameters

Figure 5.3: Equatorial orbit about Asteroid 25143 Itokawa and corresponding change in time evo-
lution of orbital parameters. A non-uniform mascon distribution model with homogeneous density
was used. The orbital parameters shown are, the specific angular momentum, eccentricity, right
ascension of the ascending node (RAAN), and inclination of the orbit.
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(a) XY-Planar Orbit

(b) XY-Planar Orbital Parameters

Figure 5.4: Equatorial orbit about Asteroid 25143 Itokawa and corresponding change in time evo-
lution of orbital parameters simulated for ten days. The red path is derived using the dual-density
model and the blue from a homogeneous density equal to the bulk density of Itokawa.

49



5.1. ASTEROID 25143 ITOKAWA

Impact of Brillouin Sphere Radius

The same two test case trajectories as were used in the mascon distribution analysis (an

equatorial orbit and an inclined orbit) were chosen to analyze the effects and behavior of

variable radii Brillouin spheres. The Brillouin sphere radii were varied between 5% and 95%

of the orbital altitude as with Earth and asteroid Bennu. This technique is used for both

the head and the body of Itokawa, so there is an overlap between the two Brillouin spheres

of both subsections of the asteroid (Figure 5.5).

(a) Rs/r = 5% (b) Rs/r = 95%

Figure 5.5: Example of how the Brillouin spheres centered on the head and body of Itokawa can
overlap when large enough.

Figure 5.6 compares the average error in the acceleration field in both the two (blue

triangles) and single (red circles) Brillouin sphere models. Both of these models utilize a

dual-density mascon distribution, so the only difference is the way the acceleration field is

calculated from each Brillouin sphere; a piecewise manner for the two spheres and a direct

implementation of Eq. 3.4 for the single sphere. The truncation degree of the series was

held constant at N = 7 for sake of comparison of the Brillouin spheres alone. By using

two spheres, the error in the acceleration field is greatly decreased. At R1/r = 5% the

error is decreased by a factor of 3 and at R10/r = 95%, a factor of 11. Bisecting the
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Figure 5.6: Mean percent difference in the acceleration field averaged over each Brillouin sphere. The
acceleration error was calculated using a single Brillouin sphere (yellow) and two Brillouin spheres
(purple).

body of Itokawa results in two sections that are more spherical than ellipsoidal allowing the

spherical harmonic series expansion of both subsections to more accurately model the true

environment of the body.

Since it was determined that using two Brillouin spheres around the homogeneous den-

sity subsections of Itokawa is more accurate than one, the radii of the spheres must be

determined. Holding the degree of the spherical harmonic series constant, the error in the

acceleration field decreases as the Brillouin sphere radii (in the two Brillouin sphere model)

are increased from 5% to 95% of the orbital altitude when compared with the dual-density

mascon model (Figure 5.7). Acceleration errors on Brillouin spheres derived from both an

equatorial orbit and an inclined orbit are shown in Figure 5.7 and show the same decreasing

trend as the sphere’s radius is increased. This is expected as the perturbations induced by

the asteroid are dampened as the distance from its surface is increased (due to the 1/r2

dependence of the acceleration field). For the remainder of this analysis, acceleration errors
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in the inclined orbit will be used because of the similar outcomes between the two orbits

and for sake of redundancy. The inclined orbit, as opposed to the equatorial orbit, will be

used because it has a larger orbital altitude thus rendering the Brillouin sphere range Rs/r

larger and easier to discern on a figure.

These results indicate that the largest Brillouin sphere radius, R10/r gives the most

accurate output when calculating orbital trajectories.

Impact of Series Truncation

The degree of truncation will be chosen and analyzed in the same manner that the Brillouin

sphere radius was; via acceleration field error. It was seen in the previous section that the

largest Brillouin sphere gave the most accurate output for a given trajectory. This result

now needs to be proved in-line with multiple truncation degrees to show that it is not an

artifact of one specific truncation degree of the series.

Truncation degree and Brillouin sphere radii were allowed to vary in order to determine

a spatial location that will give an accurate trajectory while not requiring an excessive

computational run-time. Truncation degrees of N = 3, 7, 15, and 30 were used to compare

the error in the acceleration field (Figure 5.8) between the dual-density mascon model and

the spherical harmonic model.

Figure 5.8 shows the same decrease in error as the Brillouin sphere radii are increased

that was seen in Figure 5.7, but now it shows a convergence of the error across increasing

truncation degrees as well. For the smallest Brillouin sphere radius (R1/r = 5% ≈ 375m),

N = 30 (blue) and N = 3 (red) give slightly higher errors than N = 7 (yellow) and N = 15

(green). Because this is the closest point to the body, a larger truncation degree is necessary

to accurately model the dynamics of the environment. A degree of N = 7 allows for this. It

was expected that the error in the acceleration field would scale with the truncation degree

of the spherical harmonic series, but as seen in the case of R1, this is not true. N = 30
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(a) Equatorial orbit.

(b) Inclined orbit.

Figure 5.7: Mean percent difference in the acceleration field averaged over each Brillouin sphere for
a constant spherical harmonic series truncation degree.
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Figure 5.8: Mean percent difference in the acceleration field averaged over each Brillouin sphere for
all truncation degrees of the spherical harmonic series. Each color is indicative of a Brillouin sphere
radius and each symbol a truncation degree.

results in a larger error in the acceleration field than the lower truncation degrees at 7 and

15. This discrepancy is attributed to numerical error incurred throughout the simulation

and a non-monotonic convergence of the spherical harmonic series.

As the Brillouin sphere is increased to R10 (95%∗r ≈ 1500m), the error in the truncation

point of the series converges due to the increased distance from the surface of the body.

By comparing all ten Brillouin sphere sizes for each of the four truncation points, it is seen

that the largest Brillouin sphere radius (Rs/r = 95%) gives the most accurate output and

a truncation degree of N = 7 will result in an acceleration field with minimal error incurred

and a lower simulation run-time.

For the remainder of this analysis, a Brillouin sphere of Rs/r = 95% and a truncation

point of N = 7 will be used.
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Figure 5.9: Comparison between the “true” gravitational potential field of the body of Itokawa (bot-
tom) and the spherical harmonic reconstruction of the field (top).

Gravity Field Matching

With the radius of the Brillouin sphere and the truncation degree of the series chosen, the

potential field can be calculated. The potential field of the head of Itokawa (Figure 5.10)

has a 7.9 × 10−4% mean difference and the body (Figure 5.9) has a 2.3 × 10−3% mean

difference between the mascon derived and the spherical harmonic derived field. Whereas

the field of the entire asteroid (Figure 5.11) has a 3.6× 10−3% mean difference between the

two fields.
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Figure 5.10: Comparison between the “true” gravitational potential field of the head of Itokawa
(bottom) and the spherical harmonic reconstruction of the field (top).

Figure 5.11: Comparison between the “true” gravitational potential field of the entirety of Itokawa
(bottom) and the spherical harmonic reconstruction of the field (top).
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Figure 5.12: Time evolution of orbital parameters for an equatorial orbit about asteroid Itokawa
using a Brillouin sphere that is 95% of the orbital altitude. Four truncation points of the spherical
harmonic series are shown in comparison to the mascon distribution derived output.

Orbital Parameters

The resulting orbital parameters for an equatorial and inclined orbit using the R10/r ra-

dius Brillouin sphere for both subsections of Itokawa are shown in Figures 5.12 and 5.13

respectively. All of the test-case truncation degrees (N = 3, 7, 15, and 30) are plotted here

for sake of comparison.

There is a ∼ 10−2% mean difference between the N = 3 and N = 30 outputs and a

∼ 10−3% mean difference between the N = 7 and N = 15 outputs. While there is a greater

accuracy seen when a larger truncation point is used, the trade-off between the run-time

of the simulation and the accuracy of the output must be considered. Also, the decreasing

nature of the mean difference between outputs from differing truncation points implies a

convergence of the results. This convergence is easily seen in Figures 5.12 and 5.13 and

the small discrepancies between the mascon and the spherical harmonic outputs are small
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enough to ideally not cause problems for a spacecraft conducting maneuvers based upon

this model. The minute differences between the varying truncation degrees in the output

orbital parameters again show that the choice of N = 7 is a reasonable choice for these

orbital trajectory simulations.

Figure 5.13: Time evolution of orbital parameters for an orbit inclined to the equatorial plane of
asteroid Itokawa using a Brillouin sphere that is 95% of the orbital altitude. Four truncation points
of the spherical harmonic series are shown in comparison to the mascon distribution derived output.
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Figure 5.14: Various orbits about Asteroid Itokawa used to analyze the dynamics at differing incli-
nations.

Impact of Orbital Inclination

A higher mean percent difference error was seen in the equatorial orbit around Itokawa

compared to the inclined orbit. This leads to the hypothesis that there is a region around

Itokawa with greater dynamics than others or a region where the spherical harmonic model

has a harder time modeling the dynamical field than others. This is a reasonable hypothesis

due to the shape of the body. Itokawa is smoother on its top side and has an indent/canyon

on its underbelly which is referred to as the “neck” of Itokawa. These varying topologies

give rise to a range of dynamics in orbits with differing inclinations.

To analyze this behavior, a range of inclinations were swept through (Figure 5.14) and

the mean percent difference errors in the orbital parameters derived from the dual-density

mascon model and two Brillouin sphere spherical harmonic model were compared (Table

5.1). The inclinations range from just above the equatorial plane (i = 7.125◦) to an almost

polar orbit (i = 87.138◦).
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Table 5.1: Mean differences between the “true” and harmonic model derived change in evolution of
orbital parameters for various inclinations.

Inclination (deg) Mean Percent Difference (%)

h e i

7.1250 7.52301 0.41427 0.15134
14.036 21.78982 1.28696 0.24433
20.556 41.53408 2.55221 0.52005
26.565 47.73416 7.31852 0.65689
32.005 53.93051 13.84161 0.79992
36.870 52.21836 19.02342 0.88931
41.186 45.25302 25.56024 0.83164
45.000 33.82501 37.87304 0.66338
48.366 31.08779 45.43295 0.64487
51.340 3.07804 0.11698 0.10563
87.138 0.19687 0.04018 0.00141

The error in all of the orbital parameters increases up to a point and then start to

decrease. The specific angular momentum (h) and inclination (i) errors increase until i =

36.87◦ whereas the error in the eccentricity (e) continues to increase until i = 48.366◦ then

dramatically drop at i = 51.34◦ with the other parameters. The spherical harmonic model

seems to have an easier time matching the dynamics of the trajectory after i ≈ 50◦ (the

inclination analyzed in the previous sections). At lower inclinations, as the spacecraft moves

around Itokawa, it is going to “see” more of the asteroid which means it will experience

more of the perturbations in the gravity field. As the inclination of the orbit increases to

i = 90◦, the spacecraft’s field of view of Itokawa reduces to its nadir and thus much less of

the asteroid is seen. The gravitational perturbations induced on a spacecraft are greatest

at or just above Itokawa’s equator because the spacecraft is “seeing” most of the body

during these orbits. At higher inclinations, the orbiting spacecraft is enduring minimal

perturbative forces from the body and thus the spherical harmonic model can more easily

model the trajectory.
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Chapter 6

Conclusions

Missions to small, celestial bodies demand autonomy and with a rise in interest for these

types of missions, the demand for high-fidelity modeling techniques has increased. These

modeling techniques must expand upon the dubious nature of comets and asteroids to allow

for successful mission planning.

This thesis focused on the characterization of a spherical harmonic based model that

used a mascon distribution of a body as its boundary conditions for the potential field.

This model was then used to model the dynamic environment of contact binaries. Three

bodies of varying geographical asymmetries were used to quantify the utility of this model

for homogeneous and dual-density bodies. Errors in the gravity and acceleration fields

were analyzed over multiple trajectories about each body and it was found that the error

incurred in the final simulated trajectory can be decreased by varying the radius of the

Brillouin sphere and the truncation point of the harmonic series.

By varying the radius of the Brillouin sphere, it was found that a Brillouin sphere that is

closest to a given orbit will give the most accurate results. A serendipitous consequence of

using a larger Brillouin sphere is that less terms in the spherical harmonic series expansion

are needed since the perturbations induced by the body are dampened as the distance from

the body’s surface increases. Fewer terms in the series expansion offers a computational
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speed-up of orbital trajectory simulations about the body.

The precision of the spherical harmonic model presented was characterized by the back-

wards computation of the potential field of Earth. The potential field was found with a

relative accuracy of ∼ 10−6 using a truncation point of N = 8 and a Brillouin sphere radius

of RS/r = 95%.

For the case of Asteroid 25143 Itokawa, this analysis determined that by dividing the

body into its subsequent, homogeneous density regions, the “true” gravitational potential

and acceleration field could be more accurately modeled. It was seen in the mascon derived

orbits about Itokawa that accounting for the body’s variable density does make a significant

impact on the output trajectory. Therefore, the gravity model used to model small bodies

for mission planning and scientific purposes must be able to accurately account for the

variable density.

The spherical harmonic model is an elegant method for modeling the gravity field of

small, asymmetric bodies with either homogeneous or variable densities. It was shown that

a wide variety of objects can be handled by this modeling technique and the model can

take into account the variable density nature of comets and asteroids. The coupling of the

spherical harmonic model with the mascon distribution model adds to the accuracy of the

final rendition of a given body; the higher the accuracy in the base model, the higher the

accuracy of the series expansion. There are consequences to the mathematical rigor of this

model though. As the spacecraft trajectory moves within the Brillouin sphere boundary,

or on the boundary, the series expansion of the gravity field will diverge quickly from the

true solution. This means that close proximity or landing operations will either need a

different model or a variation of this model in order to properly enact the maneuver. It

was also found that the “true” gravity and acceleration fields cannot be exactly recreated

with a reasonable number of terms in the spherical harmonic series. As with any model,

there will be some sort of deviation from the true solution and the differences will have
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to be accounted for in processes reliant upon that model. The spherical harmonic model

presented does offer a reasonable deviation from the expected gravity and acceleration field

in which a spacecraft operating on this model would not run into problems.

With the surplus of gravity models that are available for mission design teams and sci-

entists to use, a model that is capable of being coupled with any other model is a strong

asset. The spherical harmonic model presented offers this and has room for further innova-

tion. This thesis quantified and defined the scope of this model and presented its ability to

handle variable density bodies with high accuracy.

Some future adaptations and logical extensions of this model are:

“Dynamic” Brillouin Sphere Radius The current model uses a single radius Brillouin

sphere who’s size is chosen based upon the altitude of a given orbit. This is dependent

upon a circular orbit so that the trajectory does not enter the boundary of the sphere.

Once elliptical trajectories are implemented, the Brillouin sphere radius may have to

be automatically varied within the simulation where a smaller radius sphere is used

when the spacecraft is a periapsis and a larger sphere is used when the craft is at

apoapsis.

Coupling the Harmonic and Mascon Model All simulated trajectories must remain

outside of the Brillouin sphere boundary because the series expansion only converges

outside of this boundary. Within the Brillouin sphere, the mascon model governs the

motion of the spacecraft. Realistically, the spacecraft will want to travel in close-

proximity to the asteroid or comet’s surface, so if a dynamic Brillouin sphere radius is

not implemented in the simulation, a binary model that switches between the spherical

harmonic model outside of the Brillouin sphere and the mason model within the sphere

will have to be used.
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Appendix A

Mascon Distribution Model

In the mascon model, a finite set of point-masses is used to to discretize the asteroid’s

volume. Several methods for distributing these points exist, including gridded approaches

[16, 28], packing methods [29], and the use of finite volume meshes [14, 18]. In the present

study, the distribution technique proposed by Pearl & Hitt [14] is used, which utilizes

unstructured finite volume meshes consisting of polyhedral elements to distribute mascons.

The generation process involves three steps: (1) A triangular surface mesh (Figure A.1a)

is used to create a tetrahedral volume mesh (Figure A.1b) using a modified Delaunay algo-

rithm, (2) A polyhedral volume mesh is created by calculating the dual of the tetrahedral

volume mesh, and (3) The elements of the resulting polyhedral volume mesh are approxi-

mated as point-mass with mass equal to the volume of the corresponding element multiplied

by the local density. An example polyhedral volume mesh generated from the tetrahedral

volume mesh of Figure A.1b is presented in Figure A.2a and the resulting mascon distri-

bution is shown in . For a more in-depth discussion of the process the reader is referred to

Pearl & Hitt [14].
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(a) Triangular Surface Mesh. (b) Tetrahedral Volume Mesh.

Figure A.1: Tetrahedral Mesh of a Sphere Showing Graded Cells.

(a) Polyhedral-Dual Mesh. (b) Mascon Distribution.

Figure A.2: Polyhedral-Dual Mesh of a Sphere and Resultant Mascons.
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Appendix B

Derived Series Coefficients

Asteroid 101955 Bennu

LO

Cm
n

n\m 0 1 2 3 4

0 1.000458

1 −4.7099× 10−5 −3.8472× 10−5

2 −2.2403× 10−3 −7.9404× 10−7 3.8429× 10−6

3 −2.2291× 10−4 8.1979× 10−6 −2.7339× 10−7 1.1855× 10−5

4 2.007 42× 10−4 8.5982× 10−7 −1.4039× 10−6 −4.5443× 10−8 1.4219× 10−5

Smn

n\m 0 1 2 3 4

0 0

1 2.1329× 10−4

2 1.2192× 10−6 1.0401× 10−4

3 −6.8025× 10−5 4.7381× 10−7 6.8965× 10−5

4 1.178 16× 10−6 −1.6582× 10−5 2.7901× 10−7 5.0729× 10−5
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B.1. ASTEROID 101955 BENNU

MO

Cm
n

n\m 0 1 2 3 4

0 1.0000110

1 1.9985× 10−6 1.2794× 10−5

2 −2.2705× 10−4 4.0042× 10−7 7.2919× 10−5

3 −8.2952× 10−6 1.9371× 10−6 −2.6205× 10−7 3.3077× 10−6

4 3.4462× 10−6 −7.6302× 10−8 −1.1601× 10−6 2.1603× 10−7 −1.4846× 10−8

Smn

n\m 0 1 2 3 4

0 0

1 −1.7396× 10−7

2 2.8883× 10−7 −3.9857× 10−6

3 2.2542× 10−6 −1.4170× 10−7 −1.3792× 10−6

4 −2.7327× 10−7 2.0905× 10−7 5.1298× 10−8 4.8523× 10−7
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