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ABSTRACT 

Understanding tree physiological responses to climate change is critical for 
quantifying forest carbon, predicting species’ range change, and forecasting growth 
trajectories. Continued increases in temperature could push trees into conditions to which 
they are ill adapted – such as decreased depth of winter snow cover, altered water 
regimes, and a lengthened effective growing season. A complicating factor is that in the 
northeastern United States, climate change is occurring on a backdrop of acid deposition 
and land-use change. In this dissertation, I used three studies to investigate the 
spatiotemporal nuances of resultant tree and sapling physiology to environmental change. 

 
First, I compared annual growth of co-occurring tree species (sugar maple, red 

spruce, red maple, yellow birch, and balsam fir) along an elevational gradient on 
Vermont’s tallest peak: Mt. Mansfield. I found baseline differences in growth among 
species, and many annual variations were associated with species-specific events. Yet, 
protracted growth patterns, such as recent increases for red spruce and red maple, were 
correlated with increased temperature and cooling degree days (a heat index). For most 
species, temperature was positively associated with current growth, but negatively 
associated with growth the following year. This work demonstrated species’ differences 
in response to change and the complex relationships between growth and temperature.  

 
Next, I analyzed how climate, environmental parameters, and site and tree factors 

related to recent, regional increases in red spruce growth. While there was variability in 
response to climate and acid deposition by elevation and location, site and tree factors 
did not adequately explain growth. Higher temperatures outside the traditional growing 
season were positively related to growth, while nitrogen deposition was strongly 
negative. However, if nitrogen inputs decline as projected then the strength of this 
relationship may decrease over time. These results suggest continued favorable 
conditions for red spruce in the near term as acid deposition declines and temperatures 
increase, provided precipitation remains adequate to support growth. 

 
Lastly, I used a replicated micro-catchment study to examine how four species of 

tree saplings (paper birch, quaking aspen, American chestnut and black cherry) 
responded to experimentally elevated temperature (2-4°C above control) and reduced 
early winter snow (first six weeks of winter), depending on soil type. Soil and species 
characteristics strongly influenced sapling response. However, natural weather patterns 
during the treatment period were highly variable and muted or exacerbated results. 
Heating increased the potential photosynthetic period in the fall, causing an overall 
increase in leaf area. Many two- and three-way interactions of treatment factors were also 
detected. These outcomes demonstrate the variability in sapling response to a changing 
climate, as well as the complex interactions that occur among soil, species, and weather 
parameters.  
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 CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

 

1.1. Introduction 

It is well known that trees respond in measurable ways to fluctuations in the 

environment. Trees can respond by altering their physiology, especially if changes fall 

within the historical range that populations have encountered. However, persistence of a 

tree or population does not guarantee the continuation of optimal function or associated 

ecosystem services. Furthermore, anthropogenic-induced climate change may be 

occurring faster than relatively long-lived trees can feasibly adapt, especially if rapid or 

dramatic changes occur. Perceivable changes to the climate have already occurred and 

will persist regardless of near-term mitigation efforts. The response of trees to these 

changes remains unclear: we may see species reductions or improvements in vigor and 

growth, constriction or expansion of current range limits, or even widespread mortality. 

Such changes could have dramatic impacts on forest ecology, species distributions, 

ecosystem health and services, and both regional and national economies.  

Complicating the matter is that forests will likely respond differently to changes 

in climate depending on site characteristic, land-use history, individual tree status, forest 

species composition, and the specific magnitude and directionality of the environmental 

change. In addition, complex interactions among environmental variables are possible; 

for example, elevated temperatures may increase the rate of some biological functions, 

including photosynthesis, but also may increase evapotranspiration, which then could 
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lead to stomatal closure and a reduced net photosynthetic gain Added to this uncertainty 

is the fact that the forests in the northeastern US were nearly completely cleared in the 

1800s and early 1900s for agriculture and forestry (Foster 1992), have suffered outbreaks 

of invasive pests and pathogens (Lovett et al. 2006), and been subjected to decades of 

acidic deposition (Driscoll et al. 2001). Thus, that most present-day forests in the region 

have been impacted by humans is evident in altered species, age- and size-class 

composition, the presence of non-native flora, and the homogenization of soil material. 

Moreover, these forests are and will continue to face unrelenting changes in the form of 

elevated CO2 concentrations, composition of atmospheric deposition, and temperature 

and precipitation regimes. The combination of these human-induced impacts could have 

a broad range of effects for the forests of the northeastern US. 

 

1.2 Ecosystem services of mid-latitude temperate forests  

Annual exchange of CO2 between terrestrial ecosystems and the atmosphere 

(~120-125 Gt) is much greater than those attributable to anthropogenic sources (~6-7 

Gt); therefore, changes in the terrestrial fluxes have the potential to either exacerbate or 

ameliorate human inputs (Bonan 2008; Field et al. 1998). Within terrestrial C, forests are 

a critical component of the global C budget, due in part to the large quantities of C stored 

in living biomass (Fahey et al. 2010); therefore, changes in tree growth rates and 

mortality can have a substantial impact on global C pools (Melillo et al. 2011). In 

particular, mid-latitude temperate forests have large C uptake potential (Dixon et al. 
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1994; Pan et al. 2011; Wofsy et al. 1993) and in these forests, the aboveground biomass 

of living trees is often the most dynamic C pool (Fahey et al. 2010). According to Pan et 

al. (2011), established mid-latitude temperate forests (comprising ~800 Mha) contributed 

0.7-0.8 Pg C year-1 to global C sinks (1990-2007), or approximately 30% of the total 

global C.  

In addition to C budgets, changes in tree growth and physiology can have broad-

ranging impacts to hydrological cycles (Foley et al. 2005) and forest nutrient budgets 

(Aber et al. 1989) through alterations in root uptake and photosynthetic rates. Further, 

these changes can cause both negative and positive feedbacks to subsequent ecosystem 

alterations (Bonan 2008). For example, rapid changes in tree mortality can provoke 

fungal and insect outbreaks (Carnicer et al. 2011) and the increase the frequency and 

intensity of forest fires (Flannigan et al. 2000).  

Therefore, estimating C sequestration by vegetation, of which mid-latitude 

temperate forests comprise over a quarter of annual global C uptake (Pan et al. 2011), is 

essential for C model simulation (Foley et al. 1998) – including estimating the impact of 

stresses to our forests and how they affect tree growth, competition, and vitality. 

Complicating the matter is that many mid-latitude temperate forests are operating on a 

legacy of human disturbance (Foster 1992). In the Northeastern US, other than 

deforestation, two of the largest contemporary influences on forest growth and C storage 

are acid deposition and climate change. 
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1.3 Anthropogenic acid deposition 

Acid deposition was proposed as a serious environmental threat to forests of the 

northeast in the early 1970s following marked increases in precipitation acidity (Likens 

and Bormann 1974) that occur when human-driven emissions of sulfur dioxide (SO2) 

and nitrogen oxides (NOx), as well as ammonia (NH3), form various acidic compounds 

(Driscoll et al. 2001). Prevailing winds can transport these compounds hundreds of miles 

until they are deposited either in either wet (rain, snow, and fog) or dry (gases, aerosols) 

form (NAPAP 2005). Through the atmospheric conversions to acids and the release of 

hydrogen ions, sulfur- (S) and nitrogen- (N) based pollutants acidify forest systems 

(Driscoll et al. 2001).  

Among other impacts, the deposition of acidic compounds on forests increases 

the leaching of base cations, such as calcium (Ca), from plant tissues (Likens et al. 1996) 

and mobilizes soil-bound Ca, magnesium (Mg), and aluminum (Al), which initially may 

enhance growth due to increased Ca and Mg availability, but eventually leads to Al 

toxicity and the leaching loss of Ca and Mg from soils (Johnson and Fernandez 1992; 

Shortle et al. 1997). Elevated leaching of Ca induced by acid deposition is particularly 

problematic for forests in the northeast since Ca is a biologically important cation and 

decreases in soil exchangeable Ca from other causes in addition to acid deposition have 

been identified, such as changing internal ecosystem processes (Hamburg et al. 2003), 

biomass removal (Tritton et al. 1987), reduced particulate deposition (Likens et al. 1996), 
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N saturation (Aber et al. 1998), and decreases in base cation atmospheric deposition 

(Hedin et al. 1994).  

Research has shown that N- and S- deposition has altered ecosystem function in 

the northeast (Aber et al. 2003; Driscoll et al. 2001). However, recent pollution controls 

(e.g., the Clean Air Act and subsequent amendments) have reduced pollution emissions 

resulting in moderate reductions in S-deposition and more varied change for N-

deposition. Deposition of NH4
+ has declined more precipitously than deposition of nitrate 

(NO3
-) (Fig. 1.1) (Driscoll et al. 2001). Temporal changes in deposition loading, as well 

as the cumulative effect of decades of inputs, could continue to impact tree growth 

through changes in site nutrition, and could also create complex responses to the effects 

of climate change.    

 
Figure 1.1: Precipitation-weighted mean deposition (mg L-1) by water year (previous October – 

September) for ammonium (NH4
+), nitrate (NO3-), and sulfate (SO4

2-) from NADP sites in Maine, 
Vermont, New Hampshire, and New York for length of record (1980-2015) (National Atmospheric 

Deposition Program 2016) 
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1.3.1 Role of Ca in response to environmental cues 

Loss of Ca can have innumerable effects on tree physiology. The roles that Ca 

plays in plant cell function can be divided into two categories: (i) structural—maintaining 

both cell wall architecture and plasma membrane integrity; and (ii) regulatory— serving 

as a messenger in signaling cascades that allow cells to sense and respond to 

environmental stimuli and integrate C metabolism (Marschner 2002). Both roles that Ca 

play are important to the structure and function of plant cells; however, regulatory Ca is 

of particular importance for tree health because it helps cells respond to environmental 

stress (Webb et al. 1996), such as freeze/thaw events (DeHayes et al. 1999; Schaberg and 

DeHayes 2000), and trigger compensatory changes in physiology that support stress 

tolerance (Halman et al. 2008; Schaberg et al. 2000). Ca is also integral in stomatal 

function (Allen et al. 2001) and losses of Ca can have significant impacts on 

photosynthesis and internal water pressure (Borer et al. 2005; Eamus et al. 1989).  

Thus, depletion of Ca can disrupt fundamental processes in tree function 

including photosynthesis (McLaughlin et al. 1991), carbohydrate metabolism 

(McLaughlin and Wimmer 1999), stomatal response (Borer et al. 2005), wood formation 

(Fromm 2010), wound closure (Huggett et al. 2007), cold tolerance (Halman et al. 2008), 

and winter injury (DeHayes et al. 2001; Schaberg and DeHayes 2000). Impaired function 

of these processes can have significant impacts on individual trees, as well as entire 

populations or species. Because Ca is biologically essential, the leaching of this element 

has far reaching consequences for forest health and productivity.  
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1.3.2 Effects of acidification on trees 

Sensitivity to reductions in Ca is often species-specific, and some sensitive 

species have experienced declines in their populations on a regional scale coincident with 

recent anthropogenic Ca depletion. Perhaps the most noteworthy example of this is red 

spruce (Picea rubens Sarg.) decline in the northeastern US. Considerable experimental 

evidence has now established that acid deposition exposure and resulting Ca depletion 

reduces red spruce cold tolerance and significantly increases the risk of winter injury and 

crown deterioration (DeHayes et al. 2001; Schaberg and DeHayes 2000). The mechanism 

through which Ca depletion reduces red spruce cold tolerance was first described through 

controlled exposures of seedlings to simulated acidic deposition which was shown to 

leach Ca from foliage (DeHayes et al. 1999; Schaberg et al. 2000). 

Acidic deposition, similar to levels measured at sites where the decline of red 

spruce had been observed, can reduce the cold tolerance of red spruce current-year 

foliage by up to 10°C, depending on the time of year and pH of the deposition load 

(DeHayes et al. 1990; Fowler et al. 1989; Sheppard 1994; Vann et al. 1992). At the 

Hubbard Brook Experimental Forest (HBEF), NH, Hawley et al. (2006) found that for 

all crown classes of red spruce, winter injury was significantly greater for trees growing 

in a reference watershed with a history of acid deposition-induced Ca depletion than on 

a watershed where Ca was added to simulate pre-pollution levels. These findings were 

particularly striking for dominant and co-dominant red spruce: trees on the reference-
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watershed lost about 75% of their current year foliage due to winter injury, about three 

times more than the foliar losses for similar trees on the Ca-addition watershed.   

Red spruce is not the only tree affected by reductions in soil Ca. Sugar maple 

(Acer saccharum Marsh.) has also suffered declines in growth since the mid-twentieth 

century (Johnson et al. 1986; Westing 1966) that were coincident with reductions in soil 

Ca (Bailey et al. 2004; Bishop et al. 2015; Huggett et al. 2007; Schaberg et al. 2006). 

Research has shown that sugar maple growing in soil with lower Ca content grew less 

(Bishop et al. 2015), sustained higher incidences of mortality (Bailey et al. 2004), and 

took longer to heal after wounding (Huggett et al. 2007). Data also suggest that Ca 

impacts the abundance and vigor of sugar maple seedlings (Juice et al. 2006). In addition, 

paper birch (Betula papyrifera Marsh.) on higher Ca sites showed notable increases in 

growth after a damaging ice storm relative to birch on Ca-depleted sites (Halman et al. 

2011).  

Sensitivity to Ca depletion is not uniform across the landscape. While most of 

New England was subject to elevated acidic loading, high elevation forests in the 

northeastern US are particularly vulnerable. In late summer and fall, high elevation 

forests in the northeastern United States are subject to cloud misting approximately 10–

40% of the time, depending on altitude, and therefore, receive large amounts of 

anthropogenic pollutants in the form of acid rain, mist, and ozone (Siccama et al. 1982). 

Acidic inputs may be three- to four- times higher than at comparable low elevation sites 

(Johnson and Siccama 1983). Research looking at spatial analysis of patterns of red 
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spruce winter injury in 2003 in New York, Vermont, New Hampshire, and Massachusetts 

indicated that winter injury was greatest at high elevations, in western portions of the 

region, and on west-facing slopes – all areas that received higher atmospheric inputs of 

H+ and would be prone to Ca depletion (Lazarus et al. 2006). Further, there is high 

variability in resultant change from acidic loading based on a site’s characteristics (e.g., 

nutrient content, buffering capacity, timber extractions, etc.). Research by Engel (2013) 

showed that red spruce growing on sites with a low capacity to tolerate acidic inputs 

(assessed through Critical Load and Exceedence models) displayed reduced growth 

compared to red spruce growing on high buffering capacity sites .  

Given the broad extent to which acid deposition has impacted northeastern 

forests, it is not surprising that other Ca-sensitive tree species have also experienced 

health declines in recent years. Evidence now suggests that climate change may also 

contribute to soil acidification by increasing the frequency of soil freezing events, which 

damage roots, reduce nitrate uptake, and leach base cations from soils (Comerford et al. 

2013). Climate change is occurring on a background of decades of acid deposition and 

Ca leaching, from which the soils have not fully recovered (Lawrence et al. 2012), as 

well as the long-term impacts of land use history (e.g., deforestation, agriculture, etc.). 

Indeed, it is possible that the combined effect of decades of acid deposition and climate 

change may push trees over a threshold of Ca deficiency that could predispose trees to 

decline. Therefore, an ecosystem with reduced Ca from acid deposition may have a 

diminished ability to respond to environmental changes as successfully or rapidly as one 
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with adequate Ca stores. Understanding the response of trees on varied sites (e.g., a range 

of soil-Ca status, elevation, land use history, and aspect) could help us predict how trees 

may cope with the combined impact of these stressors.  

 

1.4 Anthropogenic climate change  

1.4.1 Observed regional changes 

Added to the stress of anthropogenic pollutants and decades of soil cation 

depletion, the region is also experiencing changes in climate. Since 1895, the annual 

mean temperature has increased by nearly 2°C (0.16°C per decade), with winter 

temperature having risen more steeply (Hayhoe et al. 2007; Kunkel et al. 2013; USGCRP 

et al. 2014). This warming has resulted in a lengthened growing season (increase of 3.7 

(±1.1) days per decade), more winter precipitation falling as rain rather than snow, 

reduced snowpack in some winters, earlier spring snowmelt (freeze period has decreased 

3.9 (±1.1) days per decade), and more days with temperatures above 32.2°C (Betts 2011; 

Kunkel et al. 2013; Northeast Climate Impacts Assessment Synthesis Team 2007). 

Precipitation has increased more than 10% since 1895 (0.8 cm per decade) (Kunkel et al. 

2013), with a 70% increase in the amount falling during very heavy precipitation events 

(Groisman et al. 2013; Kunkel et al. 2013; Northeast Climate Impacts Assessment 

Synthesis Team 2007; USGCRP et al. 2014).  
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Figure 1.2: Examples of climate trends for the northeastern US (shown with dashed trend line) 
from 1925-2016: (a) total cooling degree days (CDD, degree days >18.3°C), (b) total growing 

degree days (GDD, degree days >5°C), (c) mean water year (previous Oct-current Sept) 
temperature (Tmean; °C), and (d) total water year precipitation (P; mm). See methods for data 

sources and descriptions (Climatic Research Unit 2016; NOAA National Centers for 
Environmental Information 2016; NOAA Regional Climate Centers 2016) 

These changes are also coupled with increased atmospheric CO2 concentrations 

and alterations to other anthropogenic atmospheric inputs (e.g., S- and N- deposition). 

Through the burning of fossil fuels, atmospheric CO2 concentration rose from 311.3 ppm 

in 1950 to over 400 ppm in 2016 (NOAA Earth System Research Laboratory Global 

Monitoring Division 2016; Peters et al. 2013) (Figure 1.3). Elevated atmospheric CO2 

concentration, compared to pre-industrial levels, combined with other anthropogenic 

gasses, such as methane and nitrous oxide, have led to changes in the global energy 

balance, causing observable changes in the global climate.  
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Figure 1.3: Atmospheric CO2 concentration (in parts per million, ppm) measured from Law Dome 

ice cores (1900-2004) and atmospherically at Mauna Loa, Hawaii (1950-2016) (NOAA Earth 
System Research Laboratory Global Monitoring Division 2016; World Data Center for 

Paleoclimatology and NOAA Paleoclimatology Program). 

1.4.2 Regional climate projections 

Climate projections for the future include continued rising global temperatures, 

changes in precipitation patterns (including increased severity and duration of 

precipitation events), more frequent extreme weather events, biogeophysical changes 

(e.g., changes to albedo), and higher sea levels (IPCC 2014; USGCRP et al. 2014). In the 

northeastern US, climate models predict an increase in temperature of 2-10°C by 2050 

under continued high greenhouse gas emissions scenarios and about 2-6°C under low 

emission conditions (Kunkel et al. 2013; Northeast Climate Impacts Assessment 

Synthesis Team 2007). A climate model developed for the Lake Champlain Basin (VT) 
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6.0°C above the baseline (Guilbert et al. 2014). The length of the growing season is also 

projected to increase concurrent with spring temperatures from approximately 141 days 

(1970-1999) to over 180 days by the end of the 21st century (Guilbert et al. 2014).  

Although precipitation patterns are difficult to predict, according to Betts (2011), 

by the end of the century seasonal precipitation in the Northeast is projected to increase 

approximately 15% in winter, 10% in spring, and 5% in fall, but exhibit no change in 

summer (high emission scenario); however, a model for the Lake Champlain Basin 

suggests that mean annual precipitation will increase 0.3 mm per day by 2099 compared 

to the base period (1970-99), with increases likely for all seasons (Guilbert et al. 2014). 

In addition, many climate models also indicate larger inter-annual variation in both 

temperature and precipitation (Hayhoe et al. 2007) and higher variability in resulting 

weather patterns may become the norm. According to the IPCC (2014), global warming 

of approximately 2°C above the pre-industrial baseline will very likely lead to more 

frequent heat and precipitation extremes over most areas of North America, though most 

precipitation will fall as rain rather than snow. An earlier timing of spring snowmelt due 

to elevated temperatures and increased runoff from heavier rainfall events, possibly 

coupled with increased evapotranspiration with co-occurring elevated temperatures, 

could increase the frequency of summer droughts (Northeast Climate Impacts 

Assessment Synthesis Team 2007).  
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1.4.3 Possible effects of changes in temperature on forests 

Anthropogenically driven temperature increases could have broad impacts on the 

health and distribution of trees. Temperature is critical to all metabolic processes 

involved in the uptake, release, and storage of C (Pallardy 2010). Elevated temperatures, 

especially if coinciding with sufficient water and nutrient availability, can increase tree 

metabolic processes leading to higher biomass accumulation (Luo 2007). Research has 

reported myriad changes that may result, including changes to the timing of spring 

phenology (Chmielewski and Rötzer 2001), geographical habitat range (Doak and Morris 

2010), productivity (Way and Oren 2010), and habitats (Kelly and Goulden 2008). 

Temperate forests, like those in the northeastern US, have been shown to have a 

broader temperature range for growth than forests in areas with more consistent 

temperature, such as tropical forests (Cunningham and Read 2002), and as a result, may 

be able to more quickly respond to increased temperatures. Observational studies 

correlating temperature to diameter growth across forest types have shown both increases 

and decreases with higher temperatures (Way and Oren 2010). Research has found 

conifers to grow both more (Saxe et al. 1998) and less (Way and Oren 2010) than 

deciduous trees under elevated temperatures. Additionally, some temperate conifers, 

such as red spruce and white pine (Pinus strobus L.), are capable of photosynthesis when 

fall, winter, and spring temperatures are mild (Schaberg and DeHayes 2000; Schaberg et 

al. 1995) and could benefit from elevated C capture relative to leafless hardwoods as the 

climate warms.  
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Changes in tree physiology due to increased temperature are closely tied to the 

soil community, and the responses of soil microbes and mesofauna to warming may 

intensify or weaken tree responses. Indeed, studies imposing warming on plants and soil 

communities have shown short-term losses of soil C, in the form of CO2, and acceleration 

of N cycling rates due to increased soil microbial activity (Melillo et al. 2011). In a 

replicated soil warming study, Melillo et al. (2011) showed that the acceleration of soil-

mediated N cycling enhanced N availability for the vegetation and thus, increased tree 

growth rates. Others have hypothesized that climate warming may lead to decreased N 

supplies in a warmer world (Groffman et al. 2009) and some evidence along elevational 

transects at the HBEF may support this possibility (Durán et al. 2014). 

Warming may not only affect soil turnover of nutrients, but also the nutrient 

quality of plant matter. For example, increases in temperature are expected to cause 

increases in the ratio of C:N in litter, particularly for conifers (Tjoelker et al. 1999), which 

in turn, would decreases the rate of decomposition (Pallardy 2010) and retard the return 

of nutrients to the ecosystem. Thus, understanding how warming may affect plant-soil 

relations is fundamental to our understanding of forest ecosystem response to widespread 

temperature change.  

Elevated temperatures are also projected to reduce the duration of cold winter 

conditions, alter the frequency of soil freeze-thaw cycles and reduce both the amount and 

duration of snow cover (Northeast Climate Impacts Assessment Synthesis Team 2007). 

Research by Comerford et al. (2013) at HBEF showed that sugar maple trees subjected 
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to a reduced snowpack and consequent increased soil freezing depth had increased root 

damage, lessened stem growth, reduced starch stores, and lowered leaf Ca:Al ratios. This 

is especially striking in the northeastern US where climate change is operating on the 

backdrop of decades of acid deposition that has leached soil Ca and elevated Ca:Al ratios.  

 

1.4.4 Possible effects of changes in growing season length on forests 

A steady lengthening of the growing season concurrent with increases in annual 

temperature has been documented in Vermont (Betts 2011) and elsewhere in the region 

(Huntington et al. 2009). Changes in the timing of flowering and spring phenology have 

been observed (Betts 2011; Richardson et al. 2006; Schwartz and Reiter 2000). 

Increasing growing degree-days (GDD), a measure of the mean daily temperature 

deviation from a base temperature (usually 4-5°C for forested ecosystems), correlate with 

increased plant growth in boreal forests (Peltola et al. 2002). Several studies have 

demonstrated that early spring growth due to a prolonged growing season and earlier 

timing of snowmelt increased forest productivity (Goulden et al. 1996; Menzel and 

Fabian 1999; Myneni et al. 1997).  

Extending the growing season may increase plant C and nutrient uptake. 

However, changes in warming may also create phenological mismatches between plant 

and soil community activity, resulting in nutrient buildups and leaching when plants are 

dormant but the soil community is not (Groffman et al. 2012); for example, during 

prolonged winter thaws, prior to leaf-out, or following leaf senescence. Although climate 
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change is predicted to generally increase air temperatures, especially in the winter, 

extreme winter lows may persist and freeze-thaw cycles may increase in number, 

duration or magnitude (Christensen et al. 2007; Hayhoe et al. 2008; Kunkel et al. 2008). 

Indeed, for red spruce trees in the northeast, periods of decline have often been 

temporally aligned with episodes of unfavorable climatic influences, such as drought or 

unusual climatic events (e.g., winter freeze-thaw episodes) (Johnson et al. 1988), which 

may become more frequent or intense (Kunkel et al. 2008; Meehl and Tebaldi 2004).  

 

1.4.5 Possible effects of increasing atmospheric CO2 concentration on forests 

Among other factors, elevated atmospheric CO2 concentrations have been shown 

to provide a fertilization effect in some plants (Martinez-Vilalta et al. 2008; Soule and 

Knapp 2006), and when combined with increases in temperatures, growing season 

length, and precipitation, could promote increased growth for some species or elevations 

over others (Salzer et al. 2009). The primary effect of the response of plants to rising 

atmospheric CO2 is to increase resource use efficiency. Elevated CO2 has been shown to 

alter stomatal conductance, transpiration, and water use efficiency (Battipaglia et al. 

2013). However, research results are varied on the specific effects of CO2 fertilization on 

trees, including both increases (Körner et al. 2005) and decreases (Silva et al. 2010) in 

radial growth, changes to leaves, including the number, size (Radoglou and Jarvis 1990), 

life-span, and lignin concentration (Körner et al. 2005), and changes to flowering/fruiting 

(Körner et al. 2005). However, many of these findings show differences in the magnitude 



 

18 

and direction of change depending on the species and genotype (Saxe et al. 1998), as well 

as site factors, such as latitude, annual water balance, and mean annual temperature (Silva 

and Anand 2013). 

Like changes in temperature, elevated CO2 concentrations may alter plant 

nutrient relations. For example, Tjoelker et al. (1999) imposed both increased CO2 

concentration and temperature on five boreal tree species and found that growth under 

elevated CO2 concentrations reduced leaf N and increased non-structural carbohydrates 

compared to the control. Other studies have shown increased C uptake by plants under 

elevated CO2 concentrations despite acclimation of photosynthetic capacity (measured 

as decreased carboxylation rate of Rubisco) (Leakey et al. 2009).  

In addition, for some plant species, growth under elevated temperatures and CO2 

levels can reduce resistance and tolerance to freezing temperatures (Repo et al. 1996), 

which could be problematic for marginally cold tolerant trees such as red spruce 

(DeHayes 1992). Repo et al. (1996) examined changes in frost hardiness of Scots pine 

(Pinus sylvestris L.) saplings subjected to increased atmospheric CO2 concentrations 

and/or elevated air temperatures. They found that elevated temperatures caused needles 

to harden later and deharden earlier than controlled conditions, and that elevated CO2 

concentrations hastened dehardening in the spring. However, work with other conifer 

species (e.g., black spruce, Picea mariana Mill. BSP) had contrary findings (Bigras and 

Bertrand 2006).  
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1.5 Conclusions  

While evidence of anthropogenic stresses within forests continues to mount, there 

is limited indication of clear trends regarding forest response in the northeastern US. Site 

conditions may buffer or boost the impacts of heat, drought, and storm events, but the 

impact of regional changes, such as increased annual temperatures and rising CO2 

concentrations, may be more widespread. Continued changes in temperature, 

precipitation, and depth, duration, and extent of snow cover could push trees beyond 

historic environmental thresholds to which they are adapted and result in reduced 

competitive capacity, growth, and survival. In the northeast, forests have been heavily 

logged for farms and timber (Foster 1992), and have been impacted by pollution and acid 

deposition (Likens and Bormann 1974; Schaberg et al. 2001).  

Currently, there are mixed reports of how forests are reacting to observable 

changes in the environment and how they may react in the future. Indeed, one would 

expect that some species might benefit from climatic perturbations, while others would 

not. In some forest stands, biomass accumulation over the past 50 years have increased 

more than predicted (Johnson and Abrams 2009; McMahon et al. 2010; Pan et al. 2011). 

Johnson and Abrams (2009) hypothesized that the recent observed increases in growth 

across all age classes, including the oldest age classes, and several genera, is due to 

anthropogenic causes.   

Changes in tree growth rate and/or mortality could have profound impacts to the 

ecology of forests in the region, including alterations to C pools and other 
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biogeochemical cycles, hydrological cycles, and species composition, among other 

outcomes. Increased growth rates have been shown to be inversely related to tree 

longevity (Johnson and Abrams 2009); therefore, changes could decrease tree survival. 

Indeed, in several other locales, tree mortality has been higher than expected based on 

historical data (Allen et al. 2010; van der Maaten-Theunissen and Bouriaud 2012).  

The complex interactions between plants and soil, coupled with the range of 

weather/climate patterns that may occur and the varied response of species to these, 

highlight a need to better understand the possible changes we may see in regional forest 

systems. Several researchers are using climate and biomass modeling to project how net 

primary productivity (NPP) of forests may change in the future; however, understanding 

how trees and saplings across the northeast have responded to past changes and continue 

to respond to change will allow us to better calibrate models.  

To this end, in this dissertation I have investigated tree response to environmental 

parameters to assess how trees (1) have responded to past environmental perturbations 

and (2) may respond to continued and accelerated changes. The longevity of trees is an 

asset to examining change: growth under a variety of conditions can be assessed and the 

relationship between environmental change and productivity investigated. In the 

northeastern US, we have already observed changing abiotic factors that forests are 

responding to in both negative and positive ways; important questions to ask are, how 

will tree species in the northeast respond to changes in local temperature, atmospheric 

CO2, growing season length, anthropogenic atmospheric inputs and other perturbations? 



 

21 

Which environmental variables have the largest impact on productivity? How will tree 

physiological characteristics (such as rooting depth, leaf morphology) affect responses 

to change? How will changes affect nutrient and water budgets? How do site factors 

moderate or exacerbate tree response? 

While there is considerable uncertainty in how trees in the region will respond to 

rapid environmental change, the three research projects described in the following pages 

specifically address issues of tree productivity and vigor in terms of climate change. 

Through these projects, I help elucidate the changes to our forests that are occurring now, 

but also provide understanding of how trees may respond in the future. Are some tree 

species responding positively to changes while others are declining? Have the 

mechanisms that drive tree growth changed in recent years? This research aims to better 

understand how trees are or will respond to global climate change – information that can 

inform policy makers and forest managers who must assess future scenarios for forests 

in the northeastern US.   
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2.1 Abstract 

In the northeastern US, tree declines associated with acid deposition-induced 
calcium depletion have been documented, notably for red spruce (Picea rubens Sarg.) 
and sugar maple (Acer saccharum Marsh.). There is conflicting evidence if co-occurring 
tree species have capitalized on these declines or suffered similar growth reductions; and 
further, how growth has fluctuated relative to environmental variables. We examined five 
species along three elevational transects on Mt. Mansfield, Vermont: sugar maple, red 
spruce, red maple (Acer rubrum L.), yellow birch (Betula alleghaniensis, Britton), and 
balsam fir (Abies balsamea, [L.] Mill.). We found baseline differences in growth. Red 
maple and yellow birch had the highest growth, sugar maple and red spruce intermediate, 
and balsam fir the lowest. While some of year-to-year declines were associated with 
specific stress events, protracted patterns, such as recent increases in red spruce and red 
maple growth, were correlated with increased temperature and cooling degree days (a 
measure of heat index). For most species and elevations, there was a positive association 
between temperature and growth, but a negative association with growth the following 
year. Based on our comparisons, for some species growth at Mt. Mansfield aligns with 
regional trends and suggests that patterns assessed here may be indicative of the broader 
region.   

 

Key words: red spruce, sugar maple, yellow birch, red maple, balsam fir  
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2.2 Introduction 

Regional forests in the northeastern United States (US) reflect temporally and 

spatially complex land use change in the 19th and 20th centuries that included 

deforestation, agricultural expansion, and subsequent reforestation (Whitney 1994). 

Resulting second growth forests were then subjected to novel anthropogenic stress in the 

20th century – notably acid deposition-induced nutrient perturbations that altered forest 

health and productivity (DeHayes et al. 1999; Greaver et al. 2012). In particular, acidic 

deposition and resulting calcium (Ca) depletion have been associated with health and 

productivity declines for red spruce (Picea rubens Sarg.) (DeHayes et al. 1999) and sugar 

maple (Acer saccharum Marsh.) (Schaberg et al. 2006) – two dominant and economically 

important tree species in the northeastern US. Added to the stress of pollutants and 

decades of soil cation depletion, anthropogenic emissions of carbon dioxide (CO2) and 

other greenhouse gases have induced changes in the global climate. Greenhouse gas 

accumulations have led to an increase in the annual mean temperatures in the 

northeastern US of 0.09°C decade-1 (1895-2011), resulting in a lengthening of the freeze-

free period and functional growing season (Kunkel et al. 2013). While precipitation has 

not significantly changed for winter, spring, or summer, fall and annual precipitation 

totals have increased 0.61 and 0.99 cm decade-1, respectively (Kunkel et al. 2013). 

Continued changes in temperature and precipitation, alone and in combination with other 

stressors, could push trees beyond the environmental thresholds to which they are 
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adapted and result in reduced competitive capacity, growth, and survival for some species 

compared to others.  

Whereas the declines of several tree species associated with acid deposition are 

well documented in the region, recent research suggests that some of these chronically 

stressed species are experiencing contemporary growth increases (Kosiba et al. 2013) 

and possible range expansion (Beckage et al. 2008; Foster and D'Amato 2015). Both of 

these deviations are hypothesized to be associated with changes in environmental factors, 

such as elevated atmospheric CO2 concentrations, fluctuating atmospheric pollution, and 

rising temperature. Elevated CO2 has been proposed to cause a fertilization effect in some 

trees (Salzer et al. 2009; Soule and Knapp 2006), but other findings have not supported 

this (Bader et al. 2013; Girardin et al. 2016; Körner et al. 2005). While acid deposition 

initially caused declines in some tree species, the enforcement of the Clean Air Act and 

subsequent amendments has reduced sulfur (S) and, less dramatically, nitrogen (N) 

deposition (Burns et al. 2011). Removal of this source of damage could allow for a 

recovery for chronically stressed species and, further, N deposition can promote growth, 

particularly in N-limited ecosystems (Aber et al. 1998). Rising temperatures could also 

extend the functional growing season, especially for temperate conifers that retain foliage 

year-round (Kosiba et al. 2013). 

While anthropogenic stress continues to mount within northeastern forests, there 

is limited evidence of clear trends in forest response; yet, large alterations in tree growth 

rates could have profound effects on the ecology of these forests, including changes to 



 

32 

carbon (C) pools, biogeochemical and hydrological cycles, and species composition. 

These fluctuations could alter important ecosystem services, including ones with direct 

economic impacts, such as wood products and recreation.  

Here, we present growth patterns and trends determined using xylem annual 

increment measurements for five tree species that characterize the northern hardwood 

and montane spruce-fir forests: sugar maple, red spruce, red maple (Acer rubrum L.), 

yellow birch (Betula alleghaniensis, Britton), and balsam fir (Abies balsamea, [L.] Mill.) 

growing along elevational transects on Vermont’s tallest mountain: Mt. Mansfield. We 

hypothesized that trees would have different growth rates dependent on species, 

elevation, and year, with some species displaying muted growth rates in recent decades. 

We expected that sugar maple, a species that has experienced a geographically broad 

decline since the 1980s (Horsley et al. 2002), and yellow birch, a species with limited 

reports of decline (van Doorn et al. 2011), would have reduced recent growth. 

Conversely, we predicted that red spruce would show recent increases in growth at Mt. 

Mansfield synchronous with a regional growth pattern of unknown origin (Kosiba et al., 

2013). We expected that sympatric balsam fir may have experienced competitive 

reductions in growth concurrent with increases in red spruce growth. Although red maple 

stocking and growth in the understory has increased regionally (Abrams 1998), growth 

trends for dominant and co-dominant red maple are unresolved. 

By associating the nature and timing of observed growth relative to local weather 

and pollution data, we assessed how putative environmental drivers may have influenced 



 

33 

species growth and productivity over time. Specifically, we anticipated that deposition 

of S and N would be negatively associated with red spruce and sugar maple growth, 

particularly in the 1970s-90s when deposition was the greatest. We hypothesized that 

atmospheric CO2 concentration, summer temperature, and growing season length would 

be positively associated with growth and that temperature relationships would strengthen 

with increasing elevation. We expected that increased fall and spring temperatures would 

be beneficial to evergreen conifers, as they can photosynthesize outside the traditional 

growing season when sympatric deciduous trees are leafless. We also predicted that 

metrics of precipitation would have a variable association with tree growth at Mt. 

Mansfield considering that these trees persisted through severe droughts in the 1930s and 

60s (Dupigny-Giroux 2002) as well as a current pluvial (Pederson et al. 2013). 

 

2.3 Methods 

2.3.1 Site description 

Mt. Mansfield State Forest, part of the northern Appalachian mountain chain, 

located in north-central VT (Underhill, VT, USA; 44.5439° N, 72.8143° W), is a 18 000 

hectare parcel comprised of multiple forest types across an altitudinal range of 

approximately 1 000 m, with a summit at 1 339 m. A northern hardwood forest, 

dominated by sugar and red maple, American beech (Fagus grandifolia Ehrh.), and 

yellow birch, extends to ~800 m, where it merges in a transition zone with a montane 

spruce-fir forest, primarily composed of balsam fir and red spruce. Red spruce, a 
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temperate conifer, is frequently found intermixed in the northern hardwood ecotone. The 

dynamics of the forests are controlled by localized wind events and individual tree 

mortality; however, historical timber harvest occurred sporadically in the early 20th 

century through parts of the Mt. Mansfield State Forest (Cogbill 1996). Soils are 

primarily stony podzols with considerable areas of rock outcrops, particularly 

approaching the summit (Soil Survey Staff 2015). 

The climate of Mt. Mansfield State Forest is continental, encompassing a large 

temperature range (Fig. S2.1) and is affected by its proximal location to Lake Champlain, 

a 126 910 hectare lake 24 km west of the study site, which moderates temperature and 

increases snow fall amounts. The annual mean temperature is 4.2°C with an average of 

154.6 cm of precipitation deposited uniformly throughout the year (Fig. S2.1) (PRISM 

Climate Group 2004). January is the coldest month and July is the warmest (-10.5°C and 

17.6°C average temperature 1925-2012 for study location, respectively) (PRISM Climate 

Group 2004). Continuous snow cover is the winter norm, persisting over 5 months at 

higher elevations. Humidity and water availability increase with elevation.  

 

2.3.2 Plot selection 

Elevational transects were set up in three of the four watersheds on Mt. Mansfield 

(Brown’s River, Stevensville Brook, and Ranch Brook Watersheds). No transect was 

established in the fourth watershed because this area has experienced anthropogenic 

disturbance associated with a commercial ski area. Along each transect, three plots were 



 

35 

selected – one within each of the following elevational zones: low (450-650 m a.s.l.), 

mid (750-850 m) and high (900-1000 m) (n plots = 9, Fig. 2.1), which align with northern 

hardwoods, transition, and montane spruce-fir ecotones. No obvious stand mortality or 

substantial recent disturbance was evident in any of the plots. 

Plots contained 10-14 dominant or co-dominant trees of each of the target tree 

species equally distributed around plot center to avoid differing competition pressures 

among trees. Trees with obvious bole or crown damage or those growing in anomalous 

conditions were not selected. We sampled red maple, sugar maple, and red spruce at low 

elevation; sugar maple, yellow birch, and red spruce at mid elevation; and red spruce and 

balsam fir at high elevation (Fig. 2.1). Due to differential species densities across the 

landscape and different number of species sampled per plot, plots were of variable radius 

(approx. 20-35 m).  

We selected species if they were the dominant components of the montane 

spruce-fir (red spruce and balsam fir) or northern hardwood (sugar maple and yellow 

birch) forests, or if the species has experienced increased dominance in this latter forest 

type (red maple; Abrams 1998). A dominant component of the northern hardwood forest, 

American beech, was not assessed because its growth dynamics have been altered 

following widespread damage from the beech bark disease complex (Gavin and Peart 

1993). 
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Figure 2.1: Map of plot locations in Mt. Mansfield State Forest, VT, USA, showing (A) three 
watershed transects, each with three plots located within low, mid, and high elevational zones, (B) 

species sampled per elevational band, and (C) study site location within the region. 

 

2.3.3 Dendrochronology 

We increment cored selected trees (n = 256) following standard 

dendrochronological techniques (Stokes and Smiley 1996) in the fall of 2012. We 

collected two 5 mm increment cores per tree at stem DBH (diameter at breast height, 

1.37 m above ground level) at 180° and perpendicular to the slope. Cores were air-dried, 

sanded with progressively finer grit sandpaper (ranging from 100-1500 grit dependent 

on species) and visually crossdated using the list method (Yamaguchi 1991). We 

microscopically measured rings to 0.001 mm resolution using a Velmex sliding stage 

unit with MeasureJ2X software (VoorTech Consulting, Holderness, NH) and used the 
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computer program COFECHA to detect and correct for potential crossdating errors in 

ring series (Holmes 1983). Individual cores were discarded if they were poorly correlated 

with the master chronology (i.e., below Pearson critical correlation level of 0.328 [99% 

CL]). For descriptive purposes, tree age (at breast height) was calculated using the 

maximum number of rings per tree if pith was evident or was estimated per core using a 

pith indicator (Speer 2010) if pith was not reached. For all trees, we were able to estimate 

age from at least one core.  

For the climate analyses, we detrended, standardized, and prewhitened all raw 

ring width series and computed biweight robust mean chronologies per species per 

elevation. Descriptive statistics (sample sizes, R bar, EPS [expressed population signal] 

and SNR [signal:noise]) of resulting chronologies were calculated using a running 30-

year window with 15-year overlap using Spearman correlation coefficients (Table S2.1) 

and used to select the best detrending and standardization technique. For all series 

chronologies, a 67%n cubic smoothing spline (CSS) (dplR package in R), using a 

frequency response cutoff of 0.5 was used. If this spline was a poor fit, a more 

conservative horizontal line was fit to the data. Traditionally, chronologies are truncated 

at the year when the EPS value falls below 0.85 (Speer 2010), but this would preclude 

the use of a portion of both the red maple and sugar maple chronologies at low elevations 

due to their young age and comparatively small sample size. Because results here were 

solely used to investigate growth-climate or –deposition relationships rather than for 

climatic reconstructions, we reduced the threshold to 0.80, allowing for the use of a 
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common period spanning from 1925-2012. However, lower EPS values indicate that 

these trees have a weaker stand-wide signal and may be more influenced by micro-site 

factors, which could mask a cohesive stand-wide signal. Summary statistics and data on 

the nine plots and resulting chronologies can be found summarized by species and 

elevational zone in Table S2. Comparisons of growth among species and elevations was 

done with Kruskal-Wallis rank sums test followed by the Wilcoxon method for pairwise 

comparisons, as data did not meet the assumptions of equal variance (P ≤ 0.05).  

We also averaged raw ring widths by tree and converted measurements into basal 

area increment (BAI, cm2 year-1) assuming a circular outline of stem cross sections (Cook 

and Kairiukstis 1990) and accounting for bark thickness. BAI is considered a more 

meaningful indicator of tree growth from a physiological standpoint because it provides 

an indication of annual stemwood production while accounting for the effects of stem 

geometry on radial growth associated with tree-maturation (Hornbeck and Smith 1985; 

LeBlanc 1992; West 1980). We then computed biweight robust mean BAI chronologies 

per species per elevation using the dplR package (Bunn et al. 2015) for R (Version 

3.1.1)(R Development Core Team 2016) to moderate the effect of large BAI values 

and/or outliers on the mean chronology.  

 

2.3.4 Growth associated with climate, deposition  

Climate data (maximum and minimum monthly temperature [Tmin, Tmax] and total 

monthly precipitation [P]) from 1925-2012 were obtained from the PRISM Climate 
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Group (PRISM Climate Group 2004). To reduce the number of variables assessed and 

limit the occurrence of type II errors, we computed seasonal mean (Tmean), maximum, 

and minimum temperatures (Winter: previous December–February, Spring: March–

May, Summer: June–August, Fall: September–November), annual water year (previous 

[p] October to current September) mean temperature, and seasonal and water year 

precipitation totals. Using monthly data, we also calculated the average temperature for 

an extended growing season (May–August and June–September) (Fig. S1). 

Pollutant S- and N- deposition data by water year were obtained from the 

Hubbard Brook Experimental Forest (HBEF; Watershed 1), Thorton, NH, USA, 

spanning 1965-2010 (Likens 2010) (Fig. S1). As this dataset covers more years than the 

one from Mt. Mansfield (1984-2012) (National Atmospheric Deposition Program 2016) 

and the datasets were highly correlated (R = 0.94, P < 0.0001), we combined them by 

adjusting HBEF data via regression analysis and then added this to the Mt. Mansfield 

dataset for continuous coverage from 1965-2012. We gathered data of annual 

atmospheric CO2 concentration from Mauna Loa Observatory, HI, USA (NOAA Earth 

System Research Laboratory Global Monitoring Division 2016) and from Law Dome, 

Antarctica ice core data (World Data Center for Paleoclimatology and NOAA 

Paleoclimatology Program); combined for a CO2 dataset spanning 1925-2012. We also 

collected the following data: Vermont Palmer Drought Severity Index (PDSI) (National 

Drought Mitigation Center 2014), and three measures of degree days: growing degree 

days (GDD, measured as cumulative degrees > 5°C [41°F]), cooling degree days (CDD, 
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> 18.3°C [65°F]) and heating degree days (HDD, < 18.3°C [65°F])) for Burlington 

International Airport, VT (NOAA National Weather Service 2014), and monthly 

Standardized Precipitation-Evapotranspiration Index (SPEI, 1-month sum) for VT, a 

multi-scalar drought and temperature index that includes the effects of evapotranspiration 

(National Drought Mitigation Center 2012). These datasets were chosen based on 

proximity or length of record; these datasets covered 1945-2012 (Fig. S1).  

Growth relationships with climate, deposition, and other data were assessed using 

treeclim (Zang and Biondi 2015) for R. Treeclim uses time-dependent bootstrapped 

resampling (1000 iterations) to test for linear correlations between the residual ring width 

data and each subvector of the climate matrix (Zang and Biondi 2015). To investigate 

the dominant drivers of tree growth, we first examined stationary correlations over the 

common period (or a limited subset for climate/deposition datasets spanning fewer 

years), including previous year’s climate and deposition on current year’s growth, to 

investigate the dominant drivers of tree growth. Second, to assess the temporal stability 

of climate-growth relationships, we used the significant variables from the first analysis 

to evaluate relationships with growth per temporal quartile. Third, we used principal 

component analysis to examine common modes of growth among species per elevation. 

Using the first principle component (PC) per elevation, we again examined stationary 

correlations with our climate and deposition variables. For all analyses, Spearman 

correlation coefficients were computed with a 99% CI to reduce the number of input 

variables, type II errors, and covariation among variables.  
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Lastly, we used the significant climate and pollution deposition variables from 

the first analysis to model growth per species and elevation. All variables were first 

standardized (µ = 0, s = 1). If multicollinearity was evident among variables, we used 

forward stepwise linear regression (using AIC criteria) to reduce selected variables. For 

all species and elevation pairs, we then created linear models to best explain growth; non-

significant variables were removed and the model was reassessed. Using the residuals of 

these models, we then regressed CO2 data to examine if, after accounting for the 

dominant climate effects, there was a detectable CO2 affect (Girardin et al. 2016). 

 

2.3.5 Comparisons with other chronologies and datasets 

We used other crossdated (± 0 yrs.) tree ring chronologies collected by the authors 

or affiliates (Engel et al. 2016; Hansen 2015; Weverka 2012) to compare growth trends 

on Mt. Mansfield to other locations in the region using Pearson Product-Moment 

Correlation. All chronologies were collected following similar methods described above 

and converted into BAI. Due to age limits of the chronologies from the HBEF, we 

constrained analyses to 1950-2012 for sugar maple and yellow birch (Hansen 2015).  

 

2.4 Results 

2.4.1 Absolute growth  

We found significant and consistent growth differences among the species (P < 

0.001) (Fig. 2.2A). Yellow birch and red maple had the largest mean growth (mean BAI 
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± SD: 15.2 ± 5.1 and 13.0 ± 4.3 cm2, respectively). Sugar maple and red spruce were 

intermediate in growth (7.1 ± 2.0 and 7.7 ± 2.9 cm2, respectively) and balsam fir had the 

lowest growth (4.7 ± 2.4 cm2). These patterns were fairly stable over the quartiles of the 

chronology, excluding the first quartile (1925-1946) and the most recent growth (2002-

2012).  

Growth was consistently higher at low and mid elevations compared with high 

elevation (Fig. 2.2B) (P < 0.001). For the chronology overall and for the central two 

quartiles (1947-1968, 1969-1990), growth was greater at mid elevations than low 

elevation. For all three elevations, overall growth increases in the most recent decade 

were driven by increases in two species: red spruce and red maple.  

For the two species sampled at multiple elevations (sugar maple and red spruce), 

species-specific growth across elevations showed differing patterns (Fig. 2.3). Sugar 

maple at low elevation had significantly higher mean growth than at mid elevation (8.1 

± 2.6 and 6.5 ± 1.7 cm2, respectively; P < 0.01), juxtaposing the general patterns that mid 

elevation plots had higher mean BAI overall. For both elevations, sugar maple maximum 

growth was only slightly higher than the mean and occurred in the third quartile: 1985-

95 for low elevation and 1970-90 for mid elevation trees. Following this peak, both 

chronologies exhibited slight declines in growth. Mid elevation red spruce had the 

highest average growth (13.0 ± 4.3 cm2), with low elevation intermediate (7.8 ± 3.1 cm2), 

and high elevation the lowest (4.1 ± 3.2 cm2) (Fig. 2.3) (P < 0.01). For red spruce at all 

elevations, maximum growth occurred in 2012 (year of sampling), and was considerably 
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higher than overall chronology means. At both mid and high elevations, four out of five 

years of maximum red spruce growth occurred in the years immediately prior to sampling 

(2009-12).  

 

 
Figure 2.2: Biweight robust mean basal area increment (BAI, cm2 ± SD shown with grey bars) by 
(A) species and (B) elevation from 1925-2012. A non-parametric Kruskal-Wallis test, followed by 
Wilcoxon Each Pair test, using species, elevation, and year as factors was significant for the three 
factors (P < 0.001). Different letters following species and elevations categories denote significant 

differences overall (P < 0.001). The model was also significant for each of the four 21-year quartiles 
(1925-1946, 1947-1986, 1969-1990, 1991-2012; denoted with grey dashed line, P < 0.001), for species 

and elevation, but year was only significant for the period 1925-1946 (BF: balsam fir, RM: red 
maple, RS: red spruce, SM: sugar maple, YB: yellow birch, L: low elevation [450-650 m a.s.l.], M: 

mid [750-800 m], and H: high [900-1000 m]). Bonferonni adjusted P-values were used. 
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2.4.2 Growth trends 

Species-to-species comparisons per elevation (Fig. 2.3) reveal that peak growth 

varied, but for all species, the highest growth years were in the second half of the 

chronology (e.g., 1960s to 2012). At low elevation, both red spruce and red maple 

displayed recent increases in growth, while sugar maple did not. For all three species at 

low elevation, peak growth roughly coincided; although for both red maple and red 

spruce, maximum growth persisted longer and was more recent than for sugar maple. At 

mid elevation, highest growth for yellow birch and sugar maple corresponded (1960s-

80s), yet red spruce peak growth occurred when these neighboring species were showing 

decreases. At high elevation, balsam fir experienced maximum growth at the end of the 

1980s through the early 2000s. 

The recent growth surge of red spruce was not seen in the other species at mid 

elevation. While this increase was most pronounced for low and mid elevation red spruce, 

red spruce growing at high elevation, where growth over the length of the chronology 

was more stable and constrained compared to lower elevation red spruce, also exhibit 

this upward trend. At all elevations, red spruce exhibited periods of depressed growth 

beginning in the mid-twentieth century that align with suspected or known winter injury 

events (Johnson et al. 1986; Lazarus et al. 2004). 
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Figure 2.3: Mean basal area increment (BAI, cm2, solid black line) (± SD) chronologies per species 
and elevational zone: (A) low 450-650, (B) mid 750-800, and (C) high 900-1000 m a.s.l. elevation 
from 1925-2012 in Mt. Mansfield State Forest, VT. Number of trees contributing the mean are 

shown with grey bars. Red circles designate the five highest growth years per chronology. 
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2.4.3 Climate and deposition relationships with growth 

Examining climate-growth relationships using the principal components (PCs) 

derived from chronologies per elevation, we saw that overall, all three elevations display 

a positive correlation between growth and growing season temperature (P < 0.01, Table 

1). At low elevation, Summer Tmean was best associated with growth (r = 0.38), along 

with NH4
+ deposition (r = 0.35). Both mid and high elevations showed positive 

correlations with CDD and growing season temperatures (e.g., Spring, Summer Tmean). 

However, non-growing season temperatures and PDSI were important to high elevation 

trees only. A model of growth at both mid and high elevations identified CDD as the best 

predictor (R2
adj = 0.13, P = 0.001 and R2

adj = 0.10, P = 0.04, respectively). At low 

elevation, the growth model included a positive effect of May-Aug Tmean (R2
adj = 0.08, P 

= 0.005). Atmospheric CO2 concentration was not significantly associated with growth 

for any of the species or elevations using either growth, PCs by elevation, or residuals 

(not shown). 

At high elevation balsam fir growth was positively correlated with temperature 

(P < 0.01; Table 2). The strongest positive correlations occurred with previous year’s (p) 

Fall Tmin (r = 0.38) and Spring Tmin (r = 0.24), while there was a negative association 

with pCDD (r = -0.37) and pGDD (r = -0.31) (Table 2). Although significant overall (P 

< 0.01), the strength of the relationships between balsam fir growth and other variables 

declined in the middle of the chronology (1969-1990). The best model to predict balsam 
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fir growth (R2
adj = 0.19, P = 0.0008) included a negative effect of pCDD (R2

adj = 0.13, 

P=0.002) and a positive effect of Spring Tmin (R2
adj = 0.05, P = 0.04).  

Red spruce exhibited the strongest positive relationships (P < 0.01) with 

temperature (CDD, GDD, and water year Tmean), including a strong correlation with non-

growing season temperature was important to red spruce (Table 2). Indeed, water year 

Tmean was positively associated with red spruce growth at all elevations and while not 

always significant, displayed a consistently positive correlation with growth across 

quartiles. Like other species, pCDD was strongly, negatively correlated to red spruce 

growth, and this pattern persisted through time (P < 0.01). At both mid and high 

elevations, there was a positive association between growth and pWinter Tmax (r = 0.27 

and 0.23, respectively). This relationship was negative in the third quartile, 1969-1990. 

Interestingly, pNO3
 deposition was negatively associated with growth of red spruce at 

low elevation (P < 0.01, r = -0.37), which strengthened through the quartiles of the 

chronology.  

For red spruce at low elevation, we found that the negative effects of both HDD 

(R2
adj = 0.11, P<0.0001) and pCDD (R2

adj = 0.15, P<0.0001) were the best predictors of 

growth in a linear model (R2
adj = 0.40, P>0.0001). At mid elevation, the best model (R2

adj 

=0.31, P<0.0001) included a positive effect of water year Tmean (R2
adj =0.13, P = 0.0006) 

and, like low elevation, a negative effect of pCDD (R2
adj = 0.12, P = 0.0002). At high 

elevation, the best model included a negative effect of both pCDD (R2
adj =0.09 , P = 
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0.0001) and HDD (R2
adj =0.11 , P = 0.018), and a positive effect of GDD (R2

adj =0.19 , 

P = 0.017) (overall model R2
adj =0.35, P<0.0001). 

Measures of degree-days and temperature were also important for red maple at 

low elevation (P < 0.01) (Table 2). Growing season temperature (i.e., Summer Tmean, 

June-September Tmean, and CDD) was positively correlated with red maple growth (P < 

0.01, r = 0.30, 0.26, and 0.39, respectively), while preceding year’s heat accumulation 

(pCDD) was negatively associated (r = -0.34). For red maple, the best growth model 

(R2
adj = 0.20, P = 0.0004) included a negative effect of pCDD (R2

adj = 0.11, P = 0.002) 

and a positive effect of Summer Tmean (R2
adj = 0.08, P = 0.006).  

At low elevation, sugar maple growth was not correlated (P > 0.01) with the 

selected variables (Table 2); therefore, we were unable to create a model of growth. For 

sugar maple at mid elevation, Summer Tmean was positively associated with growth (P < 

0.01, r = 0.26). However, this relationship was not consistent through the quartiles. Like 

many of the other species in this study, growth for these trees also exhibited a negative 

correlation (P < 0.01) with pSummer Tmean (r = -0.25) and pSummer Tmax (r = -0.27), as 

well as with pCDD (r = -0.38). To model growth, we were limited by the number of and 

high collinearity of input variables. Both pSummer Tmean and pSummer Tmax explained a 

similar amount of growth variation when fit separately (R2
adj = 0.06, P=0.01 for both). 

We did not find any negative correlations between yellow birch growth and the 

variables selected (Table 2.2). Yellow birch, however, did display positive associations 

with summer Tmean (P < 0.01, r = 0.29) and these trends were consistent through the 
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quartiles of the chronology. However, when we modeled growth using Summer Tmean, 

only a small amount of growth variation was explained (R2
adj = 0.07, P=0.008). 

 

Table 2.1: Significant correlations from stationary climate-growth assessments for all species 
combined per elevation for trees from Mt. Mansfield, VT, as evaluated using Principal Component 

analysis (1925-2012). Significance based on 99% CI. 
 

 Positive Negative 

Elevationa Variableb,c Cor. 
Coef. Variableb Cor. 

Coef. 

High 

Water year Tmean 0.34 HDD -0.38 
pWinter Tmax 0.25   
pFall Tmin 0.40   
Winter Tmean 0.26   
Spring Tmean 0.27   
CDD 0.37   
GDD 0.39   
PDSI 0.36    

Mid 

Summer Tmean 0.33   
May-June Tmean 0.32   
Jun-Sep Tmean 0.36   
CDD 0.34   
pFeb SPEI 0.43   
pDec SPEI 0.38     

Low 

pSpring Tmax 0.25  Mar SPEI -0.27 
Summer Tmean 0.38   
May-Aug Tmean 0.28     
pMar SPEI 0.28   
NH4

+  0.35   
 

a Low = 450-650 m a.s.l., mid = 750-850 m, and high = 900-1000 m 
b p = previous year, T = temperature, Min = minimum, GDD = growing degree days (cumulative degrees > 5°C [41°F]), HDD = 
heating degree days (cumulative days < 18.3°C [65°F]), CDD = cooling degree days (cumulative degrees > 18.3°C [65°F]), CDD 
= cooling degree days (cumulative degrees > 18.3°C [65°F]), SPEI = Standardized Precipitation-Evapotranspiration Index, 
Winter: previous December–February, Spring: March–May, Summer: June–August, Fall: September–November. For more 
information on variables see methods. 
c Not all variables span the entire chronology (1925-2012, 1945-2012, or 1965-2012). See methods. 
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Table 2.2: Correlations from stationary climate-growth assessments from Mt. Mansfield, VT, 
shown by species and elevation for the entire chronology (1925-2012) and by chronology quartile. 

Coefficients in bold text are significant at 99% CI.  
   Overall Quartiles 

Species Elevationa Variableb 
1925-
2012c 

1925-
1946 

1947-
1968 

1969-
1990 1991-2012 

Balsam fir High 
pFall Tmin 0.38 0.29 0.48 0.44 0.30 
Spring Tmin 0.24 0.17 0.59 0.19 0.08 
pCDD -0.37   -0.47 -0.17 -0.88 

 pGDD -0.31  -0.48 0.03 -0.88 

Red maple Low 

CDD 0.39   0.24 0.34 0.65 
Summer Tmean 0.30 0.37 0.22 0.31 0.55 
Jun-Sep Tmean 0.26 0.43 0.28 0.26 0.43 
pCDD -0.34   -0.59 -0.27 -0.17 

Red spruce 

Low 

Water year Tmean 0.43 0.44 0.52 0.24 0.48 
pFall Tmin 0.32 0.19 0.41 0.23 0.53 
Winter Tmean 0.26 0.14 0.39 -0.04 0.52 
Spring Tmean 0.36 0.34 0.37 0.26 0.46 
May-Aug Tmean 0.28 0.27 0.29 0.16 0.37 
Jun-Sep Tmean 0.43 0.31 0.48 0.01 0.13 
pCDD -0.35  -0.40 -0.31 -0.39 
HDD -0.37  -0.46 -0.05 -0.50 
GDD 0.38  0.46 0.21 0.37 
PDSI 0.36  0.44 -0.56 0.10 
pNO3

- -0.37  -0.164 -0.17 -0.46 

Mid 

Water year Tmean 0.27 0.35 0.53 0.17 0.42 
pWinter Tmax 0.27 0.38 0.55 -0.19 0.37 
Jun-Sep Tmean 0.26 0.29 0.49 0.12 0.17 
pCDD -0.41  -0.38 -0.51 -0.40 
GDD 0.34   0.44 0.13 0.39 
May SPEI -0.30   -0.15 -0.29 -0.44 

High 

Water year Tmean 0.36 0.28 0.47 0.27 0.41 
pWinter Tmax 0.23 0.36 0.46 -0.07 0.24 
pFall Tmin 0.32 0.05 0.53 -0.28 0.52 
Winter Tmean 0.26 0.16 0.22 0.13 0.41 
Summer Tmax 0.27 -0.03 0.31 0.38 0.45 
Fall Tmean 0.23 0.39 0.28 0.25 0.11 
Jun-Sep Tmean 0.31 0.06 0.55 0.48 0.41 
May-Aug Tmean 0.33 0.04 0.39 0.46 0.20 
pCDD -0.32  -0.44 -0.29 -0.37 
CDD 0.42   0.36 0.43 0.50 
HDD -0.34  -0.45 0.07 -0.44 
GDD 0.45  0.50 0.30 -0.49 

Sugar maple 

Low   N/S         

Mid 

pSummer Tmean -0.25 -0.12 -0.40 -0.23 -0.22 
pSummer Tmax -0.27 -0.25 -0.38 -0.28 -0.09 
Summer Tmean 0.26 0.19 0.45 0.08 0.33 
pCDD -0.38  -0.55 -0.29 -0.23 

Yellow birch Mid Summer Tmean 0.29 0.37 0.29 0.29 0.29 
 

a Low = 450-650 m a.s.l., mid = 750-850 m, and high = 900-1000 m 
b p = previous, T = temperature, Max = maximum, Min = minimum, PDSI = Vermont Palmer Drought Severity Index, GDD = 
growing degree days (cumulative degrees > 5°C [41°F]), HDD = heating degree days (cumulative days < 18.3°C [65°F]), CDD = 
cooling degree days (cumulative degrees > 18.3°C [65°F]), SPEI = Vermont Standardized Precipitation-Evapotranspiration Index, 
Winter: previous December–February, Spring: March–May, Summer: June–August, Fall: September–November. For more 
information on variables see methods. 
c Not all variables span the entire chronology (1925-2012, 1945-2012, or 1965-2012). See methods. 
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2.4.4 Comparisons with other chronologies 

We compared red spruce growth from this study with red spruce from a wide 

range of plots in VT, New Hampshire, and Massachusetts (n trees = 452) collected in 

2010, 2011, and 2012 (Engel et al. 2016; Kosiba et al. 2013; Weverka 2012). The 

chronologies were significantly correlated (R = 0.92, P< 0.0001; Fig. 2.4A). We also 

compared sugar maple and yellow birch from this study to those species from the HBEF 

collected in 2012 (Hansen 2015). For sugar maple (n trees HBEF = 163; Fig. 2.4B) the 

chronologies were significantly correlated (R = 0.57, P < 0.0001), but for yellow birch 

(n trees HBEF = 170; Fig. 2.4C) they were not (R = -0.19, P=0.13).  
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Figure 2.4: Comparisons of mean growth (BAI ± SD) for red spruce, sugar maple, and yellow birch 
from this study on Mt. Mansfield to (A) sugar maple and (B) yellow birch at Hubbard Brook 

Experimental Forest (HBEF), NH, and (C) red spruce in the region (34 plots in VT, NH, MA). 
Spearman correlation coefficients (R) and associated P-values are shown in each figure. 

Chronologies at HBEF were limited to 1950-2012. 
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2.5 Discussion 

2.5.1 Patterns of growth 

Significant and consistent growth differences among the species highlight their 

divergent silvics (Burns and Honkala 1990). Yellow birch and red maple, which are 

intermediate in shade tolerance with moderately high growth potentials (Burns and 

Honkala 1990), had the greatest mean growth. Sugar maple and red spruce, which are 

both shade tolerant with the ability to display higher growth when a mature component 

of the canopy (Burns and Honkala 1990), were intermediate in growth, while balsam fir, 

highly shade tolerant and with the potential for constrained growth with elevated stocking 

(Burns and Honkala 1990), displayed the lowest growth. Species-to-species comparisons 

per elevation reveal that peak growth varied over time, but for all species, the highest 

growth years occurred in the second half of the chronology. 

Lower growth and more muted disparities among the species in the first quartile 

of the chronology may signify that competition during stand maturation was a strong 

constraint on growth. Historical anthropogenic land clearing has left a legacy on the 

forests of Mt. Mansfield evident in the ages of sample trees (Table S2.1). In the absence 

of a substantial natural disturbance, it is likely that selective logging has resulted in the 

age divergence among the species and elevations. Cogbill (1996)  outlined several 

logging events in the Stevensville Brook Watershed on the western flank of Mt. 

Mansfield, and it is suspected that widespread harvesting occurred in the other 
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watersheds as well. Assessment of stand dynamics (data not shown) confirmed that 

release events were stochastic and not consistent within or among plots. 

Some of the year-to-year variations in growth (Fig. 2.3) can be attributed to 

known biotic and abiotic stressors. For example, specific low growth years for sugar 

maple are likely associated with the 1993 infestation of pear thrips (Taeniothrips 

inconsequens [Uzel]) and a late spring frost in 2010 (Hufkens et al. 2012; Vermont 

Agency of Natural Resources Department of Forest Parks & Recreation 2010). While 

this late frost event could have affected sugar maple at low elevation, because no 

coincident downturn in growth was evident at mid elevation (Fig. 2.3), we suspect that 

mid elevation trees were unaffected due to a later timing of bud break relative to frost 

exposure. Additionally, a severe ice storm in 1998 that broke the limbs and crowns of 

many hardwood species (Rhoads et al. 2002), was reported for many mid and high 

elevation sites (Vermont Agency of Natural Resources Department of Forest Parks & 

Recreation 2013). Areas of high ice loading align with our mid elevation zone, and when 

followed by a severe drought in 1999, may have caused the growth declines for yellow 

birch and sugar maple evident in 1999 through 2000 (Fig. 2.3). Lastly, declines in growth 

apparent for red spruce at all elevations (Fig. 2.3) correspond with documented winter 

injury events (Johnson et al. 1986), including in 2003, which was a severe event across 

the region (Lazarus et al. 2004). 

At high elevation, balsam fir experienced maximum growth at the end of the 

1980s through the early 2000s (Fig. 2.3), which parallels the documented decline of red 
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spruce (Lazarus et al. 2004) and suggests that balsam fir was able to capitalize on the 

resulting foliar losses and growth declines of sympatric red spruce. Balsam fir is not 

affected by winter injury due to its extreme cold tolerance (DeHayes et al. 2001). Since 

2003, a substantial winter injury event has not occurred in the region (Vermont Agency 

of Natural Resources Department of Forest Parks & Recreation 2013), which may in part, 

explain the increase in red spruce growth relative to balsam fir. However, despite some 

differences over time, at high elevation plots, both red spruce and balsam fir had 

relatively low growth due to limitations in growing season length and lower annual 

temperature. 

We detected growth reductions for sugar maple at both low and mid elevations 

that are temporally consistent with regional declines attributed to acid deposition-induced 

Ca depletion combined with other stress exposures (Schaberg et al. 2006). In this study, 

growth declines were more dramatic for sugar maple at mid elevation then at low 

elevation. As acid deposition is more severe with increasing elevation (Johnson and 

Siccama 1983), mid elevation sugar maple may have suffered from Ca depletion more 

extensively and earlier than trees at lower elevation. Indeed, other studies have indicated 

that sugar maple at mid and high elevations display greater signs of physiological stress 

from Ca depletion than those at low elevation (Minocha et al. 2010). Although sugar 

maple growth measurements reported here are low compared to the other sampled 

species, they are not atypical when compared to other dendrochronological studies in 
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eastern North America (Bishop et al. 2015; Duchesne et al. 2003; Hansen 2015; Long et 

al. 2009).  

Red spruce on Mt. Mansfield have experienced a recent growth increase 

consistent with other locations (Fig. 2.2, 2.3) (Kosiba et al. 2013). This increase is 

especially pronounced at mid elevations, which has been previously demonstrated 

(Kosiba et al. 2013). However, the other species at mid elevations did not display an 

analogous increase in growth, discounting stand dynamics for this rapid change.  

Regardless of species-specific growth, mid elevation plots displayed significantly 

higher growth than low and high elevation plots. This could signify that mid elevation 

sites provide more advantageous conditions for tree growth than either lower or higher 

elevation (e.g., for red spruce), or it could be confounded by the fact that the fastest 

growing species for all quartiles (yellow birch) was only sampled at mid elevations.  

Red maple also exhibited increased growth recently. However, since this study 

surveyed a relatively small number of red maple, and comparably few studies have 

examined red maple growth in the region, it is difficult to assess the extent of this growth 

surge at this time (see Silva et al. 2010; Zhang et al. 2015). Additionally, because red 

maple was only sampled at low elevation, we do not to know if elevation influences this 

apparent growth increase. Limited reports on red maple have revealed that its abundance 

increased dramatically in the 20th century (Siccama 1971), due in part to its purported 

niche as a “super-generalist” and large ecological amplitude, which permitted 

competitive growth advantages at a range of site conditions (Abrams 1998).  
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2.5.2 Relationships with climate and deposition 

As expected, growth associations among species and elevations had differing 

relationships to local climate and deposition. Two general growth associations were 

evident: (1) a positive correlation with higher temperature in the year of growth 

(particularly for red maple and red spruce, and to a lesser extent, balsam fir, yellow birch, 

and sugar maple) and (2) a negative correlation with excessive heat (CDD: cumulative 

temperatures > 18.3°C) during the previous year (for all species except yellow birch). 

Positive relationships between temperature and growth imply that low temperature 

restricted growth. Negative relationships between temperature and growth the following 

year suggest a legacy effect of higher temperature, conceivably through limitations of C 

or other compulsory elements. For example, higher temperature could increase 

contemporary growth if the tree consumes C for immediate needs, such as increased 

maintenance respiration, growth, or reproductive buds, rather than to store C to support 

growth the next year (Rennenberg et al. 2006). Similarly, temperature-induced increases 

in growth could result in the sequestration of other nutrients (e.g., N, Ca) that temporarily 

become limiting and indirectly suppress growth the following year (Rennenberg et al. 

2006). 

Using CDD in growth-climate relationships provides a readily available index of 

integrated heat exposure that was consistently associated with growth for trees at Mt. 

Mansfield. Measures of growing season temperatures were important for both mid and 

low elevations, while water year temperature and pFall Tmin were important at high 
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elevations. Trees at both high and mid elevations displayed a positive growth correlation 

with CDD. By quartile, it is clear that climate-growth relationships were not steady 

through time (Table 2.2). For some species and variables, associations reversed for one 

or more quartiles, complicating our ability to predict tree responses to these variables.   

Non-growing season temperature was important for the two conifers in this study. 

For both balsam fir and red spruce, mild autumn temperatures can delay cold hardening, 

which allows the foliage to remain photosynthetically active for a prolonged period. 

Additionally, because red spruce is a temperate conifer that can photosynthesize in fall, 

winter, and spring, provided that temperatures are moderate (Schaberg and DeHayes 

2000), it has been hypothesized that the notable and recent increase in growth could be 

due to climatic warming that has lengthened the functional growing season for red spruce 

(Kosiba et al. 2013).  

At mid elevations, there was a positive association between red spruce growth 

and previous Winter Tmax, suggesting that warmer winter temperatures could provide 

increased growth opportunities for this species. This finding has been reported by others 

(Cook et al. 1987; McLaughlin et al. 1987). Interestingly, this relationship was negative 

in the third quartile, 1969-1990, a period of peak acid deposition (Greaver et al. 2012) 

and documented red spruce decline (Hornbeck et al. 1987; Johnson et al. 1988). When 

warm winter temperatures cause thaws, red spruce can photosynthesize while sympatric 

species remain dormant; however, when cold temperatures return, freezing damage can 
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ensue. This process is exacerbated by acid deposition, which reduces the cold tolerance 

of red spruce foliage (Schaberg and DeHayes 2000).  

Red spruce growth at the Mt. Mansfield study plots corresponds well with red 

spruce growth region-wide, implying that growth trends in this study are not a byproduct 

of local stand dynamics and, further, that climate- and deposition- growth relationships 

presented here may be representative of a region-wide phenomenon. Positive 

associations with measures of growing season length and temperature (e.g., water year 

Tmean, Jun-Sept Tmean, GDD, CDD) allude to continued favorable growth conditions and 

potential range expansion (e.g., Foster and D'Amato 2015) for red spruce into the future. 

This conclusion contrasts with to projected species range maps that depict red spruce 

range constriction in the future (Iverson et al. 2008). Interestingly, the period of most 

divergent growth between Mt. Mansfield and regional red spruce was from roughly 1980 

through 2008. This period was interspersed with a series of winter injury events with 

varied intensities and legacies across the region (Lazarus et al. 2004, Kosiba et al. 2013). 

The higher than average growth at Mt. Mansfield relative to the regional chronology may 

indicate that red spruce on Mt. Mansfield experienced less winter injury than the regional 

norm. Likewise, the recent synchronous increase in growth evident in the chronologies 

indicates that this rebound is a regional phenomenon, similar to the ubiquitous decline in 

growth following the 2003 winter injury event. 

In contrast with the other species, sugar maple growth at low elevation was not 

correlated with the selected variables, suggesting that they may be responding to micro-
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site parameters not considered in this analysis (e.g., nutrient availability, stand dynamics, 

local soil moisture, etc.). For example, PDSI is a metric for the whole state of VT that 

does not consider site based soil and hydrological differences that may help explain tree 

growth. Others have also shown similar weak climate-growth relationships for sugar 

maple in the region (e.g., Bishop et al. 2015). Sugar maple growth at mid elevations 

exhibited a negative correlation with pSummer Tmean and Tmax, indicating that elevated 

summer temperature due to climate change (Kunkel et al. 2013) could limit sugar maple 

growth further in the future. 

Sugar maple at HBEF (Hansen 2015) had higher growth than those at Mt. 

Mansfield, particularly during the first half of the chronology. After 1982, the 

chronologies are more analogous. Sugar maple at Mt. Mansfield displayed a subdued 

decline in growth in the 1980s, but otherwise maintained consistent, low growth. It is 

unclear why sugar maple at HBEF had higher growth than those at Mt. Mansfield for the 

first part of the chronology, though higher acidic loading in the west of the region (e.g., 

Ollinger et al. 1993) could have stressed sugar maple trees there first. However, the near-

steady growth of sugar maple at Mt. Mansfield since 1950 (Fig. 2.2) seems inconsistent 

with the possibility of early stress from acidic inputs. Another possibility is that Mt. 

Mansfield is a more marginal site for sugar maple growth, so baseline growth there was 

consistently lower.  

Growth of Mt. Mansfield yellow birch did not correspond well to yellow birch 

growing at HBEF (Hansen 2015). One possible explanation for this could be the lower 
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sample size for yellow birch (n = 34 trees) relative to sugar maple (n = 63 trees) at Mt. 

Mansfield, which could reduce the accuracy of yearly growth mean estimates and 

increase the variation around those means. These results demonstrate the importance of 

having high replication when looking at region-wide patterns in tree cores.  

Surprisingly, annual S and N deposition only related to poor growth for red spruce 

at low elevation, but not at mid and high elevations where documented declines have 

been tied to acid deposition (DeHayes 1992; Schaberg et al. 2006). While growth of sugar 

maple and red spruce, aside from low elevation, did display negative correlations with S 

deposition, these relationships were not significant. One possible reason for this outcome 

is the absence of long-term S and N deposition data. Datasets in this region only span 

from 1965-2012, which excludes over a decade of acid deposition inputs. In addition, 

detrending growth data with a flexible spline removes high frequency variation and 

biological trends while preserving decadal and longer trends. Nevertheless, a smoothing 

spline is one of the best options for reducing the effects of tree competition and age-

related growth trends. Lastly, relating growth to annual deposition data may overlook 

more complex impacts of pollutant loading, such as long-term cumulative Ca depletion. 

For example, research has shown that red spruce growth was related to the historic 

accumulation of acidic inputs relative to the capacity of the site to buffer these inputs 

(Engle et al. 2016).  

Atmospheric CO2 concentration trends were not associated with growth (or 

residuals of growth-climate models after accounting for the effects of climate) for any of 



 

62 

the species or elevations. Our findings align with others who have shown no significant 

effect of elevated CO2 concentration on stem growth (Bader et al. 2013; Girardin et al. 

2016; Körner et al. 2005). While it is currently debated if elevated CO2  concentrations 

will provoke changes in tree growth, there is evidence that CO2 effects are muted or 

nonexistent on sites where other environmental factors, including soil fertility 

(particularly N-limitation) (Oren et al. 2001), temperature, and water (Körner et al. 2005), 

are more limiting to potential stem growth than C (Körner 2003; Silva and Anand 2013). 

Based on the strong associations with growth of trees in this study and measures of heat 

that we reported here, we hypothesize that temperature is more limiting to these trees 

than C availability.  

 

2.6 Conclusions 

We presented a comparison of growth trends for five key tree species. While this 

is a case study, by comparing the chronologies developed at this site to others in the 

region, we show that at least for red spruce, there is strong alignment to the broader 

region and propose that patterns evident here may be indicative of the region’s forested 

ecosystems. Comparisons of the chronologies (Fig. 2.2) highlight that the five species 

often experienced changes in growth that were either species- or elevation-specific. 

There was a high degree of year-to-year variability in growth, likely due to local abiotic 

and biotic factors. For some species, the repeated stress of abiotic and biotic factors in 

succession may help explain prolonged growth declines.  
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For most species and elevations, there was a positive association between higher 

temperatures and growth during that same year, suggesting that contemporary warming 

has improved the competitive status of many trees. However, there are two noted 

exceptions to this trend. The first is that excessive heat (cumulative temperatures > 

18.3°C) the previous year was broadly associated with lower growth the following year. 

Further investigation is needed to understand the complex interplay of elevated 

temperature and net growth in successive years and over time. The second exception is 

that sugar maple trees at low elevation showed no positive association with increased 

warming. This may provide field-based evidence of the particular sensitivity of sugar 

maple to the warming that has been projected by climate change range models (e.g., 

Iverson et al. 2008). 

Declines of red spruce have also been well documented, but the recent and 

surprising growth surge had not been investigated. Here we show that it occurred across 

elevations and watersheds and that perhaps another species, red maple, has had a 

synchronous increase in growth. Both species show positive correlations with growing 

season temperatures, including CDD. Indeed, CDD was consistently associated with 

increased growth for most of species and elevations overall. This finding highlights the 

potential value of CDD as an integrated temperature index with particular relevance to 

tree growth in a warming world. While CDD was often positively associated with growth, 

pCDD often had a negative relationship. As CDD increases in the future, its influence on 

tree growth could be mixed. Results of this analysis suggest that some tree species may 
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be responding favorably to changing environmental conditions, while others are either 

declining or appear stable in growth. Though this specific study covered a small spatial 

scale, it opens avenues for future work to examine more fully some of the patterns that 

emerged here. Indeed, there have been relatively few studies that have examined growth 

trends and responses to the environment among species in the region; yet, this is of 

particular interest as the climate changes and the future state of forest health and 

productivity remains uncertain.  
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2.9 Supplementary Materials 

Fig. S2.1: (A) Mean seasonal (Winter [p Dec-Feb], Spring [Mar-May], Summer [Jun-Aug], and 
Fall [Sep-Nov]) temperatures (°C; 1925-2012) for the study location (see Methods for more details). 
(B) Seasonal Standardized Precipitation-Evapotranspiration Index (SPEI; 1945-2012) for Vermont 

(VT). (C) Annual total precipitation (cm) for the study location (1925-2012); cooling degree days 
(CDD, measured as degrees > 18.3°C, 1945-2012), heating degree days (HDD, < 18.3°C, 1945-2012) 

and growing degree days (GDD, > 5°C, 1945-2012) for VT. (D) Atmospheric CO2 concentration 
(ppm, 1945-2012) from Mauna Loa, HI; deposition (1965-2012, mg/L, by water year) of 

ammonium (NH4
+), nitrate (NO3

-), and sulfate (SO4
-) from Hubbard Brook Experimental Forest 

(Thorton, NH) and Mt. Mansfield (VT).  
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Table S2.1: Raw tree ring data and statistics listed by species per elevational zone across the three 
watersheds.  

Species Elev. 
Zonea 

N 
trees 

Mean 
DBH 

± 
SDb 

Age at 
BH ± 
SDc 

Mean 
BAI ± 
SDd 

Inter-
series 
corr.e 

Mean 
Sens.e 

Max. 
BAI ± 

SDf 

Balsam 
fir High 34 23.4 

± 3.4 
77.9 ± 
20.4 

7.9 ± 
3.4 0.583 0.209 

10 ± 
2.2 
(2001) 

Red 
maple Low 28 39.6 

± 8.4 
90.0 ± 
25.2 

19.6 ± 
11.2 0.514 0.225 

29.8 ± 
5.8 
(2012) 

Red 
spruce 

Low 31 34 ± 
9.3 

142.7 ± 
55.8 

11.3 ± 
9.3 0.519 0.257 

18.1 ± 
3.4 
(2012) 

Mid 34 
41.5 
± 
10.2 

165.5 ± 
51 

16.1 ± 
10.2 0.559 0.254 

27.9 ± 
4.0 
(2012) 

High 41 23.5 
± 8.2 

86.7 ± 
32.8 

8.1 ± 
4.1 0.579 0.236 

13.2 ± 
3.4 
(2012) 

Sugar 
maple 

Low 29 32.5 
± 5.8 

95.9 ± 
20.3 

9.9 ± 
5.8 0.474 0.304 

14.2 ± 
1.1 
(1994) 

Mid 34 28.2 
± 6.8 

93.1 ± 
23.8 7 ± 3.4 0.466 0.325 

10.5 ± 
2.3 
(1983) 

Yellow 
birch Mid 34 

43.2 
± 
10.2 

101.1 ± 
27.2 

18 ± 
10.2 0.467 0.286 

22.7 ± 
0.6 
(1982) 

a Low = 450-650 m a.s.l., mid = 750-850 m, and high = 900-1000 m 
b Mean diameter (± SD)(cm) measured at breast height (DBH 1.37 m). 
c Age in years is approximate, based on number of rings at breast height and distnace to pith. 
d Mean basal area increment (cm2) calculated using the follwing formula !"# = 	& '() −	'(+,)  (West 1980). 
e Interseries correlation and mean sensitivity, from COFECHA output. 
 f Maximum basal area increment (cm2) and year of occurance.  
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Table S2.2: Chronology statistics from Mt. Mansfield, VT, detrended with a 67% cubic smoothing 
spline and prewhitened, computed for 30-year time periods with 15-year overlap from 1923-2012. 

 
   Time period 

Species Elevationa Statb 1923-1952 1938-1967 1953-1982 1968-1997 1983-2012 

Balsam fir High 

n cores 40 53 59 59 59 
n trees 24 30 34 34 34 
Rbar 0.22 0.44 0.38 0.30 0.31 
EPS 0.82 0.95 0.95 0.94 0.94 
SNR 4.67 18.83 18.68 14.52 15.26 

Red maple Low 

n cores 63 77 86 86 86 
n trees 39 46 51 51 51 
Rbar 0.15 0.21 0.16 0.13 0.08 
EPS 0.82 0.91 0.91 0.88 0.82 
SNR 4.57 10.06 8.55 7.11 4.69 

Red spruce 
 

Low 

n cores 54 56 56 56 56 
n trees 31 31 31 31 31 
Rbar 0.28 0.40 0.34 0.26 0.28 
EPS 0.91 0.95 0.94 0.92 0.93 
SNR 10.13 19.89 16.13 10.70 12.27 

Mid 

n cores 74 78 78 78 78 
n trees 38 39 39 39 39 
Rbar 0.45 0.47 0.41 0.35 0.43 
EPS 0.97 0.97 0.96 0.96 0.97 
SNR 29.05 33.09 26.51 21.00 29.01 

High 

n cores 60 72 78 78 78 
n trees 33 40 41 41 41 
Rbar 0.46 0.43 0.41 0.31 0.41 
EPS 0.95 0.96 0.96 0.95 0.97 
SNR 17.36 23.69 26.39 18.65 28.03 

Sugar 
maple 

 

Low 

n cores 45 47 47 48 48 
n trees 30 31 31 31 31 
Rbar 0.16 0.12 0.13 0.22 0.34 
EPS 0.80 0.80 0.82 0.90 0.94 
SNR 3.90 3.97 4.39 8.55 15.89 

Mid 

n cores 46 56 57 57 57 
n trees 29 34 34 34 34 
Rbar 0.30 0.25 0.26 0.24 0.19 
EPS 0.89 0.91 0.92 0.92 0.89 
SNR 8.44 9.51 11.64 10.82 8.20 

Yellow 
birch Mid 

n cores 46 56 59 59 59 
n trees 29 32 34 34 34 
Rbar 0.26 0.25 0.16 0.22 0.20 
EPS 0.90 0.91 0.86 0.90 0.90 
SNR 8.74 9.59 6.14 9.45 8.65 

 

a Low = 450-650 m a.s.l., mid = 750-850 m, and high = 900-1000 m 
bR bar = Effective R bar, a weighted average of RBT (R bar betweenn trees) and RWT (R bar within trees) and thus a measure of 
correlation among and between cores, EPS = expressed population signal, SNR = signal to noise ratio. 
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3.1 Abstract 

Following decades of documented growth declines and increased mortality 
quantitatively linked to acid deposition-induced calcium depletion, red spruce in the 
northeastern United States appear to be experiencing a recovery. We found that over 75% 
of red spruce trees and 90% of the plots examined in this study exhibited increasing 
growth over the past decade (since 2001). To understand the possible factors involved in 
this observed phenomenon, we examined the relationship between growth and factors 
that may influence growth: tree age and diameter, disturbance, plot characteristics 
(elevation, slope, aspect, geographical position), and a suite of environmental variables 
(temperature, precipitation, climate and precipitation indices [degree days, SPEI 
[standardized precipitation evapotranspiration index], acid deposition [SO4-, NO3-, pH 
of rainfall, cation:anion ratio of rainfall]) for 52 plots (661 trees) from five states 
(spanning 2.5 °N x 5°W). Examining the growth relationships from 1925 to 2012, we 
found that while there was variability in response to climate and acid deposition by 
elevation and location, site and tree factors did not adequately explain growth. Higher 
temperatures outside the traditional growing season (e.g., fall, winter, and spring) were 
related to increased growth. Nitrogen deposition was related to lower growth, but the 
strength of this relationship may be lessening over time. Overall, we predict continued 
favorable conditions for red spruce in the near term as acid deposition continues to 
decline and fall through spring temperatures moderate, provided overall temperatures and 
precipitation remain adequate for growth.  

	
Key words: Picea rubens, acid deposition, nitrate, dendrochronology, woody growth, 
climate change, winter temperature 
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3.2 Introduction 

Beginning in the mid-1960s, red spruce (Picea rubens Sarg.) in the northeastern 

United States (US) began to suffer from needle damage, crown deterioration, reductions 

in growth, and increased mortality (Johnson et al. 1988; McLaughlin et al. 1987; Scott et 

al. 1984). In the following decades, red spruce decline became one of the most intensively 

studied examples of forest degeneration in the US (Eagar and Adams 1992). Through 

this inquiry, the decline was attributed to winter injury, provoked by acid deposition-

induced calcium [Ca] depletion (DeHayes et al. 1999; Schaberg et al. 2000). A number 

of factors contribute to a severe winter injury event, including both predisposing stresses 

(e.g., weather events that reduced carbon [C] capture in the prior growing season, like 

drought or extreme temperature [T] stress) and inciting stresses (e.g., extreme minimum 

T [Tmin] and/or winter freeze-thaw cycles) (Schaberg et al. 2011). Pollution controls were 

enacted through the Clean Air Act and subsequent amendments, resulting in declines in 

acidic deposition (Driscoll et al. 2001). However, red spruce winter injury persisted and 

a severe region-wide event occurred as recently as 2003 (Lazarus et al. 2004) (Fig. S3.1).  

Therefore, it was unexpected to discover that red spruce in the region recently 

exhibited a prominent increase in growth (Kosiba et al. 2013). Although Kosiba et al. 

(2013) were the first to report this growth upturn, other studies have noted the phenomena 

in red spruce stands from New England and New York (Engel et al. 2016; Kosiba et al. 

2014; Wason et al. 2014). There is also evidence that red spruce regeneration has 
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increased since previous inventories (Foster and D'Amato 2015; van Doorn et al. 2011). 

However, to date, no investigations have examined the possible factors involved in these 

changes to red spruce growth or demography.  

Red spruce has been likened to the proverbial “canary in a coal mine” for its high 

sensitivity to acid deposition relative to co-occurring tree species. This sensitivity has 

been attributed to the species’ marginal cold tolerance (DeHayes et al. 2001), comparably 

low genetic diversity (Hawley and DeHayes 1994), and unique capacity to deharden and 

photosynthesize during the traditional dormant season when T is favorable (e.g., during 

January thaws) (Schaberg et al. 1998; Schaberg et al. 1995; Schwarz et al. 1997). 

However, dehardening increases the susceptibility of the foliage to freezing injury when 

low temperatures return (DeHayes et al. 2001; Schaberg and DeHayes 2000). While these 

adaptions have made red spruce particularly vulnerable to acid deposition, they may now 

allow the species a competitive advantage with climate change. The ability of red spruce 

to photosynthesize when T is favorable could result in increased opportunities for 

photosynthesis as T increases, particularly if those increases occur outside the traditional 

growing season (e.g., fall, winter, and early spring) when co-occurring species remain 

leafless or dormant.  

In the northeastern US, climatic trends over the past decade have included 

anomalously higher fall, winter, and spring T (Kunkel et al. 2013; NOAA National 

Climatic Data Center 2010), which would reduce the chance of foliar freezing injury for 
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red spruce (C loss) and increase opportunities for photosynthesis (C gain). Concurrent 

with increasing T, atmospheric carbon dioxide (CO2) concentrations have risen steadily. 

Although debated, some studies have reported a fertilization effect of elevated CO2 on 

tree C sequestration (Ainsworth and Long 2005; Salzer et al. 2009; Soule and Knapp 

2006). If combined with reductions in acidic pollutant inputs, these factors could allow 

for an overall increase in C sequestration for red spruce trees. Further, considering the 

relatively uniform genetics of the species (DeHayes 1992), red spruce may exhibit a more 

unified response to environmental change compared to other species.  

To this end, we investigated the patterns of red spruce growth across five states 

where it is an important component of the forested ecosystem. We examined if recent 

pollution controls, which have reduced emissions of sulfur (S) and, to a lesser extent, 

nitrogen (N) based compounds (Driscoll et al. 2001), plot characteristics (e.g., stand 

dynamics, age, location), observed changes in climate, and recorded increases in 

atmospheric CO2 may have contributed to the recent growth increase of red spruce trees. 

Although the possible drivers of xylem growth are varied and complex, we examined 

five hypotheses to disentangle the factors affecting red spruce growth: 

H1 The legacy of historical land use and/or stand demographics have resulted in 

a synchronous increase in growth.  

H2 Changes in the climate, particularly changes in the length of the growing 

season and increases in T outside the traditional growing season (in fall, winter and 



 

 

77 

spring), have simultaneously reduced the likelihood of foliar winter injury (C loss) and 

increased photosynthesis (C capture).  

H3 Reductions in pollution deposition have alleviated a predisposing stress that 

contributed to past declines and resulted in C losses.  

H4 Increases in CO2 have allowed for higher C capture and growth.  

It is likely, however, that recent growth increases of red spruce are the result of a 

complex interplay between multiple factors. Indeed, previous studies of the climatic 

drivers of red spruce growth showed a strong de-coupling of growth and climate 

relationships around the start of red spruce decline (Johnson et al. 1988; McLaughlin et 

al. 1987), suggesting that the trees were no longer responding to the same environmental 

cues as they had prior to increased acid loading.  

	
3.3 Materials and Methods 

3.3.1 Study sites 

Red spruce tree cores were collected from five northeastern US states (NY, VT, 

NH, MA, and ME; study region: 42.67-45.04°N, 73.79-68.63°W) by the authors or 

affiliates (Engel et al. 2016; Kenefic 2015; Kosiba et al. 2013; Kosiba et al. 2014; Pontius 

and Halman 2012; Rayback 2012; Wason et al. 2012; Weverka 2012) (Fig. 3.1). Red 

spruce sites (n=52 plots) were included based on the strength of the common growth 

signal (i.e., r-bar; expressed population signal [EPS] >0.80) (see details below). Plots 

were categorized by elevation (Low<650m, Mid 700-900m, and High>950m) and region 
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(East or West of study area, divided along the North-South spine of the Green Mountains 

of VT) to examine how landscape position that strongly affects weather and pollution 

deposition patterns in the region (Ollinger et al. 1993), may also alter growth. (Fig. 3.1). 

Plot aspect, elevation, and percent slope were extracted from a digitized elevation 

model and hillshade layers. Sites encompassed a range of elevation, aspect, slope, mean 

tree age, and mean diameter at breast height (DBH, 1.37 m above ground level) (Table 

S3.1). While the region has experienced historic, widespread land-clearing and 

subsequent reforestation (Foster 1992), we did not select plots based on stand age or 

DBH; rather, we attempted to obtain a range of tree ages and site characteristics in order 

to characterize red spruce growth dynamics region-wide. 

For the study area, the annual Tmean is 6.3°C. January is the coldest month (-7.5°C 

average 1925-2012) and July the warmest (19.4°C) (Fig. S3.2) (NOAA National Centers 

for Environmental Information 2016). An average of 106 cm of precipitation [P] is 

deposited uniformly throughout the year. In general, precipitation increases with 

elevation (NOAA National Centers for Environmental Information 2016) .  
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Figure 3.1: Locations of red spruce (Picea rubens Sarg.) tree ring plots in NY, VT, NH, ME, and 
MA. Plots are designated by elevation (Low, Mid, and High) and region (East, West of the study 
area), and overlaid on the current range of red spruce (in blue) (U.S. Geological Survey 2016). 

Although 52 plots were sampled, nearby plots appear overlapping and/or obscured in this 
representation. 

	
3.3.2 Dendrochronology 

Selected red spruce trees (n=661) were increment cored following standard 

dendrochronological techniques (Speer 2010; Stokes and Smiley 1996). For all datasets, 

two 5 mm increment cores were collected per tree at stem DBH, 180° to each other, and 

perpendicular to the dominant slope. For datasets with fewer than nine dominant or co-
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dominant trees per plot and where multiple plots from one area were available, nearby 

plots were combined to create a stronger common growth signal. This step was only 

necessary for four plots. Following collection, cores were air dried, mounted in grooved 

wooden blocks, and sanded with progressively finer grit sandpaper. Cores were visually 

crossdated using the list method (Yamaguchi 1991) and microscopically measured to 

0.001 mm resolution using a Velmex sliding stage unit (Velmex Inc., Bloomfield, NY) 

with MeasureJ2X software (VoorTech Consulting, Holderness, NH). We used 

COFECHA software (Holmes 1983) to detect and correct for potential crossdating errors 

(±0 years) (Speer 2010). To retain a strong common growth signal, individual cores were 

discarded if they were poorly correlated with the master chronology (i.e., below Pearson 

critical correlation level of 0.328 [99% confidence level]). We calculated approximate 

tree age at breast height using the maximum number of rings per tree if pith was evident 

or estimated per core using a pith indicator (Speer 2010) if pith had not been reached and 

pith location could be approximated based on the curvature of innermost rings. For 

incomplete cores where pith could not be estimated, age was not assessed. Trees were 

categorized into age and size (DBH) groups based on approximately equal sample sizes: 

<100, 100-200, and >200 years old at breast height and <30, 30-40, and >40 cm DBH. 

Standard dendrochronological statistical parameters (Fritts 1976; Wigley et al. 

1984) were computed for each plot (Tables S1, S2). Specifically, from the raw ring width 

(RRW) chronologies the parameters were series intercorelation (SI), mean sensitivity 
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(MS), mean value of tree-ring width (RW±SD), first-order autocorrelation coefficient 

(AC), EPS, and signal to noise ratio (SNR). From the residual RWI chronologies, we 

computed the average correlation between individual series in a plot (R-bar), EPS, and 

SNR. All 52 resulting plot chronologies were truncated at the year when the EPS value 

fell below 0.80; for all plot-level chronologies this was 1925. We first averaged RRW by 

tree, then detrended, standardized, and prewhitened each series using the dplR package 

(Bunn et al. 2015) for R (Version 3.1.1) (R Development Core Team 2016). 

We detrended with the Friedman Super Smoother (FSS) (tweeter=5), a variable 

span smoother used to reduce the influence of disturbance on each series (Friedman 1984; 

Pederson et al. 2013). We developed chronologies at plot and regional scales, as well as 

aggregated by age-, size-, and elevation-class and divided into east and west groupings. 

Plots were divided along the dominant north-south ridge of the Green Mountains (VT) 

to examine if a relationship with acid deposition was associated with distance from 

pollution sources (e.g., pollution deposition increases west to east (Ollinger et al. 1993)). 

Plot, and age- and size-class chronologies, were calculated by aggregating individual tree 

chronologies with a Tukey’s biweight robust mean. Regional, elevational, and east-west 

chronologies were calculated as a mean of the plot chronologies. Detrended chronologies 

were standardized to a dimensionless index by dividing the observed by the expected 

value and stripped of temporal autocorrelation through autoregressive modeling to create 

prewhitened (residual) chronologies (Cook 1985) (RWI). The residual chronologies are 
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preferred for analysis because through the process of detrending, standardizing, and 

prewhitening, the remaining interannual variance can be attributed to exogenous factors 

(Cook and Peters 1997).  

 

3.3.3 Growth trends 

Using RRW and RWI chronologies, the slope of recent growth was assessed from 

2001 to the end of chronology or 2012, whichever came first (termed “recent growth 

trends”). The year 2001 was chosen as the start of the slope assessment because it 

captures recent growth increases while allowing for inclusion of the region-wide winter 

injury event (2003) with preceding years (2001, 2002), which is consistent with methods 

of Kosiba et al. (2013) and Engel et al. (2016). We tested the effects of plot 

characteristics (e.g., slope, aspect, latitude, longitude, elevation, mean age, mean DBH) 

on recent growth trends.  

Release events were detected two ways: (1) per tree RWW following Fraver 

(2009) using a 10-year running mean and an absolute threshold increase of 0.58 mm (a 

metric developed specifically for red spruce in the northeastern US); and (2) per plot 

RRW following Lorimer and Frelich (1989) using a percent threshold of 60% and series 

threshold of 75%, over 10 years. We also examined if mortality (log transformed) 

following the 2003 winter injury event (and in the subsequent seven years) was positively 

correlated to growth of surviving trees.  
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3.3.4 Climate, acid deposition, and atmospheric data 

We aggregated climate data (mean, maximum, and minimum monthly T [Tmean, 

Tmax, Tmin], and total monthly P; 1925-2012) from eight weather stations (NOAA 

Regional Climate Centers 2016) (Table S3.2) in order to better characterize the regional 

climate over the spatial range of study plots. From these, we computed seasonal (Winter: 

Dec-Feb, Spring: Mar-May, Summer: Jun-Aug, Fall: Sep-Nov) and water year (Wyr) 

(previous Oct- current Sep) values.  

We included several climate indices in our analysis. Specifically, we used 

standardized precipitation-evapotranspiration index (SPEI; a multi-scalar climatic 

drought index; version 3.23) at time scales of one, six (SPEI06 ending in Sep), and nine 

(SPEI09 ending in Sep) months (National Drought Mitigation Center 2012; Vicente-

Serrano et al. 2010). We averaged the monthly indices of extreme T and P generated by 

NOAA for the stations within the study region (NOAA National Centers for 

Environmental Information 2016) (Table S3.2). These data included three measures of 

degree days: growing degree days (GDD, measured as cumulative degrees >5°C [41°F]), 

cooling degree days (CDD, >18.3°C [65°F]) and heating degree days (HDD, <18.3°C 

[65°F]); indices of extreme heat (n days with Tmax ³32°C, extreme Tmax) and cold (n days 

with Tmin £ -18°C and £ 0°C); and indices of extreme P (n days with ³2.2 cm P, departure 

from normal P, total snowfall). While CDD and HDD were derived for estimating 
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building heating and cooling needs, respectively, previous research using these metrics 

have shown promise with relationship to tree growth (Kosiba et al. In press; Miller et al. 

2014) and they can be used as proxies for higher and lower temperature accumulation 

over time. From these, we computed seasonal and Wyr values.  

To obtain an adequate temporal dataset of annual atmospheric CO2 concentration 

for tree growth comparison (e.g., 1925-2012), we combined data from the Mauna Loa 

Observatory, HI, US (NOAA Earth System Research Laboratory Global Monitoring 

Division 2016) and Law Dome, Antarctica ice core data (World Data Center for 

Paleoclimatology and NOAA Paleoclimatology Program). Lastly, pollutant deposition 

data (SO4
-, NO3

-, NH4
+, cation:anion ratio, and rainfall pH) were averaged from all 

National Atmospheric Deposition Program (NADP) stations within the study region 

(National Atmospheric Deposition Program 2016) (Table S2). This dataset is limited to 

1980-2012.  

 

3.3.5 Comparisons of growth with climate and acid deposition data 

We used the package treeclim (Zang and Biondi 2015) for R to assess the 

relationship between a suite of climatic and environmental variables and the mean RWI 

chronologies (RWIRCS, RWIFSS, RWIBAI). We analyzed climate and pollution deposition 

relationships with growth over two years (yeart and yeart-1). This allowed us to examine 

the effect of the previous year’s climate and pollution deposition on the follow year’s 
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growth. Treeclim uses time-dependent bootstrapped resampling (1000 iterations) to test 

for linear correlations between the residual ring width data and each subvector of the 

climate matrix (Zang and Biondi 2015). This step was to assess for any possible 

emergence of predictor variables that we would not have known a priori (Cook and 

Pederson 2011) and to assist in variable selection for subsequent climate-growth models. 

To select the strongest relationships, variables were considered significant at the a=0.01 

level.  

We created models of red spruce growth based on four time periods: the entire 

chronology 1925-2012; 1925-1960 (period before acid deposition and red spruce 

decline); 1960-2012 (period of peak acid deposition and red spruce decline but lacking 

complete pollutant deposition data); and 1980-2012 (period with pollutant deposition 

data). This method was first proposed to examine forest decline (Cook et al. 1987) rather 

than rebound, but also is informative to identify changes in climate-growth relationships 

through time. First differences of all input variables were calculated to remove trends 

and serial autocorrelation, as well as to enhance the magnitude of annual predictor 

variables. We limited inclusion to significant factors from the previous analysis and 

variables without significant multicollinearity. With this subset, we used stepwise linear 

regression, using AIC criteria, to further restrict linear model input variables. Using the 

residuals from these models, we looked for trends not explained by the model parameters 

and regressed these values with CO2. Lastly, we computed running correlations between 
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the predicted and observed growth (methods follow Johnson et al. 1988), and between 

NO3
- deposition and growth over time. To investigate possible spatial patterns between 

acid deposition and growth, we tested the fit of these models by the elevational and 

regional (east-west) RWI chronologies following similar methods as previously outlined.  

 

3.4 Results 

3.4.1 Growth trends and patterns 

Red spruce trees in this study displayed a range of DBH (13-70.3 cm) and 

estimated age at breast height (41-373 years) (Fig. S3.4a, b). Most trees (78%) showed 

positive recent RRW growth (measured as slope of growth from 2001- end of 

chronology), and it did not vary by DBH (P = 0.81, ANOVA) or age class (P = 0.33, 

Wilcoxon Rank Sum test due to unequal variances). This same pattern held when we 

examined the slope of recent growth using tree RWI (DBH class P = 0.55; age class P = 

0.37; ANOVA) (Fig. S3.4a, b).  

When aggregated, over 90% of the red spruce plots displayed positive, recent 

growth trends (Table S3.1). Plot locations encompassed a range of latitude/longitude, 

aspect, elevation (Fig. 3.1), slope, and average tree age and DBH (Table S3.1). If, as we 

stated in H1, observed growth patterns were a result of natural stand dynamics, then 

variations in growth should have been related to plot factors (e.g., elevation, aspect, 

location, mean DBH, mean age), as opposed to factors with a broad spatial extent (e.g., 

weather, pollution deposition). However, when we modeled RWI using these fixed plot 
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characteristics (with “state” as a random factor in a mixed-effects model), none of these 

plot factors were significant in predicting recent growth.  

 
Figure 3.2: Red spruce (Picea rubens Sarg.) mean raw ring width (RRW, grey line, cm) and 

detrended and standardized residual mean ring width indices (RWI, unitless) using Friedman’s 
Super Smoother (FSS) from 1925-2012. Number of trees contributing to chronologies shown in 

light grey. 

Further, if recent growth increases were due to stand dynamics, we would expect 

to see large increases in growth following known disturbance events. No major release 

events were detected in individual trees or by plot since 1935 using either release 

detection method. Neither were trees that survived known winter injury events growing 

at a higher rate. Examining past data we collected (see Kosiba et al. 2013), we found that 

9.6% of trees we assessed for winter injury in 2003 and reassessed seven years later 

(2010) were dead. To assess if mortality rates following the 2003 winter injury event 

(and in the subsequent seven years) may have impacted future growth of surviving trees, 

we looked at the relationship between recent RRW growth (assessed as the slope of 

growth since 2001) and the mortality assessment per plot (log transformed) and found no 
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relationship between the two factors (Radj
2=0.0006, P=0.17) (Fig. S3.5). Further, we did 

not find differences in growth based on tree DBH or estimated age at DBH, nor by 

elevation or east-west location in the study area (Fig. S3.4). Based on these combined 

results, we rejected H1. 

 

3.4.2 Climate and acid deposition related growth trends 

We found that various metrics of heat accumulation (e.g., degree days) were 

important for red spruce growth, particularly in the fall and spring seasons (Fig. 3.3). 

Both Wyr GDD (a measure of cumulative heat above 18.3°C) and Tmean were 

significantly related to growth (r=0.31 and r=0.38, P£0.01) and have increased regionally 

since 1925 (NOAA National Weather Service 2014) (Fig. S3.3) (P<0.001). In November 

before growth, measures of higher T (Tmean and Tmax) were associated with greater growth 

(r=0.38 and 0.35, respectively; P£0.01), while lower T during this time (extreme Tmin 

e.g., <0°C and <-18°C) showed the opposite effect (r=0.38, P£0.01). Snow fall in 

November preceding growth was also negatively correlated (r=-0.23, P£0.01), likely due 

to associated low T or cloud cover (which reduced light needed for photosynthesis). 

Similarly, reductions in heat accumulation in the spring were linked to reduced growth. 

April Tmean and May cooling degree days (CDD) – a measure of heat accumulation 

>18.3°C – were positively associated with growth the following year (r=0.38, P£0.01), 

while April HDD, a measure of cold, was negatively correlated to growth.  
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Figure 3.3: Significant bootstrapped climate- and deposition-growth correlations (r) with mean 
RWI by variable type: temperature (Temp), precipitation (Precip), and atmospheric deposition 
(Dep). Coefficients were considered significant if P£0.01. Abbreviations: p = previous year, N = 

number, Depart.= departure, T = temperature, P = precipitation, Min = minimum, GDD = 
growing degree days (cumulative degrees > 5°C [41°F]), HDD = heating degree days (cumulative 
days < 18.3°C [65°F]), CDD = cooling degree days (cumulative degrees > 18.3°C [65°F]), Winter= 
previous December–February, SPEI= standardized precipitation evapotranspiration index, Wyr= 
water year (previous October to current September), NO3= nitrate deposition, NH4= ammonium 

deposition. For more information on variables see methods. 
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As expected, winter T was important for red spruce. Specifically, we found that 

higher winter and Jan Tmean (r=0.33 and 0.27, respectively; P£0.01), and Dec-Feb 

extreme Tmin (r=0.27, 0.31, and 0.30, respectively; P£0.01), were related with greater 

growth. When we combined these findings with the strong associations between red 

spruce growth and fall and spring T, we conclude that we cannot reject H2, which 

hypothesized that increases in T, particularly outside the traditional growing season (e.g., 

fall, winter and spring), were related to increased red spruce growth.  

Summer T demonstrates the complicated relationship between red spruce growth 

and T. While summer T was often positively associated with growth, previous (p) 

summer T displayed the opposite relationship (Fig. 3.3). We found that high T in July 

(CDD, GDD, Tmean, and Tmax) were negatively correlated with growth the subsequent 

year. However, during the summer of growth, red spruce shows a strong, positive 

association with Aug Tmean (r=0.28; P£0.01).  

During summer, red spruce also displayed an increased sensitivity to pollution 

deposition. Both NH4
+ and NO3

- deposition in the summer were strongly, negatively 

correlated to growth the following year (r=-0.60 and -0.53, respectively; P£0.01) (Fig. 

3.3). While we found that pH of rainwater and cation:anion ratio of deposition were both 

positively associated with red spruce growth (P£0.05), neither of these associations were 

strong enough to warrant inclusion in further analyses. These results strongly suggest a 

continued relationship between acid deposition and red spruce growth; thus, we cannot 
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reject H3, which proposed that declines in acid deposition could be related to increased 

growth.   

Although not accounted for in our hypotheses, moisture availability was 

important for red spruce growth, particularly in antecedent years (Fig. 3.3). SPEI of 

pMay-Sept and pWyr P were associated with increases in growth (r=0.29 and 0.34, 

respectively; P£0.01), but interestingly, we found that measures of extreme P, such as 

number of days with rainfall >2.2 cm and overall departure from normal rainfall, had 

stronger correlations with growth (r=0.43 and 0.44, respectively; P£0.01). Examining 

these patterns over the seasons, we find strong, positive relationships between subsequent 

growth and spring and fall P (pMay and Nov extreme P, May P). If we couple these 

findings with the negative associations between growth and pSummer T, it suggests a 

drought response for the species. However, since extreme rainfall in the prior summer 

(e.g., pJuly) was associated with reduced growth, it may be that red spruce is more 

sensitive to low water availability during the spring and fall seasons, compared to 

summer. Lastly, we failed to find an association between CO2 and red spruce growth 

(overall and using residuals). Therefore, at this point, we reject our hypothesis that CO2 

positively influenced red spruce growth (H4).   
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3.4.3 Growth models 

Overall, the best model predictors for mean annual change in growth (1925-2012, 

Radj
2=0.60, RMSE=0.12, P<0.0001) across the study site were Jan Tmin (Radj

2=0.06, 

P=0.0014), pNov HDD (Radj
2=0.14, P<0.0001), April GDD (Radj

2=0.03, P<0.0001), and 

pWyr P and CDD (Radj
2=0.07, P=0.0002 and Radj

2=0.31, P<0.0001, respectively) (Table 

3.1, Fig. 3.4c) Of these predictors, pNov HDD and pWyr CDD had a negative association 

with growth, while the others were positively associated. Temperature preceding the 

growing season (e.g., pNov HDD, pWyr CDD, Jan Tmin) in total explained 58% of the 

variance in growth, with pWyr P explaining 10% and April GDD, 13%. In total, this 

model explained 81% of the total variance seen in the mean chronology. The residuals 

of the climate models did not display a linear trend and further, did not have a significant 

correlation with CO2 (Fig. S3.6).  

However, we found that predictor variables were not consistent though time or 

space (Table 3.1, Fig. 3.4). When we modeled growth using data before acid deposition-

related decline (RWI1925-1960) (Adj. R2=0.58, RMSE=0.13, P<0.0001), the model was not 

as strong at forecasting growth post-1960 (r=0.78 and r=0.40, respectively) (Fig. 3.4a). 

Interestingly, this model only included T (i.e., April GDD, pWyr CDD, Jan Tmin), while 

the models using post-1960s data included P. A similar pattern emerged when we created 

a model of RWIFSS growth using only 1960 to 2012 data (RWI1960-2012) and predicted pre-

1960 growth (Fig. 3.4b). However, this model more accurately forecasted recent growth 
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trends than the earlier model (RWI1925-1960) (2001-2012; r=0.97 and r=0.65, respectively). 

When we modeled growth to include deposition (RWI1980-2012) (Fig. 3.4d), we found that 

a negative effect of pSummer NO3
- increased the model fit, particularly for recent growth 

(r=0.98).  

Table 3.1: Model results (ANOVA, P<0.001) predicting mean RWI for four time periods: Predicted 
RWI1925-1960, pre-acid deposition (Adj. R2=0.58, RMSE=0.13, P<0.0001); predicted RWI1960-2012 

(Adj. R2=0.78, RMSE=0.08, P<0.0001); predicted RWI1925-2012 (Adj. R2=0.60, RMSE=0.12, 
P<0.0001), the full chronology; and predicted RWI1980-2012, this latter time period included possible 
influences of pollutant deposition data that was limited to 1980-2012 (Adj. R2=0.88, RMSE=0.07, 

P<0.0001). Model terms, expressed as first differences, were first selected via bootstrapped 
correlation function analysis, stepwise linear regression, and assessment of collinearity.  

 

Time period 
for model 

construction 
Terma Radj

2 Estimate SS F Ratio Prob > F Variance 
explained 

1925-2012 

Jan Tmin  0.06 0.005±0.001 0.15 10.96 0.0014 8% 
pNov HDD  0.14 0.000±0.000 0.34 25.49 <0.0001 18% 
April GDD  0.03 0.002±0.000 0.26 19.14 <0.0001 13% 
pWyr P  0.07 0.008±0.002 0.20 14.71 0.0002 10% 
pWyr CDD  0.31 -0.001±0.000 0.62 45.75 <0.0001 32% 

1925-1960 
Jan Tmin  0.002 0.006±0.003 0.08 4.75 0.0372 10% 
April GDD  0.33 0.003±0.001 0.44 27.88 <0.0001 58% 
pWyr CDD  0.23 -0.001±0.000 0.20 12.46 0.0014 26% 

1960-2012 

Jan Tmin  0.16 0.005±0.001 0.08 12.83 0.0008 6% 
pNov Tmean  0.12 0.014±0.003 0.17 27.23 <0.0001 13% 
Aug Tmax  0.32 0.010±0.003 0.08 12.94 0.0008 6% 
April GDD  0.004 0.001±0.000 0.03 5.08 0.0291 2% 
pWyr P  0.28 0.008±0.002 0.13 20.06 <0.0001 9% 
pWyr CDD 0.36 -0.001±0.000 0.28 44.69 <0.0001 21% 

1980-2012 

pNov HDD  0.14 0.000±0.000 0.06 14.13 0.0009 6% 
pJul CDD  0.20 -0.001±0.000 0.12 27.20 <0.0001 11% 
Jan Tmin  0.06 0.010±0.002 0.14 30.75 <0.0001 13% 
pSummer NO3

-  0.50 -0.282±0.072 0.07 15.46 0.0006 6% 
pWyr P  0.07 0.007±0.002 0.08 17.22 0.0003 7% 

 

ap = previous year, T = temperature, P = precipitation, Min = minimum, Max = maximum, GDD = growing degree 
days (cumulative degrees > 5°C [41°F]), HDD = heating degree days (cumulative days < 18.3°C [65°F]), CDD = 
cooling degree days (cumulative degrees > 18.3°C [65°F]), Summer: June-August, Wyr: water year, previous 
October to current September, NO3

-: nitrate deposition.  For more information on variables see methods. 
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Figure 3.4: First differences of observed mean red spruce tree ring chronology (RWIFSS, black 
dashed line) compared to predicted chronology modeled using growth and climate data from three 
time periods: (a) predicted RWI1925-2012 (Adj. R2=0.60, RMSE=0.12, P<0.0001), the full chronology: 

(b) predicted RWI1925-1960 (Adj. R2=0.58, RMSE=0.13, P<0.0001), before acid deposition and red 
spruce decline; (c) predicted RWI1960-2012 (Adj. R2=0.80, RMSE=0.08, P<0.0001); and (d) predicted 
RWI1980-2012 (Adj. R2=0.88, RMSE=0.07, P<0.0001), the most recent growth and period of pollutant 
deposition data. Correlations between the Mean RWI chronology (expressed as first differences) 
and the predicted chronologies a-c and associated P-values are shown for different time periods: 
1925-2012 at the top, and both 1925-1960 and 1960-2012 at the bottom of each figure. Predicted 

RWI1980-2012 could not be modeled back in time as it uses deposition data that begins in 1980. 
Correlations with recent growth (2001-2012, denoted with grey box) are displayed at the top right.  

 

(c) 

(a) 

-1

0

1

201220021992198219721962195219421932
Year

RWI
Pred RWI 1925-1960

-1

0

1

201220021992198219721962195219421932
Year

RWI
Pred RWI 1980-2012

-1

0

1

201220021992198219721962195219421932
Year

RWI
Pred RWI 1925-2012

-1

0

1

201220021992198219721962195219421932
Year

RWI
Pred RWI 1960-2012

2001-2012 
r=0.97, P<0.0001 

r=0.79, P<0.0001 

r=0.72, P<0.0001 r=0.76, P<0.0001 

2001-2012 
r=0.95, P<0.0001 

r=0.57, P=0.0005 r=0.88, P<0.0001 

(b) 

(d) 

2001-2012 
r=0.98, P<0.0001 

r=0.95, P<0.0001 

r=0.78, P<0.0001 

r=0.58, P<0.0001 

2001-2012 
r=0.65, P=0.02 

r=0.40, P=0.003 

r=0.76, P<0.0001 

R
W

I 



 

 

95 

Running correlations between each model prediction and RWIFSS show how these 

models failed to accurately predict growth through time (Fig. 3.5). For the three models 

that predict growth from 1960-1980, there are sharp declines, and even reversals, in 

correlation with RWIFSS. The predicted RWI1980-2012 model (includes NO3
- deposition) 

had a consistently strong fit, but due to the data limits of the acid deposition record, we 

cannot assess the strength of this relationship pre-1980. Further, we found that the 

correlation between growth and NO3
- deposition was not consistent through time (1980-

2012), even for this limited dataset (Fig. 3.6). However, this analysis suggests that the 

strongly negative relationship between the two factors has decreased recently and may 

lead to more favorable conditions for the species.  

 

Figure 3.5: Seven-year running Pearson’s product moment correlations between mean RWI and 
predicted RWI based on four models. Methods follow Johnson et al. 1988. 
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Figure 3.6: Running 15-year bootstrapped correlations between RWI and NO3
- deposition from 

1980-2012.  

Testing the predicted RWI1980-2012 model by RWIFSS elevation class chronology, 

we see differing response by elevation grouping (Table 3.2). All the model parameters 

imputed from the RWI1980-2012 model are strong predictors of growth at Mid (RWIMid 

Radj
2=0.81, RSME=0.09, P<0.0001) and High (RWIHigh Radj

2=0.76, RSME=0.12, 

P<0.0001) elevations, but not at Low elevation. Therefore, we used a reduced model for 

Low elevation. All elevation groups displayed a negative relationship with NO3
- 

deposition, but again, this relationship was stronger for Mid and High elevations 

(RWIHigh Radj
2= 0.47, P=0.055; RWIMid Radj

2= 0.49, P=0.015, and RWILow Radj
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P=0.038). For Low elevation, the other best predictor variables were the negative growth 

relationship with pNov HDD (Radj
2= 0.13) and pJuly CDD (Radj

2= 0.11). We did not see 

a division in growth based on geographic relationship to the prevailing pollution 
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RSME=0.12, P<0.0001) (Table 3.3), and we did not detect stronger effects of NO3
- 

deposition for RWIWest as expected.  

Table 3.2: Predicted RWI1980-2012 models by plot elevation class: High (Radj
2=0.76, RSME=0.12, 

P<0.0001), Mid (Radj
2=0.81, RSME=0.09, P<0.0001), and Low (Radj

2=0.50, RSME=0.12, P<0.0001). 
All variables were converted into first differences prior to model building.  

 

Elevation Class Terma Estimate± SE Radj
2 SS 

F 
Ratio 

Prob 
> F 

Variance 
explained 

High (>950m) 

pSummer NO3
- -0.256±0.127 0.47 0.06 4.05 0.0551 4% 

pWyr P  0.011±0.003 0.13 0.16 11.42 0.0024 11% 
pJul CDD  -0.002±0.000 0.11 0.22 15.70 0.0005 15% 
pNov HDD  -0.001±0.000 0.11 0.09 6.34 0.0186 6% 
Jan Tmin  0.006±0.002 0.07 0.09 6.54 0.017 6% 

Mid (700-900m) 

pSummer NO3
-  -0.266±0.122 0.49 0.06 6.79 0.0152 5% 

pJul CDD  -0.001±0.000 0.21 0.11 13.09 0.0013 10% 
pNov HDD  -0.001±0.000 0.14 0.11 12.98 0.0014 10% 
pWyr P  0.009± 0.002 0.06 0.12 14.01 0.001 10% 
Jan Tmin 0.006±0.002 0.05 0.09 11.10 0.0027 8% 

Low (<650m) 
pSummer NO3

-  -0.266±0.07 0.36 0.07 4.78 0.0377 14% 
pNov HDD  -0.001±0.000 0.13 0.13 8.37 0.0075 25% 
pJul CDD -0.001±0.000 0.11 0.10 6.74 0.0151 20% 

 

ap = previous year, T = temperature, P = precipitation, Min = minimum, HDD = heating degree days (cumulative 
days < 18.3°C [65°F]), CDD = cooling degree days (cumulative degrees > 18.3°C [65°F]), Summer = Jun-Aug, 
Wyr: water year, previous October to current September, NO3

-: nitrate deposition. For more information on 
variables see methods. 
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Table 3.3: Predicted RWI1980-2012 models by regional grouping: East (Radj
2=0.76, RSME=0.12, 

P<0.0001) and West (Radj
2=0.50, RSME=0.12, P<0.0001) of the study area, approximately divided 

by the Green Mountains, VT (see Fig. 1). All variables were converted into first differences prior to 
model building. 

 
Regional 
Grouping Terma Estimate ± SE Radj

2 SS F Ratio Prob > F 
Variance 
explained 

East 

pSummer NO3
-  -0.236±0.094 0.49 0.05 6.28 0.019 5% 

pJul CDD  -0.001±0.000 0.29 0.14 17.43 0.000 13% 
pNov HDD  -0.001±0.000 0.13 0.07 8.74 0.007 6% 
pWyr P  0.008±0.002 0.06 0.10 12.51 0.002 9% 
Jan Tmin  0.006±0.002 0.06 0.09 12.06 0.002 9% 

West 

pSummer NO3
-  -0.217±0.091 0.48 0.04 5.76 0.024 4% 

pJul CDD  -0.001±0.000 0.19 0.12 16.00 0.001 11% 
pNov HDD  -0.001±0.000 0.16 0.14 19.89 0.000 13% 
pWyr P  0.009±0.002 0.09 0.13 17.43 0.000 12% 
Jan Tmin  0.005±0.002 0.05 0.06 8.17 0.009 5% 

 

ap = previous year, T = temperature, P = precipitation, Min = minimum, HDD = heating degree days (cumulative 
days < 18.3°C [65°F]), CDD = cooling degree days (cumulative degrees > 18.3°C [65°F]), Summer = Jun-Aug, Wyr: 
water year, previous October to current September, NO3

-: nitrate deposition. For more information on variables see 
methods. 

 

3.5 Discussion 

Based on the range of tree ages and DBH, variety of plot locations and 

characteristics (Table S3.1), failure to detect substantial stand disturbance (even 

following the recent [2003] winter injury event [Fig. S3.5]), and the strong alignment of 

three detrending techniques (Fig. 3.2), we feel confident that the trends depicted here are 

representative of the regional red spruce population. Further, this analysis is conservative 

as we include all red spruce plots for assessment, not only those exhibiting recent 

increases in growth (10% plots did not show positive growth trends since 2002). While 

we did not assess soil nutrition, a recent analysis indicated that recent growth increases 

occurred regardless of the combination of site nutrition and pollution inputs (assessed via 

Critical Load Exceedence models) (Engel et al. 2016) and recent work has shown that 
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soils have only just begun to recover from decades of acidic inputs (Lawrence et al. 2015; 

Lawrence et al. 2012). Together, these results lead us to reject H1 and conclude that 

alterations to the regional environment are most likely responsible for recent increases in 

red spruce growth. While we did not study intermediate and suppressed red spruce trees, 

we postulate that similar growth trends and response to climate would be seen in these 

trees, although with a more muted response due to the effects of competition (Martín-

Benito et al. 2008).  

Through this study, we demonstrated the complex relationship between tree 

growth and T. For example, higher summer T was negatively associated with subsequent 

growth, but positively associated with current growth (Fig. 3.3). There are a few possible 

reasons for this difference, which has also been reported for other conifer species 

(Girardin et al. 2016). Higher T could increase current-year growth if the tree favors 

consumption of C for short-term needs rather than for storage as non-structural 

carbohydrates to support growth the following year (Rennenberg et al. 2006). Further, T-

induced increases in growth could result in the sequestration of other nutrients (e.g., N, 

Ca) that temporarily become limiting and indirectly suppress growth the following year 

(Rennenberg et al. 2006).  

While negative relationships between high T and growth the following year 

suggest a legacy effect of higher T, conceivably through limitations of C or other 

compulsory elements, when combined with the strong positive relationship with pWyr 
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P, it could indicate a negative response to drought for the species. This was unexpected 

considering that the high moisture availability in the region (Pederson et al. 2013) that  

is projected to increase (Kunkel et al. 2013). There is some evidence that acid deposition 

increases a tree’s susceptibility to drought through a reduction in fine root biomass 

(Persson et al. 1995), which may partially explain the increase in strength of the 

relationship between growth and P after 1960 (Table 3.1). Additionally, for red spruce, 

it has been asserted that weather events in the preceding growing season that reduce C 

capture and nutrient uptake – for example drought – can predispose trees to winter injury 

(Schaberg et al. 2011), and thus cause reductions in growth due to C losses. However, 

for all analyses, we found that water availability (P, extreme P, SPEI) did not have as 

strong of an association or explain as much variance as T (Table 3.1), suggesting that T 

limits red spruce growth more than P.  

We also demonstrated the importance of favorable T outside the traditional 

growing season—fall, winter, and spring seasons (Fig. 3.3). Positive relationships 

between T during the spring and fall imply that low T restricted red spruce growth in 

these seasons. While extreme cold and heat in the fall can be detrimental to growth, 

favorable T could allow for an extended period for C capture. Further, an extended fall 

growing season could allow for more root elongation (Joslin and Wolfe 1992), and 

increase water and nutrient uptake. Similarly, we saw a positive relationship of growth 

with April GDD. At this time in the year, most deciduous hardwoods have not fully 
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undergone leaf expansion; typically, that does not occur until May (Hufkens et al. 2012). 

Higher temperatures in April, especially ones that accumulate GDD (i.e., >5°C), may 

confer a competitive advantage for red spruce trees and perhaps other conifers (Girardin 

et al. 2016) that are similarly able to rapidly increase photosynthetic activity compared 

to sympatric species (DeHayes et al. 2001). Likewise, the physiological ability of red 

spruce to photosynthesize in the winter when T moderates (e.g., during winter thaws) 

could also confer a competitive advantage if winter T were favorable for photosynthesis. 

Aligning with previous findings (Johnson et al. 1988; McLaughlin et al. 1987), we saw 

that Jan Tmin, the coldest month, was a strong predictor of growth, particularly for trees 

at both Mid and High elevations. Additionally, we found degree day indices to be a strong 

associate with growth. We established that both indices CDD (integrated heat exposure 

>18.3 C) and HDD (integrated cold exposure <18.3 C) were consistently associated with 

red spruce growth (Fig. 3.3). A strong relationship with CDD and radial growth has been 

found in other co-occurring tree species as well (Kosiba et al. In press).  

These results support the hypothesis that heat accumulation outside the traditional 

growing season (e.g., fall, winter, early spring) positively relate to red spruce growth 

(H2). If we continue to observe increasing T in these seasons, conditions may be 

favorable for the species. However, as the magnitude of the negative relationship 

between growth and pJuly T was larger than the positive relationship with Aug T (Fig. 

3.3), the net effect could be an overall negative effect of summer T on growth. Therefore, 
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rising T outside the summer may be beneficial, but increases during the summer months 

may be detrimental to growth. 

Considering the plethora of research on the impact of acid deposition on red 

spruce growth and vigor (DeHayes et al. 1997; Engel et al. 2016; Schaberg et al. 2001), 

we were not surprised to find a strong, negative correlation between N-deposition and 

growth the subsequent year. N-deposition in the summer likely created nutrient 

imbalances approaching winter when Ca, in particular, is needed for winter cold 

tolerance (Schaberg et al. 2001). However, the negative correlation between growth and 

NO3
- is lessening over time (Fig. 3.6), providing support for H3. Unfortunately, the 

instrumental collection of acid deposition data began in the late 1970s, after acid 

deposition related decline in red spruce had already been evident (Johnson et al. 1988). 

Thus, acid deposition cannot be included in our long-term growth models and we cannot 

assess how increases – as opposed to contemporary decreases– in acid deposition may 

have impacted red spruce growth.  

It has been show that acid deposition can increase the availability of soil-bound 

and toxic aluminum (Al), decrease accessibility of Ca (Joslin and Wolfe 1992; Persson 

et al. 1995), and reduce mycorrhizal associations (Reich et al. 1986), which can alter 

biomass (Park et al. 2008) and nutrient uptake of fine roots (Persson et al. 1995). Taken 

together, these impacts could reduce C availability through reductions in water and 

nutrient uptake, and thus, retard C allocation to radial growth. Chronic N deposition has 
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been identified as especially problematic to alterations in C allocation by reducing fine 

root biomass and critical nutrient uptake (Persson et al. 1995).  

Interestingly, we found the strongest negative associations with NO3
- deposition 

at Mid elevation, followed by High elevation. Low elevation displayed a weaker 

relationship with NO3
-, which aligns with research demonstrating increasing acid 

deposition (Cogbill and Likens 1974) and red spruce winter injury severity (Lazarus et 

al. 2006) with elevation. However, why Mid elevation red spruce show a stronger growth 

relationship with NO3
- is unclear, but it was also indicated in previous work (Engel et al. 

2016). Nevertheless, we predict that as acid deposition continues to decline we should 

see fewer winter injury events and more C capture, particularly for Mid and High 

elevation locations where winter injury had been severe in the past (Lazarus et al. 2006).  

We were surprised that not all measures of acid deposition, particularly SO4
2-, 

were significantly related to growth, but this may do with spatial variability and the 

legacy effects of acid deposition on tree growth (e.g., Engle et al., 2016) as opposed to 

year-to-year relationships we focused on here. One additional reason for the lack of 

relationship with SO4
2-  may be the robust interaction between NO3

-, cation leaching, and 

water flux reported by Joslin and Wolfe (1992). They found that NO3
- was more strongly 

associated with cation leaching in both organic and mineral soil layers and had more 

temporal variability than SO4
2-. Further, during periods of low water flux, soil NO3

- 

increased strongly, and decreased during high water flux. This effect was so strong that 
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during periods of drought, NO3
- was found to be much more important on a charge 

equivalent basis, than SO4
2- (Joslin and Wolfe 1992). The interaction between NO3

- and 

rainfall may partially explain the strengthening positive relationship after 1960 between 

Wyr P and subsequent growth, as well as the positive relationships with measures of 

extreme rainfall (i.e., departure from average P, N days P>2.2 cm) (Fig. 3.3). However, 

others have reported greater detrimental effects to red spruce – including larger 

reductions in cold tolerance – with application of SO4
2- compared to NO3

- (Cape et al. 

1991; Jacobson et al. 1990) 

We failed to find an association between CO2 and red spruce growth through 

various methods (e.g., annual growth, residuals of growth after accounting for the effects 

of climate and deposition (Fig. S3.6)) and reject H4. This lack of association aligns with 

others who have shown no significant effect of CO2 on radial growth (Bader et al. 2013; 

Girardin et al. 2016; Körner et al. 2005). While there is considerable debate if elevated 

CO2 will provoke changes in tree growth and/or water use efficiency (Silva and Horwath 

2013), it is a difficult relationship to properly assess in situ. While some analyses of forest 

growth and instrumental CO2 records have also attempted to find a relationship (Girardin 

et al. 2016), there is evidence that CO2 effects are muted or nonexistent on sites where 

other environmental factors (e.g., T, P, and nutrients) are more limiting to growth than C 

availability (Körner 2003; Saurer et al. 2014). Based on the strong associations between 

red spruce growth and climate measures that we reported here, we hypothesize that other 
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factors, namely T, water accessibility, and nutrient leaching via acidifying agents, are 

currently more limiting to red spruce than C availability. 

Following decades of declines, this work suggests a recovery for red spruce trees 

in the northeastern US. With decreases in acid deposition and increases in favorable 

climate conditions, the species’ current growth surge should persist - at least in the short 

term, and particularly for stands at elevations over 650m. Considering these results, we 

predict that with continued increases in fall, winter, and spring T, coupled with reductions 

in pollutant loading, red spruce trees may even increase C capture further – if summer T 

does not exceed physiological thresholds and P is not limiting.  

While the near-term predictions for red spruce may be favorable, the species 

could be vulnerable to change in the future, due to its low genetic diversity, past region-

wide decline, and high spatial synchrony in growth patterns. The uncertainty lies in how 

P and T regimes will change in the future. If moisture availability (e.g., annual P, extreme 

P) continues to increase in the northeastern US, red spruce may have adequate water for 

increased C capture. However, if extreme weather events, such as prolonged drought or 

periods of extreme T become more frequent (especially in the summer), C capture could 

be limited. Indeed, the USDA Forest Service Climate Change Atlas projects that red 

spruce habitat suitability will decrease into the future primarily due to increases in July 

T (Prasad et al. 2007-ongoing).  
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Here we present the first comprehensive analysis of novel growth changes 

observed for red spruce trees in the northeastern US. While attributing cause and effect 

to in situ tree growth is challenging, we have identified significant correlations between 

growth and environmental variables, and have demonstrated that growth is synchronous 

across a wide spatial scale, and independent of a suite of site-based factors, suggesting 

that large-scale climate and pollutant deposition conditions are likely effecting this 

growth surge. When paired with declines in acid deposition, which have caused 

protracted declines in growth, the species could benefit in the short-term. More broadly, 

this work demonstrates the importance of scientific inquiry to identify ecological 

problems (here acid deposition-induced decline), policy decisions to mitigate those 

issues (the Clean Air Act and subsequent amendments), and evidence of resultant 

biological recovery (this research).  
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3.8 Supplementary Materials 

 

 
Figure S3.1: Foliar winter injury assessment at a red spruce (Picea rubens Sarg) plantation in 

Colebrook, NH, USA. Winter injury was quantified for each year of data following snow melt (e.g., 
late April or early May) by a team of two researchers using binoculars. Values are the percentage 
of previous season’s (youngest) foliage showing visible damage, evident as reddish-brown needles, 

and quantified in 5% increments.  

 
Figure S3.2: Mean monthly temperature (Tmean, °C) and total precipitation (cm) for the study area 

(42.67-45.04°N, 73.79-68.63°W) (NOAA Regional Climate Centers 2016). 
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Figure S3.3: Climate variables from the study area (42.67-45.04°N, 73.79-68.63°W; solid line) with 
trend lines (dashed): (a) total cooling degree days (CDD, degree days >18.3°C), (b) total growing 

degree days (GDD, degree days >5°C), (c) mean water year (previous Oct-current Sept) 
temperature (°C), and (d) total water year precipitation (cm). See methods for data sources and 
descriptions (NOAA National Centers for Environmental Information 2016; NOAA Regional 

Climate Centers 2016) 
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Figure S3.4: Red spruce tree ring chronologies classified by (a) estimated age (in years) at breast 

height (see methods for details), (b) diameter at breast height (DBH; cm), (c) plot elevation 
(Low<650m, Mid 750-850m, High 900-1000m), and (d) by regional groupings: east or west. RWI) 
chronologies (detrended with Friedman’s Super Smoother) for age and DBH class were created 
with a Tukey’s biweight mean of individual tree series, while the elevation class chronology was 

created as a mean of plot chronologies. There were no significant differences between the 
chronologies based on age, DBH, elevation class, or region (East, West) (P = 0.37, P = 0.55, P =0.34, 

and P=0.92, respectively). Inset to the right of chronologies (a-c) displays the parameter 
distribution.   
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Figure S3.5: Mortality following the 2003 winter injury event (assessed in 2010) compared to 
growth of surviving trees following the event; the relationship was not significant.  

 

Figure S3.6: Residuals of best fit climate model for RWI (see Table 1; black line) and first 
differences of atmospheric CO2 concentration (grey line) (NOAA Earth System Research 

Laboratory Global Monitoring Division 2016; World Data Center for Paleoclimatology and NOAA 
Paleoclimatology Program). Once climate had been accounted, the residuals of RWI for did not 

have a trend and were unrelated to changes in CO2 over time (P=0.98).  
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Table S3.1: Chronology statistics for the 52 red spruce (Picea rubens Sarg.) plots used in this study. 
 

Location State 
Elev. 
Cat.a 

Asp
ect Slope 

Chron. 
Span 

Mean 
Age ±SD 

(yrs) 

Mean 
DBH 
± SD 
(cm) SIb MSb 

RW±
SD 

(cm) ACb 
n 

cores 
n 

trees 
R-

barc EPSc SNRc 

Slope of 
recent 

growthd 

Bald Mountain VT Mid SE 30% 1912-
2012 97±16 25.2±

2.6 0.65 0.25 1.17±
0.53 0.79 24 12 0.44 0.89 7.9 4% 

Bartlett Exp. For. NH Mid N 20% 1759-
2010 NA 31.5±

6.5 0.61 0.28 1.10±
0.61 0.75 18 9 0.37 0.84 5.2 2% 

Bartlett Exp. For. NH Mid SE 20% 1859-
2010 138±26 34.2±

7.5 0.62 0.24 1.14±
0.56 0.81 20 10 0.43 0.95 18.5 1% 

Bartlett Exp. For. NH Mid E 20% 1781-
2012 174±53 47.3±

12.7 0.51 0.24 1.90±
0.85 0.80 20 10 0.37 0.84 5.1 2% 

Bartlett Exp. For. NH Mid NE 10% 1799-
2012 204±27 51.3±

9.1 0.58 0.24 1.51±
0.98 0.86 17 9 0.43 0.92 11.4 0% 

Bartlett Exp. For. NH Mid NE 20% 1855-
2012 154±17 38.2±

6.8 0.56 0.23 1.21±
0.62 0.80 49 25 0.36 0.83 4.8 2% 

Darling SF VT Low N 10% 1913-
2010 90±6 26.5±

3.6 0.50 0.24 1.24±
0.81 0.89 20 10 0.42 0.92 11.3 1% 

Darling SF VT Mid NW 40% 1765-
2010 135±77 38.2±

14.0 0.56 0.27 1.05±
0.59 0.82 20 10 0.34 0.83 4.8 6% 

Mt. Mansfield SF VT High SW 30% 1922-
2012 83±7 20.2±

3.4 0.62 0.24 1.03±
0.74 0.90 33 17 0.50 0.92 12.0 6% 

Mt. Mansfield SF VT Low SW 30% 1894-
2012 104±20 29.6±

5.4 0.51 0.23 1.24±
0.64 0.82 15 9 0.40 0.87 6.7 1% 

Mt. Mansfield SF VT Mid NW 30% 1744-
2012 173±58 44.1±

8.4 0.56 0.25 1.32±
0.70 0.83 31 16 0.45 0.88 7.5 1% 

Burnt Mtn. VT Low NE 10% 1891-
2010 103±17 31.1±

3.0 0.52 0.24 1.36±
0.78 0.90 17 10 0.44 0.89 7.9 5% 

Bristol Cliffs 
Wild. VT Low W 80% 1713-

2010 121±73 17.7±
3.5 0.53 0.26 0.67±

0.34 0.73 19 10 0.30 0.82 4.7 2% 

Mt. Carmel VT High SW 50% 1905-
2010 90±9 19.9±

3.7 0.56 0.34 0.97±
0.74 0.89 22 11 0.46 0.93 12.7 7% 

Mt. Carmel VT Mid S 30% 1795-
2010 170±29 40.7±

8.8 0.59 0.26 1.15±
0.75 0.89 20 10 0.44 0.94 16.7 7% 

Dial Mtn. NY High NA NA 1772-
2012 NA 34.3±

8.3 0.51 0.24 0.92±
0.51 0.83 17 9 0.40 0.85 5.7 5% 

Mt. Ellen VT High NE 40% 1824-
2010 107±42 32.9±

6.9 0.60 0.24 1.40±
0.75 0.85 22 11 0.31 0.86 5.9 10% 

Elephant Mtn. ME Mid SE 20% 1650-
2012 254±72 51.9±

6.3 0.59 0.23 0.85±
0.43 0.81 22 11 0.42 0.89 7.8 1% 
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Mt. Equinox VT High SE 20% 1920-
2010 83±15 26.9±

4.7 0.67 0.31 1.31±
0.91 0.83 21 11 0.26 0.80 3.9 2% 

Mt. Equinox VT High W 50% 1857-
2010 111±40 28.3±

6.1 0.55 0.28 1.07±
0.87 0.92 24 12 0.50 0.92 10.8 3% 

Mt. Equinox VT Low SE 30% 1879-
2010 97±20 31.8±

7.3 0.48 0.31 1.41±
1.25 0.92 19 10 0.25 0.80 3.1 -3% 

Great Gulf Wild. NH Mid SE 40% 1697-
2012 171±62 48.1±

7.3 0.56 0.23 1.35±
0.69 0.80 39 21 0.51 0.91 10.0 1% 

Goshen Mtn. VT High NE 20% 1826-
2012 104±30 39.3±

6.1 0.53 0.25 1.66±
0.87 0.80 39 22 0.37 0.84 5.1 0% 

Weston Mtn. VT Low NE 10% 1862-
2012 145±11 42.9±

5.3 0.58 0.21 1.31±
0.68 0.86 20 11 0.47 0.90 8.6 3% 

Weston Mtn. VT Low NE 40% 1866-
2012 116±14 39.2±

7.8 0.62 0.21 1.36±
1.07 0.91 23 12 0.41 0.87 6.8 4% 

Mt. Greylock MA Low NE 20% 1911-
2010 86±9 30.5±

4.0 0.59 0.27 1.60±
1.03 0.86 23 12 0.42 0.88 7.4 -4% 

Hedgehog Mtn. NH Mid N 20% 1852-
2010 104±27 29.7±

6.1 0.67 0.21 1.36±
0.58 0.77 24 12 0.40 0.88 7.4 2% 

Killington Mtn. VT Mid NE 80% 1815-
2010 154±36 41.9±

6.8 0.50 0.25 1.38±
0.83 0.86 21 11 0.49 0.91 10.6 5% 

Killington Mtn. VT High NE 40% 1742-
2010 172±61 40.1±

8.1 0.53 0.29 1.07±
0.76 0.87 20 11 0.55 0.93 14.2 6% 

Killington Mtn. VT Mid NE 20% 1793-
2010 154±34 38.9±

9.3 0.49 0.26 1.26±
0.78 0.84 25 13 0.42 0.89 8.3 3% 

Killington Mtn. VT High NE 20% 1817-
2010 97±34 30.4±

7.5 0.65 0.26 1.37±
0.93 0.88 22 11 0.56 0.92 11.4 3% 

Killington Mtn. VT High NW 40% 1861-
2010 106±23 34.4±

9.1 0.61 0.27 1.49±
0.84 0.82 20 10 0.61 0.95 17.5 3% 

Lord's Hill VT Low W 30% 1772-
2010 135±37 46.2±

6.9 0.54 0.23 1.49±
0.89 0.86 36 20 0.59 0.94 16.7 6% 

Little Pond VT Mid SW 0% 1897-
2012 101±10 35.4±

7.1 0.57 0.22 1.58±
0.73 0.80 21 12 0.51 0.90 9.3 0% 

Middlebury Gap VT Mid SE 20% 1860-
2010 94±31 32.4±

8.9 0.60 0.25 1.60±
0.70 0.74 20 10 0.46 0.90 8.6 2% 

Mt. Moosilauke NH H SE 10% 1760-
2010 113±55 28.8±

4.8 0.50 0.27 1.23±
0.73 0.86 20 10 0.54 0.92 11.4 1% 

Nancy Brook NH Mid E 10% 1650-
2012 253±68 48.5±

6.6 0.57 0.21 1.20±
0.64 0.85 38 21 0.59 0.94 14.6 1% 

Penobscot Exp. 
For. ME Low SW 0% 1837-

2014 142±18 36.7±
7.1 0.57 0.21 1.17±

0.61 0.86 30 15 0.42 0.88 7.5 3% 

Proctor-Piper SF VT Low SW 50% 1897-
2012 89±19 30.1±

5.5 0.67 0.22 1.34±
0.60 0.78 20 10 0.45 0.89 8.2 1% 

Sugarloaf Mtn. ME High SW 0% 1809-
2012 142±42 43.7±

11.2 0.52 0.25 1.29±
0.64 0.77 23 16 0.44 0.89 8.1 0% 
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Mt. Mansfield SF VT High SE 50% 1841-
2012 90±44 24.0±

4.8 0.55 0.24 1.31±
0.70 0.81 23 12 0.31 0.81 4.2 2% 

Mt. Mansfield SF VT Low SE 20% 1737-
2012 162±77 37.1±

8.9 0.54 0.27 1.08±
0.82 0.90 21 11 0.40 0.86 6.3 1% 

Mt. Mansfield SF VT Mid SE 50% 1772-
2012 185±37 44.2±

8.1 0.61 0.26 1.23±
0.75 0.86 24 12 0.50 0.90 9.2 3% 

Sterling-Whiteface 
Mtn. VT High N 10% 1825-

2012 100±41 26.0±
7.5 0.61 0.27 1.14±

0.68 0.81 22 12 0.50 0.91 10.2 4% 

Sterling-Whiteface 
Mtn. VT High SW 50% 1899-

2012 90±22 29.3±
11.0 0.58 0.26 1.42±

0.63 0.73 19 11 0.32 0.82 4.4 5% 

Sterling-Whiteface 
Mtn. VT Low SE 10% 1910-

2012 100±6 31.5±
4.5 0.59 0.23 1.41±

0.68 0.79 19 10 0.49 0.91 10.6 2% 

Stratton Mtn. VT Mid NW 10% 1906-
2012 93±14 35.9±

8.1 0.58 0.19 1.72±
0.83 0.88 21 11 0.31 0.87 6.9 1% 

Stratton Mtn. VT Mid W 10% 1912-
2012 94±13 34.0±

6.7 0.56 0.20 1.65±
0.74 0.82 21 12 0.38 0.93 12.8 0% 

Mt. Mansfield SF VT High W 40% 1837-
2012 89±33 27.7±

8.9 0.56 0.24 1.37±
0.72 0.82 22 12 0.42 0.94 15.4 2% 

Mt. Mansfield SF VT Low SW 20% 1788-
2012 166±35 36.3±

6.9 0.51 0.27 1.01±
0.74 0.87 20 11 0.32 0.91 9.8 4% 

Mt. Mansfield SF VT Mid W 20% 1850-
2012 140±46 35.3±

9.9 0.51 0.26 1.20±
0.78 0.87 23 11 0.31 0.90 8.7 6% 

Hubbard Brook 
Exp. For. NH Mid SE 20% 1885-

2010 97±20 28.6±
9.2 0.28 87 0.80±

0.84 0.84 45 24 0.44 0.89 7.9 5% 
 

a Elevation categories: Low<650m, Mid 700-900m, High<950m 
b SI= series intercorrelation, MS = mean sensitivity, AC = autocorrelation. From raw ring width (RWW) chronologies. 
cEPS = expressed population signal, SNR = signal to noise ratio, R-bar = average correlation between the tree-ring series. From detrended, standardized (Friedman’s 
Super Smoother, tweeter=5) and prewhitened chronologies  
dThe slope of recent growth was calculated from 2001 to the end of the chronology. 
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Table S3.2: Locations and data collected from NOAA weather (NOAA National Centers for 
Environmental Information 2016; NOAA Regional Climate Centers 2016) and NADP deposition 

monitoring stations (National Atmospheric Deposition Program 2016). 
 

Station Name, State Coordinates 
Elevation 

(m) Data Collateda
 

Acadia National Park, 
ME 

44.38° N, 
68.26° W 150 Monthly deposition of SO4

2-, NO3
-, cation:anion, 

pH of rainfall 

Bennington, VT 42.88° N, 
73.16° W 305 Monthly deposition of SO4

2-, NO3
-, cation:anion, 

pH of rainfall 

Bridgton, ME 44.11° N, 
70.73° W 222 Monthly deposition of SO4

2-, NO3
-, cation:anion, 

pH of rainfall 

Burlington, VT 44.47° N, 
73.15° W 102 Mean, min, max monthly T, total monthly P 

Durham, NH 43.14° N, 
70.95° W 23 Mean, min, max monthly T, total monthly P; 

Climate indices 

Farmington, ME 44.69° N, 
70.16° W 128 Mean, min, max monthly T, total monthly P; 

Climate indices 

Hubbard Brook, NH 43.94° N, 
71.70° W 250 Monthly deposition of SO4

2-, NO3
-, cation:anion, 

pH of rainfall 
Huntington Wildlife, 
NY 

43.97° N, 
74.22° W 500 Monthly deposition of SO4

2-, NO3
-, cation:anion, 

pH of rainfall 

Lake Placid 2 S, NY 44.39° N, 
74.20° W 549 Mean, min, max monthly T, total monthly P 

Madison, ME 44.79° N, 
69.89° W 79 Mean, min, max monthly T, total monthly P; 

Climate indices 

Pinkham Notch, NH 44.26° N, 
71.25° W 617 Mean, min, max monthly T, total monthly P; 

Climate indices 

Rutland, VT 43.63° N, 
72.98° W 189 Mean, min, max monthly T, total monthly P; 

Climate indices 

St. Johnsbury, VT 44.42° N, 
72.02° W 213 Climate indices 

Trenton Falls, NY 43.28° N, 
75.16° W 244 Climate indices 

Tupper Lake, NY 44.23° N, 
74.44° W 512 Mean, min, max monthly T, total monthly P; 

Climate indices 

Underhill, VT 44.53° N, 
72.87° W 399 Monthly deposition of SO4

2-, NO3
-, cation:anion, 

pH of rainfall 
Whiteface Mountain, 
NY 

44.39° N, 
73.86° W 610 Monthly deposition of SO4

2-, NO3
-, cation:anion, 

pH of rainfall 
aT = temperature, P = precipitation, Min = minimum, Max = maximum, NO3

-: nitrate deposition, SO4
2-: sulfate 

deposition. For more details on climate indices, see Materials and Methods.  
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4.1. Abstract 

Increased annual temperature is predicted to have varied effects on tree 
physiology, with some species likely benefitting from change, while others may suffer 
reductions in growth and vigor. Changes in temperature are projected to decrease the 
onset and depth of winter snow cover, alter water fluxes, and lengthen the effective 
growing season – all of which could strongly affect tree carbon capture. To further 
explore tree responses to a changing climate, we examined how species with differing 
physiological characteristics (e.g., characteristic rooting depth) and adaptations to 
climate (e.g., native latitudinal range) interact with site characteristics (e.g., soil nutrient 
status, water flux) and experimental heating and snow exclusion treatments to influence 
sapling physiology and growth. We examined these responses using a replicated 3-factor 
split plot design imposed on in-ground micro-catchments. We tested the effects of three 
treatments (infrared heating, snow exclusion, and control), and two soil types on the 
resulting physiology of four ecologically and economically important deciduous tree 
species native to the northeastern United States: paper birch (Betula papyrifera 
Marshall), quaking aspen (Populus tremuloides Michx.), American chestnut (Castanea 
dentata (Marshall) Borkh.), and black cherry (Prunus serotina Ehrh). While we found a 
variety of effects, soil type, and species characteristics most strongly influenced response. 
Additionally, highly variable natural weather patterns during the treatment period muted 
or exacerbated some responses. Overall, heating resulted in an extended potential 
photosynthetic period in the fall and was associated with increased biomass 
accumulation. Characteristic rooting depth had a stronger influence on spring leaf 
expansion and increased biomass ratios than extent of native latitudinal range. One of the 
northern species, quaking aspen, was strongly, negatively affected by a reduced early 
winter snowpack. Another, American chestnut, suffered high winter injury damage 
during both winters, possibly complicating the restoration efforts of this species in the 
northern limits of its native range. Our results demonstrate the variability in sapling 
response to a changing climate, as well as the complex interactions that occur with soil 
factors, water flux, and weather patterns. 

 

Key words: climate change, paper birch, American chestnut, quaking aspen, black 
cherry, soil texture, soil moisture  
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4.2 Introduction 

With climate change, tree species with different physiological traits or 

adaptations may be able to thrive under novel conditions that cause another species to 

decline. Although several reports have suggested that elevated temperature will alter tree 

physiology to enhance productivity and carbon (C) and nutrient uptake (Briffa et al. 

2008; Jarvis and Linder 2000; Pregitzer et al. 2000; Vitasse et al. 2009), it is unclear how 

different tree species will respond depending on their native latitudinal range, 

physiological characteristics, and interconnections with site characteristics, like soil 

nutrient status and water flux. Differential physiological responses among species are 

critical to determining interspecific competition, which governs forest community 

structure and function, as well as species range limits that have broad influences on C, 

water, and nutrient fluxes. To date, it has been shown that tree species respond differently 

to reduced snowpack (Fitzhugh et al. 2003), elevated temperatures (Vitasse et al. 2009), 

and soil nutrient availability (e.g., calcium [Ca]:aluminum [Al]) (Kobe et al. 2002), but 

it remains unclear how these factors interrelate. Three potentially critical factors that have 

not been fully considered are how (1) tree rooting depth, (2) native range limits (i.e., 

adaptation to local climate), and (3) site factors (soil texture and nutrition, water flux) 

may interact to affect tree response to increased temperature and reduced snow depth.  

In the northeastern United States (US), changes to the climate have been observed 

and models predict continued increases in annual temperature of up to 3.5°C by 2035 

(Kunkel et al. 2013; USGCRP et al. 2014). Elevated temperatures have been shown to 
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increase the length of the frost-free season, intensify the frequency of soil freeze-thaw 

cycles, and decrease the amount, duration, and the onset of winter snowpack (Ahmed et 

al. 2013; Frumhoff et al. 2007; Groffman et al. 2012; Hodgkins and Dudley 2006; 

Northeast Climate Impacts Assessment Synthesis Team 2007). Snow insulates the soil 

from severe freezing and minimizes the frequency and extent of freeze-thaw cycles 

(Decker et al. 2003). Thus, reduced snowpack can lead to greater soil freezing that can 

damage roots, disrupt nutrient cycles, and alter plant C relations (Comerford et al. 2013; 

Decker et al. 2003; Fitzhugh et al. 2001; Groffman et al. 2001). In contrast, an extension 

of the growing season may trigger early bud break and leaf expansion in the spring, or 

delay leaf senescence in the fall for deciduous trees (add references here e.g., Groffman 

et al. 2012 and others?). Warming temperatures could also lead to substantial changes to 

water budgets through increased evapotranspiration, which could reduce fine root 

biomass and, consequently lower water and nutrient uptake (Pregitzer et al. 2000).  

Such changes will likely alter both C and nutrient storage by trees; however, the 

magnitude and directionality of these changes remain uncertain. In forested ecosystems, 

trees control much of the influx of C into soils and can store C in woody biomass for 

centuries or longer; therefore, even a minor change in this C sequestration could affect 

global C budgets (Melillo et al. 2011).  

Thus, we tested the response of four tree species, with different physiological 

characteristics and adaptations, to simulated climate change scenarios, which were 

operationally defined by two treatments: increased temperature (2-4°C above control via 
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infrared heating [hereafter, heating]) and reduced snow depth for the first six weeks of 

winter [hereafter, snow exclusion]. We also tested how soil characteristics affected 

sapling response. Specifically, we examined how soil nutrient status (notably Ca 

content), tree species (differing by characteristic rooting depth [hereafter, rooting depth] 

and extent of native latitudinal range [hereafter, native range]), and climate treatment 

influenced sapling growth, biomass, mortality, winter injury, spring and fall phenology, 

and insect and disease occurrence. To examine these effects, we used replicated, in-field 

micro-catchments with climate manipulation treatments (heating, snow exclusion, and 

control) imposed on deciduous sapling species growing in two types of mineral soil. 

Specifically, we hypothesized: 

H1 Heating will lengthen the effective growing season, increase sapling C uptake 

and storage, which will be evident by earlier spring leaf expansion, delayed leaf 

senescence, and an increase in woody growth and biomass.  

H2 Heating will more negatively affect species at the southern latitudinal limit of 

their range at the experimental site (Northern species) than species at the northern 

latitudinal limit of their range (Southern species).  

H3 Heating will alter water budgets by increasing evapotranspiration, evident via 

reduced water flux, increased root to shoot biomass ratio (root:shoot), and amplified 

negative effects to characteristically shallow-rooted species. 

H4 Snow exclusion will cause deeper soil freezing, evident as a delayed onset of 

spring bud break, lower woody growth, and decreased fine root biomass.  
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H5 Soil type, specifically nutrient content, will amplify the effects of both heating 

and snow exclusion.  

 

4.3 Materials and Methods 

4.3.1 Study site 

We used 24 previously established (see Beard et al. 2005) in-ground polyethylene 

micro-catchments situated in an open, flat field in South Burlington, VT (44.27’ N, 

73.12’ W; 60 m a.s.l.; Fig. 4.1, 4.2a). The annual mean temperature is 7.3°C; January is 

the coldest month (mean temperature 1950-2015: -7.8°C) and July the warmest (21.3°C) 

(Burlington International Airport, S. Burlington, VT; elevation 100 m; ~ 5.9 km from 

study site) (NOAA National Weather Service 2017). The tanks were initially installed in 

1995; they measure 2.44 m in diameter and hold approximately 4.7 m3 (3,600 L) of soil 

(Beard et al. 2005). A conical section at the bottom of each tank is filled with coarse 

granite covered with a geotextile cloth (~48 cm deep), which allows for the collection 

and measurement of micro-catchment water loss (Fig. 4.2a). A polyvinylchloride pipe in 

the center of each tank is connected to a vacuum extraction system for water removal and 

volume measurement. The micro-catchments do not have an underground outlet. Micro-

catchments contain one of two unweathered glacial deposit substrates. The largest 

differences between these soils are particle size (i.e., proportion of gravel and sand), Ca 

content, and cation exchange capacity (CEC) (Table 1) and were initially chosen to 

reflect relatively poor and rich soil nutrient status (Beard et al. 2005).  
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Table 4.1: Soil physical and chemical properties of the two mineral soils in the micro-catchments: 
Kullman (K) and Milton (M) from a previous study (Beard et al. 2005) and during the initiation of 

this study (2013). 
 

 K M 
 2004 2013 2004 2013 
Clay (%)a 1.15  0.95  
Silt (%)a 0.56  0.66  
Sand (%)a 63.92  81.17  
Gravel (%)a 34.26  17.3  
Bulk density (g cm-3) 1.61 1.72 1.46 1.49 
Organic matter (%) 0.12  

 
0.11  

CEC (meq 100 g-1)a 18.2 0.9  
pH±SDb 6.8 7.6± 0.7 5.6 6.2±0.7 
Ca (mg Kg-1) 3,088 1,770 130 700 
Mg (mg Kg-1) 40 34.7 22 10.7 
K (mg Kg-1) 10 4.3 10 4.8 

 

aPercent (%) clay, silt, sand, and gravel, and cation exchange capacity (CEC, meq 100 g-1) were measured during 
micro-catchment installation (1995). 
apH values are from 2015. 

	
4.3.2 Study design 

A completely randomized three-factor split-plot design was imposed on six in-

field micro-catchments, replicated four times (n = 24 micro-catchments). The whole-plot 

treatments were soil type (2 levels: Milton [M] and Kullman [K]) and climate change 

treatment (hereafter, “treatment”; 3 levels: heating, snow exclusion, and control). The 

within-plot treatment was tree species (4 levels, see below for species). The statistical 

model for this design was: 

yijkl = µ + αi + βj + (αβ)ij + dijk + Δl + (αΔ)il + (βΔ)jl + (αβΔ)ijl + eijkl 

where: 
i = treatment 
j = soil type 
k = rep 
l = species 
αi = fixed effect of climate treatment 
βj = fixed effect of soil type 
dijk  ~ N (0, σabr

2) iid, random effect of whole plot error 
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Δijkl = fixed effect of species 
eijkl ~ N (0, σabrc

2) iid, random effect of subplot error 
	

4.3.3 Treatments 

To prepare the micro-catchments, all plant material was removed, the top 5 cm 

tilled, and 0.5 L Osmocote fertilizer (16-5-10; The Scotts Company, Marysville, OH) 

incorporated into the top 10 cm of soil. In May 2013, micro-catchments were planted 

with 20 nuts or seedlings per each of four tree species (n=480 seedlings per species) that 

were randomly distributed within each micro-catchment (Fig. 4.2b): paper birch (Betula 

papyrifera Marshall), quaking aspen (Populus tremuloides Michx.), American chestnut 

(Castanea dentata (Marshall) Borkh.), and black cherry (Prunus serotina Ehrh). These 

species were chosen because they are either at the northern or southern edge of their 

native latitudinal range in S. Burlington, VT (Fig. 4.1) and have different rooting 

strategies (Burns and Honkala 1990). All species are either economically or ecologically 

important in the region. The native range of paper birch, a shallow rooted species, and 

quaking aspen, deep rooted, extend much further north from Vermont (hereafter, 

Northern species) (Burns and Honkala 1990). Conversely, black cherry, a shallow rooted 

species, and American chestnut, considered a deep-rooted species by most sources 

(Wang et al. 2013), have native ranges that extend southward (hereafter, Southern 

species) (Burns and Honkala 1990) (Fig. 4.1). Although American chestnut is not a 

prominent species within eastern forests due to widespread mortality from the non-native 

chestnut blight fungus (Cryphonectria parasitica (Murr.) Barr) (Wang et al. 2013), it was 

once an ecologically and economically important species, and is now the subject of an 
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extensive restoration effort (Clark et al. 2014). Therefore, we included it in this study to 

assess how the impacts of climate change may affect its growth and vigor in the northern 

limits of its native range (Fig. 4.1).  

	
Figure 4.1: Map of study location in South Burlington, VT (black dot) along with the native ranges 

of the four study species: American chestnut (Castanea dentata (Marshall) Borkh.), black cherry 
(Prunus serotina Ehrh), paper birch (Betula papyrifera Marshall), and quaking aspen (Populus 

tremuloides Michx.) (U.S. Geological Survey 2016). Species were selected to contrast the extent of 
native latitudinal range limit relative to the study location (Southern vs. Northern) and 

characteristic rooting depth (deeper vs. shallower rooting tendencies) (Burns and Honkala 1990). 

Paper birch, quaking aspen, and black cherry were purchased as 1+ year old bare-

root seedlings from a commercial nursery (Porcupine Hollow Farm, Central Lake, MI). 

American chestnut nuts were obtained through the American Chestnut Foundation from 

a site in northeastern Pennsylvania (Haun, PA). American chestnut is barely cold tolerant 
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to withstand average minimum temperatures in Vermont (Gurney et al. 2011), which has 

restricted the northern limit of its native range to the Champlain and Connecticut River 

Valleys, VT (Fig. 4.1). However, this specific seed source was selected for this study 

because it was shown to be more cold tolerant than others (Saielli et al. 2012; Saielli et 

al. 2014).  

To reduce moisture loss, provide nutrients and mimic forest floor conditions for 

seedling establishment, leaves of the four species were collected from mature trees in the 

area, including an American chestnut plantation located nearby. These leaves were air-

dried and chopped using an electronic leaf mulcher and applied to a depth of 2.2 cm per 

micro-catchment in fall 2013. During the first growing season (May-Sept 2013), 

seedlings were equally watered within micro-catchment when needed using a drip 

irrigation system (Fig. 4.2b). We permitted six months for seedling establishment before 

treatment imposition and recorded height, diameter, and mortality during this phase. 

Micro-catchments were weeded for undesirable plant species and all excised biomass 

was left on the soil surface. During seedling establishment, the quaking aspen seedlings 

were infected by the Shepherd’s crook fungus (Venturia tremulae) (Hunt 1978). To 

combat it, we applied copper sulfate fungicide (Hunt 1978) (Bonide Products Inc., 

Oriskany, NY, 7.00% basic copper sulfate) to all seedlings and micro-catchments at a 

rate of 35 mL L-1 every two weeks for 8 weeks during summer  2013.  
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Figure 4.2: Examples of study infrastructure: (a) diagram of the in-ground micro-catchment, (b) 
seedling spacing and drip tube irrigation (only used during seedling establishment phase) around 

the micro-catchment, (c) infrared heater arrangement along edge of micro-catchment, and (d) 
snow exclusion tarps installed over the micro-catchment during a snow storm, shown with plastic 

knee wall to moderate the effects of wind. 

Beginning in December 2013, the whole-plot treatments (control, heating, or 

snow exclusion) were imposed upon the micro-catchments. To produce the heating 

treatment, four Salamander ceramic infrared (IR) heater elements each housed within an 

ALEX (Aluminum Extrusion) reflector (Mor Electric Heating, Comstock Park, MI) and 

attached to vertical 5 cm diameter, aluminum conduit posts were positioned at the 

perimeter of micro-catchments. Modifying the methods of Kimball et al. (2008), heaters 

were placed ~1.5 m high, at ~45° (Fig. 4.2c) to obtain the most uniform heating across 

b) 

c) d) 

a) 
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the micro-catchment surface, as determined by preliminary testing using thermal imaging 

equipment. In order to prevent water infiltration into heaters, the seams on the heater 

covers were waterproofed with high temperature silicon and heaters were protected with 

covers fabricated from aluminum rain gutters (Fig. 4.2c) (Kimball et al. 2008). We also 

installed gutter covers to conduit posts following the same layout for both control and 

snow exclusion treatments to equalize the effects of shading across treatments. Using 

suspended (1.5 m) radiometers (SI-111 Infrared Radiometer, Apogee Instruments, 

Logan, UT) to assess micro-catchment temperature, we sought to raise the soil surface 

temperature of the heating treatment 2-4°C throughout the year relative to the control 

treatment. Radiometers were programmed to measure temperature every 30 seconds, 

although this was lengthened to 60 seconds in fall 2014. We paired a heating and control 

treatment micro-catchment for comparison and averaged data per 5-minute intervals.  

For the snow exclusion treatment, we suspended tarps over each snow exclusion 

micro-catchment just before a snow event began, and removed them immediately 

afterward (Fig. 4.2d).  The first 5 cm of snowfall was allowed to accrue to maintain 

albedo (Comerford et al. 2013). Following this, the snow exclusion treatment was 

maintained for the first 6 weeks of winter and then allowed to accumulate following 

previously established methods (Comerford et al. 2013). To moderate the effects of wind 

and attain more uniform heating within plots, we installed knee walls (0.6 m tall) around 

the perimeter of each micro-catchment using clear plastic sheeting and grade stakes for 

support (Fig. 4.2d); these were removed during the growing season. 
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Treatments were validated with thermocouples, radiometers, frost tubes, and 

snow stakes. Micro-catchments were equipped with in-ground soil thermocouples to 

monitor soil temperature at five depths: 0 cm (soil surface) and 5, 10, 30, and 60 cm 

below the soil surface. To monitor soil freezing, we installed a frost tube in each micro-

catchment. Frost tubes were made from flexible PVC tubes filled with methylene blue 

dye which changes color when frozen (Ricard et al. 1976). Frost tubes were inserted into 

rigid polyethylene casings (Ricard et al. 1976) to a soil depth of 0.6 m. We measured the 

length of frozen dye weekly from late December until completely thawed in spring. Snow 

depth was measured three times a week using a permanently fixed meter stick within 

each micro-catchment. Because they did not have an underground outlet, we could 

monitor water flux through assessment of standing water at the conical base of each 

micro-catchment (Fig. 4.2a). We used a wooden dowel inserted into the central pipe and 

measured the length of the saturated dowel surface as a proxy for water flux. Micro-

catchments were also pumped of excess water periodically during the freeze-free season 

to prevent the water table from saturating the sapling root zone.  

 

4.3.4 Measures of sapling physiology  

Sapling responses to treatments were assessed using a variety of measures, 

including: (1) diameter and height growth, (2) shoot winter injury damage, (3) mortality, 

(4) spring leaf expansion, (5) fall leaf senescence, (6) occurrence of visible disease or 

insect herbivory, and (7) above- and belowground biomass. Sapling heights were 
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measured at the higher of the tallest terminal leader (to nearest 0.5 cm) in late fall of 2013 

and 2014. At this same time, diameters were measured with calipers just above the root 

collar (to the nearest 0.5 mm). Values were averaged by species per micro-catchment. 

Height and diameter growth during the treatment period were computed by subtracting 

measurements taken in 2013 (i.e., before treatment began) from subsequent 

measurements. Winter injury was identified in 2014 and 2015 after leaf-out as visible 

dieback (dark-colored and sunken portions of the stems) on terminal shoots. Winter 

injury was quantified by measuring the length (cm) of damaged terminal shoots and 

expressed as a percentage of the total height for each seedling (percent shoot dieback) 

following previously established methods (Saielli et al. 2014).  

Twice per week from start of leaf expansion to near completion (day-of-year 

~100-160), we visually assessed spring bud break and leaf expansion (2014 and 2015) 

following the methods of West and Wein (1971). Buds and expanding leaves were 

visually rated by two researchers to expansion stage (0-5; Table S4.1) and combined with 

the percentage (to the nearest 10%) of foliar tissue on the sapling that had developed to 

that stage; for example, a score of 2.5 indicated that 50% of the buds were at stage 2. In 

spring 2014, each sapling per micro-catchment was scored for leaf expansion, but in 2015 

we pre-selected four saplings per species per micro-catchment (one per each cardinal 

quadrant) prior to bud break to reduce workload and account for uneven sapling mortality 

among the species. Leaf expansion scores were averaged by species per micro-catchment. 

We then fit a sigmoidal curve to each leaf expansion chronology by species and micro-
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catchment using JMP 10 (Cary, NC) to extract the slope (k), midpoint (LEm), and 

maximum value (Ymax) of the leaf expansion curve. During summer 2014, we also tallied 

the number of saplings per species- and micro-catchment with visible leaf discoloration 

or herbivory, and classified them into broad categories (insect herbivory, chlorosis, 

necrosis, and discoloration [spotting]). 

Fall phenology of leaf area was assessed in 2014 using digital photographs. For 

two months (day-of-year 254-317), we took four photographs per micro-catchment of 

the areal portions of saplings - one per cardinal direction. Successive photos were taken 

from the same point and angle. We used the software ImageJ (Rasband 2016) to quantify 

the pixels per image that represented distinct spectra: green, yellow, and red. Custom 

macros were coded to batch process the images using the ImageJ "color thresholder" with 

the hue, saturation, and brightness (HSB) color space. In this process, threshold ranges 

(HSB) were defined as: background (0-255, 0-255, 0-255), green (50-141, 0-255, 0-255) 

and yellow (30-49, 0-255, 110-255). There was no overlap between green and yellow. 

Defining red was more complicated because red to light brown leaves needed to be 

distinguished from plastic flagging, stems, leaf litter, and soil surfaces. The three-

dimensional LAB color space model was used where the threshold ranges were defined 

as: 122-209, 126-255, and 163-201 for the red class. There was minor overlap between 

yellow and red classes, but this was unavoidable considering the complex discrimination 

required for the red color class. The four images were then averaged by date per micro-

catchment. Green pixels were considered a proxy for photosynthetic foliage, yellow 
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pixels were considered recently senescing (yet potentially still productive) foliage, and 

red were considered senescing foliage. Together green and yellow foliage were combined 

to provide a metric of potentially active leaf area. Total leaf area was quantified per 

micro-catchment by summing green, yellow, and red pixels. Pixel sums were converted 

to percentage of total pixels, and then to an area basis (m2) per micro-catchment. 

	
4.3.5 Statistical analyses 

We performed all statistical analyses in the R programming environment 

(Version 3.3.2) (R Development Core Team 2016) using a split-plot ANOVA model, 

with repeated measures when time was a factor. Soil temperature, water levels, frost 

depth, spring leaf expansion, fall leaf area, insect and disease occurrences, height and 

diameter, mortality, and biomass values were transformed with a logarithm or tangent 

function prior to analysis to meet the assumptions of ANOVA. If significant, Tukey HSD 

post hoc tests were utilized to test for differences among factors. Lastly, we constructed 

orthogonal contrasts to examine if Northern species (paper birch, quaking aspen) differed 

significantly from Southern species (American chestnut, black cherry), as well as by 

rooting depth (deep: American chestnut, quaking aspen; shallow: paper birch, black 

cherry) (Fig. 4.1). Results were considered significant if P<0.1. 

 

4.4 Results 

4.4.1 Treatment effects on soil temperature, snowpack, and water flux 
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While we were aiming for a 2-4 °C temperature difference between the heating 

and control treatment micro-catchment pairs, this was hard to achieve with our system, 

particularly in the winter and spring (Fig. 4.3). In winter, the heating treatment tended to 

be <2°C, while in the spring, temperatures were often >4°C. Soil temperature varied by 

depth in soil and by time of year (Fig. S4.1), but none of the study factors (e.g., treatment 

or soil) were significant (Table S4.2). There was a trend for treatments to show the 

biggest soil temperature differences in the spring (Fig. S4.1).  

 

Figure 4.3: Mean difference in temperature (blue line, °C, ± minimum, maximum [smoothed by 
loess estimation]) between infrared heating and control treatment micro-catchment pairs over the 

study period: Winter 2013-2014 until early Fall 2015. Horizontal dotted lines indicate the 2-4°C 
increase compared to the control treatment we were attempting to meet.  

There was high variability in snow depth by time (both by day and year) (Fig. 

4.4). During winter 2013-2014 (day-of-year 360-100; hereafter, 2014), we found a 

significant effect of treatment on snow depth (P<0.0001), with the control having 

	

Soil type 

     Winter        Summer       Winter      Summer          Winter       Summer       Winter      Summer  
 2013-2014        2014        2014-2015    2015          2013-2014        2014      2014-2015      2015 

Season, year 
 
 2013-2014     2014      2014-2015    2015 
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significantly more snow then both snow exclusion and heating treatments (P=0.0004 and 

P<0.0001, respectively), and snow exclusion having more snow than heating (P<0.0001) 

(Fig. 4.4). There was also a significant soil type x day interaction on snow depth in both 

years (2014 P=0.005, 2015 P=0.057) (Table S4.2). Despite less variability in snow depth 

in winter 2014-2015 (day-of-year 360-100, hereafter, 2015), we detected a significant 

treatment effect (P=0.001), with control plots having deeper snow than heating 

(P=0.001). 

 
Figure 4.4: Mean snow depth (cm) by day-of-year per treatment (control, heating, and snow 

exclusion [snow excluded for first six weeks of winter]) and soil type (K: Kullman; M: Milton), 
over two witners (2013-2014 [2014] and 2014-2015 [2015]). During both winters, there was a 
significant effect of treatment on snow depth (2014 P<0.0001 and 2015 P=0.001), as well as a 

treatment x day effect in 2014 (P<0.0001). The following differences were found using Tukey HSD 
post hoc tests, with different letters denoting significant differences (P<0.1). 2014: Controla, 

heatingc, snow exclusionb; 2015: Controla, heatingb, snow exclusionab. There were no significant 
differences by soil type. 

 

 

Soil type 

Year 

365    40     80  364   40    80 
Day-of-year 
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Like snow depth, we measured higher variability in soil freezing depth in 2014 

compared to 2015. In 2014, we found a significant treatment x day interaction on the 

depth of soil freezing (P<0.0001) (Fig. 4.5, Table S4.2). However, in 2015 (a year of low 

natural snow accumulation: reference?), depth of soil freezing was indistinguishable 

between the treatments (Fig. 4.5). While there appeared to be differences in water depth 

at the base of the micro-catchments by treatment and soil type, differences were not 

significant, even when we assessed it directly prior to the pumping of micro-catchments 

(indicated by the synchronous dips in water levels) (Fig. 4.6). However, there was a trend 

for the heating treatment and soil M to have less water percolate to the base of the micro-

catchments, particularly in 2014.  

 

Figure 4.5: Mean depth of soil freezing (cm) by day-of-year per treatment (control, heating, and 
snow exclusion [snow excluded for first six weeks of winter]) and soil type (K: Kullman; M: 

Milton), over two winters (2013-2014 [2014] and 2014-2015 [2015]). There was a significant day x 
treatment interaction on the depth of surface frost (P<0.0001) in 2014, but no significant 

differences in 2015.  

 

Soil type  

Year 

360 25 60 95 360 25 60 95 
Day-of-year 
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Figure 4.6: Mean water depth (cm) measured at the bottom of each micro-catchment as a proxy 
for water flux by day-of-year. Data are aggregated by treatment (control, heating, and snow 

exclusion [snow excluded for first six weeks of winter]), soil type (K: Kullman; M: Milton) over 
two years (2014, 2015). Water depth assessment began mid 2014 (day-of-year ~200) after the 

treatments had begun. Synchronous declines in water depth indicate when the micro-catchments 
were pumped of excess water. There were no significant differences in water depth by any study 

factor.  

4.4.2 Factor effects on sapling leaf expansion progression 

During spring leaf expansion in 2014, we found significant day x treatment x soil 

type (P=0.001) and treatment x soil type x species (P=0.004) interactions on the 

progression of leaf expansion (Fig. 4.7a, Table S4.2). In 2015, we found a significant 

treatment x soil type interaction (P=0.04), and while not significant in a post hoc test, the 

trend was for snow exclusion treatment applied to soil K to have the lowest leaf 

expansion score.  

 

Soil  type 

Year 

365    40     80  364   40    80 
Day-of-year 

Day-of-year 
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When we fit a sigmoidal curve to the 2014 leaf expansion data, Ymax showed 

significant effects of treatment (P=0.10), soil type (P=0.08), species (P=0.07), and a 

three-way interaction of treatment x species x soil type (P=0.07) (Table S4.2). However, 

in post hoc tests, we did not detect significant differences among the treatments or species 

pairs; orthogonal contrasts also showed no differences by species groupings (rooting 

depth or native range). For soil type, we found that seedlings growing in soil M exhibited 

more advanced leaf expansion (Ymax; P=0.10) compared to those in soil K.  

The slope (k) of leaf expansion curves in 2014 differed significantly by species 

only (P=0.022), with quaking aspen exhibiting a significantly faster rate of leaf 

expansion compared to paper birch (P=0.0004) and black cherry (P=0.01) but not 

American chestnut. While paper birch was not significantly different from black cherry, 

both paper birch and black cherry had a shallower rate of progression than American 

chestnut (P<0.0001 and P=0.002, respectively). Using orthogonal contrasts, we detected 

species differences by rooting depth grouping (P<0.0001) – with deeper rooting species 

having faster leaf expansion – but not by species native range. 

For LEm (day of the midpoint of the leaf expansion curve) in 2014, we found 

significant effects of treatment (P=0.056), soil type (P=0.0008), species (P<0.0001) and 

a soil type x species interaction (P=0.06) (Table S4.2). Post hoc testing failed to detect 

differences among the treatment pairs, although the trend was for snow exclusion to have 

a later LEm than the other two treatments. In terms of soil type effects, K had a 

significantly later LEm than M (P=0.0008) and all species were significantly different 
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from each other (P<0.0001), except paper birch and black cherry. We did not detect 

differences based on native range or rooting depth. Perhaps because of more limited 

sampling, we did not find significant effects of any factor on Ymax, k, or LEm in 2015. 

 

  

Species 

Soil type 

 

(a) 2014 

Day-of-year 
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Figure 4.7: Mean spring leaf expansion progression scores (visual assessment of leaf expansion 
stage, see Table S1) by day-of-year. Results are displayed per treatment (control, heating, and 

snow exclusion [snow excluded for first six weeks of winter]), soil type (K: Kullman; M: Milton), 
and species (AC: American chestnut, BC: black cherry, PB: Paper birch, QA: quaking aspen), 

over two years: (a) 2014 and (b) 2015. There were significant day x treatment x soil type (P=0.001) 
and treatment x soil type x species (P=0.004) interactions on leaf expansion in 2014. There were 

significant effects of treatment (P=0.10), soil type (P=0.08), species (P=0.07), and a three-way 
interaction of treatment x species x soil type (P=0.07) on the maximum leaf expansion score (Ymax). 

In 2015, there was a significant treatment x soil type (P=0.04) interaction on leaf expansion 
progression score.   

 

Species 
Soil type 

 

(a) 2015 

Day-of-year 
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4.4.3 Factor effects on sapling biomass 

We failed to detect any influence of the treatment and soil factors on height or 

diameter growth after one year of treatment (Fig. S4.2). However, at peak foliar biomass 

(day-of-year 261; Fig. 4.8) we found that total leaf area differed significantly by 

treatment (P=0.029), with snow exclusion having less photosynthetically active leaf area 

than both control and heating treatments (P=0.018 and P=0.08, respectively). On this 

day, soil M had a significantly greater amount of senesced leaf area than soil K 

(P=0.0002). Overall, total leaf area (green+yellow+red spectra) measured during leaf 

senescence (fall 2014) varied significantly by treatment (P<0.0001), soil type 

(P<0.0001), day x soil type (P=0.00016), and day x treatment (P=0.09). In post hoc tests, 

soil M had significantly more total leaf area than K (P<0.0001) and heating had 

accumulated more than the snow exclusion treatment (P=0.002). There were no 

significant differences in amount of photosynthetically active (green, and green+yellow 

spectra) or senescing (yellow spectrum) leaf area. There was a difference, however, in 

the senesced (red spectrum) leaf area by a treatment x day interaction (P=0.058).  

To assess the longevity of active foliage by treatment and soil type, we looked at 

differences on the penultimate day of sampling (day-of-year 300). We avoided assessing 

the final sampling date as nearly all foliage had completely senesced (Fig. 4.8). On day 

300, there were significant differences in all leaf area spectral categories due to treatment 

(green+yellow P=0.0005; green P=0.009; yellow P=0.001; red P=0.001; and total 
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P=0.0001). Saplings growing in heating plots had significantly more leaf area of all four 

spectral categories compared to saplings growing on control (green+yellow P=0.0005, 

green P=0.007, yellow P=0.003, red P=0.005, and total P<0.0001) and snow exclusion 

(green+yellow P=0.007, green P=0.07, yellow P=0.004, red P=0.001, and total P=0.007) 

plots. However, leaf areas between the control and snow exclusion treatments were 

indistinguishable. We also found soil M had greater amounts of all spectral categories of 

leaf area (green+yellow, P<0.0001, green P<0.0001, red P=0.036, total P=0.007), except 

for yellow (P=0.7), than soil K.  
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Figure 4.8: Mean spectral composition of amount of fall leaf area assessed using digital 
photographs, by treatment (control, heating, snow exclusion [snow excluded for first six weeks of 

winter]), day-of-year, and soil type (Kullman (K) and Milton (M)). We found significant 
differences by treatment (P<0.0001), soil type (P<0.0001), day (P<0.0001), day x soil type 

(P=0.00016), and day x treatment (P=0.09) on total leaf area. The following differences were found 
using Tukey HSD post hoc tests, with different letters denoting significant differences (P<0.1). 

Controlab, heatinga, snow exclusionb; soil Ma, soil Kb . We also found a significant treatment x day 
(P=0.058) interaction for sensed leaf area (red).  
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At the end of the experiment (fall 2015), but prior to leaf senescence, we 

harvested all above and belowground plant tissues (stems, leaves, fine and coarse roots). 

We found that total foliar biomass differed significantly by species (P=0.001), as well as 

by treatment x species x and soil type (P=0.07) (Fig. 4.9, Table S4.2). However, none of 

the species pairs were significantly different from each other in post hoc tests and we did 

not detect differences by species groupings (native range or rooting depth). Similarly, we 

found a significant effect of species on coarse root biomass (P=0.01), but specific 

differences could not be distinguished using post hoc tests. Fine root biomass differed by 

treatment (P=0.088), with control plots having more fine roots than heating plots 

(P=0.068). Overall, stem biomass, total above- and belowground biomass, and the ratio 

of above- to belowground biomass (aboveground:belowground) did not significantly 

differ by any factor.  

We found a significant effect of soil type (P=0.023), species (P=0.0029), and a 

soil type x species interaction (P=0.037) on the root:shoot ratio (Fig. 4.9, Table S4.2). 

Soil K had a higher amount of root biomass relative to shoot biomass compared to soil 

M (P=0.06). By species, we found that American chestnut had a significantly lower 

root:shoot than the three other species (black cherry P=0.068; paper birch P=0.0002; and 

quaking aspen P=0.0008). Further, American chestnut growing in soil M had a 

significantly lower root:shoot than every other species and soil type combination 

(P<0.001). We found significant differences by species groupings (native range, 
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P>0.0001; rooting depth P=0.046), with Southern species and deep rooted species having 

a lower root:shoot biomass ratio.  

 

Figure 4.9: Mean biomass per type: coarse roots (>2 mm diameter), fine roots (<2 mm diameter), 
leaves, stems. Data is aggregated by species (AC: American chestnut, BC: black cherry, PB: Paper 

birch, QA: quaking aspen), soil type (Kullman (K) and Milton (M)) and treatment (control, 
heating, and snow exclusion [snow excluded for first six weeks of winter]). Boxplots shown with 

median (horizontal line within box), upper and lower whiskers (1.5*inter-quartile range; 75% and 
25% percentile, respectively), and outliers (points). Coarse root biomass differed by species 
(P=0.01), and fine root biomass differed by treatment (P=0.088; Tukey HSD different letters 

signify significant differences (P<0.1): controla, heatingb, snow exclusionab). Leaf biomass differed 
significantly by species (P=0.001), and treatment x species x soil interaction (P=0.07). There were 

no differences among study factors for stems.  
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4.4.4 Factor effects on sapling stress, injury, and mortality 

The number of saplings with visible insect herbivory varied significantly with 

species (P<0.0001), as well as by several complex interactions: treatment x soil type 

(P=0.015), treatment x species (P=0.0086), soil type x species (P=0.0088), and treatment 

x soil type x species (P=0.04) (data not shown). However, in post hoc tests we failed to 

detect significant differences among species pairs. Leaf necrosis showed a significant 

effect of species (P<0.0001) with American chestnut having a higher occurrence than 

paper birch and quaking aspen (P<0.0001 for both), but not black cherry. Paper birch had 

significantly more leaf necrosis than black cherry and quaking aspen (P<0.0001 for 

both), which had significantly more than black cherry (P=0.0048). Discoloration of 

leaves (visible as leaf spotting) was significantly different based on treatment (P=0.0007) 

and species (P<0.0001). While none of the treatment pairs were significantly different in 

post hoc tests, all the species pairs were significantly different from each other (aside 

from paper birch and black cherry) (P<0.0001). There were no significant effects of any 

factor on the number of saplings with chlorotic leaves. 

In both 2014 and 2015, we found significant effects of species on percentage of 

winter injury damage (P<0.001 and P=0.024, respectively) (Fig. 4.10). In 2014, both 

Southern species (American chestnut and black cherry) suffered significantly more 

winter injury than the Northern species (paper birch and quaking aspen) (P<0.0001 for 

all comparisons). Within the Northern species, quaking aspen experienced more winter 

injury than paper birch (P=0.006) and within the Southern species, winter injury to black 
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cherry and American chestnut was indistinguishable. We saw also significant differences 

in 2014 winter injury damage based on species rooting depth grouping, with deep-rooted 

species (e.g., American chestnut and quaking aspen) having more severe winter injury 

(P<0.0001).  

There were also significant interaction effects for our winter injury results: 

treatment x soil type (P=0.05), treatment x species (P=0.06), and soil type x species 

(P=0.0004) (Table S4.2), which together explained 36% of the total model variance. 

While the post hoc tests between treatment and soil type pairs was not significant for any 

comparison, there were significant pairwise comparisons between treatment and species 

as well as for soil type and species. While winter injury damage for the two Northern 

species was similar among treatments, for the two Southern species, treatment 

differences in winter injury showed contrasting responses. For example, American 

chestnut winter injury damage was most extreme in the heating and snow exclusion 

treatments, while for black cherry, it was most severe in the control treatment (Fig. 4.11).  
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Figure 4.10: Mean percent winter injury (measured as a ratio of injury to total height) per species, 
soil type (Kullman (K) and Milton (M)), and treatment (control, heating, and snow exclusion [snow 

excluded for first six weeks of winter]) assessed over two winters (2014, 2015). Species 
abbreviations: AC: American chestnut, BC: black cherry, PB: Paper birch, QA: quaking aspen. 
Boxplots shown with median (horizontal line within box), upper and lower whiskers (1.5*inter-

quartile range; 75% and 25% percentile, respectively), and outliers (points). 

For winter injury damage in 2015, American chestnut again suffered from 

elevated damage and had significantly more winter injury than the other species (black 

cherry P=0.00004; paper birch P=0.0009; and quaking aspen P=0.015) (Fig. 4.10). The 

other species did not significantly differ from each other. While we observed differences 

in winter injury, with deep-rooted species (e.g., American chestnut and quaking aspen) 

having more severe winter injury in 2015 (P<0.0001), this effect may be driven by the 

substantial winter injury suffered by American chestnut.   

 

 

 

 

Soil type 

Year 
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Figure 4.11: Mean percent winter injury in 2014 (measured as a ratio of injury to total height) per 
treatment (control, heating, and snow exclusion [here, “Snow ex” for brevity; snow excluded for 

first six weeks of winter]) and species (AC: American chestnut, BC: black cherry, PB: Paper birch, 
QA: quaking aspen) pair to examine interactions. Different letters above the treatment and species 

pairs indicate significant differences (Tukey HSD, P<0.01).  

Total mortality (2014 + 2015) did not vary significantly based on any factor. 

However, we did find that 2014 mortality was significantly related to treatment 

(P=0.059), as well as treatment x soil type (P=0.06), treatment x species (P=0.029), soil 

type x species (P=0.053), and treatment x soil type x species (P=0.014) interactions (Fig. 

4.12, Table S4.2). While the treatment pairs were not significantly different in a post hoc 

test, there was a trend for the snow exclusion treatment to suffer greater mortality rates 

than both control and heating, especially considering interactions with soil type. We 

found that among treatment and soil type pairs, soil K and snow exclusion had the highest 

mortality. By species, snow exclusion was most detrimental to quaking aspen, especially 

when paired with soil K (Fig. 4.12). We did not see any significant differences by species 

grouping (native range or rooting depth). In 2015, none of the factors significantly 

accounted for variations in mortality.  
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Figure 4.12: Mortality counts (n trees) by species, soil type (K:Kullman; M: Milton) treatment 
(control, heating, and snow exclusion [snow excluded for first six weeks of winter]), over two years 
(2014, 2015). Species abbreviations: AC: American chestnut, BC: black cherry, PB: Paper birch, 
QA: quaking aspen. Boxplots shown with median (horizontal line within box), upper and lower 

whiskers (1.5*inter-quartile range; 75% and 25% percentile, respectively), and outliers (points). 
Mortality in 2014 was significantly different among treatments (P=0.059), as were treatment x soil 
type (P=0.06), treatment x species (P=0.029), soil type x species (P=0.053), and treatment x soil type 

x and species (P=0.014) interactions. No significant differences were found for 2015.  

4.5 Discussion 

H1: Heating will lengthen the effective growing season, increase sapling C uptake and 

storage, which will be evident by earlier spring leaf expansion, delayed leaf senescence, 

and an increase in woody growth and biomass. 

While the heating treatment did not result in an earlier onset of spring leaf 

expansion (Fig. 4.7), there was a delaying effect on fall leaf senescence (Fig. 4.8). A lack 

of earlier onset of leaf expansion is likely related to the relative timing of soil thawing 

 

Soil type 

Year 
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(Campbell et al. 2005; Pregitzer et al. 2000) and accumulation of degree days 

(Richardson et al. 2006). All micro-catchments experienced soil thawing around the same 

day-of-year (~100), and leaf expansion slowly increased thereafter. While the soil in the 

heating treatment did thaw slightly sooner than the other treatments (Fig. 4.5), this 

difference must have been too subtle to alter treatment-related leaf expansion because all 

treatments showed a similar progression of leaf expansion (Fig. 4.7). Given the cold 

temperatures during both winters, perhaps even a 2-4°C increase in temperature in the 

heating treatment may not have been sufficient to increase the accumulation of degree 

days for earlier leaf expansion. For deciduous trees in the northeastern US, an earlier 

spring leaf expansion may be relatively riskier, compared to a delayed fall senescence, 

due to the potential for frost damage and resultant C losses (Saxe et al. 2001). 

Additionally, some evidence suggests that there may be physiological constraints on how 

early bud break and leaf expansion may occur – even when exposed to atypically mild 

temperatures (Groffman et al. 2012). Some of these contrary results may result from how 

winter temperature and spring bud break and leaf expansion interact; for example, 

elevated temperature during winter dormancy has been shown to delay leaf expansion 

the following spring for a number of deciduous species (Heide 2003; Westergaard and 

Eriksen 1997).  

While we failed to detect treatment effects on height and diameter growth (Fig. 

S4.2), the heating treatment contained significantly more leaf area than both the control 

and snow exclusion, and foliage remained greener longer (Fig. 4.8), suggesting that 
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heating increased overall C uptake and led to an extended photosynthetic period. Heating 

did not increase tree mortality (Fig. 4.12) or alter the amount of winter injury (Fig. 4.10).  

 

H2: Heating will more negatively affect species at the southern latitudinal limit of their 

range at the experimental site (Northern species) than species at the northern latitudinal 

limit of their range (Southern species). 

We detected no differences in height and diameter growth between Northern and 

Southern species (Fig. S4.2). Although heating decreased fine root biomass (Fig. 4.8), 

and we did note significant differences between root:shoot by species, we did not find 

differences based on native range limits; these results were likely driven by the low 

root:shoot for American chestnut, particularly when grown in combination with soil M. 

Additionally, we found no differences in spring leaf expansion between Southern 

compared to the Northern species. Indeed, species grouping by characteristic rooting 

depth appeared to be a more influential driver on the timing and rate of spring leaf 

expansion progression than native latitudinal range limits. Overall, the Southern species 

had a lower root:shoot than Northern species irrespective of treatment; we detected 

significantly greater winter injury damage (2014) for Southern compared to Northern 

species (Fig. 4.10). We also observed high winter injury damage to American chestnut 

saplings. The American chestnut seed source we used was previously noted to be cold 

hardy to Vermont winters (Saielli et al. 2012; Saielli et al. 2014). However, it was not 

cold tolerant enough for the two winters evaluated here. By chance, extreme cold was 
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prevalent during Jan-Feb 2015 (Fig. S4.3), which likely complicated the physiological 

response to imposed treatments. Nonetheless, there was generally less winter injury in 

2015 than 2014, perhaps because there was greater treatment separation and saplings 

were younger and more vulnerable to injury or because snow depth was much more 

variable in 2014.  

 

H3 Heating will alter water budgets by increasing evapotranspiration, evident via 

reduced water flux, increased root to shoot biomass ratio (root:shoot), and amplified 

negative effects to characteristically shallow-rooted species. 

Shallow rooted species did not show significant detrimental effects of heating on 

diameter and height growth (Fig. S4.2), nor did they suffer more mortality due to heating 

(Fig. 4.12). Yet, we did observe a divergent leaf expansion progression associated with 

rooting type. The two deeper rooted species displayed a sigmoidal curve-shaped 

progression of bud break, while the two shallower rooted species showed a more 

consistent and gradual progression (Fig. 4.7). However, this did not vary by treatment. 

Soil temperature and timing of thawing varied by depth (Fig. S4.1). Therefore, it is 

possible the later initiation of leaf expansion by the two characteristically deeper rooting 

species, American chestnut and quaking aspen, was related to frozen soils at deeper 

depths which may have limited water and nutrient uptake (Pregitzer et al. 2000). Another 

possibility is that in early spring, deeper rooted species divert more C towards root 

growth than to above ground processes like leaf expansion. While we found that 
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root:shoot did not vary by treatment, it was significantly related to rooting depth, with 

shallower-rooted species diverting more C allocation to root growth. Interestingly, at the 

termination of the study we also found that the heating treatment resulted in an overall 

reduction of fine root biomass (Fig. 4.9), aligning with other findings (Way and Oren 

2010). This conclusion not only discredits our hypothesis that heating will result in more 

root growth, but poses the possibility of reduced water uptake and drought tolerance with 

warmer temperatures (Way and Oren 2010).   

 

H4: Snow exclusion will cause deeper soil freezing, evident as a delayed onset of spring 

bud break, lower woody growth, and decreased fine root biomass.  

We measured deeper soil freezing in 2014 for the snow exclusion treatment (Fig. 

4.5). We found that the heating treatment, which reduced the snow depth more than the 

snow exclusion treatment, had more variability in freezing depth than snow exclusion 

(Fig. 4.5). In both years, but particularly in 2014, the heating treatment experienced large 

fluctuations in frost depth (Fig. 4.5). The snow exclusion treatment did not result in 

significantly different height and diameter growth for any of the species (Fig. S4.2), even 

for shallow-rooted species. Yet, we did note that snow exclusion delayed the progression 

of leaf expansion as predicted (Fig. 4.7). Consequently, saplings in the snow exclusion 

treatment had significantly less overall biomass (Fig. 4.9). We did find a trend toward 

greater mortality with snow exclusion treatment, particularly for quaking aspen (Fig. 

4.12), contrary to other findings of positive growth responses of western quaking aspen 
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populations with decreased snowpack (Brown et al. 2006). However, in other parts of its 

native range, there have been reports of widespread quaking aspen decline and mortality 

(Michaelian et al. 2011; Worrall et al. 2008) suspected to be due to extreme temperature 

and drought; this topic may warrant further study in the northeastern US. While the snow 

exclusion treatment did increase the depth and duration of soil frost, the heating treatment 

experienced a greater number of freeze-thaw cycles, particularly in 2014 (Fig. 4.5). 

Indeed, the heating treatment was associated with a reduction in fine root biomass (Fig. 

4.9), possibly due to the increased frequency of freeze-thaw cycles (Fig. 4.5), which has 

been shown to cause root damage and mortality (Comerford et al. 2013). 

Snow exclusion was particularly consequential to quaking aspen. This was not 

related to changes in shoot winter injury (Fig. 4.10, 4.11), although spring leaf expansion 

and overall mortality was disproportionately affected by snow exclusion (Fig. 4.7, 4.12). 

It is understood that changes in winter snowpack and associated soil freezing can impact 

spring phenology (Groffman et al. 2012), but how this might be associated with increased 

mortality is unclear. The missing link here could be freeze-induced root damage (e.g., 

Comerford et al. 2013), but incipient root damage was not assessed in our study. 

Whatever the mechanism, our findings raise the interesting possibility that deep-rooted 

Northern species that typically grow in locations with a steady winter snowpack may be 

surprisingly susceptible to even temporary (here six weeks of snow exclusion) alterations 

of snow depth protection. 
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In addition, this experiment clearly demonstrates the year-to-year variability in 

local weather conditions that can affect outcomes. Both 2014 and 2015 were cold winters 

in Vermont (Fig. S4.3). Winter 2015 was cold without typical freeze-thaw cycles. Thus, 

all treatments had soil freezing that was indistinguishable and deep (Fig. 4.5); in some 

micro-catchments, freezing occurred to the maximum depth of our measurement 

capability (0.6 m). Thus, our snow exclusion treatment did not result in greater soil 

freezing depth in 2015 as it did in 2014.  

 

H5: Soil type, specifically nutrient content, will amplify the effects of both heating and 

snow exclusion. 

The two soils, K and M, differed in particle size as well as cation concentration 

(Table 4.1), and we detected a large effect of soil type on water flux through the micro-

catchments, with the coarser soil (K) tending to retain less water (Fig. 4.6), particularly 

in 2014. Soil type was associated with differences in many of the sapling-based measures 

we assessed. For example, spring leaf expansion and fall senescence varied with soil type 

(Fig. 4.7, 4.8). Generally, soil M (the soil with lower Ca) was more favorable for the 

saplings. We found that plants growing on soil M proceeded more quickly through spring 

leaf expansion stages than those on K, and had a larger total leaf area (Fig. 4.8). These 

results may be related to greater water retention in this soil type (adequate leaf turgor 

pressures drive leaf expansion), rather than its nutrient content. Soil type also had a strong 

effect on biomass, especially root:shoot, with K having a higher ratio than M (Fig. 4.9). 
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Thus, saplings growing in soil K directed more C to root biomass, rather than shoot 

growth, likely due to the lower water holding capacity of this soil (Fig. 4.6). Additionally, 

we detected higher overall biomass for saplings growing in soil M, including a greater 

amount of photosynthetic biomass (Fig. 4.8). However, both soils had similar total 

sapling biomass. We also observed higher mortality (Fig. 4.12) and other signs of stress 

(e.g., herbivory) on soil K.  

 

4.6 Conclusions 

Overall, our findings highlight the basic importance of biological (e.g., associated 

with species) and ecological (e.g., associated with soil type) factors in affecting sapling 

performance independent of climate treatment. Despite this predominance, climate 

treatment was associated with differences in leaf expansion, fall leaf area, fine root 

biomass, leaf spotting, and sapling mortality in 2014. Treatments generally had a greater 

impact on spring and fall measures than growing season or winter measures. However, 

the apparently greater impact on spring and fall physiology may reflect the difficulty of 

getting treatment impositions that can overcome winter and summer temperature 

extremes. This may be particularly evident for the winter warming treatment. Here our 

2-4°C increase in temperature appeared insufficient to overcome the dominating effects 

of the unusually low ambient air temperatures that prevailed over the course of this study 

(Fig. S4.3). Consequently, American chestnut (a species with limited cold hardiness; 

Gurney et al. 2013) experienced significant winter injury despite supplemental heating. 
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And this may also explain the high mortality suffered by quaking aspen on the snow 

exclusion treatment. Both outcomes complicate predictions of species response to 

changes in climate.  

Perhaps most importantly, our work clearly demonstrated that the complex 

interaction of site and species characteristics with climate can be more important than 

climate factors alone. Whereas we found direct climate treatment impacts on five sapling 

performance parameters, we detected 14 interactions of climate treatment with species 

and/or soil factors. In many cases, these interactions explained >30% of the model 

variance. As such, our results suggest that a range of responses in tree performance (some 

perhaps even contradictory) are likely and may depend on myriad influences, including 

species’ physiology and site factors. Indeed, this illustrates the problematic issue of 

inferring species responses based on the examination of just a few measurement variables 

(e.g., climate variables alone). In a forested setting, site characteristics may moderate or 

exacerbate tree responses to climate change, with certain tree species showing favorable 

responses, while others may not, depending on tree physiology, water and nutrient 

availability, and localized weather. While our research has addressed some fundamental 

questions about species response to potential climate change scenarios, it has also raised 

many additional questions, and points to the complex interplay of biological and 

environmental factors that influence species performance in a changing environment. 
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4.9 Supplementary Materials 

Table S4.1: Bud break and leaf expansion progression score and descriptions of visual identifiers 
(West and Wein 1971).  

	 	
Leaf expansion score Description 
0 Bud dormant, no sign of breaking 
1 Bud is swollen or displays green tip 
2 Bud green, but tight or separating slightly, no leaves unfolding 
3 Bud expanding, leaves unfolding from bud 
4 Internodes/petioles visible, leaves not enlarged 
5 Internodes/petioles visible, leaves enlarged 
  



 

 

Table S4.2: Significance values (P<F) from ANOVA models listed by response variable, factor and interactions among factors. Bold text 
indicates P<0.1 and bold, red text indicates P<0.05. Factor abbreviations are as follows. tmt: treatment (control, heating, snow exclusion 

[snow excluded for the first six weeks of winter]); day: day-of-year; soil: soil type (K: Kullman; M: Milton); sp: species (American chestnut, 
black cherry, paper birch, quaking aspen). 

Response variable Year Trt Soil Sp 
Day x 

trt 
Day x 

soil 
Day x 

sp 
Trt x 
soil 

Trt x 
sp 

Sp x 
soil 

Day x 
trt x 
soil 

Day x 
trt x 
sp 

Day x 
soil x 

sp 

Trt x 
soil x 

sp 

Day x 
trt x 
soil x 

sp 
Soil temperature All 0.555 0.124 0 0.470 0.197  0.539   0.554     

Snow depth 2014 0.000 0.449  0.440 0.005  0.881   0.949     
2015 0.002 0.910  0.985 0.057  0.927   0.997     

Soil frost depth  2014 0.262 0.612  0.000 0.994  0.935   0.940     
2015 0.143 0.275  0.983 0.955  0.234   0.904     

Water flux  2014 0.141 0.399  0.188 0.340  0.685   0.384     
2015 0.487 0.715  0.335 0.376  0.828   0.581     

Leaf expansion score 2014 0.622 0.911 0.152 0.547 0.362 0.146 0.772 0.353 0.354 0.001 0.205 0.152 0.004 0.861 
2015 0.823 0.714 0.109 0.357 0.961 0.281 0.044 0.201 0.736 0.229 0.163 0.980 0.114 0.523 

Max. leaf expansion 
(Y max) 

2014 0.097 0.076 0.073    0.460 0.181 0.390    0.069  
2015 0.347 0.401 0.188    0.449 0.383 0.514    0.587  

Slope of leaf 
expansion curve (k) 

2014 0.923 0.095 0.022    0.633 0.370 0.749    0.642  
2015 0.788 0.422 0.366    0.472 0.678 0.201    0.827  

Midpoint of leaf 
expansion curve 
(LEm) 

2014 0.383 0.346 0.835    0.470 0.548 0.500    0.531  

2015 0.869 0.800 0.148    0.748 0.831 0.109    0.442  

Leaf are: green + 
yellow  2014 0.917 0.971  0.302 0.390  0.822   0.260     

Leaf area: yellow 2014 0.418 0.349  0.647 0.404  0.347   0.465     
Leaf area: green 2014 0.554 0.727  0.393 0.541  0.379   0.600     
Leaf area: red 2014 0.554 0.137  0.058 0.132  0.213   0.877     
Leaf area: total 2014 0.000 0.000  0.090 0.000  0.367   0.953     
Biomass: coarse 
roots  2015 0.651 0.203 0.011    0.781 0.294 0.420    0.736  

Biomass: fine roots  2015 0.088 0.316 0.732    0.827 0.505 0.591    0.375  
Biomass: coarse:fine 2015 0.484 0.368 0.989    0.586 0.632 0.569    0.752  
Biomass: leaves 2015 0.465 0.600 0.001    0.161 0.637 0.482    0.072  
Biomass: stems 2015 0.627 0.556 0.291    0.537 0.442 0.249    0.280  
Biomass: 
roots:shoots 2015 0.486 0.023 0.003    0.345 0.237 0.037    0.860  

Biomass: 
aboveground 2015 0.752 0.858 0.929    0.489 0.671 0.205    0.277  

Biomass: 
belowground 2015 0.330 0.229 0.970    0.676 0.642 0.678    0.587  

Biomass: 
above:below 2015 0.504 0.119 0.996    0.663 0.406 0.334    0.601  
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Biomass: total  2015 0.246 0.410 0.892    0.529 0.342 0.355    0.573  

Winter injury 2014 0.214 0.136 0.000    0.066 0.072 0.020    0.034  
2015 0.362 0.933 0.000    0.076 0.607 0.731    0.720  

Mortality 2014 0.059 0.109 0.946    0.063 0.029 0.053    0.014  
2015 0.173 0.410 0.867    0.814 0.755 0.511    0.652  

Diameter 2014 0.637 0.173 0.877    0.335 0.880 0.521    0.705  
Height 2014 0.252 0.062 0.518    0.651 0.455 0.758    0.208  
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Figure S4.1: Mean soil temperature (°C) during the experimental period (Winter 2013-2014 to 
early Fall 2015) recorded by thermocouples placed at five soil depths: 0 (soils surface), and 5, 10, 

30, and 60 cm below the soil surface. Temperatures are shown by treatment (control, heating, snow 
exclusion [snow excluded for the first six weeks of winter]) and soil type (K: Kullman; M: Milton). 

Values were smoothed with a loess function. 

 

 
 
 
 

Therm
ocouple soil depth (cm

) 
Soil type 

       Winter       Summer      Winter      Summer          Winter       Summer     Winter      Summer  
   2013-2014      2014      2014-2015       2015          2013-2014      2014     2014-2015      2015 

Season, year 
 
 2013-2014     2014      2014-2015    2015 



 

 

168 

 

Figure S4.2: Mean height (cm) and diameter (cm) growth during treatment period by species, 
treatment (control, heating, snow exclusion), and soil type (K: Kullman; M: Milton) in 2014. 

Differences were not significant. Species abbreviations: AC: American chestnut, BC: black cherry, 
PB: paper birch, QA: quaking aspen. Boxplots shown with median (horizontal line within box), 
upper and lower whiskers (1.5*inter-quartile range; 75% and 25% percentile, respectively), and 

outliers (points). 

Figure S4.3: Maximum (max) and minimum (min, grey line) temperature (T; °C) and mean 
January minimum temperature (1950-2015; dashed horizontal grey line) for Burlington 

International Airport (S. Burlington, VT; elevation 100 m; ~ 5.9 km from study site) . (NOAA 
National Weather Service 2017) 
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