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ABSTRACT 

 
Temperature is a fundamental environmental force shaping species abundance and 
distributions through its effects on biochemical reaction rates, metabolism, activity, and 
reproduction. In light of future climate shifts, mainly driven by temperature increases, 
how will organisms persist in warmer environments? One molecular mechanism that 
may play an important role in coping with heat stress is the heat shock response (HSR), 
which protects against molecular damage. To prevent and repair protein damage 
specifically, Hsps activate and become up-regulated. However, the functional diversity 
and relevance of heat shock proteins (Hsps) in extending upper thermal limits in 
taxonomic groups outside marine and model systems is poorly understood. Ants are a 
good system to understand the physiological mechanisms for coping with heat stress 
because they have successfully diversified into thermally stressful environments. To 
identify and characterize the functional diversity of Hsps in ants, I surveyed Hsp 
orthologues from published ant genomes to test for signatures of positive selection and 
to reconstruct their evolutionary history. Within Hymenoptera, ants utilize unique sets 
of Hsps for the HSR. Stabilizing selection was the prevailing force among Hsp 
orthologues, suggesting that protein activity is conserved. At the same time, regulatory 
regions (promoters) governing transcriptional up-regulation diversified: species differ 
in the number and location of heat shock elements (HSEs). Therefore, Hsp expression 
patterns may be a target for selection in warm environments. I tested whether Hsp 
expression corresponded with variation in upper thermal limits in forest ant species 
within the genus Aphaenogaster. Whole colonies were collected throughout the eastern 
United States and were lab acclimated. There was a positive relationship between upper 
thermal limits (Critical Thermal maxima, CTmax) and local temperature extremes. 
Upper thermal limits were also higher in ant species that lived in open habitats (shrub-
oak and long-leaf pine savannah) than species occupying closed habitats (deciduous 
forest). Ant species with higher CTmax expressed Hsps more slowly, at higher 
temperatures, and at higher maximum levels than those with low CTmax. Because Hsps 
sense and repair molecular damage, these results suggest the proteomes of open relative 
to closed canopy forests are more stable. Although deciduous forest ant species may be 
buffered from temperature stress, it is likely that temperature interacts with other 
environmental stressors such as water and nutrient availability that may impact upper 
thermal limits. I measured the influence of dehydration and nutrition stress on upper 
thermal limits of forest ants from a single population. Ants that were initially starved 
were much less thermally tolerant than controls and ants that were initially desiccated. 
Because ants are likely to experience similar combination of stressors in the wild, upper 
thermal limits may be severely overestimated in single factor experiments. Therefore, 
realistic forecasting models need to consider multiple environmental stressors. Overall, 
adaptive tuning of Hsp expression that reflects better protection and tolerance of protein 
unfolding may have facilitated ant diversification into warm environments. However, 
additional stressors and mechanisms may constrain the evolution of upper thermal 
limits.  
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 CHAPTER 1: INTRODUCTION 

 

 Climate change will alter the environment for many species from ancestral 

conditions (Diffenbaugh and Field 2013). Precipitation regimes will become more 

variable (Knapp et al. 2008) and temperature will increase both in mean and extremes 

(Diffenbaugh and Field 2013). Temperature shifts represent one of the most notable 

threats to species persistence because it influences all levels of biological organization 

such as biochemical reaction rates, activity, and reproduction (Kingsolver 2009; Dell et 

al. 2011). Therefore, elevating temperatures can expose individuals to temperatures 

outside of their optimum, especially for ectothermic species whose internal body 

temperature is generally closely tied to environmental temperatures (Kingsolver 2009). In 

turn, the thermal sensitivity of ectotherms sets the limits to their abundance and 

geographical distribution (Slatyer et al. 2013; Lancaster et al. 2016) and the offsets from 

species’ thermal optimum could lead to contractions at the warm edge of their range 

(Chen et al. 2011; Wiens 2016). In order to survive pending temperature shifts, species 

will need to respond by tracking suitable thermal habitat (Chen et al. 2011), or stay in 

place through acclimation (plasticity) and/or evolutionary adaptation (Moritz and Agudo 

2013).  

 Physiological adjustments to thermal extremes may be evolutionarily 

constrained (Hoffmann et al. 2013). At broad taxonomic scales, upper thermal limits 

exhibit no relationship with latitude in terrestrial ectotherms, but lower thermal limits 

negatively correlate with latitude (Addo-Bediako et al. 2000). Furthermore, lower 
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thermal limits are more plastic than upper thermal limits (Gunderson and Stillman 2015). 

The lack of clinal variation in upper thermal limits across ectotherms generally may be 

due to relaxed selection, and/or be reflective of phylogenetic inertia that impedes 

response to selection for each species within a clade (Kellerman et al. 2012). Relaxed 

selection may be due to species relying on behavioral mechanisms that mitigate the 

effects of temperature stress (Kearney et al. 2009). However, at finer taxonomic scales, 

local populations and species groups do show clinal variation in upper thermal limits 

(Calosi et al. 2010, Sgrò et al. 2010). Clinal relationships suggest populations or species 

are locally adapted across the climate gradient and that populations have historically been 

able to respond to selection (Hoffmann and Sgrò 2011). Although there has been no 

formal comparison of the adaptive potential between upper and lower thermal limits, both 

traits respond equally to artificial selection in lab derived fruit flies (Bubliy and Loeschke 

2005). However, the heritability of upper thermal limits can be low (van Heerwaarden 

and Sgrò 2013) or absent (Mitchell and Hoffmann 2010), depending on whether upper 

thermal limits were measured under rapid or slow heating regimes. Regardless of metric, 

selection may have eroded standing genetic variation when populations or species are 

locally adapted to a climate gradient.     

 Part of the difficulty in extending upper thermal limits compared to lower 

thermal limits is reflected by the relationship between organismal performance and 

temperature, known classically as the thermal performance curve (Huey and Stevenson 

1979). Thermal performance curves have a characteristic asymmetric shape: performance 

gradually elevates from the critical thermal minimum (CTmin) to an optimum (Topt) as 
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temperatures increase, but beyond the peak, performance drops drastically (Huey and 

Stevenson 1979; Kingsolver 2009). The rapid drop in performance from the thermal 

optimum towards the critical thermal maxima or CTmax, in part, is related to the 

deleterious effects of extremely high temperatures (Richter et al. 2010).  

 High temperature impairs performance from the whole organism to the 

molecular level (Dell et al. 2011). The critical hallmark of CTmax is loss of motor 

function and is accompanied by large-scale tissue damage (Krebs and Feder 1997) 

including brain and muscle, measured as cell death. At the cellular level, heat shock 

decreases the firing of action potentials (Miller and Stillman 2012) and disrupts ion 

balance (O’ Sullivan et al. 2016) which is needed to maintain electrochemical potential 

across cell membranes. Within cells, heat shock causes fragmentation of the endoplasmic 

reticulum and golgi apparatus (Welch and Suhan 1985). Cytoskeletal networks collapse 

(Toivola et al. 2010), thus hindering translation and cellular transportation. At the 

molecular level, macromolecules become damaged as well (Kültz 2005). For example, 

heat shock introduces double stranded breaks in DNA (Kantidze et al. 2016) and proteins 

unfold and lose biological activity (Somero 1995; Dill et al. 2011).   

 Species can cope with thermal damage through the evolutionarily conserved 

heat shock response (HSR; Lindquist 1988). The HSR involves a molecular cascade that 

halts the expression of catalytic enzymes and simultaneously up-regulates stress proteins 

(Sørensen et al. 2005). The first glimpse of the HSR was observed in chromatin puffs 

within salivary cells of fruit flies that were heat shocked, indicating open transcriptionally 

active regions of chromatin (Ritossa 1962). Later, Ashburner et al. (1979) pinpointed the 
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genes that become rapidly up-regulated within chromatin puffs known as heat shock 

proteins (Hsps). Hsps mediate the HSR by refolding damaged proteins (Lindquist 1988; 

Richter et al. 2010) or facilitating their degradation (Qian et al. 2006). In fact, Hsps may 

respond to other, non temperature stressors if protein folding is perturbed (Morris et al. 

2013).  

 Hsps themselves are highly diverse sets of multigene families (Fink 1999; 

Lindquist 1988). Within arthropods, there are generally five broad gene families that are 

named after their molecular weight: Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps 

(sHsps; Richter et al. 2010). Hsp90, Hsp70 and Hsp40 form a refolding network under 

heat shock (Richter et al. 2010). Briefly, Hsp70 can refold proteins through ATP 

hydrolysis, which can be stimulated by the J-domain of Hsp40 (Qiu et al. 2006). 

Although Hsp70 and Hsp40 can refold proteins independently, non-native proteins can be 

refolded cooperatively with Hsp90 through co-chaperones containing TPR domain motifs 

(Ile-Glu-Glu-Val-Asp) which allow Hsp70 and Hsp90 to interact (Taipale et al. 2010). If 

proteins are irreversibly damaged, they can be cleared by Hsp70-bound substrates and 

ubiquitinated. This subsequently leads to degradation by the proteasome (Qian et al. 

2006).  

 Given the ability for Hsps to sense and repair protein damage (Craig and Gross 

1991), they should be a major target of selection in thermally stressful environments 

(Moseley 1997; Sørensen et al. 2003). In fact, the expression patterns of Hsps are known 

to differ among divergent populations and species in two general non-mutually exclusive 

strategies that depend on thermal experience (Feder and Hofmann 1999). Encountering 
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constant thermal stress selects for consistently elevated levels of Hsp expression and 

confers protection from protein damage, while encountering variable thermal extremes 

selects for induction of Hsps and confers tolerance to protein damage (Feder and 

Hofmann 1999; Sørensen et al. 2003; Barshis et al. 2013).  For example, limpets that face 

constant solar radiation in the intertidal invest in higher baseline Hsp expression across a 

wide temperature gradient, while limpets that face less solar radiation induce Hsps under 

higher temperatures (Dong et al. 2008). Although protection and tolerance strategies have 

been well documented (Feder and Hofmann 1999; Sørensen et al. 2003), the relative 

importance of protection and tolerance mediated by Hsps associated with divergence in 

upper thermal limits is poorly understood. One study (Bedulina et al. 2013) suggests that 

there may be a trade-off between these two strategies because baseline Hsp expression is 

negatively correlated with Hsp induction. More studies are needed to determine whether 

trade-offs between constitutive and induced Hsp expression relate to adaptive divergence 

of thermal limits.  

 Ants are a good system to study the mechanisms of temperature adaptation. 

They represent a diverse taxonomic group that has been able to meet the challenge of 

variable environments (Sanders et al. 2007; Dunn et al. 2009) and have colonized all 

continents except Antarctica over the past 140-180 million years (Moreau et al. 2006; 

Brady et al. 2006). Because ants have radiated across the globe, they likely have evolved 

innovations in coping with and responding to extreme thermal environments.  In fact, the 

diversity of upper thermal limits is reflected in the different biomes they inhabit 

(Diamond et al. 2012). For example, ants within the genus Cataglyphis, which inhabit 
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sub-saharan Africa, are among the most thermally tolerant ant species (Gehring and 

Wehner 1995), and have evolved long legs to reduce thermal stress from the surface soil 

layer in the desert environment (Sommer and Wehner 2012). In contrast, Prenolepis 

imparis, also known as the winter ant, is known to forage under snowy conditions 

(Tschinkel 1987). Although the ecology and evolution of ants is generally well studied, 

the molecular players underlying physiological mechanisms that contribute to phenotypic 

divergence in upper thermal limits is lacking, outside of a few studies. Cataglyphis ants 

have high baseline HSP70 expression under higher temperatures than a temperate genus 

(Formica), suggesting they protect against thermal damage (Gehring and Wehner 1995). 

However, the functional diversity of Hsps outside Hsp70 is poorly understood. 

 In the following dissertation chapters, I seek to understand how ant species cope 

with thermally variable environments. Because Hsps are likely targets of selection in 

thermally extreme environments, I first characterized the functional diversity of Hsps in 

Hymenoptera. Next, to determine the evolutionary importance of Hsps, I tested how 

different aspects of Hsp gene expression explain variation in upper thermal limits. 

Because the variation in thermal limits in nature is complex and interacts with other 

stressors, I tested the effects of desiccation or starvation on upper thermal limits.    
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CHAPTER 2: THE EVOLUTION OF HEAT SHOCK PROTEIN SEQUENCES, 

CIS-REGULATORY ELEMENTS, AND EXPRESSION PROFILES IN THE 

EUSOCIAL HYMENOPTERA 

Abstract 

Background 

The eusocial Hymenoptera have radiated across a wide range of thermal environments, 

exposing them to significant physiological stressors. We reconstructed the evolutionary 

history of three families of Heat Shock Proteins (Hsp90, Hsp70, Hsp40), the primary 

molecular chaperones protecting against thermal damage, across 12 Hymenopteran 

species and four other insect orders. We also predicted and tested for thermal inducibility 

of eight Hsps from the presence of cis-regulatory heat shock elements (HSEs). We tested 

whether Hsp induction patterns in ants were associated with different thermal 

environments. 

Results 

We found evidence for duplications, losses, and cis-regulatory changes in two of the 

three gene families. One member of the Hsp90 gene family, hsp83, duplicated basally in 

the Hymenoptera, with shifts in HSE motifs in the novel copy. Both copies were retained 

in bees, but ants retained only the novel HSE copy. For Hsp70, Hymenoptera lack the 

primary heat-inducible orthologue from Drosophila melanogaster and instead induce the 

cognate form, hsc70-4, which also underwent an early duplication.  Episodic diversifying 

selection was detected along the branch predating the duplication of hsc70-4 and 

continued along one of the paralogue branches after duplication. Four out of eight Hsp 
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genes were heat-inducible and matched the predictions based on presence of conserved 

HSEs. For the inducible homologues, the more thermally tolerant species, 

Pogonomyrmex barbatus, had greater Hsp basal expression and induction in response to 

heat stress than did the less thermally tolerant species, Aphaenogaster picea. 

Furthermore, there was no trade-off between basal expression and induction. 

Conclusions 

Our results highlight the unique evolutionary history of Hsps in eusocial Hymenoptera, 

which has been shaped by gains, losses, and changes in cis-regulation. Ants, and most 

likely other Hymenoptera, utilize lineage-specific heat inducible Hsps, whose expression 

patterns are associated with adaptive variation in thermal tolerance between two ant 

species. Collectively, our analyses suggest that Hsp sequence and expression patterns 

may reflect the forces of selection acting on thermal tolerance in ants and other social 

Hymenoptera. 

Keywords: Heat shock proteins, Heat shock response, Heat shock elements, 

Thermal tolerance, Gene expression, Cis-regulation, Comparative genomics 

Background 

Heat stress causes proteins to lose stability, misfold, and form aggregates, which 

can impair function and reduce organismal fitness [1-4]. To cope with macromolecular 

damage, the heat shock response (HSR) transcriptionally up-regulates thermally 

responsive genes such as heat shock proteins (Hsps), which maintain proteostasis by 

refolding or degrading denatured proteins and preventing aggregations [1,2,5]. Hsps are a 
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set of highly conserved molecular chaperone proteins of diverse multigene families, 

named after their molecular weight (Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps) [6,7]. 

Although Hsps as a group are highly conserved, diversity within each Hsp gene 

family reflects evolutionary gains and losses of gene copies [8,9]. Each Hsp protein 

family includes paralogues localized to different subcellular compartments (cytosol, 

endoplasmic reticulum, or mitochondria) that participate in housekeeping functions 

and/or respond to environmental stress [10-12].  For heat-inducible forms, the transcribed 

heat shock factors (HSF), bind to cis-regulatory elements known as heat shock elements 

(HSEs) and up-regulate Hsp transcription [13-15]. Patterns of variation in Hsp gene 

expression among taxa include expansion of additional Hsp genes [16] and shifts in the 

arrangement and position of HSE elements [14,17,18]. Among taxa, both the level of 

constitutive expression and the magnitude of Hsp induction are associated with adaptive 

variation in upper thermal limits [19-22]. Gene structure may also play a role in Hsp 

expression, but has not been well-studied. For example, genes with introns allow for 

more mRNA accumulation than do intronless genes [23-25].  

The eusocial Hymenoptera (wasps, ants, and bees) occupy diverse thermal 

environments from low to high latitudes [26] and elevations [27-28], suggesting that 

temperature may have played an important selective role in their evolution [29].  Species 

employ a variety of behavioral [30,31] and physiological strategies [32] to reduce 

individual and colony-level exposure to thermal stress. However, individual foragers that 

leave the nest each day and immobile brood that develop in the nest are likely to 

encounter sufficiently high temperatures to trigger the HSR [33,34]. Although key 
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members of Hsp90 and Hsp70 have been identified in a few species of Hymenoptera [33-

36], the diversity, functional properties, and regulation of molecular chaperones 

underlying adaptive variation in Hymenopteran thermal tolerance are poorly understood.  

In this study, we evaluated the diversity and evolutionary history of Hsps across 

12 species of Hymenoptera and five outgroup species (Culex quinquefasciatus, 

Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Acyrthosiphon pisum) 

spanning four insect orders. We analyzed recently published genomes of multiple species 

of ants [37-42], bees (Apis [43] and Bombus [44]), and the jewel wasp (Nasonia 

vitripennis [45]) to identify orthologues within each major Hsp gene family and to 

characterize the upstream regulatory motifs governing their transcription (HSEs). We 

reconstructed molecular evolutionary relationships within each Hsp multigene family to 

identify evolutionary gains and losses and tested for positive or purifying selection for 

each homologous Hsp among lineages and across sites. To characterize the evolution of 

cis-regulation and identify Hsps involved in the HSR, we identified cis-regulatory HSEs 

within the promoter region for each homologous Hsp. We then tested whether HSE 

presence and configuration successfully predicted inducibility in two species of ants that 

experience different thermal environments: the hot-climate Pogonomyrmex barbatus, 

which inhabits deserts of the southwestern United States [46], and the cool-climate 

Aphaenogaster picea, which inhabits temperate deciduous forests of the eastern United 

States [47]. We found that ants, and probably other Hymenoptera, harbor unique, lineage-

specific sets of heat inducible Hsps that were shaped by evolutionary gains, losses, and 
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shifts in cis-regulation. Expression patterns of these heat-inducible Hsps reflect adaptive 

variation in thermal tolerance between P. barbatus and A. picea.  

Results 

Identification of conserved Hsp and cis-regulatory HSEs 

We recovered conserved Hsps from all of the major gene families (Hsp90, Hsp70, 

Hsp60, Hsp40, small Hsps; Table 1). Three paralogues within the Hsp90 gene family 

(trap1, gp93, and hsp83) were found across all surveyed insects. We recovered 5 of the 6 

Drosophila melanogaster Hsp70 homologues (CG2918, hsc70-3 (BIP), hsc70-4, hsc70-5, 

and hsp70CB; Table 1) for Hymenoptera. With the exception of Nasonia vitripennis, the 

Hymenopteran taxa all lacked the heat-inducible orthologue hsp70 (Table 1). For all 

species, we recovered two paralogues of Hsp60 (Table 1). Hsp40 gene families are one of 

the most diverse Hsps, but we narrowed our search to DnaJ-1, which is the known heat-

inducible paralogue of D. melanogaster (Table 1). We did not recover a DnaJ-1 

paralogue from any of the insects surveyed and found the best BLAST match to be D. 

melanogaster CG5001 (Table 1). Forward BLAST searching for D. melanogaster sHsps 

(hsp22, hsp23, hsp26, hsp27) yielded no reciprocal BLAST hits; instead, the closest 

match was lethal 2 essential for life (l(2)efl), for which there were 3-9 copies in the 

Hymenoptera, and 1-17 copies in other members of the outgroup (Table 1).  

Of the Hsp homologues, eight were quantifiable by qPCR and were subsequently 

searched for cis-regulatory HSEs (Table 1, indicated with asterisks). Local alignment of 

the promoter regions of hsp83, hsc70-4 (h1 and h2), and hsp40 across species indicated 

conserved location, conformation, and arrangement of cis-regulatory HSEs (Figures 1-3), 
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whereas hsc70-3 (BIP), hsc70-5, hsp60, and l(2)efl had less conserved HSEs (Additional 

files 4-6: Figures S1-S3; data not shown for l(2)efl). For Hsps with conserved HSEs, 193 

HSE motifs were annotated, including 114 head types (‘nGAAn’) and 79 tail types 

(‘nTTCn’; Figures 1-3). Across all sampled insects, we found no consistent preference 

for head or tail motifs in hsp83 (exact binomial test, p=0.055), significant preference for 

the head motif in hsc70-4 (p<0.001), and significant preference for the tail motif in hsp40 

(p<0.05). 

Heat shock protein (Hsp) and cis-regulatory heat shock element (HSE) evolution: 

 

Hsp83 

Phylogenetic reconstruction of hsp83 revealed multiple duplications and losses in 

both the outgroup and Hymenoptera (Figure 1). An early duplication event in a common 

ancestor of the Hymenoptera generated two paralogues of hsp83 (h1 and h2 in Figure 1). 

Although both paralogues are present in bees and wasps, only one paralogue (h2) exists 

in ants, indicating a secondary loss. A second duplication of the h2 orthologue occurred 

in Linepithema humile. Selection analysis along the length of the gene sequence indicated 

that most sites (608/714 and 625/714, Single likelihood ancestor counting (SLAC) and 

Relative effects likelihood (REL) analyses, respectively, Table 2) identified purifying 

selection; there was no evidence for episodic diversifying selection in branches leading to 

Hymenopteran paralogues (Branch-REL, p> 0.5; Figure 1).  

In spite of overall sequence conservation, Hymenopteran hsp83 h2 differs in 

genomic structure and cis-regulation from Hymenopteran hsp83 h1 and from outgroup 
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species in three ways. First, Hymenopteran hsp83 h1 and most outgroup species 

completely lack introns, whereas hsp83 h2 has two introns; Apis mellifera hsp83 h1 is the 

exception, with one intron in hsp83 h1 (Additional file 7: Figure S4). Second, 

Hymenopteran hsp83 h2 has a split HSE arrangement (4-6 and 3 HSE motifs), whereas 

both hsp83 Hymenopteran h1 and the outgroup have a contiguous HSE arrangement (6-9 

HSE motif length) at the proximal end of the molecule (30-100 bps upstream TSS; Figure 

1). Third, there is a preference in head-type motifs only in Hymenopteran hsp83 h2 

(Fisher’s Exact Test, p <0.001; Figure 1).  

Hsc70-4 

Phylogenetic reconstruction of hsc70-4 indicates multiple duplication events both 

within species (C. quinquefasciatus and A. pisum) and in a common ancestor of the 

Hymenoptera, leading to two paralogues (h1 and h2; Figure 2). Each paralogue forms a 

strongly supported clade, with the exception of the two Bombus species, in which the h1 

paralogue is nested within the h1 clade but the second copy does not group with either 

Hymenopteran paralogue (Figure 2). There is evidence of episodic diversifying selection 

along the branch preceding the hsc70-4 duplication in the Hymenoptera and also in the 

Hymenopteran hsc70-4 h2 lineage (Branch-REL, p <0.001 in both cases; Figure 2), even 

though most individual sites (608/710 and 610/710, SLAC and REL analyses, 

respectively) were under purifying selection (Table 2). 

Hymenopteran hsc70-4 differs in genomic structure and cis-regulatory HSEs from 

that of D. melanogaster.  The orthologue of hsc70-4 in D. melanogaster lacks introns and 

cis-regulatory HSEs (Additional file 8: Figure S5; Figure 2). In contrast, Hymenopteran 
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hsc70-4 h1 has one intron, with the exception of N. vitripennis, which has two introns.  

Hymenopteran hsc70-4 h2 also has two introns, with the exception of Bombus 

(Additional file 8: Figure S5). Compared to the hsc70-4 in members of the outgroup 

(Figure 2, right), both Hymenopteran hsc70-4 paralogues showed high diversification in 

cis-regulatory HSEs, particularly at the more distal positions ( >120bps upstream TSS). 

At the proximal position (30-115 bps upstream TSS), however, HSEs of Hymenopteran 

hsc70-4 aligned locally with the inducible D. melanogaster hsp70 gene (data not shown).  

Hsp40 

Both sequence and copy number of hsp40 were phylogenetically conserved across 

all insect species (Figure 3). Most sites were under purifying selection (Table 2), and 

there was no evidence of episodic diversifying selection along branches leading to the 

Hymenoptera (Figure 3). Cis-regulatory HSEs of hsp40 were concentrated in one 

conserved proximal block of 3-7 HSE subunits that were located 35-100 bps upstream of 

the TSS, although in D. melanogaster HSEs were located 255-285 bps upstream (Figure 

3).  However, the genetic structure appears less conserved, ranging from zero to three 

introns (Additional file 9: Figure S6).  

Inducible Hsp expression 

 We tested whether the presence or absence of conserved cis-regulatory HSEs 

successfully predicted Hsp gene induction in response to experimental heat shock. The 

four Hsp genes with conserved HSEs were all significantly up-regulated in response to 

increasing temperature treatments (hsp83 (F5,12=8.48; p<0.01), hsc70-4 h1 (F5,12=3.74; 

p<0.05), hsc70-4 h2 (F5,12=10.6; p<0.001), and hsp40 (F5,12=6.97, p<0.01); Figure 4A-D). 
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The other four Hsps, which lacked conserved HSEs, were not significantly up-regulated 

after heat shock (hsc70-5 (F5,12=2.17; p=0.13), hsc70-3  (F5,12=1.91; p=0.17), hsp60  

(F5,12=2.86; p=0.063), and l(2)efl  (F5,12=0.223; p=0.946); Figure 5A-D).  

Species comparisons  

We then tested whether variation in thermal tolerances between two ant species was 

accompanied by changes in Hsp inducibility. The median lethal temperature 50 (LT50) of 

the warm-climate P. barbatus (median LT50=46.9 °C) was significantly higher than the 

LT50 of the cool-climate A. picea (median LT50= 38.78 °C; generalized linear model 

(GLM) with a binomial response variable: influence of species, p<0.001; Additional file 

10: Figure S7). These survivorship differences were matched by patterns of Hsp gene 

expression: P. barbatus shifted its expression profile toward higher temperatures than did 

A. picea for all inducible Hsps (Figure 4A-D). For hsp83, hsc70-4 h1, and hsc70-4 h2, P. 

barbatus showed peak expression at 43°C, whereas A. picea showed peak expression at 

35-38.5°C (Figure 4A-C). For hsp40, peak expression was 40°C and 35°C for P. 

barbatus and A. picea, respectively (Figure 4D). P. barbatus exhibited significantly 

higher constitutive expression of hsc70-4 h1 (ANOVA, F1,5=87.8, p<0.01) and l(2)efl 

(F1,5=6.92, p<0.05), and significantly lower constitutive expression of hsc70-3 (F1,5=596, 

p<0.01), hsc70-5 (F1,5=24.3, p<0.001), and hsp60 (F1,5=31.2, p<0.01) than did A. picea 

(Figure 6). Among the inducible Hsps, there was a positive relationship between relative 

basal expression levels and relative inducibility (linear regression, r2= 0.918, p<0.05; 

Figure 7).  

Discussion 
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 Molecular characterization of Hymenopteran Hsps reveals a number of 

functionally important differences in identity, amino acid sequence, and regulation of 

chaperone proteins relative to Drosophila (Table 2, Figures 1-2).  Both hsp83 and hsc70-

4 display Hymenoptera-specific gains and losses, resulting in unique sets of homologues. 

Although most codons exhibited purifying selection (Table 1), instances of positive 

selection along branches leading to and within the Hymenoptera (Figures 1-2, left) 

suggest novel chaperoning activity [48]. This sequence divergence, coupled with cis-

regulatory HSE distribution and expression patterns (Figures 1-2, right; Figures 4-5), 

suggests that although there is substantial conservation of ancestral inducibility, the HSR 

response in Hymenoptera has been additionally augmented by expansion and 

subfunctionalization of novel gene duplicates that are activated by thermal stress.  

 As in other taxonomic groups, cytoplasmic Hsps mainly mediate the HSR in 

Hymenoptera (Figures 4-5), whereas mitochondrial and ER-localizing forms of Hsp70 

[9,49] and Hsp90 appear to play little role [50,51, but see 52]. The set of inducible Hsps 

identified likely interact with one another to protect and refold denatured proteins. Upon 

protein denaturation, Hsp40 delivers unfolded proteins to Hsp70, and the two together 

mediate refolding through cycles of substrate binding and release driven by ATP binding 

and hydrolysis [53]. Despite their interdependence, however, the extent of functional 

diversification of hsc70-4 and hsp40 differed substantially (Figures 1-3).  Hsc70-4 

showed the most dramatic variation, with the primary inducible member hsp70 in 

Drosophila completely lost in Hymenoptera, which instead induces two hsc70-4 

paralogues that vary in both fold-increase in response to heat stress (Figures 2,4).  The 
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insect-wide phylogeny of hsc70-4 also contains gene duplications in other taxa, 

suggesting that in general, hsc70-4s have undergone multiple evolutionary gains, losses 

and functional shifts. For example, Culex quinquefasciatus has two paralogues and 

appears to have gained cis-regulatory HSEs in one paralogue (Figure 2), suggesting that 

one copy is heat-inducible and the other serves housekeeping functions.  

Among different species of Drosophila, the primacy of hsp70's role in the heat 

shock response is achieved through an evolutionary increase in copy number from 2 to 5 

[16,20]. We detected minimal copy number variation in either hsp83 or hsc70, although it 

is important to note that lack of detailed manual annotation of non-Drosophila genomes 

may make it difficult to detect highly similar copies should they be present.  

Nevertheless, our results suggest that Hymenopteran (and other insect) Hsps may have 

evolved the heat shock response primarily through expansions in cis-regulatory HSEs 

across the entire promoter region, along with transcriptional enhancement associated with 

introns that are lacking in D. melanogaster (Additional files 7-8: Figures S4-5)[23-25,54-

55].  

 For hsp83, we found two paralogues in bees and wasps, one with an ancestral 

contiguous arrangement of HSEs, and one with a derived split arrangement similar to that 

of Drosophila hsp70. This split arrangement has reduced cooperative binding of HSF 

trimers, leading to lower basal expression and higher inducibility than in the more 

contiguous motif of hsp83[14,56,57]. The presence of two differentially regulated 

paralogues may reflect novel functionalization in hsp83 to provide both basal and 

inducible Hsp expression.  Foraging bees are known to super-heat thoracic muscles prior 
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and during flight, which necessitates both constitutive and inducible chaperoning activity 

[32,34]. Transcriptomic screens in Apis mellifera have found weak support for Hsp90 up-

regulation in foraging relative to nurse bees, but more detailed and precise quantification 

of each paralogue will determine whether they have subfunctionalized into constitutive 

and inducible roles [58]. In contrast, except for the nuptial flight of males and queens, 

worker ants are flightless, which may explain the secondary loss of the ancestral 

paralogue but the retention of the more inducible form.  

 In contrast to hsc70 and hsp83, hsp40 was much more conserved. There was a 

single gene copy per taxon in which most sites were under purifying selection, suggesting 

that their co-chaperoning activity has been retained across insects. In particular, the 

conserved J domain of Hsp40 stimulates the ATPase domain of Hsp70 proteins. Across 

the insect hsp40 phylogeny, HSE configuration remained conserved for all but D. 

melanogaster, whose primary motif was further from the transcriptional start site (Figure 

3).  Although the Hsp40 gene family is one of the most diverse molecular chaperones, we 

captured the paralogue that participates in the HSR because it was significantly up-

regulated in response to heat stress. Interestingly, hsp40 in P. barbatus peaked in up-

regulation at a less extreme temperature than did the other Hsp proteins (Figure 4D). 

Early expression of hsp40 may enhance chaperoning activity by binding to existing and 

accumulating pools of hsc70 and also by providing crosstalk with Hsp90-mediated 

chaperoning [59]. 

 Comparisons of two ant species that experience very different thermal ranges 

revealed correlated shifts in both the basal expression and inducibility of Hsps that reflect 
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the higher and more frequent thermal stress expected in extreme habitats (Figure 7, 

Additional file 10: Figure S7).  Workers of the harvester ant P. barbatus forage in 

extreme desert heat [60,61] and may be more reliant on both constitutive and inducible 

mechanisms to cope with thermal stress than workers of A. picea, which are more 

temperature sensitive and occur in thermally buffered mesic deciduous forest [47,62].  

The gene expression responses of P. barbatus and A. picea are consistent with previous 

work comparing two hot-desert ant species of Cataglyphis with the cool woodland ant 

Formica polyctena [33]. In that study, HSP70 (hsc70-4) basal expression and induction 

were higher in Cataglyphis, although alternative paralogues were not fully distinguished.  

Although Hsp chaperoning activity expends energy (ATP), there may not be trade-offs 

between continual and maximum induction of Hsps because investment in the HSR is 

less costly than the loss of biochemical activity from protein denaturation [4,63,64].  In 

addition, the HSR in P. barbatus in this study was shifted upward by ~5-7°C (Figure 4), 

suggesting underlying differences in overall proteome stability that permit P. barbatus to 

tolerate significantly higher temperatures than A. picea (Additional file 10: Figure S7).  

Conclusions 

 Our study represents the most comprehensive survey to date of Hsp sequence 

and cis-regulatory evolution for insects. Hymenoptera have unique Hsp evolutionary 

histories shaped by processes such as of gains, losses, and changes in cis-regulation. 

Based on the presence of conserved cis-regulatory elements (HSEs), we reliably 

predicted the heat inducible Hsps that are critical for mounting the HSR in ants, 

suggesting that the ancestral inducibility has been retained. We uncovered greater 
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diversity in the number, arrangement, and location of cis-regulatory HSEs in 

Hymenoptera for two major Hsp genes (hsp83 and hsc70-4), suggesting that the HSR is 

mediated through changes in cis-regulation as opposed to increasing gene copy number. 

Furthermore, Hsp expression patterns were associated with the thermal limits of two ant 

species that inhabit different thermal environments. Collectively, our analyses suggest 

Hsp sequence and expression patterns may reflect the forces of selection acting on 

thermal tolerance in ants and other social Hymenoptera. 

Methods 

Phylogenetic Reconstruction 

To reconstruct the evolutionary relationships of heat shock proteins, we identified 

orthologous Hsps in 17 insect species representing five insect orders using the well-

characterized Hsps of Drosophila melanogaster as a reference (Additional file 1: Table 

S1). Reciprocal best BLAST (blastp) searches (e-value < 1E-10, and top bit score) were 

used to identify annotated orthologues of the known D. melanogaster paralogues with an 

ant-specific genome database (http://antgenomes.org/, [65]) as well as with the NCBI 

non-redundant protein and nucleotide databases (Additional file 1: Table S1). To find 

unannotated sequences, we queried D. melanogaster orthologues with tblastn to each 

insect species’ genome. To identify additional homologues not found with BLAST, we 

employed a similar search with Hmmer 3.0 [66]. We used Drosophila melanogaster 

transcripts to search (hmmsearch) each individual genome and identified orthologues 

based on e-value < 1E-10 and top bit score. HMMER searches recovered 9 additional 

copies from 2 genes (gp93 and hsp70) for Culex quinquefasciatus. Identified nucleotide 
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sequences were translation-aligned with MAFFT using default settings [67] to identify 

homologous codons for subsequent selection analyses and the resultant alignment was 

translated for phylogenetic reconstruction. We reconstructed gene relationships of 

homologous Hsps with PhyML [68], and bootstrap support was estimated for 1,000 

replicate searches utilizing an amino acid substitution model inferred from Prottest3 [69]. 

Similar phylogenetic relationships were recovered with a Bayesian analysis using 

MrBayes [70] (data not shown).  

Tests of Selection 

Selection at the protein-coding level was quantified as the ratio of the 

nonsynonymous substitution rate to the synonymous substitution rate (ω = dN/dS); ω > 1 

indicates positive selection, whereas ω < 1 indicates purifying selection, and ω = 1 is 

indicates neutral evolution [71].  For each homologous Hsp, we tested for selection at 

individual codons as well as across the phylogeny using the HyPhy package [72] on the 

web-interface Datamonkey (http://www.datamonkey.org). 

We identified individual codon sites for positive selection using Single-

Likelihood Ancestor Counting (SLAC), Random Effects Likelihood (REL), and Fixed 

Effects Likelihood [71]. SLAC calculates the number of observed and expected dN and dS 

rates and conservatively estimates ω using a recommended cutoff of p=0.1 [73]. The REL 

method is an extension of analyses in PAML [71] that allows dN and dS to vary across 

sites and uses a Bayes factor (>50) to assess selection [73]. FEL estimates dN and dS from 

the codon substitution model and implements a likelihood ratio to evaluate significance 

using a recommended cutoff of p=0.1 [73].  
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In addition to testing for selection at sites along the gene, we tested for changes in 

selective pressures across the reconstructed amino acid phylogeny, which might indicate 

evolutionary shifts in gene function.  Episodic diversifying selection was assessed using 

branch-REL and MEME [74,75]: branch-site REL detects episodic diversifying selection 

for individual lineages [74], whereas MEME is an extension of FEL that detects episodic 

diversifying evolution by allowing ω to vary across branches and sites [75]. 

Identification of genomic structure and cis-regulatory Heat Shock Elements (HSE)  

 Identification of genomic structure and cis-regulatory HSEs was performed for 

Hsps that were detectable by qPCR (for methods, see Quantitative real time PCR). We 

mapped transcripts to their respective genomic regions in Geneious Pro 6.1 [76] and 

identified exons and introns, making further manual alignments by hand when necessary.  

The transcriptional start site (TSS) was predicted using Neural Network Promoter 

Predictor (NNPP)[77]. Previous chip-seq experiments in D. melanogaster revealed that 

HSF binds primarily to Hsp promoters within 1250 bps of the TSS [78]; sequences were 

trimmed to this length and locally aligned to identify orthologous HSEs. 

To identify cis-regulatory HSEs, we followed a modified search procedure 

adapted from Tian et al. (2010) [17]. Promoter sequences were searched for the putative 

HSE motif (head conformation = nGAAnnTTCnnGAAn or tail conformation = 

nTTCnnGAAnnTTCn) [79], allowing for a 2 base-pair mismatch from the preferred 

sequence. HSE motifs were then manually screened and annotated by the number and 

type of subunit occupying the distal end (subunits beginning with ‘nGAAn’ or ‘nTTCn’ 

refer to the head or tail conformation, respectively). Mismatches occurring at critical sites 
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for HSF binding (G in 2nd position of head conformation, C in 4th position of tail 

conformation) [80] were discarded, unless motifs were interior to a HSE with 3 or more 

subunits, known as a gapped HSE [17]. 

A final screen was employed to quantify the binding strength of each HSE 

subunit. Briefly, a WebLogos [81] was generated for head and tail types recovered from 

the search. Bit scores for the preferred base at each of the 5 possible positions in a subunit 

were summed; the match between the individual subunits and the preferred subunit was 

expressed as the ratio of the summed observed bit score over the preferred bit score. 

Subunits with scores less than 0.5 were discarded unless flanked with subunits with 

scores greater than 0.5, again indicating a ‘gapped’ HSE. 253 out of 1753 total HSEs 

were retained after screening (Additional file 2: Table S2). 

Field collections and lab rearing 

Hsp induction was quantified in workers sampled from lab-acclimated colonies of 

Pogonomyrmex barbatus and Aphaenogaster picea.  Three Pogonomyrmex barbatus 

colonies were reared from queens collected following a mating flight at the Welder 

Wildlife Foundation in Sinton Co., Texas (28.10837 °N 97.42265 °W) in June 2007.  

Colonies were maintained in an environmental room at the University of Vermont, 

Department of Biology, with a 12:12 light dark light cycle at 30°C in 17 × 12 × 6 cm 

plastic nest boxes provided with three 16 × 150mm disposable glass test tubes in which 

water was supplied behind a cotton stopper as a nest site. Each week, colonies were fed 2 

mealworms (Tribolium molitor) and an ad libitum seed mixture composed of oat bran, 

wheat germ, millet, thistle seeds, and quinoa.  
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Eight colonies of A. picea were collected in May and June 2012 from black 

spruce forest adjacent to Molly Bog (44.508611°N, 72.702222°W), located near Stowe, 

Vermont. Entire live colonies containing 500-1000 workers, brood, and queen were 

excavated from the leaf litter. Colonies were maintained for 1 month in the laboratory at 

25°C +/- 1°C with 12 hour light/dark cycles in a 7 x 3 ¼ x 1 ¾  inch plastic nest box 

covered with red cellophane and connected to an open plastic foraging arena filled with 

~1cm sand and lined with Insect-a-slip (BioQuip) to prevent escape. 1-3 cotton-plugged 

water tubes (16 ×150 mm) were provided in the nest box for each colony to maintain 

humidity.  Approximately 200 µl of 20% honey water and one bisected mealworm were 

provided in each foraging arena every 3 days.  

Thermal Tolerance Assays 

Acute upper thermal limits in both species were determined by quantifying a LT50 

temperature, defined as the temperature at which a one-hour exposure produced 50% 

worker mortality after 3 days of recovery using the dose.p function in the MASS package 

within R (version 3.2.0)[82].  Ants were exposed to six different temperature regimes 

(30, 35, 40, , 42, 45, 46 °C for P. barbatus and 25, 30, 35, 36.5, 38.5  40°C for A. picea). 

Temperature treatments were applied by confining 10-13 nest-mate workers together in a 

5mL screw-cap glass vial and submerging the vial in a pre-set Thermo Neslab EX17 

heating water bath for 1 hour.  Temperature inside the vials was monitored with a 

temperature probe inserted in an empty 5 mL glass vial submerged in the water bath 

simultaneously. After the application of temperature treatment, ten ants were allowed to 

recover for survival counts in a 16×150mm cotton-plugged water tube. For each 
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treatment, three ants per colony from four of the eight A. picea colonies and the three P. 

barbatus colonies were flash frozen and stored at -80°C for gene expression analyses.  

Quantitative real time PCR 

RNA was isolated from flash-frozen ants with RNAzol (Molecular Research 

Center, Inc., USA) and then purified with the RNeazy micro kit (QIAGEN, USA) for 

downstream gene expression quantification. Flash-frozen ants from each temperature 

treatment were pooled and homogenized in a Bullet Blender (Next Advance Inc., USA) 

homogenizer at top speed (10) with 1.4mm zirconium silicate grinding beads 

(Quackenbush Co., Inc., USA) and 500 uL of RNAzol buffer (Molecular Research 

Center, Inc., USA) for 3 minutes. Following the manufacturer’s instructions for RNAzol, 

RNA samples were resuspended in 100 uL of water and subsequently purified with 

Rneasy micro kit with DNAse I (Qiagen, USA) treatment on the micro column to remove 

genomic DNA contamination. RNA was quantified with Nanodrop spectrophotometry; 

all sample 260/280 ratios were between 2.0-2.2, indicating acceptable RNA quality. 

mRNA was reverse transcribed into cDNA with High Capacity cDNA Reverse 

Transcription Kit (ABI, USA).  

To detect specific heat shock proteins, primers were designed for a whole suite of 

genes for each gene family (Table 1, Additional file 3: Table S3). Table 1 highlights (in 

*) working primer sets. Quantitative PCR was performed on an ABI StepOnePlus Real-

Time PCR system. Reactions were performed in 20 µl volumes with 2 ng of template 

cDNA, 500 nM total primer, and 10 µl  of Power SYBR® Green Master Mix (Life 

Technologies, USA). Cycling conditions consisted of an initial 95°C incubation for 2 min 
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and then 40 cycles of 95°C for 15 s, with 55°C annealing and extension for 60 s. 

Following amplification, melt curve analyses confirmed the presence of a single 

amplicon. All gene products from preliminary experiments were sequenced for 

verification of specific gene amplification. 

Gene expression fold changes were calculated relative to rearing temperatures 

using the ΔΔ CT method [83] after empirically determining ~100% primer efficiencies 

for each primer set (Additional file 3: Table S3). The set of housekeeping genes for 

normalization was determined with Normfinder [84], which calculated the relative 

stability of four housekeeping genes (18s rRNA, GAPDH, β-actin, and Ef1β) and selected 

the most stable genes across samples.  For A. picea, 18s rRNA and β-actin were most 

stable (0.20 stability), whereas 18s rRNA and GAPDH (0.25 stability) were the most 

stable for P. barbatus. For cross-species comparisons, 18s rRNA and β-actin were the 

most stable (0.05 stability).  Differences in HSP up-regulation across temperature 

treatments were determined with a one-way Analysis of Variance (ANOVA) in which 

fold expression values were log10 transformed to meet assumptions of normality. 

Significant up-regulation relative to controls was identified with post hoc Tukey tests. 

Additional files 

The data sets supporting the results of this article are included within the article and its 

additional files. 

Additional file 1: Table S1. Nucleotide sequences used to characterize the molecular 

evolution of heat shock proteins.  
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Additional file 2: Table S2. Sequence annotations (position, length, arrangement) of cis-

regulatory HSEs for each HSP gene and across all species screened. 

Additional file 3: Table S3.  Primer sets for qPCR including housekeeping and heat 

shock genes.  

Additional file 4: Figure S1. Maximum likelihood phylogeny of Hsp60 (mitochondrial 

form) for 17 species of insects (rooted on A. pisum) using a JTT amino acid substitution 

model and 1,000 bootstraps replicates. 

Additional file 5: Figure S2. Maximum likelihood phylogeny of hsc70-3 (BIP) for 17 

species of insects (rooted on A. pisum) using a JTT amino acid substitution model and 

1,000 bootstrap replicates. 

Additional file 6: Figure S3. Maximum likelihood phylogeny of hsc70-5 for 17 species 

of insects (rooted on A. pisum) using a JTT amino acid substitution model and 1,000 

bootstrap replicates.   

Additional file 7: Figure S4. Local alignment of the genomic region of orthologous 

hsp83 from 17 insect species spanning 5 insect Orders. 

Additional file 8: Figure S5. Local alignment of the genomic region of orthologous 

hsc70-4 from 17 insect species spanning 5 insect Orders. 

Additional file 9: Figure S6. Local alignment of the genomic region of orthologous 

hsp40 from 17 insect species spanning 5 insect Orders. 

Additional file 10: Figure S7. Percent survival (+/1 SD) of Aphaenogaster picea and P. 

barbatus (right panel) from heat shock treatments at different temperature treatments. 
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Figure 1. Evolutionary gains and losses in hsp83 within Hymenoptera, followed by 

diversification in cis-regulatory HSEs. Relationships of homologous hsp83 were reconstructed 

with PhyML for 17 insect species (rooted with A. pisum) using a JTT substitution model with 

1,000 bootstrap replicates (> 90 bootstrap support indicated; left). Branches of the outgroup taxa 

are colored in blue and black, while well-supported paralogues of Hymenopteran branches are 

colored in orange (h1) and red (h2). Statistically significant episodic diversifying selection using 
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Branch-Rel is indicated along the branch (+ corresponds to p<0.05; * = p<0.01; ** = p<0.001). 

Cis-regulatory HSEs in the promoter region spanning 400 bps from the transcription start site 

(TSS; right) are mapped onto the phylogeny and are annotated by their length and motif type.  
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Figure 2. Evolutionary conservation of two copies of hsc70-4 within Hymenoptera, but both 

copies harbor an extraordinary amount of diversity in cis-regulatory HSEs. Relationships of 

homologous hsc70-4 were reconstructed with PhyML for 17 insect species (rooted on A. pisum) 

using a JTT substitution model with 1,000 bootstrap replicates (> 90 bootstrap support indicated; 

left). Branches of the outgroup taxa are colored in blue, while well-supported paralogues of 

Hymenopteran branches are colored in orange (h1) and red (h2). Statistically significant episodes 

of positive selection identified with Branch-Rel are indicated along the branch(+ corresponds to 

p<0.05; * = p<0.01; ** = p<0.001). Cis-regulatory HSE elements in the promoter region spanning 

570 bps from the transcription start site (TSS; right side) are mapped onto the phylogeny and are 

annotated by their length and motif type.  
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Figure 3. Evolutionary conservation of hsp40 copy number and cis-regulatory HSEs. 

Relationships of homologous hsp40 were reconstructed with PhyML for 17 insect species (rooted 

on A. pisum) using a JTT substitution model with 1,000 bootstrap replicates (> 90 support 

indicated). The outgroup and Hymenopteran branches are indicated in blue and red, respectively. 

Statistically significant episodes of positive selection using Branch-Rel are indicated along the 

branch (+ corresponds to p<0.05; * = p<0.01; ** = p<0.001). Cis-regulatory HSE elements in the 

promoter region spanning 370 bps from the transcription start site (TSS; right side) are mapped 

onto the phylogeny and are annotated by their length and motif type. S. invicta did not provide 

enough sequence information for the identification of cis-regulatory HSEs.  



 
45 

*"*"
*"

*"

*"
*"*"*"

*"

*" *"
*"*" *"

*"
*"

*"
*"

*"

 

Figure 4. Relative fold increase in gene expression (+/- SD) for inducible HSPs in A. picea 

and P. barbatus across different temperature treatment. Relative values were normalized to 

the 18s rRNA and β-actin, 18s rRNA and GAPDH in A. picea (N=4 per treatment) and P. 

barbatus (N=3 per treatment), respectively. Significant up-regulation from 25°C (A. picea) and 

30°C (P. barbatus) is denoted by ‘*’ from post hoc Tukey tests (p<0.05).  
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Figure 5. Relative fold change in gene expression (+/- SD) for non-inducible HSPs in A. 

picea and P. barbatus across different temperature treatment. Relative expression were 

normalized to the 18s rRNA and β-actin and 18s rRNA and GAPDH for A. picea (N= 4 per 

treatment) and P. barbatus (N= 3 per treatment), respectively.  
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Fig 6. Relative basal heat shock gene (target) expression (+/- SD) between P. barbatus(N=3) 

and A. picea (N=4). Relative gene expression was normalized with the geometric mean of 18s 

rRNA and β-actin as the calibrator (*= p<0.05;** = p<0.01; *** = p < 0.001 levels of 

significance) and fold change was calculated as P. barbatus relative to A. picea was calculated as 

follows: 2Target(Pbar-Apic)/2Calibrator(Pbar-Apic)(Pbar= P. barbatus, Apic= A. picea). -1 was divided by 

values less than one to calculate negative relative basal expression.  Significant up-regulation in 

P. barbatus and A. picea are colored in red and blue, respectively.  
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Figure 7. The positive relationship between the log ratios of basal expression levels (P. 

barbatus/A. picea) at rearing temperatures and max induction (β1 slope=0.2398, r2=0.918, 

p<0.05).  

Tables and Figures 

Table 1. Summary of orthologous HSPs from the combination of reciprocal BLAST and 

HMMER searches using D. melanogaster as the reference.  

  
Outgroup Hymenoptera 

Gene 
Family Gene C. quinque. T. castaneum 

B. 
mori A. pisum Ants Bees N. vitripennis 

Hsp90 

trap1 1 1 1 1 1 1 1 
gp93 3 1 1 1 1 1 1 
hsp83 3 3 1 2 1-2* 2 2 

Hsp70 

CG2918 1 1 1 3 1 1 1 
hsc70-3 
(BIP) 1 1 1 1   1* 1 1 

hsc70-4  2 1 1 2   2* 2 2 
hsc70-5 1 1 1 1   1* 1 1 
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hsp70 6 1 2 3 0 0 1 
hsp70CB 1 1 1 1 1 1 1 

Hsp60 
tcp-1 1 1 1 1 1 1 1 
hsp60 1 1 1 1   1* 1 1 

Hsp40 CG5001 1 1 1 1   1* 1 1 

small 
Hsps 

hsp23 0 0 0 0 0 0 0 
hsp24 0 0 0 0 0 0 0 
hsp26 0 0 0 0 0 0 0 
hsp27 0 0 0 0 0 0 0 
l(2)efl 8 10 17 1 3-6* 4-9 7 

Each entry is the number of orthologous HSPs detected. The astericks (*) indicate orthologues 

that were detectable by qPCR. For l(2)efl, only one paralogue was detectable by qPCR. C. 

quinque = Culex quinquefasciatus, T. castaneum = Tribolium castaneum. B. mori = Bombyx mori, 

A. pisum = Acyrthosiphon pisum, N. vitripennis = Nasonia vitripennis. See text for further details 

of ants and bees used for analysis. 

Table 2.  Summary of selection analyses for three HSP genes.  

   Global ω ω-/ω+ 
Gene N Codons SLAC REL SLAC FEL MEME 
hsp83 25 714 0.0603 0.071 608/0 625/0 NA/1 

hsc70-4 31 710 0.0549 0.051 608/0 610/0 NA/7 
hsp40 17 384 0.1147 0.100 253/0 284/0 NA/1 

For each gene, the number of sequences and number of codons were used for detecting positive 

selection. The mean global ω is shown for SLAC and REL methods. The number of sites that are 

negatively or positively selected are shown under ω -/ ω + for SLAC, FEL. P-values were set to 

default (p=0.1) for SLAC, FEL, REL. MEME provides evidence for episodic positive selection at 

individual branches and sites (p<0.01) and the number of negatively selected sites are non 

applicable (NA). 
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CHAPTER 3: CORRELATED CHANGES IN HEAT SHOCK PROTEIN GENE 

EXPRESSION PROFILES PREDICT UPPER THERMAL LIMITS IN 

EASTERN FOREST ANTS 

 
 

3.1 Abstract 

Colonization of thermally stressful environments increases the risk of protein 

denaturation under high temperatures. Adaptation to thermal stress may involve the 

action of heat shock proteins, which can pre-emptively protect against unfolding or 

respond to protein damage. The extent to which protection, sensing, and tolerance 

mechanisms underlie physiological limits in natural systems is poorly understood. We 

evaluated variation in upper thermal limits (CTmax) across a clade of eight species of ant 

in the genus Aphaenogaster, whose geographical ranges in the eastern the US encompass 

a 4°C maximum temperature gradient and two distinct forest types. Workers acclimated 

to common-garden conditions were assayed for CTmax with a slow-ramping protocol, 

which provided sufficient time for the heat shock response to be elicited.  We used a 

function-valued trait approach to model the expression dynamics of three heat shock 

protein genes (hsp83, hsp70, hsp40) to characterize baseline expression, the onset and 

rate of Hsp gene up-regulation, and the magnitude of induction in response to thermal 

stress.  CTmax varied in accordance with both maximal environmental temperature and 

habitat type. An evolutionary transition from closed-canopy deciduous forests into open-

canopy pine forests is inferred to have occurred once, coinciding with a 1.5°C increase in 

CTmax.  Shifts in Hsp gene expression explained 40% of the total variation in CTmax 
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across the group; notably, all of the shifts involved dynamics of gene induction rather 

than baseline expression.  The strongest shifts were toward enhanced maximal induction 

to response in thermal extremes and delayed activation of the heat shock response 

consistent with stress tolerance, with a smaller contribution of pre-emptive protective 

induction under moderate stress conditions. The same correlated suite of changes was 

associated with both adaptation to thermal conditions and colonization of open pine 

forests, suggesting common regulatory control.  Collectively, extension of CTmax 

involves adaptive, coordinated shifts of Hsp gene expression profiles to maintain protein 

homeostasis under temperature challenge and may have facilitated diversification of 

forest ants into divergent thermal environments. These results lay out the expectation for 

the types of evolved mechanisms required for surviving a warmer world in the future.  

  

  

3.2 Introduction 

 Clades of ectotherms that have diversified into thermally divergent 

environments provide exemplar test cases for understanding the types of adaptations 

required to colonize novel ecological niches (Huey and Stevenson 1979; Hunter 1998). 

Ectothermic species must meet the challenge of maintaining performance (growth, 

activity, and reproduction) in the face of shifts in internal body temperatures across 

latitude, along elevation, among different habitats and within a growing season (Angiletta 

2009; Scheffers et al. 2014). When operative body temperatures reach upper thermal 

limits, organismal performances and fitnesses degrade due to heat stress (Kingsolver 
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2009; Geiler-Samerotte et al. 2011). High temperatures induce macromolecular damage 

(Richter et al. 2010), including loss of biochemical activity associated with protein 

denaturation (Somero 1995; Fields 2001). Therefore, adaptation to warm temperatures 

should involve physiological mechanisms to cope with protein unfolding (Stillman and 

Somero 2001; Somero 2011; Fields et al. 2015). 

 One of the primary mechanisms to cope with heat-induced protein unfolding is 

the heat shock response (HSR) (Lindquist 1988; Kültz 2005), a series of intracellular 

responses that collectively operate to maintain protein homeostasis.  Genes with catalytic 

activity are quickly down-regulated (Sørensen et al. 2005) to reduce anabolism, while 

heat shock proteins (Hsps) become rapidly up-regulated in response to temperature-

mediated protein unfolding (Moseley 1997; Lindquist 1988; Craig and Gross 1991).  

Hsps are ancient and evolutionarily conserved proteins that recognize exposed 

hydrophobic regions of unfolded proteins and refold them (Fink 1999) or facilitate their 

degradation (Qian et al. 2006) with the expenditure of ATP.  

Given the ability for Hsps to sense and repair protein unfolding, their expression 

patterns may be targets for selection in populations or species that vary in thermally 

different environments (Moseley 1997; Feder and Hofmann 1999; Sørensen et al. 2003).  

Species can utilize Hsps to maintain protein homeostasis with two general, non-mutually 

exclusive strategies. Constitutive or induced Hsp expression under benign or low ends of 

the temperature gradient can pre-emptively prevent unfolding when organisms face high 

temperatures (Carmel et al. 2011; Bedulina et al. 2013; Dong et al. 2008). However, 

constitutive Hsp expression is costly and diverts energy resources away from growth 
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(Krebs and Loeschcke 1994; Hoekstra and Montooth 2013).  Additionally, species can 

invest in inducing Hsp expression towards higher levels to tolerate heat stress (Feder and 

Hofmann 1999; Sørensen et al. 2003). Finally, because Hsps act as a sensor of 

perturbations to temperature (Craig and Gross 1991), the onset of expression should 

match the stability of the proteome (Dahlhoff and Rank 2000; Tomanek and Somero 

1999; Tomanek and Zuzow 2010; Willot et al. 2017). The extent to which natural 

populations have utilized each of these elements during thermal niche expansion is 

currently unclear, and may depend on the type of environment and the evolutionary 

timescale being considered (Somero 2011; Garbuz and Evgen’ev 2017).   

 Capturing dynamics of the heat shock response representing protection, sensing, 

and tolerance requires characterization of Hsp expression profiles over a range of 

temperatures, represented as a reaction norm or function-valued trait (Stinchcombe et al. 

2012). Hsp gene expression usually follows a non-linear, logistic function (Kingsolver & 

Woods 2016); the parameters of this function can capture distinct types of evolutionary 

modification to extend upper thermal limits. The evolution of higher upper thermal limits 

via protective Hsp production can occur through higher basal Hsp expression 

(constitutive protection; Fig. 1A) or increasing Hsp induction under sub-stressful 

conditions, leading to a more graded activation response during the up-regulation phase 

of the curve (induced protection; Fig. 1B). In contrast, increases in the inflection point 

indicates later onset of protein damage (stress resistance; Fig. 1C). If thermal tolerance is 

achieved via greater responsiveness to protein damage, this should be reflected in higher 

peak expression levels (enhanced response, Fig. 1D).  These four mechanisms are not 
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mutually exclusive, and may evolve in concert or independently as lineages encounter 

and adapt to novel thermal conditions.  

 Ants are ubiquitous and ecologically important members of terrestrial 

ecosystems on every continent except Antarctica (Wilson and Hölldobler 2005). Thermal 

niche segregation is an important determinant of competitive overlap within ant 

communities (Albrecht and Gotelli 2001; Wittman et al. 2010), while the biogeography 

of individual ant genera indicates substantial thermal niche diversification associated with 

post-glacial dispersal and local adaptation, making them an attractive system to 

investigate the evolution of upper thermal limits (Diamond et al. 2012; Warren and Chick 

2013; Kaspari et al. 2015; Penick et al. 2017).  In this study, we evaluated the extent and 

mechanisms of physiological adaptation to the local thermal environment in a clade of 

ground-dwelling ants within the genus Aphaenogaster that experience distinct thermal 

regimes along the Eastern United States (DeMarco and Cognato 2016). Aphaenogaster 

species occur across a climate gradient from Florida to Maine (Fig S1) and two forest 

types, deciduous forests and flatwoods that differ in canopy cover (Fig S2).  We 

characterized the upper thermal limits (CTmax) of workers under common garden 

conditions collected from colonies along a  ~15.6 degree latitudinal transect to investigate 

the influence of phylogenetic history and local environmental selective pressures on the 

evolution of CTmax evolution.  To determine the relative contributions of protection, 

response and tolerance mechanisms to variation in upper thermal limits, we tested the 

extent to which CTmax among colonies is explained by variation in basal expression, rate 

of expression increase, inflection point temperature, or peak expression level of three Hsp 
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genes known to be heat-inducible in ants, i.e., hsp83, hsp70, and hsp40 (Nguyen et al. 

2016).   

 

3.3 Methods 

3.3.1 Sampling and Lab-acclimating Forest Ants of Eastern USA 

Eight ant species within the genus Aphaenogaster were collected along a latitudinal 

transect from Florida to Vermont for a total of 30 sites (Fig. S1). Ants were collected 

across two broad habitat types: flat woods and deciduous forests. Flat woods forests are 

typically dominated by grasses and have low canopy cover; deciduous forests are 

dominated by broadleaf trees and have high canopy cover (Fig. S2). In the summer of 

2014 and 2015, whole ant colonies including larvae, pupae, workers, and queens (when 

possible) were excavated through a combination of digging and sifting. Ants were 

maintained under stable lab conditions at the University of Vermont in an 

environmentally controlled room at 25 °C with 12:12 hour light:dark cycles. Ant colonies 

were housed in insect-a-slip lined 22 × 16 cm plastic containers with 160 × 40 mm glass 

water tubes to satisfy humidity requirements and sandy terrain. Colonies were fed 

bisected mealworms and 100 uL of 20% v/v honey water three times a week. Vouchers 

were collected for species level identification and deposited in the Zadock Thompson 

Zoological Collections at the University of Vermont. Colonies represented in the 

outgroup were Messor pergandei. In total, 100 ant colonies were acclimated for at least 

one month prior to measuring upper thermal limits. Colonies were lab-acclimated for at 

least one month prior to any heat treatments.  
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3.3.2 Reconstructing Evolutionary History 

 Phylogenetic relationships were constructed based off of a character SNPs 

matrix. SNPs were identified with double digested restriction site-associated DNA 

sequencing (ddRADseq). Genomic DNA was isolated from a single ant for each 

representative colony with the Qiagen DNAeasy kit, following the manufacturer’s 

instructions. 100-200ng of DNA for each sample was digested with two restriction 

enzymes: NlaIII and MluCl at 37 °C for three hours. To enable multiplex sequencing, 

unique P1 barcode adapters and universal P2 adaptors were ligated with the digested 

DNA and 40 ng of each individual workers was pooled into a single library for 48 

individuals at a time. The ligated fragments were amplified in 20 uL reactions for 13 

cycles, purified again with 1.5X AMPure beads, and resuspended in 30 uL. The library 

preparations were electrophoresed on a 1.5% agaraose gel and to size select 300-400 bp 

fragments with a QIEX II gel extraction kit. Sizing was verified on a Bioanalyzer and 

kappa qPCR. Finally, the library was single-end sequenced for 2.5 million reads per 

sample spanning 3 lanes on a HiSeq 2000 rapid run at the University of Vermont 

Advanced Genome Technologies Core (VACC) facility.   

 Sequences were de-multiplexed with sabre (https://github.com/najoshi/sabre). 

Sabre allowed for up to one base pair mismatch and trimmed restriction enzyme sites. 

Total sequence length was trimmed to 90 bps and low quality scores (< 10) were 

excluded in downstream phylogenetic analyses. A de novo assembly of six representative 

samples from different Aphaenogaster species (A. picea - HF3, A. floridana - Fbragg2, A. 
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ashmeadi - KH4, A. lamellidens - Duke6, A. miamiana - Ala2, A. rudis - Lex19) was 

constructed in STACKS for reference mapping because no sequenced genome was 

available. Using the denovo.pl pipeline in STACKS, tags were retained under the 

following criteria: 1) 0-3 SNPs were present in the representative samples, 2) all reads 

contained one or more reads per tag, 3) SNPs were biallelic, and 4) samples contained no 

more than two alternative haplotypes. Using Bowtie, all samples (100 colonies) were 

mapped to the reference consensus tag sequences. SNPs were identified by assembling 

mapped reads into STACKS using ref_map.pl function.  

 To create the character matrix for phylogenetic inference, we concatenated 

SNPs across tags into a single sequence. Phylogenetic relationships were reconstructed 

based on the resultant supergene 174,000 SNP character matrix. The SNP matrix was 

analyzed in a maximum likelihood framework using RaxML 8 (Stamatakis 2014)  with a 

GTR+gamma substitution model and group support was evaluated with 100 fast 

bootstrap replicates. There was no reliable SNP data for samples LPR4, Bing, and CJ10, 

but species identities between ddRAD-seq data morphology were highly concordant, and 

these samples were inserted as polytomies within their species group for subsequent trait 

analyses.   

3.3.3 Measuring Upper Thermal Limits 

Upper thermal limits (CTmax) were determined using a slow automatic ramp method of 

0.1°C/min (Terblanche et al. 2011) in a circulating waterbath (PolyScience, USA). For 

each colony, four individuals from each colony were placed into 160 × 40 mm glass tubes 

and randomly placed into the water bath preset to 25 °C for 5 minute incubation prior to 
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heat treatment. An internal probe tracked temperatures within a separate glass tube and 

then the water bath ramped at a rate of 0.1 °C/min. CTmax was determined as the 

temperature in which ants lost the ability to self-right (Terblanche et al. 2011). The 

colony level CTmax was taken as the average of 3-4 individual ants.   

3.3.4 Measuring the Heat Shock Response 

Reaction norms for Hsp gene expression was quantified across 6-10 temperature points 

spanning 25-41°C under the same ramping procedure to determine CTmax. To control 

for the effects of time, we included two additional time matched controls at the middle 

and end of heat shock treatment. For each colony, four ants were placed into 8-12 tubes 

and placed into a circulating water bath randomly. For each temperature point, 2 

ants/tube were flash frozen and stored at -80 °C. The remaining two tubes were incubated 

at 25°C separately and sampled in the middle time point when the temperature in the 

water bath reached 31.5C and then again during last time point (41°C) in order to 

determine changes in housekeeping gene expression. 

 First, RNA was isolated by homogenizing whole ant bodies in 1.4 mm 

zirconium silica beads with 350 uL of lysis buffer (RLT) in a bullet blender (Next 

Advance Inc., USA) at top speed (10) for 2 minutes. RNA was isolated from the lysate 

with the RNeazy micro kit (Qiagen, USA) and DNAse I treatment for 30 minutes to 

diminish the contribution of genomic DNA. The isolated RNA (50 ng) was reverse 

transcribed into cDNA in 20 uL reactions with a High Capacity cDNA Reverse 

Transcription kit (ABI, USA) and diluted 1:20 (0.125 ng/uL). Next, the expression of 18s 

rRNA (house keeping gene), and 3 Hsps: hsp83, hsc70-4 h2, and hsp40, were quantified 
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with qPCR with an ABI StepOnePlus Real-Time PCR system. Each temperature point 

and colony were ran in duplicates. Reactions consisted of 1x Power SYBR green (5uL), 

100-250nM of each primer (0.1-0.25 uL each), nuclease-free water (0.5 uL) and 0.5 ng (4 

uL) of template cDNA, for a total volume of 10 uL. PCR conditions involved an initial 95 

C incubation for 2 minutes, and then 40 cycles of 55-60 °C for annealing and 70 °C 

elongation and fluorescence acquisition, followed by a melt curve analysis to check for 

specificity of amplification. Samples that had non-specific amplification were excluded. 

Specificity was further confirmed by sequencing a representative amplicon for each gene 

and each species. CT values were extracted from a standardized threshold value. Basal 

gene expression was calculated for each Hsp as ΔCT (CTHsp-CT18srRNA) at rearing 

temperature 25 °C. Gene induction of each Hsp was quantified using the ΔΔCT method 

(Livak and Schmittgen 2001), where 18s rRNA served as the internal reference. To check 

for the stability of 18s rRNA for each colony, we regressed the temperature with 18s 

rRNA CT and utilized a Benjamini-Hochberg to correct for multiple testing. Only one 

colony (GB33-1) displayed a significant relationship between ΔCT 18s rRNA and 

temperature, but excluding this colony did not qualitatively alter results.  

 Two types of curves were fitted to the non-linear expression profiles of each 

Hsp: Gaussian (Kingsolver et al. 2013) and modified Boltzmann function. Preliminary 

curve fitting revealed that the Boltzmann function was a better fit (Figure 6), as 

determined by AIC (data not shown). Furthermore, because basal expression did not 

correlate with CTmax (Figure 4), we fitted the Boltzmann with minimum value as 1, to 

which expression values in terms of fold induction were compared to at 25 °C.  
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We used the nls() function to estimate the expression rate (slope parameter, a), inflection 

point (Tm), and max expression value (max) for the temperature points (T). We started 

values with 1, 35, and 50 for a, Tm, and max, respectively. In total, we quantified 

reaction norms for 49 colonies of hsp83, 49 colonies of hsp70, and 47 colonies of hsp40.  

3.3.5 Statistics 

 All statistical analyses were performed in R (version 3.2.2; R Development Core 

Team, 2010).). The evolutionary history of CTmax and habitat type was estimated with 

an ancestral trait reconstruction with fast estimation ML and a Bayseian MCMC 

approach, respectively (phytools package; Revell 2012). A phylogenetic generalized least 

squares (PGLS from the CAIC package; Orme et al. 2009) model was used to determine 

the effect of habitat type and local temperature extremes (Tmax) on CTmax, while 

accounting for phylogenetic relationships and under the assumption of Brownian motion. 

Variance partitioning was used to estimate the amount of variation attributable to the 

unique phylogeny component, unique local environment component, and the shared 

effects of phylogeny and local environment, also known as phylogenetically structured 

environmental variation (Desdevises et al. 2003). We first decomposed the branch 

lengths (ultrametricized to ensure equal variances of the phylogeny with a principal 

coordinate analysis (PCOA) to produce orthogonal eigenvectors with each eigenvector 

representing the nodes of the phylogeny. Second, the local environment was represented 

by habitat type and local Tmax (bioclim, http://www.worldclim.org/bioclim). Lastly, 

using the varpart() function (Vegan package), variance in CTmax was partitioned into 
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phylogeny, phylogeny independent of environment, local environment, and local 

environment independent of phylogeny. Significance of each variance component was 

determined with a redundancy analysis (RDA), except for the shared effects of phylogeny 

and local environment, which is indirectly estimated.  

 To determine the role of Hsp reaction norm parameters (basal expression, slope, 

Tm, max expression), we regressed each parameter against CTmax with linear 

regressions. To identify the effect of local environment on Hsp reaction norm parameters, 

we tested the effects of habitat type, Tmax, and their interaction with ANCOVA models. 

We also performed a principal component analysis (PCA) on all 12 Hsp parameters to 

capture the correlation between these variables and reduce the number of variables. The 

subsequent principal components (PC) were used in regression analyses to test the 

relationship with CTmax. 

3.4 Results 

3.4.1 CTmax in Aphaenogaster is associated with thermal selective regime 

 We found a total of eight Aphaenogaster species from Florida to Maine, with 

most of the species occurring below Pennsylvania and a single species, A. picea, 

occurring north of Pennsylvania (Fig. S1). Two species, A. floridana and A. ashmeadi, 

were found in flatwoods habitat, while A. rudis, A. picea, A. fulva, A. tenneseensis, A. 

miamiana and A. lamellidens were found in deciduous forests (Fig. 2A). Across all 

samples, CTmax varied by 6.5°C, from 36.8-43.3°C, slightly lower than the 8.4°C 

difference in the mean warmest temperature of the warmest month (Tmax) across these 

sites (24.9-33.3°C, Fig. 2B). When including species as a random effect, CTmax was 
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significantly positively related to Tmax (β=0.014± 0.006; t=2.17, p <0.001; Fig 2B), and 

colonies in flat woods had higher CTmax than colonies in deciduous forests (β=1.05± 

0.379; t=2.76, p <0.05).  However, these relationships were masked when accounting for 

common ancestry from phylogenetic analyses (PGLS; F2,5=0.47, p=0.25; Fig 2A). 

Variance partitioning of CTmax revealed a large amount of overlapping variance (43%) 

between common ancestry (phylogeny) and local environment (Fig. 2C), while the 

separate effects of each component were significant (phylogeny: RDA, F9,90=10.83, 

p<0.005; local environment: RDA, F3,96=25.03, p<0.005), but their unique components 

were not (phylogeny independent from local environment: RDA, F9,87=1.84,p=0.09; local 

environment independent of phylogeny: RDA, F3,87=1.84, p=0.61; Fig. 2C). Ancestral 

trait reconstruction indicated that deciduous forest of intermediate temperature was the 

most likely habitat of the most recent common ancestor of Aphaenogaster in the eastern 

United States  (Fig. 3).  There was a single evolutionary transition into flat woods (A. 

floridana + A. ashmeadi) accompanied by a 1.25°C upward shift in CTmax, as well as a 

single colonization of northern latitudes (A. picea) associated with a ~0.75°C reduction in 

CTmax (Fig. 3). 

 

3.4.2 Variation in CTmax is explained by Hsp gene expression patterns 

 Altogether, hsp83/70/40 gene expression explained 40% of the variation in 

CTmax (Table S3). There was no significant relationship between basal expression and 

CTmax for any of the three Hsps (Fig. 4A,E,I). However, all three of the induction 

parameters varied with CTmax for at least one Hsp gene (Table S1).  Colonies with 
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higher CTmax had slower rates of increase in expression (slope parameter) of hsp70 (Fig. 

4F) and hsp40 (Fig. 4J), while the inflection point (Tm) for all three genes was higher in 

colonies with higher CTmax (Tm; Fig. 4 C,D,K). Maximal expression values also 

increased with CTmax for all three Hsp genes (Fig. 4 D,H,C). 

  

3.4.3 Correlated changes in Hsp reaction norms underlie adaptation to habitat 

 Despite the latitudinal gradient in air temperature, there was no relationship 

between any Hsp gene expression parameter and local temperature extremes (Tmax). In 

contrast, there was a significant difference in Hsp gene expression parameters between 

colonies from flat woods vs. deciduous forests (Figs. 5, S3, S5, Table S2). For hsp83, 

colonies occupying open habitats had higher inflection-point temperatures by 2.16°C 

(Tm, β=2.166 ± 0.583; t=3.703 p <0.001, Fig. 5B) and a 4.72 fold higher maximum 

expression value (β=4.720 ± 1.551; t=3.044, p <0.005; Fig. 5C). For hsp70, colonies 

occupying open habitats had slower expression rates (slope parameter; β=0.495 ± 0.176; 

t=2.807, p <0.01, Fig. 5E), higher inflection-point temperatures by 1.37°C (Tm; β=1.373 

± 0.337; t=4.073, p <0.001, Fig. 5F) and ~20 fold higher maximum expression  

(β=20.357± 4.864; t=4.185, p <0.001; Fig. 5G). For hsp40, colonies in flat woods 

initiated expression 2.47°C higher than deciduous forest colonies (Tm, β=2.469 ± 0.666; 

t=3.705, p <0.001; Fig. 5J). The sigmoidal Hsp gene induction curve reveals several 

differences in the total reaction norm when parameters were visualized together (Fig. 5 

D, H, L). 
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3.5 Discussion 

Colonization of thermally stressful environments depends on the ability to behaviorally 

and physiologically cope with temperature stress (Somero 2002; Huey et al. 2012).  The 

results of this study suggest that physiological adaptation to upper thermal extremes has 

played an important role in facilitating niche expansion in the genus Aphaenogaster in 

the Eastern United States.  High maximal environmental temperature and the transition 

from closed canopy forests (deciduous) to open canopy flatwoods were both 

accompanied by an increase in upper thermal limits (CTmax; Fig 2, S2). Broadly within 

ants, divergence in upper thermal limits is associated with habitat, particularly between 

open habitats and forests for ground dwelling ants (Oberg et al. 2011; Diamond et al. 

2012). Our study shows that even within the broadly defined forest category, different 

forest types with significant differences in canopy cover can produce divergence in upper 

thermal limits and the heat shock response (HSR).  

 Forest environments generate considerable heterogeneity in thermal 

microclimates that influences the thermal experiences of ectotherms (Scheffers et al. 

2014). Deciduous forests are significantly more buffered from thermal extremes than flat 

woods due to higher canopy cover (Fig. S2), especially over the growing season where 

ant foraging activity is the highest. These species are known to utilize behavioral 

thermoregulation such as migrating to new nesting locations when colonies experience 

unsuitable environments and workers may maintain optimal body temperatures by 

avoiding solar radiation in the leaf litter, also known as the Bogert effect (Bogert 1945; 

Smallwood 1982; Diamond et al. 2016). The effectiveness of the Bogert effect depends 
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on the spatial availability of microrefugia (Sears et al. 2016). Deciduous forests may not 

completely buffer thermal extremes across large climate gradients because we found that 

every 0.014°C increase in Tmax led to a 1°C increase in CTmax across Aphaenogaster’s 

range. However, this clinal relationship was mostly driven by the most northern species, 

A. picea, whose CTmax had the steepest cline with Tmax. The historical northward 

expansion in A. picea as glaciers receded after the last ice age might have led to the 

reduction of upper thermal limits in favor of coping with cold extremes. Aphaenogaster 

species in deciduous forest likely rely on a combination of behavioral and physiological 

mechanisms to cope with heat stress. 

 In contrast to deciduous forest species, flat woods species had higher CTmax 

than local extreme temperatures would predict. Due to low canopy cover in flat woods 

habitats (Fig. S2), ant foragers are expected to encounter inescapable thermal extremes as 

solar radiation superheats the soil to higher temperatures than ambient (Porter and Gates 

1969; Angiletta 2009). Furthermore, flatwoods species (A. floridana and A. ashmeadi) 

nest near the surface (13-92 cm in depth; Tschinkel 2011) and are not known to migrate 

at all. Because thermal stress may be difficult to escape, these species should rely more 

on physiological mechanisms to respond to temperature challenges. The increase in upper 

thermal limits associated with canopy cover is analogous to habitat shifts for species 

threatened by deforestation and urbanization (Alkama and Cescatti 2016), whereby the 

subsequent loss of microrefugia may impose greater selection for physiological 

mechanisms to cope with heat stress.  
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The transition into flat woods and increase in CTmax was accompanied by 

dynamic non-linear changes in the heat shock response, mainly in Hsp expression 

profiles (Fig. 5D,H,L). Between forest types, we found a ~10-fold increase in Hsp 

expression at 35 °C in flatwoods species when considering the rate of the Hsp induction 

alone (Fig. 5E), supporting the protective action of Hsps through a graded inducible 

response (Figs. 1B, 5E). However, gene expression differences at 35 °C disappear when 

integrating all parameters because species in deciduous forests induce Hsps at a lower 

temperature (Tm). The differences in Tm reflect resistance to temperature stress and 

suggest that species in open canopy forests may have a more stable proteome.  Beyond 

Tm and at higher ends of the temperature gradient, slower expression rate resulted in 

lower expression (4 fold at 39°C, Fig. 5E) for flatwoods species just before reaching 

maximum expression levels (Fig 1). Flatwoods species with higher CTmax appear to 

have compensated by simultaneously elevating maximum expression by as much as 20 

fold to add greater thermal damage repair at lethal temperatures, supporting greater 

thermal tolerance. The function-valued trait approach (Fig. 1,6) highlights the strength of 

gene expression profiling over a wide temperature gradient to capture the kinetics of gene 

expression. We found that protection, sensing, and tolerance mechanisms by Hsps 

predicts variation (40%) in upper thermal limits.  

The overall correlated responses in Hsp induction parameters are consistent with 

the thermostat model (Craig and Gross 1991) for sensing and responding to heat stress. 

The thermostat model predicts that Hsp expression patterns should match the level of 

heat stress (Craig and Gross 1991), especially because the production and utilization of 
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Hsps requires energy (Hoekstra and Montooth 2013). All three Hsps possess 

evolutionarily conserved heat shock elements (HSE) in the promoter regions of ant Hsp 

genes (Nguyen et al. 2016), indicating that  transcription is activated in a temperature-

dependent manner (Fernandes et al. 1995). The common regulatory control of Hsps may 

be dialed to facilitate evolutionary transitions for species into different thermal 

environments (Tomanek 2010).  

Hsp induction rather than constitutive protection is more important for niche expansion in 

forest ants (Fig. 3, 5). Protection by Hsps is typically achieved by constitutive Hsp 

expression at the expense of induction (Dong et al. 2008; Bedulina et al. 2013; Porcelli et 

al. 2015). However, the shift between induced to basal Hsp expression may not be 

universal. In particular, temperate forests are highly seasonal and should select for 

differences in phenotypic plasticity, i.e., the ability to adjust the expression of Hsps in 

response to environmental changes. Forest ants can alter Hsp basal expression and 

induction under different rearing temperatures with no evolved differences between 

species (Helms Cahan et al. 2017), suggesting that organisms can seasonally acclimatize 

their Hsp gene expression (Dietz and Somero 2004; Banerjee et al. 2014). In contrast, our 

study reveals adaptive differences mainly in Hsp induction with no detectable differences 

in basal expression, suggesting that selection may be greater in short term temperature 

increases than longer term, seasonal variation. Therefore, Hsp patterns of expression are 

largely influenced and depend on the selective thermal regime (Tomanek 2010).   

Conclusion 
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 The combinatorial and correlated changes in the stress response are the types of 

adapted shifts needed under impending anthropogenic-mediated global changes (Somero 

2011; Diamond and Martin 2016). Habitat type is a critical feature of the landscape that 

dictates the thermal experiences of ectotherms (Scheffers et al. 2014). Therefore, habitat 

deforestation, urbanization, and climate change will pose a new and major challenge for 

ectotherms as the environment shifts away from ancestral conditions to which 

populations are locally adapted (Bonan and Gordon 2008; Diffenbaugh and Field 2013; 

Diamond et al. 2015; Alkama and Cescatti 2016). In particular, deforestation and 

subsequent urbanization act as heat islands (Oke 1982; Arnfield 2003), and heat bouts are 

projected to increase under climate change (Diffenbaugh and Field 2013). Ectotherms can 

respond to changing conditions through active Hsp mediated repair and overall stress 

resistance (Somero 2011). Further adaptive modifications in the heat shock response will 

depend on the adaptive potential of Hsp expression (Huey et al. 2012; Tedeschi et al. 

2016; Diamond 2016). Currently, some ants are able to capitalize on anthropogenic 

change (Angiletta et al. 2007; Diamond et al. 2017), but the mechanisms by which they 

thrive in urban environments and how commonly species can exploit warm extremes 

across the whole clade of ants will provide insights on the susceptibility or resiliency to 

environmental change.     
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3.7 Tables 

Table S1 : Individual linear regression models to determine the relationship between 

CTmax and parameter estimates of Hsp expression profiles 

Gene Parameter df Estimate SE t-
value 

p-
value 

R2 

hsp83 basal 1,47 -0.10 0.12 -0.86 0.393 0.00 
 slope 1,47 0.25 0.14 1.90 0.062 0.05 
 Tm 1,47 0.23 0.06 4.00 <0.001 0.24 
 max 1,47 0.07 0.03 3.00 <0.005 0.15 
        
hsp70 basal 1,47 0.04 0.15 0.30 0.76 0.00 
 slope 1,47 0.90 0.20 4.35 <0.001 0.27 
 Tm 1,47 0.49 0.09 5.40 <0.001 0.37 
 max 1,47 0.03 0.01 4.92 <0.001 0.32 
        
hsp40 basal 1,45 -0.10 0.12 -0.88 0.38 0.00 
 slope 1,45 0.38 0.14 2.60 <0.05 0.11 
 Tm 1,45 0.26 0.05 4.80 <0.001 0.33 
 max 1,45 0.06 0.02 2.50 <0.05 0.10 
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Table S2 : Summary of output from multiple linear regression models of reaction norm 

parameters for three Hsps. 

 
Gene Response Predictor Estimate SE t value p value 
hsp83 basal Tmax -0.003 0.007 -0.377 0.708 
  habitat -0.480 0.363 -1.324 0.191 
 slope Tmax 0.008 0.006 1.316 0.195 
  habitat 0.302 0.324 0.933 0.356 
 Tm Tmax 0.011 0.011 0.955 0.345 
  habitat 2.166 0.585 3.703 <0.001 
 max Tmax -0.003 0.030 -0.091 0.928 
  habitat 4.720 1.551 3.044 <0.005 
hsp70 basal Tmax 0.010 0.006 0.870 0.390 
  habitat -0.120 0.365 -0.340 0.740 
 slope Tmax 0.002 0.003 0.611 0.544 
  habitat 0.495 0.176 2.807 <0.01 
 Tm Tmax 0.004 0.007 0.575 0.568 
  habitat 1.373 0.337 4.073 <0.001 
 max Tmax 0.134 0.094 1.416 0.164 
  habitat 20.357 4.864 4.185 <0.001 
hsp40 basal Tmax 0.005 0.009 0.516 0.609 
  habitat -0.382 0.509 -0.750 0.458 
 slope Tmax 0.006 0.006 0.932 0.356 
  habitat 0.413 0.315 1.313 0.196 
 Tm Tmax -0.012 0.013 -0.911 0.367 
  habitat 2.469 0.666 3.705 <0.001 
 max Tmax -0.001 0.037 -0.026 0.980 
  habitat 3.649 1.897 1.924 0.061 
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Table S3 : Principal component analysis (PCA) of four different gene expression 

parameters for three different Hsp genes. The four parameters were first standardized such that 

the mean equals zero and variance equals one prior to PCA. The variance for each principal 

component (PC) are indicated in the first row and the second row indicates the cumulative 

variance explained with increasing PCs. The rest of the rows indicate the loading patterns for each 

variable in the PCA. 

 PC1 PC2 PC3 PC4 
Variance 39.07 15.61 9.89 8.58 
Cumulative Variance 39.07 54.67 64.56 73.14 
hsp70 basal expression -0.073 -0.596 0.071 -0.224 
hsp83 basal expression -0.023 -0.593 -0.008 0.098 
hsp40 basal expression -0.023 0.008 0.461 0.803 
hsp70 max expression -0.321 -0.16 0.404 -0.273 
hsp70 slope parameter -0.28 -0.286 0.217 0.189 
hsp70 Tm -0.374 0.157 0.226 -0.133 
hsp40 max expression -0.35 -0.082 -0.324 0.129 
hsp40 slope parameter -0.292 -0.149 -0.524 0.171 
hsp40 Tm -0.368 0.063 -0.26 0.149 
hsp83 max expression -0.35 0.057 0.153 -0.213 
hsp83 slope parameter -0.29 0.171 -0.145 0.186 
hsp83 Tm -0.351 0.31 0.171 -0.143 
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Figure 1 : Non-mutually exclusive predictions of shifts in the reaction norms of Hsp gene 

expression related to variation in upper thermal limits.  Species with higher upper thermal limits 
may invest in constitutive protection by elevating basal expression (a) or invest in induced 

protection by altering the rate of induction (b) or resist stress by having a higher inflection point of 
expression (c), or have an enhanced response by inducing Hsps at higher maximum expression (d). 
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Figure 2 : Influence of shared ancestry and local thermal environment on upper thermal limits 

(CTmax). CTmax is mapped onto the phylogenetic relationships among colonies and species with 
bootstrap support > 90 (A). Phylogenetic relationships were estimated in RAxML, using a 174,000 
SNP character matrix and GTR+ gamma substitution model rooted on Messor pergandei. CTmax 
was estimated with a slow ramping protocol (0.1°C/min) and barplots are colored coded by forest 

habitat type (blue = deciduous forest, red = flat woods [shrub-oak or long-leaf pine savannah], 
orange = desert). The relationships between environmental conditions (Tmax and forest type) and 
CTmax (B) in the absence of phylogenetic effects. Variance partitioning of CTmax into phylogenic 

(blue), local environmental (red), and overlap variance components (purple; C).   
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Figure 3 : Ancestral state reconstruction of CTmax (branches) and forest type (nodes) onto the 
species level phylogeny of the genus Aphaenogaster.  Ancestral states for CTmax was estimated 

with fast estimation ML (Revell 2012) and ancestral states for habitat type (DF = blue, FW= red) 
was estimated with a Bayesian MCMC approach (phytools package; Revell 2012). 
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Figure 4 : The relationship between CTmax with different gene expression parameters (basal 
expression, slope parameter, Tm, and Max expression) of three Hsps (hsp83: A-D, hsp70: E-H, 

hsp40: I-L). Basal expression is calculated as ΔCT (CTHsp - CT18s rRNA). The axis of the slope 
parameter was reversed to reflect increasing expression rate.  
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Figure 5 : Adaptive shifts in the reaction norms of Hsp fold induction (2-ΔΔCT, Livak and 

Schmittgen 2001) between deciduous forest (blue) and flat woods species (red). Six out of 12 
parameters show adaptive differences (basal patterns not shown). Differences among forest type 
for each parameter are shown with two curves (B, C, D, E, F, G, H, J, L) while holding all other 
parameters constant (average), otherwise, one reaction norm is shown to indicate no differences 
(A,I,K). The last column (D, H, L) shows the combination of parameters in one composite curve 

that were different among forest types. The standard errors are shown as shaded regions. 
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Figure 6 : Example of a reaction norm of Hsp gene fold induction as a function of temperature for 

a representative colony (blue points). The reaction norm is fitted with a Boltzmann function: 

 (black line) that parameterizes the slope parameter (gold dot-dash line), inflection 

point (purple dot-dash line), and max fold induction (red dot-dash line). 
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Figure S1 : Map of 33 collection sites for different species of Aphaenogaster across the Eastern 

United States. Each site shows a pie chart of the proportions of species and the size is scaled by the 
number of colonies. 
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Figure S2 : The difference in % canopy cover between deciduous forests and flat woods. % canopy 

cover data were extracted from the  National Land Cover Database 2011 (NLCD2011, 
https://catalog.data.gov/dataset/nlcd-2011-percent-tree-canopy-cartographic) at 5 meter resolution.   
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Figure S3 : Differences in each of the three Hsp gene expression parameters between species from 

different habitat types. 
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Figure S4 : The negative relationship between PC1 scores and CTmax. PC1 scores represent the 

correlational structure of Hsp gene induction parameters.  
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Figure S5 :  The difference in PC1 scores between two broad forest types. PC1 scores represent the 

correlational structure of Hsp gene induction parameters. 
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CHAPTER 4: EFFECTS OF DESICCATION AND STARVATION ON 

THERMAL TOLERANCE AND THE HEAT SHOCK RESPONSE IN FOREST 

ANTS 

 
 
Abstract 

 Temperature increases associated with global climate change are likely to be accompanied by 

additional environmental stressors such as desiccation and food limitation, which may alter how 

temperature impacts organismal performance. To investigate how interactions between stressors influence 

thermal tolerance in the common forest ant, Aphaenogaster picea, we compared the thermal resistance of 

workers to heat shock with and without pre-exposure to desiccation or starvation stress. Knockdown (KD) 

time at 40.5°C of desiccated ants was reduced 6% compared to controls, although longer exposure to 

desiccation did not further reduce thermal tolerance. Starvation, in contrast, had an increasingly severe 

effect on thermal tolerance: at 21 days, average KD time of starved ants was reduced by 65% compared to 

controls. To test whether reduction in thermal tolerance results from impairment of the heat shock response, 

we measured basal gene expression and transcriptional induction of two heat shock proteins (hsp70 and 

hsp40) in treated and control ants. We found no evidence that either stressor impairs the Hsp response: both 

desiccation and starvation slightly increased basal Hsp expression under severe stress conditions and did 

not affect the magnitude of induction under heat shock. These results suggest that the co-occurrence of 

multiple environmental stressors predicted by climate change models may make populations more 

vulnerable to future warming than is suggested by the results of single-factor heating experiments. 

 

Keywords: Ants, Heat Shock Response, Desiccation, Heat Shock Proteins, Starvation, Thermal Tolerance 

Abbreviations:  

KD  Knockdown  

HSR  Heat shock response 

Hsp  Heat shock protein gene 
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hsp70  Heat shock protein 70 gene 

hsp40  Heat shock protein 40 gene 

Gapdh  Glyceraldehyde-3-Phosphate Dehydrogenase 

Ef1β  Elongation factor 1 Beta 

RT-qPCR Real-time quantitative polymerase chain reaction 

GLM  Generalized Linear Model 

ANOVA Analysis of Variance 

LT50  Median Lethal Time 

Introduction 

 Temperature increases are projected to alter species distributions and abundances, particularly 

for ectotherms (Diffenbaugh and Field 2013). Whether a population is resilient in the face of higher 

temperatures is likely to depend on the temperature differential between the local thermal environment and 

the organism’s critical thermal maximum, known as the thermal safety margin (Deutsch et al. 2008). 

Species with smaller thermal safety margins are predicted to be at risk of population declines as they 

approach or exceed their upper thermal limits (Deutsch et al. 2008, Diamond et al. 2012; Clusella-Trullas et 

al. 2011; Kellermann et al. 2012). In contrast, species with larger thermal safety margins may benefit from 

additional warming, because they typically operate at sub-optimal temperatures and would thus be shifted 

up their performance curve toward optimal operating body temperature (Deutsch et al. 2008; Diamond et 

al. 2012; Clusella-Trullas et al. 2011; Kellermann et al. 2012). However, taxa with larger thermal safety 

margins generally occupy locations with high temperature variation and extreme high temperatures may 

cause overheating (Kingsolver et al. 2013). Additionally, species that overwinter may be at risk of mortality 

during the winter months because warming can impact the microclimate and expose quiescent organisms to 

higher temperatures (Williams et al. 2015).  

 Critical thermal limits may also vary with environmental context, enhancing or reducing the 

thermal safety margin (Cahill et al. 2013; Chahal and Dev 2013; Duffy et al. 2015). Although thermal 

tolerances are typically measured in animals maintained under ideal conditions, extreme heat is projected to 

co-occur with reduced precipitation (Mueller and Seneviratne 2012), which may result in species 
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simultaneously encountering both thermal and desiccation stress. Furthermore, temperature may act 

indirectly through shifts in prey availability or interspecific competition, potentially leading to nutritional 

stress (Araújo and Luoto2007). 

 The combined effect of multiple environmental stressors ultimately depends on the underlying 

molecular pathways used to combat their effects (Sinclair et al. 2013).  If different stressors activate the 

same response pathways, exposure to one stressor can enhance resistance to another in a cross-protective 

manner (cross-tolerance; Todgham and Stillman 2013; MacMillan et al. 2009).  In Antarctic midges, for 

example, desiccation provided cross-protection against heat stress (Benoit et al. 2009). One molecular 

pathway likely to show a generalized response is the heat shock response (HSR), which senses and repairs 

protein damage (Richter et al. 2010).  However, if different stressors activate distinct molecular pathways, 

exposure to one may have no effect on response to the other, or may even decrease tolerance (cross-

susceptibility) due to the energetic demands of responding to multiple stressors simultaneously (Sinclair et 

al. 2013; Todgham and Stillman 2013).  In fruit flies, desiccation stress reduced upper thermal limits across 

a broad range of sub-lethal temperatures (Da Lage et al. 1989).  Similarly, starvation has been found to 

either have no effect (Bubliy et al. 2012b) or a cross-susceptibility effect on thermal tolerance (Floyd 

1985).  

 Ants are a good system to explore the impact of different stressors on thermal limits because 

they have colonized and inhabit diverse environments (Moreau and Bell 2013; Economo et al. 2015). Many 

species have a broad geographical range and are exposed to considerable environmental variation (Sanders 

et al. 2007; Dunn et al. 2009; Kaspari et al. 2015). Foraging activity is sensitive to temperature (Albrecht 

and Gotelli 2001; Wittman et al. 2009), soil moisture (Gordon 2013), available resources (Stuble et al. 

2013), and species interactions (Rodriguez-Cabal et al. 2012) that altogether impact food intake for the 

whole colony. Ants are experimentally tractable for studies of physiological studies in response to multiple 

environmental conditions. Although ants likely face multiple stressors, we have very little understanding of 

how these additional sources of environmental stress such as desiccation and starvation are likely to impact 

thermal tolerance.  
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 In this study, we tested how desiccation and nutritional stressors affect thermal tolerance in a 

common forest ant, Aphaenogaster picea.  In a static heat-shock experiment, we compared knock-down 

(KD) times of workers maintained in control conditions to those exposed to either desiccation or starvation 

stress at progressive levels of severity. To determine whether changes in thermal tolerances were due to 

repression or enhancement of the heat shock response (HSR), we quantified baseline and transcriptional 

activation of two representative genes: hsp70 and hsp40. We found that desiccation and starvation did not 

alter the HSR, but both diminished thermal limits across all levels of severity.  

Materials and Methods 

Natural History of Aphaenogaster picea 

 Aphaenogaster picea is a ground-dwelling species that occurs in mesic deciduous forests in the 

eastern United States from the high elevations of Virginia to Maine (DeMarco and Cognato 2015). Across 

their distribution, mean annual temperature ranges from 5- 14 °C, but leaf litter temperatures in the summer 

can be as high as 40 °C, while below-ground temperatures may remain at 20 °C (Lubertazzi 2012). 

Colonies are comprised of roughly 180-1,000 individuals that nest within the soil and coarse woody debris 

(Lubertazzi 2012). Foragers collect and disperse seeds containing eliaosomes (Warren et al. 2011), which 

provide the colony with a nutritional benefit (Morales and Heithaus 1998; Clark and King 2012).  

 Over the last 40 years, elevational limits have shifted upwards at the warm edge of their 

geographical range, suggesting that contemporary environmental change may already be affecting local 

populations (Warren and Chick 2013). Seed collection and dispersal by A. picea are sensitive to soil surface 

temperatures (Warren et al. 2011; Stuble et al. 2014) and soil moisture (Warren et al. 2010). Increasing 

temperatures have also led a phenological mismatch with ant-dispersed seed plants, as well as increased 

competitive pressure from more thermophilic native and invasive ant species (Bewick et al. 2014; Warren 

and Bradford 2014).   

Field Collections and Rearing Ant Colonies 

 Whole queenright A. picea colonies consisting of eggs, larvae, pupae, and adult ants were 

collected from coarse woody debris and leaf litter between June-July 2013 at East Woods (N 44.440 W 

73.197) located near the University of Vermont, in South Burlington, Vermont.  Colonies were maintained 
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in the laboratory at 25°C constant temperature in 22 × 16 cm plastic containers lined on the sides with 

Insect-a-slip (Bioquip) to prevent escape, and filled to a depth of 50 mm with sand. We supplied each 

colony with 2 test-tubes (160 x 140 mm) half filled with water that were plugged with a cotton wad. The 

saturated cotton provided water and ants nested in the opening of the tube.  Colonies were fed 

approximately 100 µL of 20% honey water and one bisected mealworm three times a week.  

Stress Pre-treatment: Desiccation 

To determine the effect of desiccation on thermal tolerance, we placed sets of 10 adult nestmate 

workers either into a 15 mL conical tube filled at the 7 mL mark with desiccant (10% relative humidity) 

separated by cotton to avoid contact, or a 15 mL conical tube half-filled with water capped with a cotton 

plug. To characterize the time-course of survival under continuous desiccation stress, we recorded survival 

status every half hour over an eight-hour period for 4 colony-level replicates. Based on the survival 

analysis, we chose three desiccation time points to represent mild, moderate, and severe sub-lethal 

desiccation stress and repeated the treatments for a new set of colonies (Fig 1a.). For each desiccation and 

control treatment and across each time point, we treated and then sampled 10 ants per colony for thermal 

tolerance assays (see below) with 7 colony-level replicates; for 5 of these colonies, an additional 4 ants for 

each treatment group were sampled for gene expression. To estimate the extent of desiccation, we 

measured for each set of 4 ants, the pooled initial wet weight (Wi), pooled final wet weight (Wf), and 

pooled final dry weight (Df) to calculate the % initial water content as follows:  

 

Stress Pre-treatment: Starvation 

In order to determine the effect of starvation on thermal tolerance, we established2 dietary 

treatments (starved and fed) for 5 time points spread over three weeks (day 1, 3, 7, 14, 21). Forty ants were 

randomly assigned to each dietary treatment and time point. Starved ants were reared in a cotton-plugged 

water tube with no access to food. Dead ants were removed daily to prevent cannibalism. Control ants were 

reared in an identical rearing tube but with access to 20% honey water and meal worms every two days. We 

tracked survival at each time point. At each time point, we used10 ants from each treatment to assay for 
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thermal tolerance with a total of 10 colony-level replicates and 4 ants per treatment group for gene 

expression analyses for 5 of the colonies. To quantify condition, we measured the pooled dry mass (to the 

nearest 0.01 mg) of ants after thermal tolerance experiments (see below). To control for ant size, we 

regressed the mean head widths (mm) against mean dry mass and used the standardized residual (mean = 0 

and variance = 1) as a measure of size-corrected dry mass. Head width was measured as the maximum 

distance in mm (to the nearest 0.01) between the eyes using ImageJ software.  

Measuring Thermal Tolerance  

We used a static heat-shock protocol (Terblanche et al. 2011) to avoid the confounding issue of 

ongoing desiccation associated with a slow ramping protocol (Rezende et al. 2011). Preliminary trials 

revealed that  40.5 °C yielded KD times under an hour and that ants are able to recover from and survive 

for at least a few days. For each set of 10 nest-mate workers associated with each time point and treatment 

(see pre-treatments above), pairs of randomly selected workers were placed in five separate 5mL glass 

screw-cap vials. Three of the five vials were heat shocked by fully submerging the vial at 40.5 °C in a pre-

set Thermo Neslab EX17 heating water bath, while the remaining two vials were simultaneously held at 

room temperature (25 °C). Heat shocked ants were observed continuously at a temporal resolution of 

roughly 10 seconds until KD, defined as loss of activity (Terblanche et al. 2011). To avoid bias, we 

measured KD times without prior knowledge of the treatment groups.  

Measuring the HSR 

For the subset of colonies that we sampled to measure the HSR, the ants were exposed to identical 

heat-shock and control conditions as those in the thermal tolerance assay, but were removed at 25 minutes 

and flash-frozen in liquid nitrogen and stored at -80 °C. Ants were sampled regardless of KD status and 

preliminary analyses showed that ants were able to induce hsp70 and hsp40 at the 25 minute mark.  

 For each gene expression sample, two of the four flash-frozen ants were pooled and 

homogenized in a bullet blender homogenizer (Next Advance Inc., USA) at top speed (10) with 1.4 mm 

zirconium silicate beads (Quackenbush Co., Inc, USA). RNA was isolated with RNAzol (Molecular 

Research, USA) and then purified with the RNeazy Micro Kit (Qiagen, USA), both following the 
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manufacturers’ instructions. 100 ng of RNA was converted to cDNA with the High-Capacity cDNA 

Reverse Transcription Kit (Life Technologies, USA) following the manufacturer’s instructions. 

 The gene expression patterns of hsp70 (hsc70-4 h2 orthologue) and hsp40were quantified using 

previously developed primers (Nguyen et al. 2016) with RT-qPCR on a StepOnePlus instrument (Applied 

Biosystems, USA). Each sample was run in triplicate in 20 µL reactions comprised of 2 ng of template, 

250nM of forward primer and of 250nM reverse primer, and 1x Power SYBR® PCR master mix (Life 

Technologies, USA). Reactions were incubated at 95°C for 2 minutes and then underwent 40 cycles of 95 

°C for 15 seconds followed by 60°C for 60 seconds. Amplicon specificity was assessed with a melt-curve 

analysis. We used the geometric mean of ef1β and gapdhas house keeping genes, which had the lowest 

measure of variation according to NormFinder (stability = 0.23; Andersen et al. 2004).We used 2-ΔΔCT  as 

the measure of basal gene expression and fold induction under heat shock (Livak and Schmittgen 2001). 

For basal gene expression, 2-ΔΔCT was calculated relative to colony-matched controls (water-plugged 

treatment  or fed treatment). Fold induction of heat-shocked ants was calculated relative to room 

temperature (25°C) colony- matched controls. 

Statistical Analyses 

 All statistical analyses were performed in R (version 3.2; R Core Team, 2016). In 

all of our statistical analyses, colony was treated as an independent block for estimating treatment effects; 

including colony as a random effect achieved similar results and we present only the findings from fixed 

effects models.  Survival was analyzed with a GLM, which fits a logistic relationship between the 

proportion of individuals surviving and time (hours or days). Lethal time at 50% (LT50) was estimated from 

GLM-fitted models with the dose.p() function in the MASS package.  We determined the effect of time, 

treatment, and time × treatment interaction on KD time or Hsp gene fold induction with an ANCOVA.  To 

avoid over-fitting statistical models, we used a backwards AIC selection criterion with the stepAIC() 

function in the MASS package (Venables and Ripley 2002). In models of Hsp expression (basal and 

induction), values were log10-transformed to meet the assumptions of normality. To determine significant 

differences in Hsp basal gene expression between pre-treatments (desiccation or starvation) with controls 

for each time point, we used a one-sample t-test to test for significant differences from zero.  
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Results 

Effect of Desiccation on Thermal Tolerance and HSR 

 Ants in the desiccation treatment experienced 100% mortality after 8 hours (LT50= 5.7 ± 0.1 

hours; GLM: Desiccation z=-1.23), during which time there was no mortality of control ants (Fig. 1a). The 

onset of mortality for desiccated ants was at ~ 4 hours (Fig. 1a). Although water content of ants in both 

treatments decreased through time, (ANOVA, F1,77= 20.73, p <0.001), desiccated ants had lower water 

content than controls (F1,77= 20.09, p <0.001; Fig. 1b), with most water loss occurring in the first hour. 

With heat shock, the KD time of desiccated ants was reduced within the first hour by 6% compared to 

controls ( F1,58=25.21, p <0.001; Table 1) and did not decrease further with through time (Fig. 1c).  

 Pooled among times, desiccated and control treated ants did not differ in overall basal expression 

of hsp70 (one sample t-test, t= 1.03, df = 12, p =0.32) or hsp40 (t= 0.41,df = 12, p =0.69). When time 

points were analyzed separately, desiccated ants also did not differ significantly from controls in hsp70 

basal gene expression (Fig. 2a), but desiccated ants had 1.3-fold higher hsp40 basal expression at the 3.5 h 

(one-sample t-test, t= 4.54, df=4, p<0.05, Fig. 2b). In response to heat shock, desiccated and control ants 

induced hsp70 and hsp40 to similar levels (Fig. 2,b,d; Table 1). 

Effect of Starvation on Thermal Tolerance and HSR 

 Starved ants died (LT50= 24.3 ± 1.1 days) sooner than control ants (LT50= 35.5 ± 3.9days; GLM: 

Dietary treatment z = -3.138, p <0.001; Fig. 3a). Residual dry mass decreased more rapidly in starved than 

control treated ants (Treatment × Time interaction, F1,59=4.18, p < 0.05, Fig. 3b). By day 21, starved ants 

declined in residual dry mass to 83.5% of controls (Fig. 3b). KD time decreased significantly with 

progressive starvation (Treatment × Time interaction, F1,45=38.68, p < 0.001, Fig. 3c, Table 1). By day 21, 

KD time of starved ants declined to 35% of the controls (Fig. 3c).  

 Starved and control treated ants did not differ overall in basal expression of hsp70 (one sample t-

test, t= -0.34, df = 23, p =0.73) and hsp40 (t= 0.92 ,df = 23, p =0.36). When analyzed separately by day, 

however, starved ants significantly down-regulated hsp70 1.66-fold on day 3 (t= -4.08, df =4, p < 0.05), but 

up-regulated it 1.4-fold on day 21 (t = 4.27, df =4 , p <0.05; Fig. 4a). Starved ants up-regulated hsp40 2-

fold more than controls on day 1 (t = 4.24, df =4, p <0.05; Fig. 4c). Starved and control ants induced hsp70 
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and hsp40 (F1,28=0.00, p = 0.98; Fig. 4b,d) to similar levels, but the induction of hsp70 declined with time 

in both groups (ANCOVA, F4,28=8.01, p < 0.001; Fig. 4b).  

Discussion  

Environmental stressors often act in concert, either increasing tolerance through cross-protection 

or decreasing tolerance through cross-susceptibility (Todgham and Stillman 2013).  In this study, we found 

support for cross-susceptibility of thermal limits to desiccation and starvation (Fig. 1c, Fig. 3c). The 

magnitude of reduced thermal tolerance reflected additive and interactive effects of desiccation and 

starvation on survival (Fig.1a, Fig. 3a) and physiological condition (Fig. 1b, Fig. 3b). The effect of 

desiccation stress was relatively mild, but starvation produced a marked effect over time, decreasing KD 

time by over 50% under severe stress conditions. If such stressors are experienced in the field, the thermal 

safety margin of this species under projected climate change scenarios for the northeastern US may be 

significantly smaller than that predicted by temperature alone (Clusella-Trullas et al. 2011).   

 The cross-effects of desiccation stress on thermal tolerance may depend on the timing and 

magnitude of stressors applied (Kingsolver and Woods 2016; Gunderson et al. 2016). Simultaneous 

application of drying and warming often diminish thermal tolerances (Maynard Smith 1957; Da Lage et al. 

1989; Holmstrup et al. 2002; Bubliy et al. 2012a), and we also found cross-susceptibility between 

desiccation and rapidly-applied heat under sequential application of stressors. However, under slow heating 

protocols, desiccation has not been found to depress thermal tolerance (Terblanche et al. 2011). In fact, 

with sufficient recovery time between these two stressors (Bubliy et al. 2012b) or slow application of 

desiccation (Benoit et al. 2010), desiccation conferred cross-tolerance against heat stress.  

 Dehydration can either enhance or inhibit thermal defense mechanisms (Benoit et al. 2009; 

Bubliy et al. 2012b).  Protein denaturation resulting from any type of perturbation, including desiccation 

stress, elicits the HSR (Kültz 2003, Kültz 2005) by rapidly up-regulating Hsps (Craig and Gross 1991; 

Hayward et al. 2004; Morris et al. 2013; Mizrahi et al. 2010). Hsps that remain induced after the stressor 

subsides offer a short-term “hardening” effect that can increase survival in the face of subsequent exposure 

to the same stressor (Cavicchi et al. 1995), and can also potentially cross-protect against other stressors 

(Bubliy et al. 2012b). Consistent with hardening, we found that desiccation increased basal expression of 
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hsp40at the highest exposure (Fig. 2c).  Despite this effect, however, increased hsp40 expression did not 

result in enhanced upper thermal limits. 

 In comparison to desiccation, starvation imposed greater cross-susceptibility to thermal damage.  

Consistent with previous work (Bubliy et al. 2012b; Overgaard et al. 2012), thermal tolerance was not 

affected by mild starvation, but with increasing exposure time, thermal tolerance declined 65% compared 

to fed workers of the same age (Fig. 3b). Because thermal tolerance is typically estimated for lab-

acclimated organisms provided with ad libitum food, our result suggests that such experiments may 

substantially overestimate thermal tolerance expressed by individuals in the field (Tagliarolo and McQuaid 

2016).  Such an effect may be particularly ecologically relevant in ants because foraging outside the nest is 

performed primarily by the oldest and most resource-depleted individuals (Howard and Tschinkel 1998; 

Tschinkel 1998; Tripet and Nonacs 2004; Dussutour et al. 2016).   

 Thermal defenses are metabolically expensive (Bettencourt et al. 2008; Hoekstra and Montooth 

2013), leading to the expectation that HSR activation would lessen as internal energy reserves become 

depleted. In both dietary groups, both hsp70 gene fold induction and KD time declined over the course of 

the experiment, potentially reflecting decreased ability to mount a sufficient response as individuals aged 

(Bowler and Terblanche 2008).  However, starvation was associated with transient increases in basal Hsp 

gene expression, and starved and fed ants invested similarly in Hsp gene up-regulation in response to heat 

stress (Fig. 4), suggesting that allocation of energy to protein protection is not impacted under low-resource 

conditions. As with desiccation, starvation-induced increases in basal Hsp gene expression at early and late 

time points were not associated with increases in KD time (Fig. 4a,c). It is possible that other molecular 

pathways that contribute to coping with stress that were not measured here, such as damage repair, redox 

regulation, and energy metabolism, are depressed by starvation and outweigh the slight increase in the Hsp 

response (Zinke et al. 2002; Kültz 2005).  

 Taken together, the results of this study suggest that single-stressor assays may not be a reliable 

method for estimating thermal tolerance, and thus the capacity to withstand additional warming.   Future 

climate change is likely to impose simultaneous combinations of environmental stressors such as 

temperature, desiccation, and starvation. Each of these is likely to impose stress on individual and colony-
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level performance and elicit physiological defenses; however, in addition to their independent effects, their 

interaction has the potential further reduce temperature tolerances. To improve species forecasts, models of 

physiological responses to climate change should account for these diverse sources of stress (Terblanche et 

al. 2007).  
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Table 1  Summary of statistical analyses for survival, thermal tolerance(KD time), condition (Water content, Dry Mass), and heat shock response 

(Hsp70 and Hsp40 expression). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note- ‘+’: p < 0.05; “++”: p < 0.01; “+++”: p < 0.001; ns = not significant. Empty cells represent predictors that were not retained from AIC model 

selection. 
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Fig. 1 Effect of desiccation (black triangles) on (a) survival, (b) initial water content, and (c) thermal 

tolerance relative to control ants (gray circles; n = 7 colony replicates per time point and treatment). 

Survival under desiccation stress was determined over an 8 hour period and water content was measured 

from 1 to 4 hours; we selected hours 1, 3, and 3.5 for subsequent static heat shock treatment (40.5 °C)and 

error bars represent ± 1 standard error of the mean.  
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Fig. 2 Effect of desiccation (shaded) on hsp70 and hsp40.  Panels a, c show basal gene expression; panels 

bandd showthe extent of fold induction in response to heat shock relative to control ants (white). Basal 

gene expression and Hsp fold induction were calculated using the  2-ΔΔCT method (Livak and Schmittgen 

2001). For each treatment and time point, there were 4-5 colony-level replicates and error bars represent ± 

1 standard error of the mean. 
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Fig. 3 Effect of starvation (black triangles) on (a) survival, (b) residual dry mass, and (c) thermal tolerance 

relative to control ants (gray circles). Survival under starvation stress was determined over 21 days and we 
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selected 1, 3, 7, 14, 21 day time points for subsequent static heat shock treatment (40.5 °C) and measured 

residual dry mass. Residual dry mass represents the size corrected dry mass, which was obtained by 

extracting the residuals from a linear regression between dry mass and head width. Residual dry mass was 

standardized such that the mean = 0 and variance = 1. For each treatment and time point, there were 10 

colony-level replicates and error bars represent ± 1 standard error of the mean. 
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Fig. 4 Effect of starvation (shaded) on hsp70 and hsp40.  Panels a and c show basal gene expression; panels 

b and d show the extent of fold induction relative to control ants (white). Basal gene expression and Hsp 

fold induction were calculated using the2-ΔΔCT method (Livak and Schmittgen 2001). For each treatment 

and time point, there were 4-5 colony level replicates and error bars represent± 1 standard error of the 

mean. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

 
 
This dissertation integrated different levels of biological organization to understand how 

organisms can survive and colonize different thermal environments. The first chapter 

characterized the functional diversity of Hsps, ants and other hymenoptera. Hymenoptera 

respond to heat stress by utilizing a different Hsp70 orthologue from fruit flies. Although 

evolutionary gains and losses of gene copies produce unique homologues, Hsps still 

retain the ability to respond to temperature which was associated with the presence of 

HSE in their promoters in ants. HSEs were mostly conserved in the proximal end of the 

promoter: we found more diversity towards the distal end of the promoter, whose 

function in transcriptional activation should be explored.  

 The HSF-HSE transcriptional cascade in the HSR represents an evolutionarily 

conserved mechanism for transcriptional regulation. While HSEs were largely conserved 

in hsp83, and hsp40, HSEs within the promoter region of hsc70-4 were much more 

diverse in arrangement and location, particularly at the more distal end of the promoter. 

The proximal HSEs are critical for transcriptional activation and the more distal HSEs 

can also interact with RNA polymerase if the promoter bends (Tian et al. 2010). The 

condition to which HSF-HSE binds to locations within the genome is unknown in 

Hymenoptera. In fruit flies, the chromatin landscape determines the affinity for HSF to 

bind HSEs, whereby hallmarks of more open chromatin facilitate binding (Guertin and 

Lis 2010). Because the chromatin state might be critical for Hsp induction through HSF-
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HSE binding, it is possible that the thermal experiences of queens may be passed on to 

workers to produce correlated transgenerational epigenetic inheritance of Hsp expression 

profiles. To functionally test the effect of number and position of previously surveyed 

HSEs, a combination of chromatin immunoprecipitation (ChIP)-seq experiments and 

gene reporter gene assays will be required under different contexts. For example, gene 

reporter assays will determine whether distally located HSEs can activate transcription 

and ChIP-seq sampling of histone markers and HSFs between queens and workers among 

colonies will determine whether HSF-HSE binding is transgenerationally inherited.     

 Patterns of Hsp induction itself explained 40% of the variation in phenotypic 

divergence in upper thermal limits within forest ant species of the genus Aphaenogaster. 

Aphaenogaster species occupying flat woods had higher CTmax than species in 

deciduous forests. Because flat woods forests have lower canopy cover than deciduous 

forest, foraging ants are likely to experience more thermal extremes from solar radiation, 

which selects for greater ability to withstand heat stress. Withstanding heat stress is likely 

due to a better ability to mitigate protein unfolding through Hsp chaperoning and also 

greater resistance to protein unfolding. The dynamics of how the whole proteome unfolds 

in response to temperature is the next step to understanding stress resistance. 

 There are multiple strategies for organisms to evolve a more stable proteome. 

Increasing individual protein stability can involve very few amino acid changes 

(Lockwood and Somero 2012), but these changes need to be distributed across the whole 

proteome. Empirical measurements of whole proteome stability are rare, but a study by 

Leuenberger et al. (2017) finds that thermophilic bacteria (Thermus thermophilus) have 



 
113 

higher average proteome stability than Escherichia coli, yeast, and humans. However, 

shifting proteome stability through amino acid changes may not be easily achievable for 

closely related taxa with very little time to evolve stabilizing amino acids across the 

whole proteome. Alternatively, species can enhance proteome stability through protein-

protein interactions such as post-translational modifications (Storey and Wu 2013). For 

example, transfer of ubiquitin onto a protein marks it for degradation through the 

proteasome, but this strategy costs energy (Golberg 2003).  Degrading thermally labile 

proteins would enrich for more thermally stable proteins. Accumulating protective 

osmolytes can non-specifically increase protein stability across the whole proteome 

(Hottiger et al. 1994) through the action of a few enzymes (De Virgilio et al. 1990; Teets 

et al. 2013) and may be a less costly strategy. The relative contribution of amino acid 

sequence variation, protein-protein interactions, and osmolytes that explains variation in 

proteome stability needs to be tested in a comparative design through multiplex 

proteomic (Savitski et al. 2014; Leuenberger et al. 2017) and metabolomic experiments 

(Malmendal et al. 2006).  I predict that shifting osmolyte concentrations to confer stress 

resistance may be the largest contributor to differences in proteome stability and upper 

thermal limits within a rapidly diversifying clade.  

 However, the effectiveness of osmolyte shifts contributing to proteome stability 

may be influenced by the presence of other stressors. For example, trehalose is a sugar 

that stabilize proteins under heat stress (Eleutherio et al. 1993) and it also protects against 

extreme cold and desiccation (Elbein et al. 2003). Under desiccation, trehalose solvates 

phospholipids in place of water and stabilizes cell membranes (Hazel and Eugene 1990). 
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The availability of trehalose depends on nutritional status (Elbein et al. 2003) and 

standing pools will deplete under starvation. Therefore, the protective benefits of 

trehalose under heat stress will potentially be less effective with each additional stressor 

organisms face. 

 Ectotherms in natural populations experience a combination of stressors, which 

may enhance or diminish the thermal performance of foragers. We found that forest ants 

were cross-susceptible to heat stress when they previously encountered desiccation and 

starvation. Whether cross-susceptibility was mediated by trehalose could be tested in the 

future. How general cross-susceptibility is across ants and other ectotherms as a whole 

will give more accurate predictions on how species will respond to future environmental 

change.    
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