
University of Vermont
ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2017

A New Evolutionary Algorithm For Mining Noisy,
Epistatic, Geospatial Survey Data Associated With
Chagas Disease
John P. Hanley
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

Part of the Environmental Engineering Commons, and the Epidemiology Commons

This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for
inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact
donna.omalley@uvm.edu.

Recommended Citation
Hanley, John P., "A New Evolutionary Algorithm For Mining Noisy, Epistatic, Geospatial Survey Data Associated With Chagas
Disease" (2017). Graduate College Dissertations and Theses. 727.
https://scholarworks.uvm.edu/graddis/727

https://scholarworks.uvm.edu?utm_source=scholarworks.uvm.edu%2Fgraddis%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/etds?utm_source=scholarworks.uvm.edu%2Fgraddis%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=scholarworks.uvm.edu%2Fgraddis%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=scholarworks.uvm.edu%2Fgraddis%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/727?utm_source=scholarworks.uvm.edu%2Fgraddis%2F727&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu

A NEW EVOLUTIONARY ALGORITHM FOR MINING NOISY, EPISTATIC,

GEOSPATIAL SURVEY DATA ASSOCIATED WITH CHAGAS DISEASE

A Dissertation Presented

by

John P. Hanley

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

Specializing in Civil and Environmental Engineering

May, 2017

Defense Date: March 24, 2017

Dissertation Examination Committee:

Donna M. Rizzo, Ph.D., Advisor

Frances E. Carr, Ph.D., Chairperson

Eric M. Hernandez, Ph.D.

Arne Bomblies, Ph.D.

Lori Stevens, Ph.D.

Cynthia J. Forehand, Ph.D., Dean of the Graduate College

ABSTRACT

The scientific community is just beginning to understand some of the profound

affects that feature interactions and heterogeneity have on natural systems. Despite the

belief that these nonlinear and heterogeneous interactions exist across numerous real-world

systems (e.g., from the development of personalized drug therapies to market predictions

of consumer behaviors), the tools for analysis have not kept pace. This research was

motivated by the desire to mine data from large socioeconomic surveys aimed at

identifying the drivers of household infestation by a Triatomine insect that transmits the

life-threatening Chagas disease. To decrease the risk of transmission, our colleagues at the

laboratory of applied entomology and parasitology have implemented mitigation strategies

(known as Ecohealth interventions); however, limited resources necessitate the search for

better risk models. Mining these complex Chagas survey data for potential predictive

features is challenging due to imbalanced class outcomes, missing data, heterogeneity, and

the non-independence of some features.

We develop an evolutionary algorithm (EA) to identify feature interactions in “Big

Datasets” with desired categorical outcomes (e.g., disease or infestation). The method is

non-parametric and uses the hypergeometric PMF as a fitness function to tackle challenges

associated with using p-values in Big Data (e.g., p-values decrease inversely with the size

of the dataset). To demonstrate the EA effectiveness, we first test the algorithm on three

benchmark datasets. These include two classic Boolean classifier problems: (1) the

‘majority-on’ problem and (2) the multiplexer problem, as well as (3) a simulated single

nucleotide polymorphism (SNP) disease dataset. Next, we apply the EA to real-world

Chagas Disease survey data and successfully archived numerous high-order feature

interactions associated with infestation that would not have been discovered using

traditional statistics. These feature interactions are also explored using network analysis.

The spatial autocorrelation of the genetic data (SNPs of Triatoma dimidiata) was captured

using geostatistics. Specifically, a modified semivariogram analysis was performed to

characterize the SNP data and help elucidate the movement of the vector within two

villages. For both villages, the SNP information showed strong spatial autocorrelation

albeit with different geostatistical characteristics (sills, ranges, and nuggets). These metrics

were leveraged to create risk maps that suggest the more forested village had a sylvatic

source of infestation, while the other village had a domestic/peridomestic source. This

initial exploration into using Big Data to analyze disease risk shows that novel and

modified existing statistical tools can improve the assessment of risk on a fine-scale.

ii

CITATIONS

Material from this dissertation has been published in the following form:

Hanley, John P., Erin Jackson, Leslie A. Morrissey, Donna M. Rizzo, Brian L. Sprague,

Indra Neil Sarkar, and Frances E. Carr. (2015). Geospatial and Temporal Analysis of

Thyroid Cancer Incidence in a Rural Population. Thyroid, 25 (7), 812–822.

doi:10.1089/thy.2015.0039.

AND

Material from this dissertation has been submitted for publication to Evolutionary

Computation on April 7, 2017 in the following form:

Hanley, John P., Donna M. Rizzo, Jeffrey S. Buzas, and Margaret J. Eppstein. A Tandem

Evolutionary Algorithm for Identifying Optimal Association Rules from Complex Data.

Evolutionary Computation.

iii

ACKNOWLEDGEMENTS

I would like to thank the Department of Civil and Environmental Engineering

and the National Science Foundation Grant DBC-EID-1216193 for their financial

support. I am grateful to my advisor Donna Rizzo for her guidance and tutelage

throughout my time at UVM. Also, I would like to thank my collaborators on the myriad

of projects I have worked on. First off, the principal investigators of the NSF grant

Carlota Monroy, Sergio Melgar, Patricia Dorn, Lori Stevens, Sara Helms Cahan, Leslie

Morrissey, and Donna Rizzo. My collaborators at the El Laboratorio de Entomología

Aplicada y Parasitología at La Universidad San Carlos de Guatemala, Ciudad de

Guatemala, Guatemala: Antonieta Rodas, Raquel Asuncion Lima, Gaby Rodas,

Elizabeth Solórzano, Dulce Bustamante, Andrea Solares, and Salvador Castellanos. Also

the Ministerio de Salud Pública de Guatemala personnel who were instrumental to our

field work. Thanks to my fellow UVM graduate student on the NSF grant Lucia Orantes

and her mother Olga Orantes for all her support in Guatemala. I would like to thank my

collaborators on for my thyroid research not already mentioned; Erin Jackson, Brian L.

Sprague, Indra Neil Sarkar, and Frances E. Carr. Also, my collaborators in developing

the evolutionary algorithm Maggie Eppstein and Jeff Buzas. My officemates Lucas

Howard and Scott Hamshaw. My Middlebury College advisor Steve Trombulak as well

as Jon Isham and Pete Ryan. Finally and most importantly, I would like to thank the

support of friends and family especially my mom, Buck, and Laura Obregon.

iv

TABLE OF CONTENTS

Page

CITATIONS .. ii

ACKNOWLEDGEMENTS .. iii

CHAPTER 1: INTRODUCTION .. 1

1.1 Summary of Research Contributions .. 1

1.2 Chagas Disease ... 4

1.3 Evolutionary Algorithm Background .. 10

1.4 Spatial Autocorrelation in Disease-Related Studies 12

1.5 Thyroid Cancer ... 14

CHAPTER 2: A Tandem Evolutionary Algorithm for Identifying Optimal

Association Rules from Complex Data ... 18

2.1 Introduction ... 18

2.2 Proposed Evolutionary Algorithm .. 22

2.2.1 Fitness Function ... 23

2.2.2 Population Structure... 24

2.2.3 Representation of Conjunctive Clauses (CC’s) 27

2.2.4 Representation of Clauses in Disjunctive Normal Form (DNF’s) 30

2.3 Test Problem Characteristics .. 32

2.3.1 The Majority-On Problem.. 33

2.3.2 The Multiplexer Problem ... 34

2.3.3 Synthetic Genome Problem ... 36

2.3.4 Experimental Design .. 38

2.4 Results ... 39

2.4.1 Results on Binary Benchmark Problems ... 40

2.4.2 Results on Synthetic Genome Problem.. 45

2.5 Discussion .. 46

2.5.1 Binary Benchmark Problems ... 47

2.5.2 Synthetic Genome Problem ... 50

2.5.3 Fitness Landscape Analysis ... 51

2.5.4 Hypergeometric PMF as a Fitness Metric ... 54

2.5.5 CCEA and DNFEA .. 56

v

2.5.6 Real-World Application ... 57

2.5.7 Summary .. 59

CHAPTER 3: An Evolutionary Algorithm Approach to Identifying Complex

Interactions Associated With the infestation of Triatoma dimidiata, a

vector of Chagas Disease .. 61

3.1 Introduction and Significance ... 61

3.2 Background ... 65

3.2.1 Background on Chagas Disease ... 65

3.2.2 Challenges Associated with Modeling/Analyzing Chagas Disease..... 68

3.3 Methods and Study Sites ... 69

3.3.1 Study Sites of Triatoma dimidiata Infestation 69

3.3.2 Combinatorial Datasets .. 72

3.3.3 Simulated SNP Disease Dataset... 73

3.3.4 Conjunctive Clause Evolutionary Algorithm (CCEA) 74

3.3.5 Feature and Feature Pair Importance (FI and FPI) 78

3.3.6 Feature Sensitivity ... 79

3.4 Conjunctive Clause Evolutionary Algorithm (CCEA) Results 80

3.4.1 Results of the Simulated SNP Disease Dataset containing all 20

Features ... 80

3.4.2 Results on El Chaperno, El Carrizal, and the Combined Datasets Using

all 64 Features ... 88

3.4.3 Example of Conjunctive Clauses Archived by the CCEA................. 103

3.5 Discussion ... 108

3.6 Supplementary Tables ... 111

CHAPTER 4: Using next generation sequencing to determine the range of spatial

autocorrelation of Triatoma dimidiata .. 114

4.1 Introduction ... 114

4.1.1 Chagas Disease Background .. 114

4.1.2 Background on a Genetic Geostatistical Method for Spatial

Autocorrelation ... 116

4.1.3 Background on Spatial Autocorrelation in Human SNP Data 117

4.1.4 Genetics of Triatoma dimidiata ... 117

4.1.5 Summary of Work.. 118

4.2 Study Sites and Methods ... 119

vi

4.2.1 Study Sites and Genetic Data ... 119

4.2.2 Geostatistical methodology .. 125

4.3 Results ... 129

4.3.1 Results Level 1 Filtering .. 129

4.3.2 Results Level 2 Filtering .. 134

4.3.3 Results – Risk Maps for El Chaperno and El Carrizal 138

4.4 Discussion ... 142

4.5 Conclusion .. 146

4.6 Supplementary Figures ... 147

CHAPTER 5: Geospatial and Temporal Analysis of Thyroid Cancer Incidence in

a Rural Population ... 149

5.1 Introduction ... 149

5.2 Methods... 152

5.2.1 Data Sources .. 152

5.2.2 Statistical Analyses .. 153

5.2.3 Trend Analyses .. 155

5.2.4 Socioeconomic Analyses ... 155

5.2.5 Geospatial Analyses ... 155

5.3 Results ... 158

5.3.1 Incidence Trends .. 158

5.3.2 Trends by Sex and Age .. 159

5.3.3 Incidence by Tumor Size and Type ... 163

5.3.4 Geospatial Distribution of Thyroid Cancer Incidence 166

5.4 Discussion ... 170

5.5 Supplementary Figures ... 174

CHAPTER 6: Conclusion .. 176

CHAPTER 7: Literature Cited ... 179

CHAPTER 8: Appendix .. 198

8.1 Matlab® Code ... 198

8.1.1 Convert Data to Ones and Zeros (Data2Binary) 198

8.1.2 Conjunctive Clause Evolutionary Algorithm (CCEA) 204

8.1.3 Disjunctive Normal Form EA (DNFEA) ... 290

8.1.4 Smouse and Peakall (1999) Genetic Distance (GeneticDistance) 359

vii

8.1.5 Box Plots (boxplotJH) ... 364

viii

LIST OF TABLES

Table Page

Table 2.1: Challenging aspects of test problem used in this work; Majority-On

(MO), Multiplexer (MP), 4 variants of MP, and the Synthetic Genome

problem. .. 33

Table 2.2: Example of the generative rule set for a 6-bit multiplexer problem.

Each feature vector X is 6 bits long, with the first b = 2 bits

representing the address bits A, which are interpreted as a 2-digit binary

number (equivalent to decimal 0, 1, 2, or 3) that is used as an index into

the the next 2b data bits D. The data bit at this index represents the class

outcome, whereas all other data bits are irrelevant to the classifier (wild

cards). .. 36

Table 2.3: The four generative rules that are designed to have a statistically

meaningful association with class 1 (disease) in the synthetic genome

problem. In each of the 4 rules, only two loci ∈ 𝑭𝟏, 𝑭𝟐, 𝑭𝟑, 𝑭𝟒 out of

20 are not wild cards. True positive rate, coverage, and fitness (by Eq.

(2.1)) of each of these true generative rules for class 1 (disease) are also

shown. ... 37

Table 2.4: Confusion matrix that results when predicting class 1 (disease) from the

1,600 sample noisy synthetic genome dataset, using the optimal

generative rule set for class 1. Samples that are not predicted to be class

1 are predicted to be class 0 (no disease). ... 38

Table 2.5: Control parameters on the CCEA and DNFEA for the test problems.

TIT stands for Ternary Digit, and EF stands for Extraneous Features.

Genome refers to the Synthetic Genome Problem. 39

Table 2.6: CCEA and LCS results on the test problems. TIT stands for Ternary

Digit, and EF stands for Extraneous Features. Genome refers to the

Synthetic Genome Problem. For the CCEA results, we report the

median number of evaluations out of 30 repetitions. For the LCS

results, # instances refers to the number of instances used before the

system achieved 100% accuracy. For the 6-bit multiplexer problem

with 14 EF we report the median # evaluations for the base case, but we

note that the runs with imbalanced classes, noise in the class data, and

missing data had very similar median values. .. 40

Table 2.7: DNFEA results on the test problems. TIT stands for ternary digit, and

EF stands for Extraneous Features. Genome refers to the Synthetic

Genome Problem. We report the median number of DNFs in the search

space and the median number of evaluations out of 30 repetitions. For

ix

the 6-bit multiplexer problem with 14 EF we report the # of evaluations

for the base case; but we note that the runs with imbalanced classes,

noise in the class data, or missing data had very similar median values. 40

Table 2.8: Characteristics for Majority-On (MO) and Multiplexer (MP)

benchmark problems. .. 49

Table 3.1: Possible number of models comprised of 2nd- to 5th-order feature

interactions for the El Chaperno, El Carrizal, and the combined

datasets. ... 73

Table 3.2: Accuracy, coverage, and hypergeometric PMF fitness (last 3 columns)

associated with the four true signals of the Urbanowicz and Moore

(2010) benchmark SNP disease dataset. The dataset is balanced – half

of 1,600 input feature vectors are associated with disease; half are not. 74

Table 3.3: Conjunctive Clause Evolutionary Algorithm (CCEA) parameter

settings. ... 78

Table 3.4: Summary characteristics for El Chaperno, El Carrizal, and the two

towns combined. ... 89

Table 3.5: Features selected using feature-pair importance and feature sensitivity

for the El Chaperno, El Carrizal, and combined datasets. 96

Table 3.S1: The first column is the feature number for the 64 features that are

input into the CCEA. The second column is the survey question

associated with each feature. ... 111

Table 3.S2: Table A contains the feature importance (FI) values for a dataset with

eight features and 10 observations with a target outcome (e.g., infested

house). Table B contains the same FI values that are present in Table A,

however, each feature’s FI is independently sorted. The 90th percentile

FI values are highlighted in red... 113

Table 4.1: The characteristics of the El Chaperno and El Carrizal datasets

collected during the periods of October 1-3, 2012 in El Chaperno and

February 4-5, 2013 in El Carrizal. .. 122

Table 5.1: Age-adjusted incidence of thyroid cancer per 100,000 people for the

United States (U.S.) and Vermont (VT), 1994-2007. Annual percent

changes were significant at p < 0.001 (df = 12) or p < 0.05 (df = 12) as

indicated. ... 158

Table 5.2: Thyroid cancer histological type varies by age and sex. 165

x

LIST OF FIGURES

Figure Page

Figure 2.1: Flowchart for the proposed tandem ALPS-based EAs. For each target

class k, we use the CCEA to evolve an archive of conjunctive clauses

(CCs) that have a statistically significant probability of being associated

with outcome class k; the CCs can be of arbitrary order, thus

representing epistatic interactions. The DNFEA then evolves

disjunctions of these archived CCs (after optional post-processing of the

CC archive) and archives the resulting probabilistically significant

disjunctive normal forms (DNFs); the DNFs can be of arbitrary order,

thus representing heterogeneity. Further postprocessing of the archived

DNFs seeks potentially causal rule set(s), in the form of DNFs that are

predictive of outcome class k. For benchmark problems, we seek the

single known optimal generative rule set. ... 25

Figure 2.2: Efficiency of the algorithm on the binary benchmark problems. (a)

Majority-on: Box plots of the number of CCEA fitness evaluations as a

function of the size of the search space, compared to the published

results for the number of instances evaluated (a lower bound on the

number of fitness evaluations), and exhaustive search (the 1:1 line); (b)

Majority-on: Box plots of the number of fitness evaluations of the

DNFEA as a function of the median size of the search space over 30

repetitions, (c) Multiplexer: Box plots of the number of CCEA fitness

evaluations as a function of the size of the search space, compared to

the published results for the number of instances evaluated (a lower

bound on the number of fitness evaluations), and exhaustive search (the

1:1 line); (c) Multiplexer: Box plots of the number of fitness

evaluations of the DNFEA as a function of the median size of the

search space over 30 repetitions.. 42

Figure 2.3: Archived results in typical results (arbitrarily selected as the first of 30

repetitions) for target class 0 on the 6-bit multiplexer problem with 14

extraneous features added and 2,000 random instances in the dataset for

(a) balanced classes with no noise and no missing data, (b) imbalanced

class outcomes (class 0 at 15%, class 1 at 85%) with no noise and no

missing data, (c) 20% random errors in class outcome in the dataset,

balanced classes and no missing data, and (d) 20% randomly missing

feature data, balanced classes and no noise. The legend on panel (b)

applies to all panels. We illustrate the true positive prediction rate on

the training instances, class coverage of the training instances, and

fitness by Eq. (2.1); the true generative CCs are shown in orange

hexagrams and all other CCs archived by the CCEA with green squares,

and the true generative DNF is shown by the red pentagram and all

xi

other DNFs archived by the DNFEA with blue circles. Darker shades of

green or blue represent higher order clauses and the contour lines

indicate evenly-spaced fitness values. .. 44

Figure 2.4: Archived results on the Synthetic Genome Problemtrained on 1,600

instances, where the CC archive was reduced by post-processing to

include only those features that were most prevalent prior to running the

DNFEA. We illustrate the true positive prediction rate on the training

instances, class coverage, and fitness by Eq. (2.1) of the CCs archived

by the CCEA (green squares) and the DNFs archived by the DNFEA

(blue circles), where darker shades represent higher-order clauses and

the contour lines indicate evenly-spaced fitness values. For clarity, the

true generative CCs are shown in orange hexagrams and the true

generative DNF is shown by the red pentagram. .. 46

Figure 2.5: Results of using exhaustive search to examine the CC search spaces

for (a) a randomly created 11-bit majority-on dataset containing 5,000

input feature vectors, (b) a randomly generated 11-bit multiplexer

dataset containing 1,000 input feature vectors, and (c) the simulated

SNP disease problem containing 1,600 input feature vectors. We

illustrate the true positive prediction rate, class coverage, and fitness by

Eq. (2.1) of all possible CCs, where the order of the CCs is indicated by

color and the contour lines indicate evenly-spaced fitness values. Note

that the lower bounds on the y-axes are 50%. .. 53

Figure 3.1: Satellite image of the study sites with the houses in El Chaperno and

El Carrizal represented as red and yellow dots, respectively. Panel A is

a map of the departments of Guatemala with the department of Jutiapa

highlighted in red and the location of the study sites represented as a

yellow star. Panels B and C show the locations of the houses and roads

in El Carrizal and El Chaperno, respectively. ... 71

Figure 3.2: Accuracy, class coverage, and hypergeometric PMF (contour lines

spaced at 10-4 intervals) for the conjunctive clauses identified using the

CCEA for the simulated SNP disease dataset. Each color-coded circle

represents the order of a conjunctive clause. The green box shows the

location of the four true signals (i.e., 2nd-order CCs in red). 81

Figure 3.3: Feature importance (FI) and feature-pair importance (FPI) are

represented as a network. The nodes and edges are proportional to the

FI and FPI values, respectively. Panel A) Contains all feature-pair

connections and B) is filtered so that only FPI ≥ 0.95 are visible. 83

Figure 3.4: Bar graph showing median feature sensitivity for each of the 20

features. Positive bars indicate that the removal of a feature from an

archived conjunctive clause decreases the fitness (i.e., the

hypergeometric PMF increases and the conjunctive clause becomes

more likely due to chance). ... 84

xii

Figure 3.5: Median feature sensitivity associated with an outcome of interest (e.g.

diseased individuals) are re-ordered for visualization purposes. The

median feature sensitivity across all conjunctive clauses may be

positive (red), zero (black), and negative (blue), respectively. White

indicates when a feature was not present in any conjunctive clause that

matched the outcome of interest. .. 85

Figure 3.6: Bar graph showing median feature sensitivity for each of the four

features that comprise the true signals. Positive bars indicate that

removal of the feature from an archived conjunctive clause decreases

the fitness (i.e., the hypergeometric PMF increases and the conjunctive

clause becomes more likely due to chance). ... 87

Figure 3.7: Bar graph showing median feature sensitivity for each of the four

features that comprise the true signals. Positive bars indicate that

removal of the feature from an archived conjunctive clause decreases

the fitness (i.e., the hypergeometric PMF increases and the conjunctive

clause becomes more likely due to chance). ... 88

Figure 3.8: The accuracy and infested house coverage of the conjunctive clauses

identified using the CCEA for the A) El Chaperno, B) El Carrizal, and

C) combined datasets. Each color-coded circle represents the order of a

conjunctive clause. .. 90

Figure 3.9: The feature and feature pair importance are represented as a network.

The nodes and edges are sized based on the FI and FPI, respectively.

The networks are filtered so that only FPI ≥ 0.95 are visible for the A)

El Chaperno, B) El Carrizal, and C) combined datasets. 92

Figure 3.10: Bar graphs showing median feature sensitivities for each of the 64

features for the A) El Chaperno, B) El Carrizal, and C) combined

datasets. Positive values indicate that removal of a feature from an

archived conjunctive clause decreases the fitness (i.e., the

hypergeometric PMF increases and the conjunctive clause becomes

more likely due to chance). ... 94

Figure 3.11: The accuracy and infested house coverage of the conjunctive clauses

identified using the CCEA on the reduced 22 features for the A) El

Chaperno, B) El Carrizal, and C) combined datasets. Each color-coded

circle represents the order of a conjunctive clause. 98

Figure 3.12: The network representation of FI and filtered FPI ≥ 0.95 for the

reduced 22-features (Table 3.5) for the A) El Chaperno, B) El Carrizal,

and C) combined datasets. Nodes and edges are proportional to the FI

and FPI, respectively. .. 100

Figure 3.13: Bar graphs showing median feature sensitivities for each of the

reduced 22 features for the A) El Chaperno, B) El Carrizal, and C)

combined datasets. Positive values indicate that removal of the feature

xiii

from an archived conjunctive clause decreases the fitness (i.e., the

hypergeometric PMF increases and the conjunctive clause becomes

more likely due to chance). ... 102

Figure 3.14: The accuracy and infested house coverage of the conjunctive clauses

identified using the CCEA and all 64 features for the combined

datasets. Three CCs selected along the Pareto front are circled; the

circle color of the CC represents the order of a conjunctive clause. 103

Figure 3.15: The archived conjunctive clause resulting from the 64-feature,

combined (two-town) Chagas dataset with 100% accuracy and highest

coverage. The arrows point to the resulting accuracy, coverage, and

hypergeometric PMF when the feature associated with the line is

removed from the conjunctive clause Panel A) shows the 7th-order

conjunctive clause. Because there was no change in accuracy or

coverage for removal of two of the features, panel B shows the resulting

5th-order conjunctive clause. The arrows in panel B again point to

accuracy, coverage and fitness when the associated feature is removed. ... 105

Figure 3.16: Description of two additional archived conjunctive clauses from the

Pareto front of the 64-feature, combined (two-town) Chagas dataset.

Panel A) describes the 4th-order conjunctive clause near the knee of the

Pareto front. Panel B) shows 2nd-order conjunctive clause with the

highest coverage for the archived CCs. Arrows point to the resulting

accuracy, coverage, and hypergeometric PMF when the feature

associated with the line is removed from the conjunctive clause. 107

Figure 4.1: Satellite image of the study sites with the houses in El Chaperno and

El Carrizal represented as red and yellow dots, respectively. Panel A is

a map of the departments of Guatemala with the department of Jutiapa

highlighted in red and the location of the study sites represented as a

yellow star. Panels B and C are show the locations of the houses and

roads in El Carrizal and El Chaperno, respectively. 120

Figure 4.2: The pie charts are proportional to the number of T. dimidiata

sequenced for a given homestead ranging from 1 to 10 sequenced per

house. Colors represent the sex, instar level, and homestead location of

collected insects in El Chaperno. .. 123

Figure 4.3: The pie charts are proportional to the number of T. dimidiata

sequenced for a given homestead ranging from 1 to 23 sequenced per

house. Colors represent the sex, instar level, and homestead location of

collected insects in El Carrizal. ... 124

Figure 4.4: Box plot semivariograms of genetic distance for El Chaperno

generated using Level 1 filtering. Semivariogram using A) all paired

individuals with at least 1 loci in common, B) all pairs with at least 287

loci in common, and C) all pairs with 1,000 common loci. Best fit

xiv

spherical models (red dashed line) have the same range (28m) and sills

(0.08) across all three panels. .. 131

Figure 4.5: Box plot semivariograms of genetic distance for El Carrizal generated

using Level 1 filtering. Semivariogram using A) all paired individuals

with at least 1 loci in common, B) all pairs with at least 250 loci in

common, and C) all pairs with 1,000 common loci. Best fit spherical

models (red dashed line) have the same range (88m) and sills (0.07)

across all three panels. .. 133

Figure 4.6: Box plot semivariograms for El Chaperno characterize the A)

relatedness of Lynch and Ritland (1999) and B) genetic distance of

Smouse and Peakall (1999) using a SNP dataset with 73 specimens and

287 loci. The best-fit spherical models (red dashed line) have the same

range (28m); and the sills are -0.01 and 0.05, respectively. The vertical-

axis of panel A was flipped so that more similar bugs (high relatedness)

have positive values and those with low relatedness have negative

values. ... 135

Figure 4.7: Box plot semivariograms for El Carrizal characterize the A)

relatedness of Lynch and Ritland (1999) and B) genetic distance of

Smouse and Peakall (1999) using SNP data with 97 specimens and 250

loci. The best fit spherical models (red dashed line) have the same range

(160m); and the sills are -0.01 and 0.05, respectively. The vertical-axis

of panel A was flipped such that more similar bugs (high relatedness)

have positive values and those with low relatedness have negative

values. ... 137

Figure 4.8: Risk map for infestation of T. dimidiata in El Chaperno. Red circles

show the range of spatial autocorrelation for each homestead. Overlap

is represented in darker shades of red using the range of 28 meters. The

deepest shade of red (i.e., maximum overlap) corresponds to 5

overlapping ranges. Infested homesteads are plotted as an x and non-

infested homesteads as a +. Every infested homestead is treated as a

possible source of T. dimidiata. .. 139

Figure 4.9: Risk maps for infestation of T. dimidiata in El Carrizal. Red circles

show the range of spatial autocorrelation for each homestead. Overlap

is represented in darker shades of red using the range of A) 88 meters

and B) 160 meters. The deepest shade of red (i.e., maximum overlap)

corresponds to A) 10 and B) 18 overlapping ranges. Infested

homesteads are plotted as an x and non-infested homesteads as a +.

Every infested homestead is treated as a possible source of T. dimidiata. . 141

Figure 4.S1: The black squares represent homesteads where no T. dimidiata were

found during the entomologic search in El Chaperno. The red circles

are proportional to the number of T. dimidiata collected for a given

homestead ranging from 1 to 81. .. 147

xv

Figure 4.S2: The black squares represent homesteads where no T. dimidiata were

found during the entomologic search in El Chaperno. The red circles

are proportional to the number of T. dimidiata collected for a given

homestead ranging from 1 to 45. .. 148

Figure 5.1: Annual age-adjusted thyroid cancer incidence significantly increased

in Vermont, 1994-2007. Significant annual trends are noted for

Vermont (1994-2000, 2002-2007) and Vermont females (1994-1999,

2002-2007). Significance is p < 0.05, n = 14, using Ljung-Box Q

analysis in JMP® Pro v10.0.0. .. 160

Figure 5.2: Average annual proportional age-adjusted incidence (1994-2007) for

Vermont overall, Vermont females, and Vermont males. For Vermont

females, the age groups with the three highest annual average age-

adjusted incidence are ages 30-39 years, 40-49 years, and 50-59 years. 161

Figure 5.3: Proportional age-adjusted incidence of thyroid cancer differed by age

and sex in Vermont, 1994-2007. Significant trends were identified for

females (A) younger than 30 years of age (1994-1996), females aged

30-59 years old (1994-2007), females older than 59 years old (2006-

2007), and males (B) younger than 30 years of age (1997-2007) by

Ljung-Box Q analysis in JMP® Pro v10.0.0 (p < 0.05, n = 14). 162

Figure 5.4: The percent of thyroid cancer types between females and males in VT

differ significantly. Females (A) have proportionally more cases of

papillary cancer and fewer cases of follicular and anaplastic cancer than

males (B). (Pearson chi square test; p < 0.001, n = 702, df = 4). 164

Figure 5.5: Thyroid cancer incidence classified by tumor size in Vermont, 1994-

2007. The minimum number of tumors measured in any given year was

14 (1995); the maximum was 79 (2006). Using Ljung-Box Q analysis,

the only significant trend occurred for tumors 1.1-2.0 cm in size in

2001-2004. When the 1.1-2.0 cm category was combined with either of

the other two categories, there were no significant trends. 166

Figure 5.6: Geospatial distribution of thyroid cancer incidence. Average annual

age-adjusted incidence for Vermont (1994-2007) mapped to the U.S.

2010 Census zip code tabulation areas (zip codes). Jenks Natural

Breaks was used to create the four classification categories of cancer

incidence. .. 168

Figure 5.S1: Clusters of thyroid cancer incidence in Vermont, United States,

1994–2007. For the Getis-Ord Gi* statistic, two zones of indifference

of 18,000m and 42,000m were used. Clusters were significant (p <

0.05) if there was a higher (red) or lower (blue) proportion of thyroid

cancer incidence (normalized per 100,000) than expected within the

specified distance. ... 174

xvi

Figure 5.S2: Age-adjusted incidence of thyroid cancer per 100,000 people for the

United States and Vermont, 1994–2007. (A) The average annual age-

adjusted incidence was 8.0 (VT) and 8.4 (U.S.). The annual percent

change (EAPC) at 8.3 [CI 5.7–11.0] for Vermont and 5.7 [CI 5.2–6.3]

for the United States were significant (p < 0.001). (B) The average

annual age-adjusted incidence for females was 11.8 (VT) and 12.3

(U.S.). The EAPC was 9.9 [CI 5.9–4.0] for Vermont and 5.9 [CI 5.4–

6.3] for the United States were significant (p < 0.001). (C) The average

annual age-adjusted for males was 4.1 (VT) and 4.4 (U.S.). The EAPC

was 4.9 [CI 0.2–9.9] for Vermont and 5.1 [CI 4.4–5.7] for the United

States were significant at p < 0.05 (VT) and p < 0.001 (U.S.). 175

1

CHAPTER 1: INTRODUCTION

The London cholera outbreaks of the mid 1800s are credited as one of the first

times an environmental engineer assessed the risks associated with a disease (Buescher

Jr.). The engineer, Mr. Grant, research into the water supply of the houses affected by

Cholera on Albion Terrace that helped formulate the epidemiologist John Snow’s

hypothesis that the source of cholera was water borne and not the result of bad smells as

hypothesized by Dr. Milroy (Hempel, 2007). Since that time, engineers have continued

to help assess of the risk of diseases ranging from assessing varying climate change

scenarios on the abundance of the malaria vector Anopheles gambiae sensu lato

(Bomblies, 2012), the risks associated with transmission of the parasitic tape worm

Taenia solium (Enander et al., 2010), or the risk of child-acquired, respiratory illnesses

associated with the presence of Enterococcus spp on hands (Julian et al., 2013). This

dissertation is an environmental engineer’s attempt to geospatially assess the risk of

Chagas disease and thyroid cancer.

1.1 Summary of Research Contributions

The primary contribution of this research lies in the development and

modification of statistical tools to assess the risk of household infestation of Triatoma

dimidiata, the principal vector of Chagas disease in Guatemala (WHO, 2015). These

tools were applied using a unique set of socioeconomic, genetic and entomologic survey

data collected from two towns in Jutiapa, Guatemala. The survey data were

georeferenced at the household level and include next generation sequencing data on the

T. dimidiata collected in domestic (i.e., houses) and peridomestic (i.e., areas immediately

2

surrounding the house such as a yard, chicken coops, wood piles, etc.) ecotopes. The first

goal was to determine the risk of household infestation of T. dimidiata associated with

numerous risk factors present in the socioeconomic and entomologic household surveys.

This task was complicated by the presence of missing data, varied datatypes (e.g.,

nominal, discrete, and ordinal), inherent feature interactions associated with infestation,

numerous combinations of risk factors, and implicit heterogeneity. Feature interactions

are inherent in this data because, at a minimum, T. dimidiata need both shelter and a food

source to successfully infest a household. One without the other will inhibit a successful

infestation of a household. Heterogeneity is present in the diverse number of

combinations of shelters and food sources that may be associated with successful

infestation.

The large number of combinations of risk factors in the survey data made

exhaustive search of all combinations unrealistic in terms of computational effort. As a

result, one of the main contributions of this work is the development of a new algorithm

capable of (1) efficiently searching large datasets (“Big Data”) for multiple signals (i.e.,

true associations with an outcome, the opposite of noise), and (2) handling missing data

as well as varied datatypes embedded in this large, epistatic, heterogeneous survey data.

An evolutionary algorithm (EA) was designed to tackle this problem (Chapter 2). To

address the challenges associated with p-values and Big Data (Lin et al., 2013; Nuzzo,

2014), the hypergeometric probability mass function (hypergeometric PMF) was

introduced as a novel fitness function (i.e., measurement of signal strength). This new

EA and fitness were then tested on a set of benchmark problems from the EA community

3

to assess the EA’s ability to perform feature selection and reduce the search space. Next,

the EA was tested on the T. dimidiata infestation datasets and was able to efficiently

identify complex interactions associated with infestation (Chapter 3).

The next generation sequencing of the georeferenced T. dimidiata collected in the

houses and their peridomestic ecotopes in the two villages in Jutiapa, Guatemala resulted

in thousands of single nucleotide polymorphisms (SNPs). Smouse and Peakall (1999)

developed a genetics-based algorithm to measure spatial autocorrelation using

correlograms. However, given the impact of outliers and the inability to empirically

determine confidence intervals for the binned correlations, we modified the Smouse and

Peakall (1999) algorithm; and the correlogram was replaced with what is known as a

semivariogram (Chapter 4). Rather than measure the similarity between spatially

autocorrelated data, semivariograms measure the dissimilarity between paired data

points, and are the preferred measure of spatial autocorrelation in the geostatistics

community for a variety of reasons. The modified algorithm of Smouse and Peakall

(1999) was then used to determine the range of spatial autocorrelation of the genetic

structure of T. dimidiata in both towns. Because we were unable to find any empirical

study that has determined how far T. dimidiata moves in the field, the range of spatial

autocorrelation identified by our modified semivariogram was then used as a surrogate

to vector movement to map the risk of infestation in both towns. These maps provide

support to one of the towns having a sylvatic source of infestation, and the other having

domestic and peridomestic sources of infestation.

4

In Chapter 5, we assess the risk of thyroid cancer using 14 years of spatially

referenced incidences of thyroid cancer in Vermont. Unlike the Chagas disease datasets,

the incidence of thyroid cancer was georeferenced to the larger zip code scale; and the

datasets had minimal demographic information. The socioeconomic data available for

analyzing risk was the US census data, which aggregates the population data over a zip

code. Thus, we were unable to identify novel combinations of risk factors associated with

thyroid cancer using this aggregated socioeconomic data. That being said, the geospatial

analysis of the thyroid cancer did allow for the visualization of Hot Spots in Vermont.

Throughout the course of this research, novel and adapted statistical tools are

developed and applied to disease datasets to assess risk. This work serves to highlight

novel ways of analyzing Big Data that are becoming ubiquitous in research. While the

methods presented here were successful in analyzing the risk associated with Chagas

disease and thyroid cancer, these methods, like many traditional statistics that use p-

values, should not be shoe-horned into tackling problems they were not specifically

designed for. These methods are designed to be part of a larger tool kit when analyzing

Big Data associated with complex systems.

1.2 Chagas Disease

Chagas disease is caused by the protozoan parasite, Trypanosoma cruzi, and is

primarily spread via blood feeding insects in the order Hemiptera, family Reduviidae,

and subfamily Triatominae (WHO, 2002). While the primary vector food source is

vertebrates, T. cruzi only infects mammals (Rassi et al., 2010). Human impacts, such as

deforestation for agrarian land use, have caused triatomines to adapt (Coura, 2015); and

5

one of the main vectors of Chagas disease, T. dimidiata, has adapted to human domestic

and peridomestic environments (Waleckx et al., 2015a). This vector is endemic from

Mexico all the way south to parts of Peru, Ecuador, Colombia, and Venezuela (WHO,

2002). People with Chagas disease often live in remote areas with poor sanitation, low

socioeconomic status, and work manual labor jobs (Prata, 2001; Briceño-León et al.,

2007). Approximately 70 million people in Latin America are at risk of infection with T.

cruzi and ~5.7 million people are infected (Chagas, 2015). In Central America,

Guatemala has the largest number of vector transmitted cases (~1,275) in 2010 (Chagas,

2015). Furthermore, Guatemala, El Salvador, and Honduras combined account for 85%

of the new cases in Central America (Chagas, 2015). Chagas disease has an estimated

disability-adjusted life years (DALY) of 546,000 (271,000–1,054,000), and is the second

largest proportion of DALY in Latin America, after hookworm disease (Murray et al.,

2012). The estimated annual health-care cost per Chagas patient in Latin America is

~$383 (range $207–$636); and the total annual cost to society (i.e., health-care plus

productivity losses) per chronic Chagas disease patient in Latin America is ~$4,059

(range $3,569–$4,434) (Lee et al., 2013). Thus, the disease burden of Chagas disease

exceeds other infectious diseases such as cholera and rotavirus (Lee et al., 2013).

Humans infected with T. cruzi can acquire Chagas disease by the transmission of

the T. cruzi infected feces into the bite or open wound, or through the mucosa of the eye,

nose, or mouth (Prata, 2001; Teixeira et al., 2006; Rassi et al., 2010). Another possible

source is via consumption of the insect or infected feces in food items such as juice and

vegetables, and possibly from eating wild meat (Rueda et al., 2014). Oral transmission is

6

believed to be the primary source of infection for wild animals (Coura, 2015); and the

odoriferous glands of a marsupial infected with T. cruzi can directly transmit the parasite

to humans (Coura, 2015).

Chagas disease is broken into three phases. The first is the acute phase, which

may last 1–4 months after infection with T. cruzi (Prata, 2001, Stanaway and Roth, 2015).

This phase is characterized by an increase in heart size, heart cell destruction, and

depopulation of neurons. (Teixeira et al., 2006). This phase is asymptomatic in 95% of

cases (Teixeira et al., 2006; Stanaway and Roth, 2015); however, for the remaining 5%,

symptoms may include malaise, fever, jaundice, skin hemorrhages, enlargement of the

liver, and muscle and joint pain (Prata, 2001; Teixeira et al., 2006; Rassi et al., 2010;

Stanaway and Roth, 2015). Less than 1 in 2,500 infections result in death; the latter is

usually attributed to encephalomyelitis or severe cardiac failure (Prata, 2001; Teixeira et

al., 2006; Stanaway and Roth, 2015). The indeterminate phase is asymptomatic and can

last 10–30 years or throughout a lifetime (Prata, 2001; Stanaway and Roth, 2015).

Finally, the chronic phase, occurs in about one third of those infected and has symptoms

that include heart disease (i.e., destruction of target heart cells), megaesophagus,

megacolon, nervous system lesions, and sudden death (Prata, 2001; Teixeira et al., 2006;

Rassi et al., 2010; Stanaway and Roth, 2015). Heart disease is one of the most common

and deadly symptoms; however, there appears to be heterogeneity in Chagas-related

heart disease with three distinct groups (Rassi et al., 2006). The 10-year mortality rate

across all three groups is ~27%, but ranges from ~10 to ~84% (Rassi et al., 2006). In

general, the relative risk ratio of mortality is approximately 1.74 for individuals with

7

Chagas disease compared to similar individuals without the disease (Cucunubá et al.,

2016). In addition to the Chagas-related health effects, there is some evidence that

Chagas is a risk factor for high blood pressure (Vicco et al., 2014), cognitive impairment

in older adults (Lima-Costa et al., 2008), and ischemic stroke (Lima-Costa et al., 2008).

Currently, there is no preventive medicine for Chagas disease. Nonetheless, there

are two anti-trypanosome drugs, nifurtimox and benznidazole, used to treat T. cruzi

infections (Teixeira et al., 2006; Jannin and Villa, 2007; Rassi et al., 2010; González-

Ramos et al., 2016). Both drugs have a common occurrence of adverse reactions that can

prevent infected individuals from completing treatment (Hasslocher-Moreno et al., 2012;

Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 2015); studies found

that between 13–31% cannot complete drug treatment (Hasslocher-Moreno et al., 2012;

Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 2015).

Benznidazole is the preferred and most effective treatment of T. cruzi infections

(Prata, 2001; Rassi et al., 2010; González-Ramos, et al. 2016). However, adverse

reactions in adults include epigastric pain, skin disorders, nausea, abdominal bloating,

sleep disturbance, temporary memory loss, headache, loss of appetite, myalgia,

eosinophilia, and central and peripheral nervous system disorders; and the percentage of

adults with at least one of these reactions ranges from 49 – 80% (Hasslocher-Moreno et

al., 2012; Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 2015).

Extreme cases have resulted in intensive care unit treatment with symptoms that included

tonic-clonic seizures and in one case, decreased liver function and multiple general organ

failure accompanied by 30% skin detachment in another case (González-Ramos et al.,

8

2016). Currently, drug treatment is optional for people over 50, because no proven

benefits exist for people in this age cohort (Rassi et al., 2010). For other age cohorts,

treatment efficacy for people with acute Chagas is between 30–83.5% (Prata, 2001;

Teixeira et al., 2006; Jannin and Villa, 2007); and for chronic Chagas, the efficacy is

much lower (5–30%) (Teixeira et al., 2006; Jannin and Villa, 2007).

Thus, given the lack of preventative medicine, coupled with the drug reactions

and low efficacy of drug treatment, the preferred method of combating Chagas disease is

by minimizing human contact with the vector. One of the most common tactics for

controlling household infestation of T. dimidiata is the use of pyrethroid insecticide

(Tabaru et al., 1998; Acevedo et al., 2000; Nakagawa et al., 2003a; 2003b; Dumonteil et

al., 2004; Hashimoto et al., 2006; Manne et al., 2012; Yoshioka et al., 2015; Quinde-

Calderón et al., 2016). While pyrethroid insecticides have successfully reduced

infestation rates of T. dimidiata, rarely is the infestation rate reduced to zero (Acevedo et

al., 2000; Quinde-Calderón et al., 2016). Nonetheless, the residual effects of pyrethroid

spraying appear to last only four months before adult T. dimidiata reinfest a house and

nine months before nymphs are found in the house (Dumonteil et al., 2004). Thus, while

residual pyrethroid spraying has been applied successfully to Rhodnius prolixus and

Triatoma infestans, in most cases the same cannot be said for T. dimdiata (Waleckx et

al., 2015a). The rebounding of infestation to original levels were observed almost three

years after a single round of pyrethroid spraying in Jutiapa, Guatemala (Hashimoto et al.,

2006). In addition to spraying houses with pyrethroid insecticides, recent work shows the

potential of the fungi Beauveria bassiana and Gliocladium virens to control T. dimidiata

9

(Vázquez-Martínez et al., 2014). Both fungi were shown to successfully kill T. dimidiata

in a laboratory setting Vázquez-Martínez et al. (2014); however, short of extirpation of

T. dimidiata, the vector will always pose the risk of infestation where it is endemic.

The only proven long-term control of T. dimidiata infestation is the

implementation of home improvements often accompanied by educational outreach on

Chagas disease and the vector (Monroy et al., 2009; Ferral et al., 2010; De Urioste-Stone

et al., 2015). Home improvements that minimize the risk of household infestation with

T. dimidiata run the gamut of cleaning and organizing the peridomestic environment

immediately surrounding a house (Zeledón and Rojas, 2006; Zeledón et al., 2008; Ferral

et al., 2010), plastering walls (Monroy et al., 1998; Monroy et al., 2009; Lucero et al.

2013; Pellecer et al., 2013), replacing dirt floors with cement floors (Lucero, et al., 2013;

Pellecer et al., 2013), installing window screens (Ferral et al., 2010; Waleckx et al.,

2015b), impregnating curtains with insecticide (Ferral et al., 2010), and domestic rodent

control (De Urioste-Stone et al., 2015). These home improvements have led to a

reduction in household infestation that often lasts longer than spraying insecticide;

however, none have completely eliminated infestation. Some of the aforementioned

interventions are considered Ecohealth interventions because they use sustainable

methods and locally sourced materials (Monroy et al., 2009; Lucero et al., 2013; Pellecer

et al., 2013). Window screens were very effective in nearly eliminating household

infestation in pilot villages in the Yucatán penninsula, Mexico; however, in the Yucatán

penninsula, T. dimidiata has been shown to invade homes seasonally, and thus barriers

to entry are more effective (Ferral et al., 2010; Waleckx et al., 2015b). Therefore, risk

10

analyses capable of discovering unidentified factors or patterns may help successful

elimination of infestation.

1.3 Evolutionary Algorithm Background

Evolutionary algorithms (EAs) are biologically inspired algorithms designed to

solve complex non-linear problems. EAs have been used to provide a non-invasive means

of diagnosing Parkinson’s disease (Smith and Timmis, 2008), better diagnose prostate

cancer (Llorà et al., 2007), and determine the risk factors associated with bladder cancer

(Urbanowicz et al., 2013). The latter two studies used EAs that could be applied to a

Chagas disease dataset. Llorà et al. (2007) used an EA called a Pittsburgh-style learning

classifier system (LCS) and Urbanowicz et al. (2013) used an EA called a Michigan-style

LCS.

The original Michigan-style LCS algorithm, cognitive system (i.e., CS-1), was

designed for binary input features and the prediction of associated categorical outcomes

in dynamically changing environments (Holland and Reitman, 1978). Thus, they do not

perform batch learning, but often learn one observation at a time (Urbanowicz and

Moore, 2009), which is computationally inefficient and subject to sampling order bias

when the data are available in batch. The most reliable Michigan-style LCS, called XCS,

is still in use today (Butz et al., 2003). LCSs evolve a population of classifiers that consist

of a condition and an action. The condition is a mask of input features (F), with each

feature having one of the following values ∈{0, 1, #}, where # symbolizes “don’t care”

(or wild card) and implies a feature may be either 0 or 1. The classifier action is the

outcome class (e.g., ∈{0, 1}) associated with the input feature condition. In the LCS

11

community, the condition is analogous to a conjunctive clause (CC). This condition

(CC) and action (combined) equal a classifier, and the LCS evolves the classifiers using

a genetic algorithm (GA). In a broad sense, the classifier fitness is a function of the

number of times its condition (input feature mask) and the associated action match both

the observed input features and associated outcome data collected from the system under

investigation. Michigan-style LCSs use the population of CCs and weighted fitness

function first proposed by Wilson (1995) to predict outcomes. The performance of a

population of CCs is often evaluated on the prediction accuracy of the most recent input

feature vectors.

Smith (1980; 1983; 1984) is credited with the first Pittsburgh-style LCS named

LS-1. Like the Michigan-style LCS, LS-1 was designed to predict multiple categorical

outcomes given binary input features in a dynamic environment (early LS-1 tests

included the ability to play poker). The LS-1 algorithm uses an encoding system similar

to the Michigan-style LCS, except that instead of evaluating the fitness of individual

classifiers, the fitness is evaluated based on a group of classifiers. Thus, the algorithm

maintains a population of Pittsburgh-style classifiers, where each Pittsburgh-style

classifier is the disjunction of Michigan-style classifiers, and a GA evolves the population

of Pittsburgh-style classifiers.

Thornton-Wells et al. (2004) proclaimed the need for the development of

statistical tools that take into account heterogeneity and feature interactions in complex

disease datasets. While LCSs have been successfully tested numerous times on the

multiplexer problem, a toy Boolean problem that is available in batch and has epistasis

12

and heterogeneity (Wilson, 1987a; Wilson, 1987b; Booker, 1989; Goldberg, 1989; De

Jong and Spears, 1991; Butz et al., 2003; 2004; 2005b; Llorà et al., 2005; Butz and

Pelikan, 2006; Ioannides et al., 2011; Iqbal et al., 2012; 2013b; 2013c; 2014; 2015;

Urbanowicz and Moore, 2015), this toy problem does not contain noise and as the

complexity of the problem increases, the complexity of the solution is so great that it

bears little resemblance to a real-world problem. Even though the multiplexer problem

is useful in testing an algorithm’s ability to find epistatic and heterogeneous features; an

algorithm’s ability to solve the multiplexer problem does not imply that it can solve

complex real-world problems having epistasis and heterogeneity. Therefore, given that

LCSs are not designed for solving problems in bulk and given that a number of LCSs

have components that are uniquely designed to solve toy Boolean problems a new

evolutionary algorithm needed to be developed.

1.4 Spatial Autocorrelation in Disease-Related Studies

We were unable to find any empirical study that measures how far T. dimidiata

can move during their lifespan. Orantes (personal communication, January 2017) has

used next generation Rad-seq to create a database of single nucleotide polymorphisms

(SNPs) for T. dimidiata collected from two villages. Spatial autocorrelation in the single

nucleotide polymorphisms (SNPs) of humans has been observed at various scales. Elhaik

et al. (2013) found spatial autocorrelation at the global scale and was relatively successful

at leveraging geospatial and SNP data to predict a person’s country of origin. On a finer

scale, Lao et al. (2013) found spatial autocorrelation in people in the Netherlands, which

they attributed to historic settlement patterns.

13

Spatial autocorrelation in the genetics of T. dimidiata have been observed at

various scales. Bargues et al. (2008) analyzed 31 haplotypes at 64 locations that spanned

a range from Mexico to northern South America. While they did not explicitly

characterize spatial autocorrelation, they did show geographic grouping of phenotype

trees. More recently, Stevens et al. (2015) investigated spatial autocorrelation using 7

highly polymorphic microsatellite loci from 178 T. dimidiata spread across 6 villages in

the department of Jutiapa, Guatemala. Using the relatedness function of Lynch and

Ritland (1999), Stevens et al. (2015) found some migration of T. dimidiata between

houses in a village as well as some spatial autocorrelation, despite the signal being weak.

These findings are contrary to earlier works that did not find spatial autocorrelation

among T. dimidiata in nearby villages in Guatemala (Dorn et al., 2003; Calderón et al.,

2004). Given that Melgar et al. (2007) found 41 families of T. dimidiata in a single house

in Guatemala, using hundreds to thousands of markers can allow for fine scale, within-

town spatial autocorrelation. As a result, using the thousands of T. dimidiata SNPs from

the Orantes (personal communication, January 2017) database may provide a unique

opportunity to explore spatial autocorrelation at the finer village scale.

Smouse and Peakall (1999) developed a methodology to characterize the range

of spatial autocorrelation by using multiple genetic markers to create a correlogram.

Their methodology has subsequently been used on a variety of species such as emmer

wheat (T. turgidum L. ssp. dicoccoides) (Volis et al., 2014), beech trees (Fagus sylvatica

L.) (Piottti et al., 2013), bottlenose dolphins (Tursiops truncatus) (Richards et al., 2013),

Canada geese (Branta canadensis) (Finnegan et al., 2013), and the American black bear

14

(Ursus americanus) (Coster and Kovach, 2012). In a few instances, the correlogram of

Smouse and Peakall (1999) has been used to measure the range of spatial autocorrelation

of a disease vector. Foley et al. (2004) found the range of spatial autocorrelation for the

mosquito vector (Ochlerotatus notosciptus) of dog heartworm (Dirofilaria immitis) to be

~55 km. While Rašić et al. (2015), found the range of spatial autocorrelation to be 3-6

km for the mosquito Aedes aegypti, which is a vector of dengue. Finally, Pérez de Rosas

et al. (2013) investigated the range of spatial autocorrelation for Triatoma infestans, the

principle vector of Chagas disease in South America, and found a range of ~400 m. They

also investigated sex-biased dispersal and found that females had a relatively larger range

of spatial autocorrelation than males (400 m versus 330 m). Pérez de Rosas et al. (2013)

used the range of spatial autocorrelation as a guideline for the radius of insecticide

applied around an infested house or peridomestic structure. Therefore, the Smouse and

Peakall (1999) methodology for determining the range of spatial autocorrelation can be

used as a foundation for determining the range of spatial autocorrelation for T. dimidiata.

1.5 Thyroid Cancer

Thyroid cancer incidence is increasing at an annual rate of 3–5%, resulting in the

rate tripling over the past 30 years in the United States as well as in other countries

(Curado et al., 2007; Kilfoy et al., 2009; Jemal et al., 2011; Morris et al., 2013; Pellegriti

et al., 2013). In the United States, the number of cases has risen from 4.3 cases per

100,000 in 1980 to 12.9 cases per 100,000 individuals in 2008. Mortality rates have

slightly increased (+0.8% annual percent change [APC]) (Enewold et al., 2009; Cramer

et al., 2010; NCI, 2012). A recent study noted a disproportional increase in women

15

(Edwards et al., 2006). The basis for the increase in thyroid cancer incidence is not

known. Some studies suggest enhanced diagnostic scrutiny and better detection of

subclinical cancers result in widespread over diagnosis and thus not a true increase in

incidence (Davies and Welch, 2006; Ross, 2006; Grodski et al., 2008; Enewold et al.,

2009; Hall et al., 2009; Yu et al., 2010; Morris et al., 2013; Reitzel et al., 2014). Other

studies note that an increase in both large tumors and microcarcinomas as well as a

change in relative frequencies of histological types implicate other contributing factors

(Chen et al.; 2005; Kilfoy et al., 2009; Pazaitou-Panayiotou et al., 2013; Ward et al.,

2010; Aschebrook-Kilfoy et al., 2013). Of note, recent reports of aggressive, metastatic

microcarcinomas of the thyroid that correlate with the risk of second cancers (Kim et al.,

2013) suggest that microcarcinomas once considered subclinical might emerge as

important new healthcare concerns and reflect an important dimension of the increase in

thyroid cancer incidence.

Environmental and demographic factors may be critical determinants in the

increase in thyroid cancer incidence (Leux and Guénel, 2010; Morris and Myssiorek,

2010; Li et al., 2013; Pellegriti et al., 2013). A recognized risk factor for thyroid cancer

is ionizing radiation exposure through medical procedures, including x-rays, as well as

radioactive fallout (Richardson, 2009; Wartofsky, 2010; NCI, 2013). A study of the

overall geographic distribution of thyroid cancer in the United States revealed a higher

incidence in areas proximate to nuclear power reactors (Mangano, 2009). High levels of

nitrate in public drinking water supplies have been linked to increased thyroid cancer

incidence (Ward et al., 2010), and environmental endocrine disruptors including

16

polyhalogenated aromatic hydrocarbons (PHAHs), notably polybrominated diphenyl

ethers (PBDEs) and organochlorine insecticides, are postulated factors (Grimalt et al.,

1994; Zhang et al., 2008; Zhu et al., 2009; Leux and Guénel, 2010). Leux and Guénel

(2010) noted that many environmental chemicals interfere with thyroid function and

increase the risk of goiters, nodules, and possibly neoplasia. Additional known risk

factors include family history, sex, and age (Pellegriti et al., 2013). Socioeconomic

factors (SES) may also indicate that access to healthcare affects incidence (Sprague et

al., 2008; Morris et al., 2013). Thus, novel analyses are needed to elucidate both

incidence and contributing factors.

With the capability to visualize, analyze, interpret, and map geo-located data, the

field of geostatistics, notably the geographic information system (GIS) tool, has emerged

as a powerful geospatial technology that is gaining prominence in healthcare applications

(Musa et al., 2013). GIS-based cancer mortality maps produced by the National Cancer

Institute and Centers for Disease Control and Prevention (CDC) are widely used by

public health officials to guide disease surveillance and control activities throughout the

United States (Shaw, 2012). Beyond traditional GIS mapping capabilities, more

sophisticated spatial statistical analyses have been utilized to identify spatial disease

clusters (i.e., nonrandom spatial distributions of disease cases, incidence, or prevalence),

map and monitor disease patterns and trends over time and space, and assess the impact

of ecological and socioeconomic factors on the spatial distribution of diseases. Although

there are still many technical (e.g., knowledgeable users, data quality control) and

organizational (e.g., access and sharing) barriers to the wide-scale adoption of geospatial

17

technologies in the healthcare sector (Boulos et al., 2011), recent advances in the

understanding of disease dynamics, healthcare management has demonstrated the power

of geospatial technologies to identify new drivers of public health concerns and advance

the field of public health research.

18

CHAPTER 2: A TANDEM EVOLUTIONARY ALGORITHM FOR

IDENTIFYING OPTIMAL ASSOCIATION RULES FROM COMPLEX

DATA

2.1 Introduction

The causal rules underlying emergent properties of complex systems often exhibit

heterogeneity, epistasis, and/or overlap. Empirical observations of such systems may be

high-dimensional and typically include missing data, noise, and/or imbalanced classes.

All of these complexities complicate our ability to infer meaningful (potentially causal)

associations between observed system features and outcomes of interest.

Heterogeneity exists when there are multiple underlying causes for the same

outcome class. Evidence for heterogeneity exists in many systems, including bladder

cancer (Urbanowicz et al., 2013), autism (Buxbaum et al., 2001), and American political

parties (Poole and Rosenthal, 1984). Epistasis occurs when combinations of different

feature values exhibit non-additive effects on outcomes. Epistasis is believed to be

ubiquitous for many diseases (Moore, 2003), including breast cancer (Ritchie et al.,

2001), blood pressure in rats (Rapp et al., 1998), and Behçet’s disease (Kirino et al.,

2013). Many systems exhibit both heterogeneity and epistasis. For example, different

(i.e., heterogneous) combinations of non-linearly interacting (i.e., epistasic) transmission

line outages can cause cascading failures that lead to the same patterns of power loss in

the electrical grid (Eppstein and Hines, 2012). Similarly, the ecological niche of the

American black bear (Ursus americanus) is epistatic (in that the species requires both a

secluded area for denning and specific combinations of spring, summer, and autumn food

19

sources (Larivière, 2001)) and heterogeneous (because of the widely different

combinations of denning and three-season diets that accommodate the bear population,

contributing to a vast geographic range that spans from southern Mexico to northern

Canada (Larivière, 2001)). Furthermore, real world datasets often include correlated

features that can cause significant overlap in heterogeneous explanatory rules, highly

imbalanced classes (i.e., when the outcome classes are not equally represented in the

dataset), noise in measured outcomes, and missing data (Chapter 3).

There are many practical applications that require an understanding of such

complex relationships, such as in the development of personalized drug therapies

(Wilson, 2009), making market predictions of consumer behaviors (Young Kim and

Kim, 2004), identifying gene-gene and gene-environment causes for complex disease

(Moore, 2003), and developing eco-intervention strategies to minimize the spread of

disease in less developed countries (Chapter 3). However, while the size and complexity

of available datasets has exploded in recent years, computational tools for analyzing such

systems have not kept pace (Wu et al., 2014).

Traditional statistical and data mining methods, such as analysis of variance

(Wilson et al., 2017; Yousefi et al., 2016), logistic regression (Jarlenski et al., 2016; Li

et al., 2016; Nesheli et al., 2016), and decision trees (Markellos et al., 2016; Nesheli et

al., 2016) are well suited for univariate analysis of additive models. Some studies perform

feature selection using univariate logistic regression models and then test higher-order

interactions between the selected features (Kaplinski et al., 2015; Molina et al., 2015;

20

Olivera et al., 2015). However, if main effects are small or non-existent, these traditional

approaches will fail.

In very high-dimensional problems, researchers have used iterative feature

reduction methods to reduce the search space (e.g., Moore and White (2007); McKinney

et al. (2007)), often using the data-mining algorithm ReliefF (Robnik-Šikonja and

Kononenko, 2003) to assess feature importance. For example, Eppstein et al. (2007)

developed a computationally efficient feature reduction approach (logarithmic in the

number of features) for identifying parsimonious epistatic interactions that can predict

an outcome of interest, dubbed ‘Random Chemistry’. This general approach can also be

used to find heterogenous, possibly overlapping, sets of different epistatic interactions

associated with a given outcome, via independent runs (Eppstein and Hines, 2012).

However, in noisy and high-dimensional association problems where there are many

more features than input samples (e.g., as in genome wide association studies),

algorithms such as ReliefF become unreliable (Eppstein and Haake, 2008). Furthermore,

even when such methods are successful in identifying individual epistatic interactions,

they are not designed to identify maximally explanatory combinations of such

interactions in heterogeneous systems.

Learning classifier systems (LCS) are a type of evolutionary algorithm (EA) often

employed to analyze classification problems with epistatic, heterogeneous and/or

overlapping rules (Urbanowicz and Moore, 2009). The most common type of LCS is the

so-called Michigan-style LCS, first introduced by Holland and Reitman (1978). A

Michigan-style LCS uses a genetic algorithm to evolve a population of classifiers, with

21

each classifier comprising a condition/action pair. For example, consider a problem with

5 binary input features and binary outcome classes. The classifier 0##1# → 1 (where #

is a wild card symbol) is interpreted as “if feature 1 has value 0 and feature 4 has value

1, then the outcome class is predicted to be 1”. The condition 0##1# is thus equivalent to

the conjunctive clause (𝐹1 ∈ {0} ∧ 𝐹4 ∈ {1}), where 𝐹𝑖 refers to the value of feature i and

∧ represents the Boolean operator “AND.” (We use set notation so that this is easily

generalizable to nominal, ordinal, or continuous features 𝐹𝑖 with arity > 2). Prediction is

typically evaluated based on a weighted combination of all classifiers in the population,

and fitness is based on the number of times a classifier correctly predicts the outcome of

an input feature vector (Wilson, 1995). However, because Michigan-style LCS

approaches have focused on prediction accuracy, they return large “black box” sets of

classifiers, rather than seeking to identify parsimonious “white box” models that are

potentially causal. Furthermore, Michigan-style LCS approaches were designed for real-

time data assimilation in dynamically changing environments (Holland and Reitman,

1978) and can be inefficient and subject to bias (based on sampling order) when applied

to data that are available in batch.

In preliminary work, motivated by the desire to mine complex survey data, we

introduced a new evolutionary approach for finding heterogeneous and epistatic

associations between input features and multiple outcome classes in large datasets

(Hanley et al., 2016). In the current work, we further develop this method, compare the

results to published results on test problems from the LCS community, and discuss how

22

our approach can be applied to seek potentially causal rule sets in real-world survey data,

with important practical implications (Chapter 3).

Our approach uses two EAs in tandem, each using an age-layered population

structure (Hornby, 2006), and assesses fitness using a hypergeometric probability mass

function (Kendall, 1952) that accounts for the size of the dataset, the amount of missing

data, and the distribution of outcome categories. The first EA is used to evolve an archive

of conjunctive clauses (CCs) that have a high probability of a statistically significant

association with a given outcome. The second EA evolves disjunctions of these archived

CCs to create an archive of probabilistically significant clauses in disjunctive normal

form (DNF). Problem-specific post-processing methods of the DNF archive can then be

applied to identify potentially causal parsimonious rule sets for predicting the outcome.

This paper is organized as follows. In Section 2.2, we present our evolutionary

approach and in Section 2.3, we describe the test problems used. In Section 2.4, we show

how our method efficiently finds the most parsimonious, explanatory models in all

problems tested and compare our results to published results from the LCS community.

Finally, in Section 2.5, we discuss our findings and propose some directions for future

work in algorithm and benchmark problem development.

2.2 Proposed Evolutionary Algorithm

We propose a system of two EAs in tandem that is capable of mining large,

heterogeneous datasets of N feature vectors, for possibly epistatic and heterogeneous

associations between combinations of L nominal, ordinal, and/or real-valued features that

23

are possibly predictive of a given target class outcome k. This tandem algorithm is run

independently for each target class k present in the input dataset.

The first EA (dubbed CCEA) evolves an archive of probabilitistically significant

conjunctive clauses (CCs) of various orders, where the order is the number of interacting

features in an epistatic interaction; 1st-order clauses correspond to main (i.e, univariate)

effects. The second EA (dubbed DNFEA) combines archived CCs with disjunctions to

evolve an archive of probabilistically significant clauses in disjunctive normal form

(DNFs) of various orders, where the order is the number of conjunctions in a

heterogeneous rule sets; 1st-order DNFs comprise a single CC. Additional post-

processing of the DNF archive seeks the optimal rule set for the target class k. Further

details of the algorithm are described below and a hard copy of the Matlab code is

available in Chapter 8.

2.2.1 Fitness Function

For each target class k, we define the fitness of a given clause using a

hypergeometric probability mass function (PMF) (Kendall 1952), as follows::

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑐𝑙𝑎𝑢𝑠𝑒, 𝑘) =
(

𝑁𝑘
𝑁𝑚𝑎𝑡𝑐ℎ,𝑘

)(
𝑁𝑡𝑜𝑡−𝑁𝑘

𝑁𝑚𝑎𝑡𝑐ℎ−𝑁𝑚𝑎𝑡𝑐ℎ,𝑘
)

(
𝑁𝑡𝑜𝑡

𝑁𝑚𝑎𝑡𝑐ℎ
)

 , (2.1)

where clause is a given CC or DNF; Nk = the total number of input feature vectors with

the target class k that do not have missing values for any features present in the clause;

Nmatch,k = the number of input feature vectors for which the given clause is true and that

have the target class k; Ntot = the total number of input feature vectors that do not have

missing values for any features present in the clause (regardless of class); and Nmatch =

the number of input feature vectors for which the clause is true (regardless of class). Note

24

that these definitions are slightly modified from those in Hanley et al. (2016) to better

accommodate missing data.

Eq. (2.1) quantifies the likelihood that the observed association between the

clause and the target class k is due to chance, taking into account the size of the dataset,

the amount of missing data, and the distribution of outcome categories. We thus seek to

minimize Eq. (2.1), since lower values are indicative of greater probability of association

between a clause and a target class. Henceforth, when we refer to the “most fit” clauses,

we mean those with the lowest values using Eq. (2.1).

2.2.2 Population Structure

Both the CCEA and the DNFEA are implemented using a customized version of

an Age-Layered Population Structure (ALPS) (Hornby, 2006), with 5 linearly-spaced

age-layers and an age gap of 5. In this study, we restrict each CCEA layer to a population

size of L (where L is the total number of features in the input vectors), whereas we restrict

each DNFEA layer to population size of 20. In both the CCEA and the DNFEA, there is

an additional 6th layer that it is used as an archive of probabilistically significant clauses.

We run the CCEA and DNFEA separately for each target class k that is present

in the input data, thus creating separate archives for each possible outcome class. In

Boolean benchmark problems, the optimal generative rule set for each target class is

easily identified as the single archived DNF with the lowest fitness per Eq. (2.1). In the

more realistic problems, additional problem-specific post-processing of the CC and DNF

archives can be applied to identify parsimonious explanatory rule sets, as discussed later.

A high-level flowchart of the algorithm is shown in Fig. 2.1.

25

Figure 2.1: Flowchart for the proposed tandem ALPS-based EAs. For each target class k, we use

the CCEA to evolve an archive of conjunctive clauses (CCs) that have a statistically significant

probability of being associated with outcome class k; the CCs can be of arbitrary order, thus

representing epistatic interactions. The DNFEA then evolves disjunctions of these archived CCs

(after optional post-processing of the CC archive) and archives the resulting probabilistically

significant disjunctive normal forms (DNFs); the DNFs can be of arbitrary order, thus

representing heterogeneity. Further postprocessing of the archived DNFs seeks potentially causal

rule set(s), in the form of DNFs that are predictive of outcome class k. For benchmark problems,

we seek the single known optimal generative rule set.

2.2.2.1 Initialization, Reproduction, and Aging

At the start of the first generation (and every 5 generations thereafter), a novel

population of clauses, each with age 1, is introduced into the first age layer. Further

details of the initialization of CCs and DNFs are described in Sections 2.2.3 and 2.2.4,

respectively. During each generation, all of the individuals in layers 1-5, plus up to 𝐿×5

of the youngest individuals from the archived layer 6 (or fewer, if the archive doesn’t yet

hold this many individuals) are selected to reproduce with variation. The ages of these

selected parents are incremented by 1 and they remain in the population. Variation is

introduced either through crossover (with probability 𝑃𝐶 = 0.5) or through mutation. If

selected for crossover, a second parent is selected from the same or preceding (if one

exists) age layer, using tournament selection with replacement (tournament size of 3);

26

the age of the second parent is not incremented. Further details of the crossover and

mutation operators on CCs and DNFs are described in Sections 2.2.3 and 2.2.4,

respectively. The children are given the same age as the oldest parent.

Upon creation of a new clause in any layer (whether via random initialization,

mutation, or recombination), if
𝑁𝑚𝑎𝑡𝑐ℎ,𝑘

𝑁𝑚𝑎𝑡𝑐ℎ
<

𝑁𝑘

𝑁𝑡𝑜𝑡
 , then clause is discarded; this biases the

algorithm toward retaining clauses that are useful in finding associations with the target

class k. Of those retained, clauses with order i for which Eq. (2.1) is less than or equal to

an order-specific threshold Ti are put directly into the archive bin for order i (as further

explained in Section 2.2.2.2); otherwise, they are added into the appropriate age layer.

Every fifth generation, individuals in layers 1-5 age out of their layers into the

next higher age layer and a new random population is created for layer 1. Those aging

out of layer 5 are discarded from the population.

At the end of each generation, all individuals within the same age layer compete

with each other during survivor selection, as follows. For any of the layers 1-5 in the

CCEA and DNFEA that exceed the maximum layer size of L or 20 individuals,

respectively, we determine survivors through truncation selection retaining the L or 20

most-fit CCs in that layer for the CCEA and DNFEA, respectively.

2.2.2.2 Maintaining the Archive

Each archive is partitioned into bins for different orders of clauses, to ensure

diversity in the complexity of the archived clauses. The maximum order of these bins

and the lower bounds on the sizes of these bins are dataset-dependent (see Table 2.5). In

all cases, the upper bounds on the bin sizes were 10 more than the lower bound. All

27

clauses in an archive bin for order i have fitness values that are less than or equal to a

dynamicallyadjusted order-specific threshold Ti. The highest order bin may accept

clauses ≥ the order of the bin. In the CCEA and DNFEA, thresholds Ti for all orders i are

initialized to 1/N. This translates to an initial probability of 1 in N that a CC with fitness

= Ti is randomly associated with the target class k.

2.2.3 Representation of Conjunctive Clauses (CC’s)

We represent possibly epistatic interactions, which are predictive of a target class

k, with CCs in the following form:

 𝐶𝐶𝑘 ≔ 𝐹𝑖 ∈ 𝑎𝑖 ∧ 𝐹𝑗 ∈ 𝑎𝑗 … , (2.2)

where := means “is defined as”, Fi represents a feature that may be nominal, ordinal, or

continuous, and whose value lies in ai, and ∧ represents conjunction (i.e., logical AND).

Note that ai is a specified range or set of values that is a proper non-empty subset of a

pre-specified universal set or maximum range of each feature. The meaning of such a

clause is interpreted as “if CCk is true for a given input feature vector, then the class

outcome is predicted to be k.”

Each CC is represented by two parallel data structures. The first is a Boolean

vector of length L (where L is the number of features in each input vector) that encodes

presence (1) or absence (0) of each possible feature Fi in the clause. Thus, the sum of this

Boolean vector represents the order of the CC and each feature i can appear at most once

in a CC. Note that 1st-order CCs represent main effects of individual features; and if a

feature is absent from a clause, this is equivalent to the LCS notation of having a wild

card in that feature’s position. We store the corresponding ranges or sets of values ai in

28

a parallel data structure (we represent this as a vector of L pointers, each of which points

to a binary vector representation of the range or set of values, similar to that used by De

Jong and Spears (1991); although this is not space-efficient, it is very time-efficient when

checking to see if a given CC matches a given instance in the dataset). These parallel

structures comprise the genome of an individual in the CCEA, and the values in the

binary vectors representing feature presence/absence and feature ranges/sets are co-

evolved.

We enforce that there is at least 1 feature present in each CC, and that the

allowable set or range for each included feature is non-empty, to preclude the problem

of evolving clauses that cannot match any instances in the dataset (as discussed in Llorà

et al. (2005)). We allow CCs to have up to L features present, since we do not wish to

make arbitrary a priori assumptions on the maximum order of epistasic interactions that

may exist. Iqbal et al. (2015) showed that higher-order CCs are useful in finding epistatic

lower-order CCs.

2.2.3.1 CC initialization

Novel CCs are randomly created for layer 1 such that they are guaranteed to

match at least one input feature vector that is associated with the target class k (a process

known as “covering”). To accomplish this, we first generate a uniformly distributed

random integer 𝑗 ∈ {1, … , 𝐿} to specify the order of the CC, and then extract the subset

of input feature vectors with class k that have at least this many non-missing values. From

this subset, we choose one of these at random. While the archive is empty, this input

feature vector is selected according to a uniform distribution. However, once the archive

29

has been populated with clauses, we use a non-uniform distribution to bias the selection

toward input feature vectors that are not yet well-covered in the archive. Specifically, we

first tally the number of archived clauses that match each input feature vector in the

extracted subset. We then sum this tally and add one, and subtract each feature vector’s

tally from this value. We normalize the resulting vector and select an input feature vector

according to this probability distribution.

We then randomly select j of the non-missing features in the selected feature

vector to be present in the clause. For each selected feature i, we then randomly initialize

the corresponding range or set ai as follows. If the feature is nominal, the set ai is

initialized to contain only the value for feature i that occurs in the selected input feature

vector. If the feature is ordinal or continuous, the range stored in ai is initialized such that

both the lower and upper bounds of the range are assigned the value for feature i that

occurs in the selected input feature vector, so that the range contains exactly this value.

2.2.3.2 CC mutation

When a CC is selected for mutation, we do the following. Each position in a copy

of the binary feature array from the parent is selected with probability 1/L (if zero features

were initially selected, we select one at random). For each feature i that was selected, if

the value at position i in the binary feature array is 0 (feature not present in the clause),

then it is set to 1 (feature is added to the clause); and ai is randomly initialized to a non-

empty set or range of allowable values that does not include the entire allowable subset

or range of values. However, if the value at position i in the binary feature array is 1 (i.e.,

Fi was present in the clause), then with probability Pw, the bit is flipped to 0 (i.e., the

30

feature is removed from the clause). For this work, we selected a high Pw = 0.5 so that

mutation favors order reduction and thus aids in evolving parsimonious clauses that

contain as few features as possible. If the value at position i in the binary feature array

remains a 1 (feature Fi is still present), then the corresponding ai is mutated as follows.

If Fi is nominal, we randomly change, add, or delete a categorical value to ai, ensuring

that the set remains non-empty and less than the allowable universal set of values. If Fi

is ordinal or continuous, we randomly change the lower or upper bound of ai, ensuring

that the range remains non-empty and less than the maximum allowable range.

2.2.3.3 CC crossover

When a CC is selected for crossover, we perform uniform crossover between

copies of the CC and its mate (selected as described in Section 2.2.2). Specifically, we

initially create two children, swapping values between random positions in the binary

feature arrays of the copies of the two parents, as well as between the same positions in

the corresponding arrays of sets/ranges. If the first child contains at least one feature, we

discard the second child; otherwise, we discard the first child.

2.2.4 Representation of Clauses in Disjunctive Normal Form (DNF’s)

We represent possibly heterogeneous interactions, which are predictive of a target

class k, with DNFs in the following form:

 𝐷𝑁𝐹𝑘 ≔ 𝐶𝐶𝑖 ∨ 𝐶𝐶𝑗 … , (2.3)

where each CCi is of the form shown in Eq. (2.2) and ∨ represents disjuntion (i.e., logical

OR). The meaning of such a clause is interpreted as “if DNFk is true for a given input

feature vector, then the outcome class is predicted to be k.” Each DNF is represented by

31

a binary array of length NCC,k , where NCC,k is the number of CCs archived by the CCEA

for outcome class k (see Section 2.2.2). The binary values encode presence (1) or absence

(0) of a given CC in the DNF, so the sum of this array represents the order of the DNF.

Each DNF is constrained to include at least 1 CC but may have up to NCC,k CCs. This

binary array comprises the genome of an individual in the DNFEA. For implementation

efficiency, prior to running the DFNEA, each CC in the archive is associated with a

precomputed binary array of length N that encodes whether the CC matches (1) or doesn’t

match (0) each of the N input feature vectors and its associated outcome class. In general,

the implementation of the DNFEA operators is simpler than that of the CCEA operators,

since we no longer need to worry about allowable sets/ranges or covering of input feature

vectors.

2.2.4.1 DNF initialization

Novel DNFs are randomly created as uniformly distributed binary arrays with

anywhere from one CC to the maximum DNF order that will be archived for a given

problem.

2.2.4.2 DNF mutation

When a DNF is selected for mutation, it will undergo one of five types of

mutation with equal probability. Type 1 mutation is simple bit flip where each position

in a copy of the binary feature array from the parent is selected with probability 1/ NCC,k

(if zero features were initially selected, we select one at random). We then perform bit-

flip mutation at each of these selected positions, subject to the constraint that the DNF

must still contain at least one CC.

32

The other four types of mutation are designed to help expand the diversity of

evolved clauses in terms of true positive rate and coverage, or are aimed at reducing the

DNF order. Type 2 mutation selects the CC that covers the most input feature vectors

with target class k that are not covered by the DNF. Type 3 mutation selects the CC that

covers the most input feature vectors with target class k that are not already covered by

the DNF, while avoiding covering input feature vectors that are not associated with target

class k. Type 4 mutation removes the CC that covers the fewest number of input feature

vectors with target class k that are not covered by other CCs in the DNF. Finally, Type 5

mutation removes the CC that has the most input feature vectors that are not target class

k and are not covered by other CCs in the DNF. All five types of mutation ensure that at

least one CC will be present in the DNF.

2.2.4.3 DNF crossover

When a DNF is selected for crossover, we perform uniform crossover between

copies of the DNF and its mate (selected as described in Section 2.2.2). Specifically, we

initially create two children, swapping values between random positions in the binary

feature arrays. If the first child contains at least one feature, we discard the second child;

otherwise, we discard the first child.

2.3 Test Problem Characteristics

In this manuscript, we test our algorithm on three types of problems previously

used to test LCS algorithms. Two of these are classic scalable Boolean benchmark

problems (the majority-on and multiplexer problems) and the third is a more realistic

33

synthetic genome association problem. Each of these problems are challenging and

interesting in different ways (Table 2.1).

Table 2.1: Challenging aspects of test problem used in this work; Majority-On (MO), Multiplexer

(MP), 4 variants of MP, and the Synthetic Genome problem.

Problem

Heter.

Rules

Epistatic

Rules

Overlap.

Rules

Extran.

Features

Imbal.

Classes

Noisy

Classes

Missing

Data

MO X X

MP X X

MP V1 X X X

MP V2 X X X X

MP V3 X X X X

MP V4 X X X X

Genome X X X X X

Below, we describe the rule sets used to generate the data for each of these

problems, and show how each generative rule set for a particular outcome class can be

represented in DNF, where each CC in the disjunction is one of the heterogeneous causes

for the outcome class. Our goal is not only to evolve a set of classifiers that can accurately

predict the outcome classes from input feature vectors, but to identify each of the true

generative CCs as well as the single true generative DNF for each outcome class.

2.3.1 The Majority-On Problem

The majority-on problem, and the related count-ones problem (which is

equivalent to majority-on but with extraneous features added) are scalable Boolean

benchmark problems still used in the LCS community (Butz et al., 2003; Iqbal et al.,

2013a; b; c; 2014), despite known limitations (McDermott et al., 2012).

In the majority-on problem, the number of input features L is always odd and the

outcome class is specified by which of the Boolean values (0 or 1) is in the majority in a

particular input feature vector. The generative model is the set of all classifiers with order

34

(L + 1)/2 such that all fixed bits and the action bit have the same value. For example, in

the 3-bit majority on problem, the optimal predictive rule set for outcome class 0 is the

following disjunction: (00#) ∨ (0#0) ∨ (#00), and the optimal predictive rule set for

outcome class 1 is the following disjunction: (11#) ∨ (1#1) ∨ (#11). Since each condition

can be considered a conjunctive clause (CC) (see Section 2.1), these optimal rule sets

may be considered to be in disjunctive normal form (DNF). Note: These optimal rule sets

are heterogeneous (since each is the disjunction of 3 classifiers). The classifiers are

overlapping (e.g., (11#) and (1#1) both match the input vector 111 with observed

outcome class 1), but are not epistatic (i.e., all features have additive main effects).

Despite the presence of overlap, each of the 6 optimal condition/action classifiers are

needed since there are input vectors that are only matched by one classifier (e.g., for

outcome class 1, the input vector 110 is only matched by classifier 11#).

We note that, for noiseless 2-class benchmarks problems like this, it is not

actually necessary to evolve explicit rules for class 0, since one could simply assume the

implicit rule of “if class 1 is not predicted, then predict class 0.” However, to demonstrate

the generality of a given method’s ability to evolve explicit sets of classifiers for

problems that are potentially noisy and may have an arbitrary number of outcome classes,

it is the norm in the LCS community to explicitly evolve classifiers for both outcome

classes, and we follow that convention here.

2.3.2 The Multiplexer Problem

The multiplexer problem, designed to predict the output of a electronic

multiplexer circuit, is another scalable Boolean benchmark problem. The multiplexer

35

problem was first introduced to the machine learning community by Barto (1985), and

has been a standard benchmark problem for testing LCS approaches for decades (Booker,

1989; De Jong and Spears, 1991; Goldberg, 1989;Wilson, 1987a; b; Butz et al., 2003;

2004; 2005; Butz and Pelikan, 2006; Ioannides et al., 2011; Iqbal et al., 2012; 2013a; b;

c; 2014; 2015; Llorà et al., 2005; Urbanowicz and Moore, 2015).

The generative model is the disjunction of 2b+1 classifiers, each with order b + 1,

where b is the total number of address bits used to identify a location in a vector of 2b

data bits that contains the outcome class. An example of the 6-bit multiplexer architecture

is presented in Table 2.2. When using the multiplexer as a benchmark classifier problem,

the input feature vectors comprise both the address bits and the data bits, so are b + 2b

bits long; the outcome classes associated with particular input feature vectors are thus

only discovered as the address bits of the classifiers evolve. The optimal predictive rule

set for outcome class 0 in the 6-bit multiplexer can thus be considered as the following

DNF: {(000###) ∨ (01#0##) ∨ (10##0#) ∨ (11###0), and the optimal predictive rule set

for outcome class 1 is the following DNF: (001###) ∨ (01#1##) ∨ (10##1#) ∨ (11###1)}.

This benchmark problem is purely epistatic (the address features do not have main effects

and all optimal classifiers are of order > 1) and heterogeneous (different classifiers match

different different subsets of the possible input vectors).

36

Table 2.2: Example of the generative rule set for a 6-bit multiplexer problem. Each feature vector

X is 6 bits long, with the first b = 2 bits representing the address bits A, which are interpreted as a

2-digit binary number (equivalent to decimal 0, 1, 2, or 3) that is used as an index into the the next

2b data bits D. The data bit at this index represents the class outcome, whereas all other data bits

are irrelevant to the classifier (wild cards).

Address Bits Data Bits

X1 X2 X3 X4 X5 X6

A1 A2 D0 D1 D2 D3

0 0 0 # # #

0 1 # 0 # #

1 0 # # 0 #

1 1 # # # 0

0 0 1 # # #

0 1 # 1 # #

1 0 # # 1 #

1 1 # # # 1

As with the majority-on problem, one could simply preclude the need for

explicitly evolving classifiers for class 0 by assuming the implicit rule of “if class 1 is

not predicted, then predict class 0.” However, to demonstrate generality, it is the norm in

the LCS community to explicitly evolve classifiers for both outcome classes, and we

follow that convention here.

2.3.3 Synthetic Genome Problem

Urbanowicz and Moore (2010) designed a noisy dataset to represent a synthetic

genome association study for a complex disease that incorporates both genetic epistasis

and heterogeneity. For the remainder of this manuscript we refer to this as the synthetic

genome problem. The dataset contains 1,600 input feature vectors, and is perfectly

balanced in that 800 input feature vectors are associated with class 1 (disease) and 800

are associated with class 0 (no disease). Each input feature vector contains 20 ternary

features, each representing whether a particular locus in the genome is homozygous for

the major (most common) allele, heterozygous, or homozygous for the minor allele.

37

The dataset was designed with the intent that only four of these features would

have a statisically meaningful association with the disease. Specifically, there were four

heterogeneous causes for the simulated disease, in two pairs of purely epistatic

interactions (i.e., no main effects) between two different pairs of loci (Table 2.3). Since

the association between each of these 4 optimal rules and class 1 (disease) was designed

to be noisy, we also indicate their true positive rate, coverage, and fitness by Eq. (2.1)

(Table 2.3).

Table 2.3: The four generative rules that are designed to have a statistically meaningful association

with class 1 (disease) in the synthetic genome problem. In each of the 4 rules, only two loci ∈
{𝑭𝟏, 𝑭𝟐, 𝑭𝟑, 𝑭𝟒} out of 20 are not wild cards. True positive rate, coverage, and fitness (by Eq. (2.1))

of each of these true generative rules for class 1 (disease) are also shown.

F1 F2 F3 F4 F5 … F20

True

Positive Coverage Fitness

0 1 # # # … # 72% 27% 1.1×10−17
1 0 # # # … # 74% 23% 5.7×10−17
0 1 # … # 66% 28% 4.2×10−12

1 0 # … # 71% 21% 8.7×10−13

Due to noise, the true generative DNF for class 1 (i.e., the disjunction of the 4

true generative rules shown in Table 2.3) has an overall positive prediction rate for class

1 of only 64% (see Table 2.4), coverage of 76%, and fitness by Eq. (2.1) of 3.2×10−44.

Note that there are no explicit rules that predict class 0, so if one assumes the default rule

that “if class 1 is not predicted, then predict class 0,” then the overall positive prediction

rate for both classes is 67%.

38

Table 2.4: Confusion matrix that results when predicting class 1 (disease) from the 1,600 sample

noisy synthetic genome dataset, using the optimal generative rule set for class 1. Samples that are

not predicted to be class 1 are predicted to be class 0 (no disease).

 Predicted: Class 1 Predicted: Class 0

Actual: Class 1 607 193

Actual: Class 0 336 464

Unlike in the majority-on and multiplexer problems, the synthetic genome

problem was not designed to have any classifiers that are explicitly associated with class

0 (no disease). Thus, it is most appropriate to only evolve rules for class 1 and then

assume the implicit rule of “if class 1 is not predicted, then predict class 0,” and we take

that approach here.

2.3.4 Experimental Design

Control parameters for the different types of problems and problem sizes tested

are shown in Table 2.5. We note that, while preliminary experimentation showed that

these parameters were sufficient for identifying the true generative clauses, it is likely

they could be further optimized to improve performance. Each problem was run for 30

random repetitions. For the Boolean benchmark problems we ran the CCEA and DNFEA

separately for each of class 0 and class 1, so actually performed a total of 60 runs for

each problem size. On the synthetic genome problem we only ran the CCEA and DNFEA

for class 1 (since there was no true generative rule for class 0), so performed a total of 30

runs on this problem. For all test problems, the runs were terminated when all of the true

generative clauses had been archived and we recorded the total number of fitness

evaluations performed per run. We used the same set of parameters for all 4 variants of

the 6-bit multiplexer problem with 14 extraneous features added, including (a) a base

39

case (with balanced classes, no noise in the output classes, and no missing data), (b)

imbalanced classes (15% class 0 and 85% class 1), (c) 20% noise added to the class

outcomes (i.e., we flipped the outcome bit in 20% of random input data samples), and

(d) 20% missing data (i.e., we randomly removed 20% of feature values from the input

data samples).

Table 2.5: Control parameters on the CCEA and DNFEA for the test problems. TIT stands for

Ternary Digit, and EF stands for Extraneous Features. Genome refers to the Synthetic Genome

Problem.

Control

Params. Majority-on Multiplexer Genome

Problem

Size 3-bit 5-bit 7-bit 9-bit 11-bit 6-bit 11-bit 20-bit 37-bit

6-bit+

14EF

4-TIT

+16EF

Dataset

Size

1,000 2,000 3,000 4,000 5,000 500 1,000 2,000 4,000 2,000 1,600

CCEA Parameters

Bin Size

Order 1
3 5 7 9 11 6 11 20 37 20 20

Bin Size

Order ≥2
3 10 35 350 3,500 25 50 100 200 100 100

Max Bin

Order
3 5 6 6 7 6 6 6 7 6 6

Max

Archive
33 85 232 1,809 21,071 181 311 570 1,297 570 570

Max

Popsize
48 110 267 1,824 21,126 211 366 670 1,482 670 670

DNFEA Parameters

Max Bin

Order
5 12 6 10 18 34 6 6

Max

Archive
150 360 180 300 540 1,020 180 180

Max

Popsize
250 460 280 400 640 1,120 280 280

2.4 Results

On all repetitions of all problems tested, the CCEA was successful in archiving

all true generative CCs and the DNFEA was successful in archiving the true generative

DNF (see Tables 2.6-2.7).

40

Table 2.6: CCEA and LCS results on the test problems. TIT stands for Ternary Digit, and EF

stands for Extraneous Features. Genome refers to the Synthetic Genome Problem. For the CCEA

results, we report the median number of evaluations out of 30 repetitions. For the LCS results, #

instances refers to the number of instances used before the system achieved 100% accuracy. For

the 6-bit multiplexer problem with 14 EF we report the median # evaluations for the base case, but

we note that the runs with imbalanced classes, noise in the class data, and missing data had very

similar median values.

Control

Params. Majority-on Multiplexer Genome

Problem

Size 3-bit 5-bit 7-bit 9-bit 11-bit 6-bit 11-bit 20-bit 37-bit

6-bit+

14EF

4-TIT

+16EF

Search
Space

52 484 4,372 39,364 354,292 1,456 354,292 7e9 9e17 7e9 1e12

CCEA Results

Evals 105 749 4,432 30,418 295,369 2,201 19,891 193,929 2,811,841 16,214 8,316

Iqbal et al. (2013c) results using actions e

Classifiers
 3,000 500 1,000 2,000 6,000

Instances

 20,000 3,333 9,698 59,549 1,367,925

Iqbal et al. (2014) results

Classifiers
500 1,000 2,000 1,000 2,000 6,000

Instances
16,738 63,862 250,000 31,098 41,921 109,123

Urbanowicz and Moore a(2015), b(2010) results

Classifiers
 500a 1,000a 2,000a 5,000a 1,600b

Instances
 12,203a 17,966a 43,729a 75,932a 1e6b

Table 2.7: DNFEA results on the test problems. TIT stands for ternary digit, and EF stands for

Extraneous Features. Genome refers to the Synthetic Genome Problem. We report the median

number of DNFs in the search space and the median number of evaluations out of 30 repetitions.

For the 6-bit multiplexer problem with 14 EF we report the # of evaluations for the base case; but

we note that the runs with imbalanced classes, noise in the class data, or missing data had very

similar median values.

DNFEA Majority-on Multiplexer Genome

Problem

Size 3-bit 5-bit 6-bit 11-bit 20-bit 37-bit

6-bit+

14EF

4-TIT+

16EF

Search

Space
739 1e12 6e9 1e18 3e33 1e66 5e13 9,933

Evals 491 4,789,542 3,724 16,377 67,758 393,857 3,578 2,089

2.4.1 Results on Binary Benchmark Problems

For problems with relatively small search spaces and a large number of true

generative CCs (e.g., the majority-on problems), the CCEA was no more efficient than

exhaustive search (Table 2.6, Fig. 2.2a). Although total evaluations are not commonly

41

reported in the LCS community, we note that the fewest reported number of required

data instances reported for majority-on (Iqbal et al., 2013c; 2014) (which is a strong

lower bound on the total number of evaluations required) are actually orders of

magnitude higher than exhaustive search would require (Table 2.6, Fig. 2.2a). However,

for the multiplexer problems (which have relatively few true generative CCs) the CCEA

proved increasingly efficient relative to exhaustive search as the problem size increased

(Table 2.6, Fig. 2.2c). In the multiplexer problem, the fewest number of required

instances reported by the LCS community (Iqbal et al., 2013b; 2014; Urbanowicz and

Moore, 2015) appears to be scaling slightly better than the number of evaluations

required by the CCEA (Table 2.6, Fig. 2.2c). However it is not clear whether the CCEA

is inherently less computationally efficient on the multiplexer problem than LCS because

(a) different LCS methods gave the best results on different problem sizes (Fig. 2.2c), (b)

the number of required instances is only a lower bound on the number of evaluations

required by the LCS approaches, and (c) there may be further efficiencies to be gained

by additional optimization of the CCEA parameters.

42

Figure 2.2: Efficiency of the algorithm on the binary benchmark problems. (a) Majority-on: Box

plots of the number of CCEA fitness evaluations as a function of the size of the search space,

compared to the published results for the number of instances evaluated (a lower bound on the

number of fitness evaluations), and exhaustive search (the 1:1 line); (b) Majority-on: Box plots of

the number of fitness evaluations of the DNFEA as a function of the median size of the search

space over 30 repetitions, (c) Multiplexer: Box plots of the number of CCEA fitness evaluations as

a function of the size of the search space, compared to the published results for the number of

instances evaluated (a lower bound on the number of fitness evaluations), and exhaustive search

(the 1:1 line); (c) Multiplexer: Box plots of the number of fitness evaluations of the DNFEA as a

function of the median size of the search space over 30 repetitions.

43

Regardless of whether the CCEA is more or less efficient than LCS, it is

important to note that the number of CCs archived by the CCEA is much smaller than

the population of classifiers returned by the LCS methods (Tables 2.5, 2.6), and the

CCEA archives (unlike LCS classifiers) always included the true generative CCs (i.e.,

also had 100% coverage of the complete search space, not just 100% true positive

predictions on recent instances sampled).

On both the majority-on and multiplexer problems, the DNFEA was always able

to archive the true generative DNF and scaled much better than exhaustive search (Table

2.7, Fig. 2.2b,d).

A closer examination of the archived CC and DNF clauses illustrates the power

of using Eq. (2.1) (rather than classification accuracy) as a measure of fitness. For

example, in Fig. 2.3a we show results from a typical 6-bit multiplexer run with 14

extraneous features. In this figure, archived CCs are shown with green squares, where

darker shading indicates higher-order conjunctions. Similarly, archived DNFs are shown

with blue circles, where darker blue indicates higher-order disjunctions. For clarity, the

8 true archived 3rd order generative CCs are shown in orange hexagrams and the single

true archived 4th order generative DNF for class 0 is shown with the red pentagram. In

this noise-free problem, even though the 2,000 instances in the dataset represent a tiny

fraction of the CC and DNF search spaces (Table 2.5), the true DNF is clearly identifiable

as the single solution that has 100% true positive rate (a.k.a. accuracy) and 100%

coverage and has the highest fitness according to Eq. (2.1). Note: There are many

44

suboptimal CCs and DNFs with 100% true positive rate, which highlights why true

positive rate (accuracy) alone is an insufficient fitness metric.

Figure 2.3: Archived results in typical results (arbitrarily selected as the first of 30 repetitions) for

target class 0 on the 6-bit multiplexer problem with 14 extraneous features added and 2,000

random instances in the dataset for (a) balanced classes with no noise and no missing data, (b)

imbalanced class outcomes (class 0 at 15%, class 1 at 85%) with no noise and no missing data, (c)

20% random errors in class outcome in the dataset, balanced classes and no missing data, and (d)

20% randomly missing feature data, balanced classes and no noise. The legend on panel (b) applies

to all panels. We illustrate the true positive prediction rate on the training instances, class coverage

of the training instances, and fitness by Eq. (2.1); the true generative CCs are shown in orange

hexagrams and all other CCs archived by the CCEA with green squares, and the true generative

DNF is shown by the red pentagram and all other DNFs archived by the DNFEA with blue circles.

Darker shades of green or blue represent higher order clauses and the contour lines indicate

evenly-spaced fitness values.

Even with highly imbalanced classes (15%/85%), the tandem algorithm is able to

reliably find the exact generative DNF for the minor class (e.g., Fig. 2.3b). When 20%

noise is added to the outcome classes, the true positive rate and coverage are necessarily

reduced, but the true generative DNF still consistently stands out as the archived DNF

with the highest fitness according to Eq. (2.1) (e.g., Fig. 2.3c). Finally, we observed that

45

even with 20% missing data in the input dataset, the true generative DNF always had

orders of magnitude better fitness than any other 4th-order DNF; and in 77% of trials, this

was also the clause with the best fitness. However, in 12%, 10%, and 2% of the trials we

found, 1, 2, or 3 higher-order clause(s), respectively, with a slightly better fitness (e.g.,

see one example in Fig. 2.3d). In these cases, the true generative DNF could still be

identified as the most parsimonious (i.e., lowest order) of the most fit DNFs.

2.4.2 Results on Synthetic Genome Problem

The synthetic genome problem includes extraneous features and noise in class

outcomes, so it is not possible to achieve 100% true positive prediction or coverage.

However, we still observed that the 4 true generative 2nd-order CCs were consistently

archived in 30 out of 30 trials, and required 2 orders of magnitude fewer evaluations than

reported instances required by XCS (Table 2.6), even though the latter did not report

finding the true generative CCs.

The true generative 4th-order DNF was also archived in all 30 trials. While no 4th

-order DNF had higher coverage than the true generative DNF, we found numerous

DNFs that had higher true positive rate than the true generative DNF and still had

relatively high (> 70%) coverage (Fig. 2.4). In general, in real problems one does not

know how many, or which, features are part of the true CCs and which are potentially

extraneous. However, in post-processing of the CC archive, we observed that the 4 true

features occurred in archived CCs (across all 30 repetitions) twice as often as any of the

extraneous features. Thus, to reduce the size of the DNF search space, we then presented

the DNFEA with those archived CCs that contained only the most prevalent features.

46

The true generative 4th-order DNF is consistently identifiable as a highly-fit DNF with

the greatest coverage (e.g., see Fig. 2.4).

Figure 2.4: Archived results on the Synthetic Genome Problemtrained on 1,600 instances, where

the CC archive was reduced by post-processing to include only those features that were most

prevalent prior to running the DNFEA. We illustrate the true positive prediction rate on the

training instances, class coverage, and fitness by Eq. (2.1) of the CCs archived by the CCEA (green

squares) and the DNFs archived by the DNFEA (blue circles), where darker shades represent

higher-order clauses and the contour lines indicate evenly-spaced fitness values. For clarity, the

true generative CCs are shown in orange hexagrams and the true generative DNF is shown by the

red pentagram.

2.5 Discussion

There is a growing availability of Big Data and an increasing recognition that

many (probably most) systems of interest are complex. These observations highlight the

need for new data analysis tools that are capable of discovering interesting (potentially

causal) complex rule sets (that may contain non-linearities, overlap, and heterogeneity)

from potentially messy datasets (that itself contain heterogeneous features, missing data,

47

imbalanced outcome classes, and imperfect relationships between features and

outcomes).

2.5.1 Binary Benchmark Problems

 Unfortunately, there are relatively few benchmark datasets with tunable

heterogeneity and/or epistasis. Two classic benchmark problems that have been widely

used in the EA community include the majority-on problem, which includes

heterogeneous and overlapping conditions, but not epistasis (Iqbal et al., 2013c; 2014;

McDermott et al., 2012) and the multiplexer problem, which includes both heterogeneity

and epistasis (Booker, 1989; De Jong and Spears, 1991; Goldberg, 1989; Wilson, 1987a;

b; Butz et al., 2003; 2004; 2005; Butz and Pelikan, 2006; Ioannides et al., 2011; Iqbal et

al., 2012; 2013a; b; c, 2014; 2015; Llorà et al., 2005; McDermott et al., 2012;

Urbanowicz and Moore, 2015). However, both are noise-free, balanced, binary,

classification problems with no missing data and; as we show later, both have other

characteristics not representative of real-world problems. We note that the genetic

programming community has acknowledged that better methods exist for solving these

Boolean problems (White et al., 2013) and many of the test problems that have been

reported on have so few features that exhaustive search is more efficient than using an

EA search strategy. To compare to published results from the LCS community, we have

tested our proposed approach on these two classic benchmark problems. However, our

work underscores the need for better benchmarks with tunable epistasis and

heterogeneity, which are more representative of real-world applications.

48

The presence of overlapping CCs is the primary reason that the majority-on

problem has been used as a benchmark in the LCS community (Iqbal et al., 2013b; c;

2014). One of the most reliable Michigan-style LCSs, referred to as XCS, struggles with

this overlap. Kovacs (2002) noted that the XCS algorithm penalizes against overlapping

CCs; and Ioannides et al. (2011) showed that even when XCS is initialized with a

population containing the overlapping true signals, they are selected out of the CC

population. When Iqbal et al. (2013c) used XCS to tackle the 7-bit majority-on problem,

the evolved CCs were an order or two below that of the true generative CCs. On the other

hand, when a variant of XCS was used that evolves a logical representation of the action

set, the CCs found were usually (23 out of 30 times) at least one order greater than the

true generative CCs (Iqbal et al., 2013c). Therefore, even when 100% classification

accuracy was reported for small majority-on problems (3-, 5-, and 7-bit) (Iqbal et al.,

2013b; c; 2014), the true generative CCs were not identified. It is likely that significant

overfitting is occurring in these large populations of overly-specific classifiers.

One additional limitation of the majority-on problem is that, as the problem

increases from 3-bit to 11-bit, the number of true generative CCs increases from 6 to 924,

while the expected coverage of each true CC decreases from 25% to only 1.6% (Table

2.8). In real-world association problems, if one reported identifying a 924-order

disjunction of order-6 conjunctions, each with only 1.6% coverage of the dataset, this

would be dismissed as extreme overfitting. Despite these limitations, the proposed CCEA

was consistently able to archive all of the true generative CCs in up to 11-bit majority-

on problems, and the proposed DNFEA was able to archive the single true generative

49

DNF in up to 5-bit majority-on problems, and this optimal DNF was easily identifiable

as the archived clause with the best fitness by Eq. (2.1).

Table 2.8: Characteristics for Majority-On (MO) and Multiplexer (MP) benchmark problems.

Problem # Possible CCs

Order of True

CCs

of True CCs

in Generative

Rule Set

Expected

Coverage of

Each True CC

3-bit MO 52 2 6 25.0%

5-bit MO 484 3 20 12.5%

7-bit MO 4,372 4 70 6.3%

9-bit MO 39,364 5 252 3.1%

11-bit MO 354,292 6 924 1.6%

6-bit MP 1,456 3 8 12.5%

11-bit MP 354,292 4 16 6.3%

20-bit MP 7×109 5 32 3.2%

37-bit MP 9×1017 6 64 1.6%

The presence of tunable degrees of heterogeneity and epistasis is the primary

reason why the multiplexer problem continues to be a standard benchmark problem in

both the LCS and genetic programming (GP) communities. White et al. (2013) noted that

between 2009-2012, approximately 10% of GP papers submitted to EuroGP and GECCO

used the multiplexer problem, despite acknowledgment that these problems are trivial to

solve using non-GP techniques (White et al., 2013). In the LCS community, some

(Kovacs, 1998; Butz et al., 2003) have noted (1) the existence of many non-optimal CCs

that have the same true positive rate and expected coverage as the true generative CCs,

and (2) LCS typically returns populations of classifiers (e.g., see Table 2.6) that are much

larger than the number of CCs in the true generative DNF (Table 2.8), and sometimes

even larger than the maximum possible number of CCs in the search space (Table 2.6).

Additionally, as the size of the multiplexer problem increases, the number of true CCs in

the true generative DNF increases (albeit not as rapidly as in the majority-on problem)

50

and the individual coverage rapidly decreases (Table 2.8). Despite these issues, our

proposed approach consistently evolved and identified the single true generative DNF in

all multiplexer problems tested (up to 37-bit).

Furthermore, even when we introduced extraneous features, imbalanced classes,

noise in the class associations, and missing data into a 6-bit multiplexer problem, our

proposed method was able to reliably evolve and identify the single true generative 8th-

order DNF of 3rd-order CCs (Fig. 2.3). It is encouraging that the CCEA and DNFEA

continued to perform so strongly even in the face of significant amounts of class

imbalance, noise in class associations, and missing data, since these are often

characteristics of real-world datasets. Of particular importance is the ability to handle

missing data gracefully, without the need for imputation with potentially misleading fake

data.

2.5.2 Synthetic Genome Problem

The synthetic genome problem introduced in Urbanowicz and Moore (2010) was

defined to be a more realistic dataset representing a heterogeneous, purely epistatic

problem, in which the true generative DNF is a 4th-order disjunction of four 2nd-order

CCs. This dataset includes 16 extraneous features and an imperfect association between

the true features and balanced binary outcome classes. Our approach consistently

archived all 4 true generative CCs and also archived the single true generative DNF,

which was readily identifiable as the very fit clause with the highest coverage in the

resulting DNF archive.

51

Although there was no true generative DNF for class 0 in the synthetic genome

problem, Urbanowicz and Moore (2010) used XCS to evolve rules for predicting both

class 0 and class 1 and reported an average classification accuracy of over 88% using 10-

fold cross validation with 1,600 classifiers trained on 1,440 unique training instances

(repeatedly sampled for a total of 1,000,000 instances shown to XCS), and up to 72% on

the testing data. However, recall that the positive prediction rate on the actual dataset

using the true generative DNF for class 1, and assuming class 0 otherwise, is only 67%.

These results highlight the danger of overfitting that is inherent in LCS approaches.

2.5.3 Fitness Landscape Analysis

It is common in the LCS community to use “classification accuracy” (more

appropriately described as the true positive rate of class predictions on some number –

typically 100 or 1,000 – of the most recent instances tested) as the primary metric of

success. We contend that, more often than not, using this metric as a proxy for fitness

results in overfitting. LCS algorithms have been touted for achieving 100% classification

accuracy on the 3-, 5-, and 7-bits majority-on problems (Iqbal et al., 2013b; c; 2014) and

the 6-, 11-, 20- and 37-bits multiplexer problems (Iqbal et al., 2013c; 2014; Urbanowicz

and Moore, 2015). However, when Iqbal et al. (2013b; c; 2014) solved the 3-bit and 5-

bit majority-on problems, the classifier population sizes were larger than the number of

possible CCs and for the 7-bit majority-on problem the population size was ~46 – 69%

of the number of possible CCs (Table 2.6).

As illustrated in Figs. 2.3-2.4, there are many sub-optimal clauses that have 100%

true positive prediction rate (a.k.a. accuracy). It is even more informative to analyze the

52

entire search space for the 3 types of test problems used here. In Fig. 2.5 we show the

true positive prediction rate and coverage of all possible CCs in the search space (up to

6th-order CCs) for an example 11-bit majority-on problem evaluated on 5,000 random

instances (Fig. 2.5a), an 11-bit multiplexer problem evaluated on 1,000 random instances

(Fig. 2.5b), and the synthetic genome problem evaluated on the 1,600 instances (Fig.

2.5c). In all 3 panels, the true generative CCs are shown with orange hexagrams.

53

Figure 2.5: Results of using exhaustive search to examine the CC search spaces for (a) a randomly

created 11-bit majority-on dataset containing 5,000 input feature vectors, (b) a randomly

generated 11-bit multiplexer dataset containing 1,000 input feature vectors, and (c) the simulated

SNP disease problem containing 1,600 input feature vectors. We illustrate the true positive

prediction rate, class coverage, and fitness by Eq. (2.1) of all possible CCs, where the order of the

CCs is indicated by color and the contour lines indicate evenly-spaced fitness values. Note that the

lower bounds on the y-axes are 50%.

54

As seen previously, there are many sub-optimal CCs with 100% true positive

prediction rate in the two noise-free Boolean benchmark problems, and many lower order

CCs that still have relatively high true positive prediction rate and much higher coverage

than the true generative CCs (Figs. 2.5a,b). In the majority-on problem, there are also

many sub-optimal CCs that have not only 100% true positive prediction rate, but also

have higher coverage than the true generative CCs (Fig. 2.5a). In the synthetic genome

problem, which includes noise in the class association, there are many CCs that actually

have much higher true positive prediction rate than the 4 true generative CCs (Figs. 2.5c).

These observations underscore the danger of using accuracy as a surrogate for fitness.

Also, note how the structure of the fitness landscapes differs between that of the

Boolean benchmark problems and the synthetic genome problem. In the former, there

are distinct clusters of CCs of different orders, and these are roughly orthogonal to the

fitness contours per Eq. (2.1); specifically, in Fig. 2.5a,b, note how the most fit CCs in

each order have lower coverage but higher true positive predictive rate, as the order

increases (from purple to green). In contrast, in the more realistic synthetic genome

problem (Fig. 2.5c), there is significant overlap in the clusters for different orders of CCs,

and these are roughly parallel to the fitness contours per Eq. (2.1). These observations

illustrate how the majority-on and multiplexer problems exhibit quirky fitness landscape

characteristics that are not likely representative of real-world problems.

2.5.4 Hypergeometric PMF as a Fitness Metric

In this work, we propose the use of a hypergeometric probability mass function

as a principled statistic for assessing relative fitness for clauses of a given order.

55

Specifically, Eq. (2.1) quantifies the likelihood that the observed association between a

given clause and a given target class is due to chance, taking into account the size of the

dataset, the amount of missing data, and the distribution of outcome categories. We use

dynamically-adjusted, order-specific, probability thresholds to determine which CC and

DNF clauses to archive, much like the original intention of the p-values in traditional

statistical analysis. That is, any CCs or DNFs below a probability threshold is worth

further examination; but while these clauses are potentially causal, a low value of Eq.

(2.1) alone does not imply causation (Nuzzo, 2014). Unlike relying on accuracy or other

ad hoc measures as a fitness proxy, using Eq. (2.1) enables our algorithm to archive

clauses with different combinations of true positive prediction rate and coverage while

gracefully handling imbalanced classes, missing data, and noisy class associations.

However, one of the drawbacks is that the rounding error becomes problematic at values

below 10-300 on a 64-bit computer. Although real-world datasets will likely contain too

much noise for this to happen, further research is needed to explore an estimate for very

small values of the hypergeometric PMFs.

In Fig. 2.5, note how the true generative CCs (orange hexagrams) have better

fitness (per the fitness contours from Eq. (2.1)) than any other CCs of the same order, but

how the maximum fitness of a given order of CC varies (sometimes nonlinearly) by CC

order. In particular, while the 4 true generative CCs in the synthetic genome problem

(Fig. 2.5c) have higher fitness than any other 2nd-order CCs in this landscape, there are

other higher-order CCs that have better fitnesses than some of the true CCs. This

illustrates the importance of maintaining order-specific thresholds for the

56

hypergeometric PMFbased fitnesses that determine which clauses are retained in the

CCEA and DNFEA archives.

2.5.5 CCEA and DNFEA

LCSs were designed to learn collectively predictive rules from dynamically

changing datasets; they were not designed to find optimal parsimonious (potentially

causal) rule sets, or for working efficiently on datasets available in batch. Since LCSs

learn one instance at a time, LCSs cannot explicitly learn the coverage of classifiers; so

it is not clear how well the resulting classifiers cover the dataset. Furthermore, they

typically rely on classification accuracy as a major component of the fitness function,

which we have shown to be unable to discriminate between optimal and sub-optimal

classifiers and can lead to overfitting, especially when there is noise in the dataset.

However, even though Urbanowicz and Moore (2010) used cross-validation when

applying XCS to the noisy synthetic genome problem, there is still evidence of overfitting

since the average training accuracy was 20% higher than the accuracy of the true

generative rule set.

To tackle the challenge of analyzing complex real-world datasets that include

missing data as well as imbalanced and noisy class associations, we have proposed a new

approach using tandem age-layered EAs on batch data. The CCEA creates an archive of

CCs that are likely to have a probabilistically significant association with a given

outcome class. The DNFEA subsequently creates an archive of probabilistically

significant disjunctions of the archived CCs. As in Hornby (2006), we found the age-

layering to be very important in maintaining diversity, which facilitated continual

57

improvement over the course of the evolutionary process. By maintaining separate

archive bins for clauses of different orders, the tandem algorithm is able to evolve

parsimonious rule sets without making a priori assumptions on the maximum order of

interactions.

It is important to note that the CCEA and DNFEA algorithms do not necessarily

need to be run in tandem, and can each be used independently. For example, in (Chapter

3), the CCEA was used to mine data from large socioeconomic surveys aimed at

identifying the drivers of household infestation with an insect that transmits Chagas

disease, which if untreated is life-threatening. We discuss this real-world application

below, in Section 2.5.6. Similarly, the DNFEA can also be used independently of the

CCEA. For example, one could apply the DNFEA to identify heterogeneous rule sets

comprised of CCs that were identified by means other than the CCEA, such as through

LCS, GP, Random Chemistry, or exhaustive search (if the size of the CC search space is

small enough).

While both the CCEA and the DNFEA do some implicit feature reduction by

archiving only very fit clauses, in high-dimensional problems one could employ feature

reduction methods to first reduce the size of the search space to the more promising

features, before applying these methods.

2.5.6 Real-World Application

In the past 5 years, a collaborative effort between the University of Vermont,

Loyola University New Orleans, and La Universidad de San Carlos Guatemala have

performed detailed socioeconomic and entomological surveys on over 20 towns in

58

Guatemala, El Salvador, and Honduras to study the risk of Chaagas disease. Mining these

complex Chagas survey datasets for useful information has proven to be a major

challenge, due to a variety of factors including missing data, imbalanced class outcomes,

heterogeneity of drivers of infestation, non-independence of some features, and the

expectation of complex high-order nonlinear and overlapping interactions between many

of the potential predictive features. Initial attempts to apply the ExSTraCS 1.0 LCS to

this data were unsuccessful, which is what motivated the development of the CCEA.

The surveys contain 64 risk factors that experts believe are associated with

infestation of households with Triatoma dimidiata, a vector of Chagas disease. Fourteen

of the risk factors are ordinal/continuous and the remaining 50 are nominal, with 26%

missing data and imbalanced class outcomes (32% infested households). In analyzing

this real-world dataset, we did not seek a single “optimal” DNF, but rather used the

CCEA to find a variety of very fit CCs that could be more closely examined by domain

experts to assess (a) whether new insights could be achieved regarding combinations of

risk factors associated with T. dimidiata infestation, and (b) whether very fit CCs might

inform the design of new ecohealth intervention strategies that could prove to be feasible,

effective, and cost-effective ways to slow the spread of Chagas disease. The CCEA

discovered several interesting heterogeneous and overlapping CCs (ranging from main

effects through 7th-order epistatic CCs). Some of the feature interactions evolved by the

CCEA had already been previously identified as potential drivers of infestation, which

increases our confidence in the CCEA results. However, the CCEA analysis also

provided ranges of co-evolved values of interacting features that were most strongly

59

associated with infestation as well as new feature interactions previously not recognized

to be associated with infestation. These new findings will be useful for informing the

design of eco-interventions aimed at slowing the spread of Chagas disease. While a full

discussion of this application is beyond the scope of this paper, we refer the interested

reader to (Chapter 3) for more details.

2.5.7 Summary

In summary, we developed a new approach for discovering parsimonious

predictive rule sets that contain potentially heterogeneous, epistatic, and overlapping

rules. The method was designed to work on complex batch datasets that may include

features of different data types, extraneous features, imbalanced classes, noisy

associations between rules and class outcomes, and missing data. Key aspects of our

proposed method include (a) the use of a hypergeometric probability mass function as a

principled statistic for assessing fitness, which properly accounts for class imbalance and

missing data, (b) tandem age-layered evolutionary algorithms for evolving archives of

probabilistically significant conjunctive clauses, and disjunctions of these archived

conjunctions that are optimally predictive of outcome classes, and (c) separate archive

bins for clauses of different orders, with dynamically-adjusted order-specific fitness

thresholds. The method was validated on standard binary majority-on and multiplexer

benchmark classification problems, including several variants of the multiplexer problem

with extraneous features that included class imbalance, noise, extraneous features, or

missing data. The method was also applied to a more realistic synthetic genome problem

with heterogeneous, purely epistatic, and noisy association rules. In all problems tested,

60

we were consistently able to evolve the true generative rule sets in the form of a single

clause in disjunctive normal form. An in-depth examination of the search space of all

possible conjunctive clauses exposed unusual characteristics of the majority-on and

multiplexer problems that are not likely representative of real-world problems. This

highlights the need for more realistic benchmark classification problems with tunable

epistasis, heterogeneity, and overlap in the generative rule sets. Finally, we briefly

discussed the application of the method to the complex real-world survey dataset that

actually motivated us to develop the CCEA. The results of this analysis provided

important practical insights that will inform eco-intervention strategies aimed at slowing

the spread of the deadly Chagas disease.

61

CHAPTER 3: AN EVOLUTIONARY ALGORITHM APPROACH TO

IDENTIFYING COMPLEX INTERACTIONS ASSOCIATED WITH

THE INFESTATION OF TRIATOMA DIMIDIATA, A VECTOR OF

CHAGAS DISEASE

3.1 Introduction and Significance

This work was motivated by a desire to mine data from large socioeconomic

surveys with an aim toward identifying the drivers of house infestation by an insect that

transmits Chagas disease. The disease is transmitted by insects in the subfamily

Triatominae (Lent and Wygodzinsk, 1979) and, if left untreated, is life-threatening in

about 30% of cases. To decrease risk of transmission, mitigation strategies (known as

Ecohealth interventions) have been implemented to remove known hiding locations and

lessen the chance of house infestation of the Triatomine vectors (Monroy et al., 2009;

Lucero et al., 2013; Pellecer et al., 2013). Because many areas where the disease is

endemic have limited resources for these preventative house improvements, it is useful

to conduct detailed entomologic and socioeconomic surveys (Bustamante et al., 2014;

Bustamante Zamora et al., 2015) to help (1) identify the drivers of infestation and (2)

monitor, improve and assess cost-effective mitigation strategies. Mining these complex

survey datasets for useful information is challenging due to a variety of factors including

imbalanced categorical outcomes, heterogeneity, missing data, and complex, possibly

high-order, nonlinear interactions between many of the potential predictive features. As

a result, we developed an evolutionary algorithm to find additive feature interactions

62

(features with main affects) as well as heterogeneous feature interactions for complex

real-world datasets.

The scientific community is just beginning to understand some of the profound

affects that these nonlinear (i.e., epistatic) feature interactions have on natural systems.

Feature interaction is a phenomenon that arises when features combine to produce an

effect, which neither alone controls (i.e., feature X does one thing; feature Y does

another; and when combined, X and Y do a third thing that has no single controlling

element). These feature interactions have been observed in cascading power failures

(Eppstein and Hines, 2012), breast cancer (Ritchie et al., 2001), blood pressure in rats

(Rapp et al., 1998), and are believed to be ubiquitous in human diseases (Moore, 2003).

In addition to feature interactions, heterogeneity is when multiple features independently

predict of the same output. Evidence of heterogeneity has been observed in bladder

cancer (Urbanowicz et al., 2013), autism (Buxbaum et al., 2001), and American political

parties (Poole and Rosenthal, 1984). Studies of systems that consider both heterogeneity

and feature interactions are just beginning to appear in the literature. In the context of

this work, examples of heterogeneous two–way feature interactions (habitat and food

source) that are associated with houses infested with triatomine vectors might be (1)

cracks in adobe walls and chicken coops in the house or (2) firewood stacked adjacent to

the house and dogs sleeping in the home. Each two-way feature interaction set may be

equally important drivers of infestation; our algorithm development was motivated by a

desire to preserve main effects as well as higher-order heterogeneous, feature

interactions.

63

Despite the belief that heterogeneity and feature interactions exist across

numerous real-world systems (e.g., from the development of personalized drug therapies

(Wilson, 2009) to the market prediction of consumer behaviors (Young Kim and Kim,

2004)), the development of tools for analyzing these systems and accommodating these

complex feature interactions have not kept pace. We hypothesize that a large source of

error in “Big Data” science is a result of feature interactions and heterogeneity. Feature

interaction error is not random; it is complicated, but predictable. If we are to develop

tools to assist in unraveling these complex datasets, feature interactions and

heterogeneity must be considered (Thornton-Wells et al., 2004).

Traditional statistical methods such as analysis of variance (Yousefi et al. 2016;

Wilson et al. 2017), logistic regression (Heller et al. 2011; de Campos Franci et al. 2016;

Ding et al. 2016; Jarlenski et al. 2016; Larouche et al. 2016; Li et al. 2016; Nesheli et al.

2016; Nicholls et al. 2016), and decision trees (Markellos et al. 2016; Nesheli et al. 2016)

are well suited for univariate analysis or additive models. Some studies perform feature

selection using univariate logistic regression models, and then test higher-order

interactions between the selected features (De Andrade et al. 1995; Enger et al. 2004;

Rassi et al. 2006; King et al. 2011; Weeks et al. 2013; Sperandio da Silva 2014; Kaplinski

et al. 2015; Molina et al. 2015; Olivera et al. 2015). For systems with significant feature

interactions, traditional statistics, designed for additive multivariate relationships, are not

well-suited.

Another well-documented issue is that p-values decrease inversely with the size

of the dataset, making them an unreliable statistic for Big Data applications (Lin et al.,

64

2013). Our algorithm development leverages the hypergeometric probability mass

function (PMF) as a probabilistic threshold (Hanley et al., In Review). The

hypergeometric PMF is derived from Pearson’s (1899) hypergeometrical series and may

be thought of as a pseudo-Bayesian equation. One benefit of the hypergeometric PMF-

derived probability is that it accounts for both the size of the dataset and the distribution

of the output categories; and using it as a threshold allows the user to readily compare

the probabilities (and thus the likelihood) of individual models.

In this work, we present an evolutionary algorithm (EA) that was specifically

designed as a non-parametric method for identifying feature interactions in “Big

Datasets” that contain missing values, heterogeneity, and additive probabilistic models

associated with a desired categorical outcome (e.g., disease or infestation). Our EA

searches for combinations of feature sets using the logical AND operator; these feature

combinations (e.g., cracks in adobe walls and chicken coops in the house) are referred to

as conjunctive clauses throughout this work. To demonstrate the EA effectiveness, we

first test the algorithm on the benchmark dataset of Urbanowicz and Moore (2010); the

latter was specifically designed to include heterogeneity and feature interactions

associated with a complex disease. Next, we use the EA to identify complex multivariate

interactions (i.e., risk factors) in real-world datasets associated with house infestation of

the Chagas disease vector Triatoma dimidiata. Finally, we show the EA’s ability to

efficiently search for potential drivers of T. dimidiata infestation and discuss how these

models might be implemented by domain experts familiar with stakeholder needs.

65

3.2 Background

3.2.1 Background on Chagas Disease

Chagas disease is caused by the protozoan parasite, Trypanosoma cruzi, and is

primarily spread via blood feeding insects in the order Hemiptera, family Reduviidae,

and subfamily Triatominae (Lent and Wygodzinsky, 1979). While vector food sources

include all vertebrates, T. cruzi only infects mammals (Rassi et al., 2010). Human

impacts, such as deforestation for agrarian land use, have caused triatomines to adapt

(Coura, 2015); and one of the main vectors of Chagas disease, Triatoma dimidiata, has

adapted to human domestic and peridomestic environments (Waleckx et al., 2015a). This

vector is endemic from Mexico through Central America, all the way south to parts of

Peru, Ecuador, Colombia (Lent and Wygodzinsky, 1979). People with Chagas disease

often live in remote areas with poor sanitation, low socioeconomic status, and work

manual labor jobs (Prata, 2001; Briceño-León et al., 2007). Approximately 70 million

people in Latin America are at risk of infection with T. cruzi and ~5.7 million people are

already infected (Chagas, 2015). In Central America, Guatemala, the most populous

country, was estimated to have the largest number of new vector transmitted cases

(~1,275) in 2010 (Chagas, 2015). However, rates of new infections are also high in El

Salvador and Honduras.

The insect vectors deposit parasite laden feces and humans can become infected

by transmission of T. cruzi into the bite or other open wound, or through the mucosa of

the eye, nose, or mouth (Prata, 2001; Teixeira et al., 2006; Rassi et al., 2010). Another

possible source is via consumption of the infected feces in food items such as vegetables,

66

juice, and possibly wild meat (Rueda et al., 2014). Oral transmission is believed to be the

primary source of infection for wild animals (Coura, 2015); and the odoriferous glands

of a marsupial infected with T. cruzi can directly transmit the parasite to humans (Coura,

2015).

Chagas disease is broken into three phases. The first is the acute phase, which

may last 1–4 months after infection with T. cruzi (Prata, 2001, Stanaway and Roth, 2015).

This phase is asymptomatic in 95% of cases (Teixeira et al., 2006; Stanaway and Roth,

2015); however, for the remaining 5%, symptoms may include malaise, fever, jaundice,

skin hemorrhages, enlargement of the liver, and muscle and joint pain (Prata, 2001;

Teixeira et al., 2006; Rassi et al., 2010; Stanaway and Roth, 2015). The indeterminate

phase is asymptomatic and can last 10–30 years or throughout a lifetime (Prata, 2001;

Stanaway and Roth, 2015). Finally, the chronic phase of Chagas disease has symptoms

that include heart disease, megaesophagus, megacolon, nervous system lesions, and

sudden death (Prata, 2001; Teixeira et al., 2006; Rassi et al., 2010; Stanaway and Roth,

2015). Currently, there is no preventive medicine for Chagas disease. Nonetheless, there

are two anti-trypanosome drugs, nifurtimox and benznidazole for treating T. cruzi

infections (Teixeira et al., 2006; Jannin and Villa, 2007; Rassi et al., 2010; González-

Ramos et al., 2016). Both drugs have common adverse reactions that have prevented 13-

31% ID infected people from completing treatment (Hasslocher-Moreno et al., 2012;

Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 2015); (Hasslocher-

Moreno et al., 2012; Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al.,

2015).

67

Thus, given the lack of preventative medicine coupled with low efficacy of drug

treatment, the preferred method of combating Chagas disease is to minimize human

contact with the vector. One of the most common tactics for controlling T. dimidiata

infestation at the house level is the use of pyrethroid insecticide (Tabaru et al., 1998;

Acevedo et al., 2000; Nakagawa et al., 2003a; 2003b; Dumonteil et al., 2004; Hashimoto

et al., 2006; Manne et al., 2012; Yoshioka et al., 2015; Quinde-Calderón et al., 2016).

However, the residual effects appear to last only four months before adult T. dimidiata

re-infest a house and nine months before nymphs are found in the house (Dumonteil et

al., 2004). The rebound to original infestation levels were observed almost three years

after a single spraying in Jutiapa, Guatemala (Hashimoto et al., 2006). Thus, short of

extirpation of T. dimidiata, the vector will always pose a risk for infestation where it is

endemic.

The only proven long-term control of T. dimidiata infestation is the

implementation of home improvements often accompanied by educational outreach on

Chagas disease and the vector (Monroy et al., 2009; Ferral et al., 2010; De Urioste-Stone

et al., 2015). Home improvements that minimize the risk of T. dimidiata infestation run

the gamut of cleaning and organizing the peridomestic ecotope (Zeledón and Rojas,

2006; Zeledón et al., 2008; Ferral et al., 2010), plastering walls (Monroy et al., 1998;

Monroy et al., 2009; Lucero et al., 2013; Pellecer et al., 2013), replacing dirt floors with

cement (Lucero, et al. 2013; Pellecer et al., 2013), installing window screens (Ferral et

al., 2010; Waleckx et al., 2015b), impregnating curtains with insecticide (Ferral et al.,

2010), and domestic rodent control (De Urioste-Stone et al., 2015). While these home

68

improvements have led to reductions in infestation that often last longer than spraying,

none have completely eliminated infestation. Some of the aforementioned interventions

are considered Ecohealth interventions because they use sustainable methods, locally

sourced materials, and often include house level surveys of hypothesized risk factors

(Monroy et al., 2009; Lucero et al., 2013; Pellecer et al., 2013). Risk analyses capable of

identifying complex multivariate interactions in these ever-evolving, real-world datasets

would be invaluable for guiding EcoHealth interventions.

3.2.2 Challenges Associated with Modeling/Analyzing Chagas Disease

A number of studies have used univariate statistical analysis as a feature selection

tool; and features below a designated p-value (e.g., p < 0.05) are often selected for a

follow-on multivariate analysis (Rassi et al., 2006; King et al., 2011; Weeks et al., 2013;

Sperandio da Silva et al., 2014; Kaplinski et al., 2015; Molina et al., 2015; Olivera et al.,

2015). Bustamante Zamora et al. (2015) held a workshop to pre-select features for

multivariate modeling of T. dimidiata. As an initial starting point, features were selected

based on previous studies indicating they increased the odds of infestation. Given the

large number of potential features associated with the risk of triatomine infestation, it is

natural inclination to first reduce the number of model features because their inclusion

makes exhaustive search of all possible models (feature combinations) prohibitively

expensive and/or impossible. However, when viewed in light of ecological niche

modeling or developing risk maps, this is of particular concern because a priori use of

univariate statistical analysis will do exactly what it is designed to do - select for main

effects, and therefore, prematurely eliminate features interactions (i.e., feature

69

combinations with no main effects) that could be identified in an exhaustive search

multivariate analysis.

House infestation with triatomine vectors is an inherently complex, nonlinear

system with the potential for a large number of feature interactions. At a minimum, the

vectors require a source of shelter and a readily available food source to survive and

infest a house; and when viewed as a complex system, other features may be important

(e.g., initial vector entry and/or passive modes of transportation into the house).

Another challenge is that many statistical methods cannot include missing data,

resulting in removal of data that may contain drivers of infestation. Lastly, not all

statistical models allow for the inclusion of multiple data types (e.g., continuous, ordinal,

nominal, and binary); and as a result, the features, especially continuous features

associated with survey questions may get binned into a limited number of categories.

Such binning benefits from and relies on expert knowledge to reduce the input data (types

and number); and while the future success of Big Data analysis requires that the tools be

used in tandem with expert knowledge, the posterior tinkering of features runs the risk

of biasing and/or reinforcing of preconceived conditions.

3.3 Methods and Study Sites

3.3.1 Study Sites of Triatoma dimidiata Infestation

Our study sites are the small rural towns of El Chaperno and El Carrizal located

in the dry highlands of in Jutiapa, Guatemala (red and yellow dots of Figure 3.1). Jutiapa,

Guatemala (highlighted in red, Panel A) borders El Salvador with the study site locations

shown as a yellow star. El Carrizal (Panel B) has spur roads radiating from the main road

70

making the town less linear in shape. While El Chaperno (Panel C) is more linear in

shape since most of the houses are adjacent to the principal road running through the

town. Also, El Chaperno is more heavily forested than El Carrizal due to forest

conservation efforts.

71

Figure 3.1: Satellite image of the study sites with the houses in El Chaperno and El Carrizal

represented as red and yellow dots, respectively. Panel A is a map of the departments of

Guatemala with the department of Jutiapa highlighted in red and the location of the study sites

represented as a yellow star. Panels B and C show the locations of the houses and roads in El

Carrizal and El Chaperno, respectively.

72

The El Chaperno and El Carrizal house surveys contained 64 features thought to

be potential risk factors for infestation with T. dimidiata (Table 3.S1). The dataset of

each community was analyzed separately, and then combined and re-analyzed to test for

larger-scale regional patterns. Given the challenges of finding live T. dimidiata (Monroy

et al., 1998) and because we are interested in identifying features associated with the risk

of house infestation that help further the development of intervention strategies, we

define infestation as any sign of T. dimidiata presence in the house (i.e., live or dead

vectors, eggs, exuviae, or feces) as we believe these signs of T. dimidiata are indicative

that the house is either currently infested or has been infested in the recent past.

3.3.2 Combinatorial Datasets

While the number of houses in a given dataset (i.e., 129 – 311) may be small, the

total number of features and all possible multivariate combination of features make

exhaustive search infeasible even on today’s computers. For example, let’s take the

following simplified example. Assume that all features, L, in the dataset have the same

number of values, v. If we take a hypothetical dataset with L = 50 nominal features, each

with 𝑣 = 5 categorical values, and limit each model to one category per feature, then the

number of Oth-order models is 𝑣𝑂 (
𝐿
𝑂

) = 3.06 x 104, 2.45 x 106, and 1.44 x 108, for 2nd-,

3rd-, and 4th-order models, respectively. It should be noted that models that do not allow

the range of ordinal features values to evolve as part of the model solutions, can bias

models against ordinal features. Therefore, when testing models with ranges of ordinal

and nominal feature values, the number of two-way interactions (i.e., bivariate models)

73

is on the order of hundreds of thousands (Table 3.1). For five-way interactions, there are

over one trillion possible models for two of the three datasets.

Table 3.1: Possible number of models comprised of 2nd- to 5th-order feature interactions for the El

Chaperno, El Carrizal, and the combined datasets.

Dataset

Number of Combinations per Order of Feature Interaction

2nd 3rd 4th 5th

El Chaperno 𝟑. 𝟗𝟏×𝟏𝟎𝟓 𝟖. 𝟕𝟓×𝟏𝟎𝟕 𝟏. 𝟐𝟓×𝟏𝟎𝟏𝟎 𝟏. 𝟐𝟓×𝟏𝟎𝟏𝟐

El Carrizal 𝟑. 𝟒𝟏×𝟏𝟎𝟓 𝟕. 𝟎𝟕×𝟏𝟎𝟕 𝟗. 𝟒𝟓×𝟏𝟎𝟗 𝟖. 𝟗𝟎×𝟏𝟎𝟏𝟏

Combined 𝟔. 𝟎𝟎×𝟏𝟎𝟓 𝟏. 𝟔𝟎×𝟏𝟎𝟖 𝟐. 𝟕𝟎×𝟏𝟎𝟏𝟎 𝟑. 𝟏𝟑×𝟏𝟎𝟏𝟐

3.3.3 Simulated SNP Disease Dataset

To test our ability to identify significant features and interactions with our novel

algorithm, we first tested the algorithm on a set of benchmark problems used in the CS

community (Hanley et al., In Review); and in this work, further test the algorithm on a

simulated single nucleotide polymorphism (SNP) dataset. The simulated dataset was

designed based on a need for better tools for analyzing complex diseases (Thornton-

Wells et al., 2004), where, in general, benchmark datasets are lacking (specifically those

that contain gene interactions, heterogeneity, and missing data). Urbanowicz and Moore

(2010) present one of the few synthetic datasets designed with both heterogeneity and

feature interactions. The dataset was designed to represent a single nucleotide

polymorphism (SNP) gene association for a complex disease. It is a balanced dataset

(half of the observations are associated with the “disease” and half are not) with 1,600

observations, each with 20 features or SNPS. Each SNP is a ternary representation of

homozygous major, heterozygous, or homozygous minor. The dataset was designed such

that no individual feature had a significant main effect, and there are four, two-way

interactions that comprise the four true signals (i.e., the known mapping between the

74

input features and the associated outcome disease class) (Table 3.2). While each true

signal covers 21-28% of the diseased individuals, the four signals combined cover 76%

of the diseased individuals. Thus, multiple true signals cover the same individual, which

one might expect in a real-world dataset.

Table 3.2: Accuracy, coverage, and hypergeometric PMF fitness (last 3 columns) associated with

the four true signals of the Urbanowicz and Moore (2010) benchmark SNP disease dataset. The

dataset is balanced – half of 1,600 input feature vectors are associated with disease; half are not.

True

Signals X0 X1 X2 X3 Accuracy

Class

Coverage Fitness

1 0 1 – – 72% 27% 1.1x10-17

2 1 0 – – 74% 23% 5.7x10-17

3 – – 0 1 66% 28% 4.2x10-12

4 – – 1 0 71% 21% 8.7x10-13

3.3.4 Conjunctive Clause Evolutionary Algorithm (CCEA)

We designed a conjunctive clause evolutionary algorithm (CCEA) to efficiently

search for multivariate interactions across multiple data types (i.e., binary, nominal,

ordinal, continuous) in survey datasets with k = 1, 2,…K outcomes. The details of the

algorithm have been presented in Hanley et al. (2016; In Review). Briefly, the CCEA is

a non-parametric statistical tool that searches across the entire range of multivariate

feature interactions. Each feature represents a survey response that varies in data type

and range of values. The CCEA evolves feature sets as well as the range of feature values

using conjunctive clauses in the following form:

 𝐹𝑖 ∈ 𝑎𝑖 ˄𝐹𝑗 ∈ 𝑎𝑗 … ˄ 𝐹𝐿 ∈ 𝑎𝐿 , (3.1)

where each Fi represents a feature, i, that may be nominal, ordinal, or continuous,

and whose value lies in ai, a specified range or set of values. The number of features in a

conjunctive clause can vary between one and the total number of features, L, in the

75

dataset. The only inherent model assumption is that ordinal and continuous features can

only evolve monotonic or unimodal ranges. The conjunctive clauses are stored in

different populations following an age-layered population structure (ALPS) similar to

that created by (Hornby, 2006). The age-layer population structure helps bias or protect

newer (more recently evolved) conjunctive clauses compared to older conjunctive

clauses. Unlike ALPS, the CCEA version of ALPS has an archived age layer that consists

of probabilistically significant conjunctive clauses (Hanley et al., 2016). To help the

CCEA detect the possibility of multiple optima and thus find a global optimum,

underrepresented observations in the population of conjunctive clauses are preserved by

biasing their selection in subsequent generations. Preserving diversity ensures the CCEA

explores a larger decision space and safeguards against being trapped in local optima.

To determine whether a conjunctive clause is probabilistically significant, the

CCEA estimates the “fitness” of a conjunctive clause using the hypergeometric

probability mass function (PMF) (Kendall, 1952). Eq. (3.2) quantifies the likelihood that

the observed association between the conjunctive clause and the target class is due to

chance; thus, lower values of this fitness function (i.e., lower p-values) are indicative of

potential association. If the hypergeometric PMF of a conjunctive clause is less than or

equal to a user-defined threshold, it is considered probabilistically significant and worthy

of being archived. For conjunctive clauses evolved in the CCEA, the hypergeometric

PMF is defined as follows:

 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑃𝑀𝐹 =
(

𝑋𝑡𝑜𝑡
𝑥𝑚𝑎𝑡𝑐ℎ

)(
𝑁𝑡𝑜𝑡−𝑋𝑡𝑜𝑡

𝑛𝑚𝑎𝑡𝑐ℎ−𝑥𝑚𝑎𝑡𝑐ℎ
)

(
𝑁𝑡𝑜𝑡

𝑛𝑚𝑎𝑡𝑐ℎ
)

 , (3.2)

where,

76

Ntot = the total number of observations in the dataset,

Xtot = the total number of observations associated with a desired target class, k,

nmatch = the total number of sampled observations whose features match a given

conjunctive clause, and

xmatch = the number of sampled observations that match the conjunctive clause and are in

target class k.

It should be noted that a novel feature of the EA is the implementation of the

hypergeometric PMF and ability to handle missing data. More detailed definitions for

Ntot and Xtot as the number of observations with non-missing values for features present

in the conjunctive clause are provided in Hanley et al., (In Review). Traditionally,

features with lots of missing data are less likely to form probabilistically significant

multivariate conjunctive clauses; however, for a dataset where this is not true, significant

features with a lot of missing data can be detected.

The CCEA can have a static threshold (i.e., the threshold will not heuristically

decrease), or the threshold can deterministically evolve based on the number of archived

conjunctive clauses for a given conjunctive clause order. In this work, we use a static

threshold: we archive conjunctive clauses that cover at least 10% or more of the houses

infested with T. dimidiata by setting the hypergeometric fitness threshold to the fitness

of a conjunctive clause that has 100% accuracy and 10% coverage of infested houses.

Accuracy is defined as
𝑥𝑚𝑎𝑡𝑐ℎ

𝑛𝑚𝑎𝑡𝑐ℎ
 and is analogous to the true positive rate of the conjunctive

clause. Infested house coverage is the number of times a sampled conjunctive clause is

associated with a target outcome over the total number of target outcomes in the dataset,

77

𝑥𝑚𝑎𝑡𝑐ℎ

𝑋𝑡𝑜𝑡
. If only a few conjunctive clauses are archived, we risk that the archived signals

contain large amounts of noise and are subject to overfitting. As mentioned above, the

CCEA used a static threshold to maintain a large population of archived conjunctive

clauses. This is consistent with the concept in “Big Data” that more data can be used to

find patterns of correlations with a desired output (true signal) (Mayer-Schönberger and

Cukier, 2014).

In addition to setting a fitness threshold, there are a number of other input

parameters (see Table 3.3) that typically need to be initialized when using an EA. The

only parameter that is not typical is the number of archived offspring (Off
A
); the latter

keeps the number of archived and non-archived offspring balanced; Off
A
 caps the number

of offspring evolved from the archived population every generation. For the portion of

the population that is not archived, each conjunctive clause undergoes either crossover

or mutation each generation.

78

Table 3.3: Conjunctive Clause Evolutionary Algorithm (CCEA) parameter settings.

CCEA Parameters Value

Total # of Features (L) Dataset dependent

Threshold (T) Dataset dependent

Non-Archived Age Layers (AL
NA

) 5

Novel Population (Pop
N
) 2 x L

Non-Archive Pop. (Pop
NA

) Pop
N

Archive Offspring (Off
A
) AL

NA
 x Pop

N

Generations (Gen) 200

Generations Until Novel Pop (Gen
N
) 5

Crossover Function (F
X
) Uniform

Probability of Crossover (Pr
X
) 0.50

Probability of Wild Card (Pr
WC

) 0.75

Mutation Function (F
M

) {uniform, pm = 1/L}

Crossover Mate Selection {tournament, size = 3}

The CCEA was run on four test cases (i.e., the benchmark SNP disease dataset of

Urbanowicz and Moore, (2010), the dataset of El Chaperno, El Carrizal, and the two

towns combined). Each test case of 200 generations had 5 randomly seeded repetitions

to decrease the likelihood of the algorithm becoming trapped in a population of local

optima. For each dataset, we calculated the accuracy and infested house coverage for

every archived conjunctive clause.

3.3.5 Feature and Feature Pair Importance (FI and FPI)

The feature importance (FI) and feature pair importance (FPI) are calculated

using only those observed conjunctive clauses that match the target outcome (e.g.,

diseased individual, infested house). For each observation matching the target output, the

FI is sum total of features in matching conjunctive clause; and the summed FIs are

normalized across all features associated with a given target outcome. The latter ensures

that the smallest feature sum total is 0 and the largest is 1 (Table 3.S2.A). The FPI is

79

similar to the FI except it is the normalized number of times a pair of features are present

in conjunctive clauses that match the target observation. For a given observation, any

features with missing values, the FI and FPIs are designated as null values (i.e., a lack

of a value).

The FI and FPI values may be viewed as networks or as heat maps similar to the

way Urbanowicz et al. (2012a; 2013) displayed feature interaction metrics. Each node of

the network represents a feature, and each edge represents a feature pair with the size of

the nodes and thickness of the edges proportional to the FI and FPI. We sort the FI and

FPI values independently by individual features as well as all paired features,

respectively. Because we are most interested in FI and FPI values that represent at least

10% (user-defined threshold) of the target outcome (e.g., diseased individuals or infested

houses), we selected the 90th percentile FI and FPI values across each individual feature

vector and feature-pair vector (Table 3.S2.B). We use the 90th percentile as a conservative

user-defined threshold to account for unbalanced heterogeneity; however, this threshold

is problem dependent. The Gephi 0.9.1 software (Bastian et al., 2009) is used to visualize

the feature network.

3.3.6 Feature Sensitivity

For every archived conjunctive clause, we remove each feature one by one to

determine feature sensitivity. Feature sensitivity was designed to be the difference

between the log10 of the new fitness value (hypergeometric PMF associated with the new

conjunctive clause, i.e., one with a feature removed) and the log10 of the original

hypergeometric PMF:

80

 𝐹𝑒𝑎𝑡. 𝑆𝑒𝑛𝑠. = 𝑙𝑜𝑔(𝑁𝑒𝑤 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜 𝑃𝑀𝐹) − 𝑙𝑜𝑔(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜 𝑃𝑀𝐹) , (3.3)

Because the hypergeometric PMF ∈ [0,1], taking the log10 will result in values

that are ≤ 0. Therefore, positive feature sensitivities of Eq. (3.3) will be associated with

features that are important to the conjunctive clause to which they belong; and negative

feature sensitivities will be associated with features that add noise. We should note that

each unit of feature sensitivity represents an order of magnitude change in the

hypergeometric PMF (fitness of the conjunctive clause) and that the scale of the feature

sensitivity is relative to the size of the dataset. Thus, direct comparison across datasets is

not possible (e.g., feature sensitivity will likely be smaller for El Carrizal compared to El

Chaperno; and both towns individually will be smaller than when the data are combined).

To help with comparison, we plot the median values of the feature sensitivity for each

dataset.

 3.4 Conjunctive Clause Evolutionary Algorithm (CCEA) Results

3.4.1 Results of the Simulated SNP Disease Dataset containing all 20 Features

Each single nucleotide polymorphism (SNP) is regarded as a feature, defined X0

– X19. When Hanley et al. (2016) performed exhaustive search on the benchmark dataset

of Urbanowicz and Moore (2010), the best fitness was four orders of magnitude less fit

than that of a conjunctive clause with 100% accuracy and 10% coverage. As a result, we

lowered the criteria of the hypergeometric PMF for a conjunctive clause with 100%

accuracy and 1% coverage of the diseased individuals. The accuracy, class coverage, and

hypergeometric PMF (contour lines spaced at 10-4 intervals) for the conjunctive clauses

archived by the CCEA (Figure 3.2) show that most of the conjunctive clauses have low

81

coverage of the diseased individuals. Solutions (2nd- through higher-order conjunctive

clauses) along hypergeometric contours closer to the upper right-hand corner of Figure

3.2 have lower fitness and therefore, are considered more optimal. The CCEA was

successful in archiving all four of the true (two-way) signals of Table 3.2 (boxed red

circles). These 2nd-order CCs have 20-30% coverage of the diseased individuals and 65-

75% accuracy. The algorithm evaluated ~3.74x105 of the ~1.10x1012 possible

conjunctive clauses in the dataset. It should also be noted that the four main effects

archived by the CCEA (black circles) have lower fitness; and only one of which (feature

X1: accuracy = 54%, diseased individual coverage = 36%) belongs to two of the four

true (two-way) signals.

Figure 3.2: Accuracy, class coverage, and hypergeometric PMF (contour lines spaced at 10-4

intervals) for the conjunctive clauses identified using the CCEA for the simulated SNP disease

dataset. Each color-coded circle represents the order of a conjunctive clause. The green box shows

the location of the four true signals (i.e., 2nd-order CCs in red).

82

Without filtering for feature pairs (2-way interactions), the network

representation of Figure 3.3 (panel A) shows the first four features (X0 – X3) and X13

to have the highest FI values. Once the filter (FPI ≥ 0.95) is applied the network (panel

B) identifies the four true signals (two-way, feature pairs X0 & X1 and X2 & X3 of Table

3.3) to be the most important.

83

Figure 3.3: Feature importance (FI) and feature-pair importance (FPI) are represented as a

network. The nodes and edges are proportional to the FI and FPI values, respectively. Panel A)

Contains all feature-pair connections and B) is filtered so that only FPI ≥ 0.95 are visible.

The median feature sensitivities are represented in the bar chart of Figure 3.4.

Only features X0 – X3 have positive median values indicating that removal of these

84

features from conjunctive clauses would change the probability of the hypergeometric

PMF by at least two-orders of magnitude. Taken together, the feature importance (Figure

3.3) and feature sensitivity (Figure 3.4) indicate that the four features (X0 – X3) that

comprise the true signals are the most important features in the simulated SNP disease

dataset. As a result, the dataset could be reduced to these four features (X0 – X3).

Figure 3.4: Bar graph showing median feature sensitivity for each of the 20 features. Positive bars

indicate that the removal of a feature from an archived conjunctive clause decreases the fitness

(i.e., the hypergeometric PMF increases and the conjunctive clause becomes more likely due to

chance).

Finally, the feature sensitivity for each diseased individual may be viewed as a

heat map (Figure 3.5), where the median sensitivity of features is either positive (red),

neutral (black), or negative (blue). White indicates that the feature was not present in any

conjunctive clause that matched the outcome of interest. The results are re-ordered for

visualization purposes and help show the heterogeneity embedded in the dataset (no

85

individual feature has positive median feature sensitivity across all 800 diseased

individuals). Figure 3.5 also shows that the median sensitivity associated with the four

features that comprise the true signals is positive for nearly all of the 800 diseased

individuals. Similarly, the sensitivity for features X0 & X1 is positive for ~500 of the

diseased individuals and the sensitivity of features X2 & X3 is positive for ~500 of the

diseased individuals.

Figure 3.5: Median feature sensitivity associated with an outcome of interest (e.g. diseased

individuals) are re-ordered for visualization purposes. The median feature sensitivity across all

conjunctive clauses may be positive (red), zero (black), and negative (blue), respectively. White

indicates when a feature was not present in any conjunctive clause that matched the outcome of

interest.

3.4.1.1 Results of the Simulated SNP Disease Dataset Using Only the Reduced 4-

Features

When the simulated SNP disease dataset is reduced to four features, an exhaustive

search of the reduced dataset would be trivial. However, because our interest is in

exploring how well our feature reduction strategy might work on real-world datasets, we

86

analyzed all of the CCEA conjunctive clauses that contained features X0 – X3 and had a

hypergeometric PMF below the user-defined threshold (n=26). Note: All 26 conjunctive

clauses were archived by the CCEA.

Feature importance performed on the reduced (four-feature) dataset was nearly

identical to the network of Figure 3.3 (using all 20 features) and as result, the network is

not presented here. The median feature sensitivity of the reduced features set is now

greater than five indicating there is a five-order magnitude change in the hypergeometric

PMF when each of the four features are individually removed (Figure 3.6). The heat map

of Figure 3.7 shows the median feature sensitivity and the overlap between the four

features that comprise the true signals. The heat map also helps visualize both the

heterogeneity and feature interactions embedded in the dataset. Heterogeneous features

X0 & X1 are positive for ~400 of the diseased individuals; and features X2 & X3 are

positive for ~400 diseased individuals. There are ~200 diseased individuals that are not

associated with features that comprise the true signals, showing the noise present in this

dataset. These results suggest that without noise, it’s even easier to ID important features

using the FI, FPI, and feature sensitivity.

87

Figure 3.6: Bar graph showing median feature sensitivity for each of the four features that

comprise the true signals. Positive bars indicate that removal of the feature from an archived

conjunctive clause decreases the fitness (i.e., the hypergeometric PMF increases and the

conjunctive clause becomes more likely due to chance).

88

Figure 3.7: Bar graph showing median feature sensitivity for each of the four features that

comprise the true signals. Positive bars indicate that removal of the feature from an archived

conjunctive clause decreases the fitness (i.e., the hypergeometric PMF increases and the

conjunctive clause becomes more likely due to chance).

3.4.2 Results on El Chaperno, El Carrizal, and the Combined Datasets Using all 64

Features

The summary statistics for El Carrizal and El Chaperno (Table 3.4) show that El

Carrizal has a higher percentage of infested houses than El Chaperno; and that both

datasets have imbalanced outputs with the percentage of infested houses being in the

minority (Table 3.4, column 3).

89

Table 3.4: Summary characteristics for El Chaperno, El Carrizal, and the two towns combined.

Dataset

Houses

Infested

Houses

Ordinal,

Nominal,

Binary

Features

%

Missing

Data

Median

%

Missing

Data

per

Feature

[Min,

Max] %

Missing

Data per

Feature

El

Chaperno
182 49 (26.9%) [12, 8, 44] 28.9 15.7 [0.5, 86.8]

El

Carrizal
129 51 (39.5%) [14, 8, 42] 22.3 3.9 [0.8, 77.5]

Combined 311 100 (32.2%) [14, 8, 42] 26.1 10.3 [1.2, 78.5]

The conjunctive clauses identified by the CCEA show higher class coverage in

the real Chagas survey dataset (Figure 3.8) compared to the simulated SNP disease

dataset of Figure 3.2. Given the imbalanced nature of the real datasets, there are

conjunctive clauses with accuracy <50%. The CCEA results in a plethora of archived

conjunctive clauses that may contain the true drivers of T. dimidiata infestation. Again,

solutions closer to the upper right-hand corner of the graphs in panels A-C of Figure 3.8

have lower fitness (higher association with infestation). In addition, interesting patterns

emerge when comparing the distribution of conjunctive clauses across the three Chagas

datasets. The higher percentage of infested houses in El Carrizal (panel B) helps push the

distribution of archived conjunctive clauses toward higher accuracy compared to El

Chaperno or the combined dataset (panels A and C, respectively).

90

Figure 3.8: The accuracy and infested house coverage of the conjunctive clauses identified using

the CCEA for the A) El Chaperno, B) El Carrizal, and C) combined datasets. Each color-coded

circle represents the order of a conjunctive clause.

91

Following the feature reduction strategy used with the simulated SNP disease

dataset, we analyzed the FI and FPI as well as the feature sensitivity for the El Chaperno,

El Carrizal, and combined datasets, respectively. Figure 3.9 provides a network

representation of the FI and FPI for each dataset separately; features 9, 10, and 29 appear

in all three networks. Features 9 and 10 are the age of the house and the years lived in

the house, respectively; while feature 29 provides information on whether there is an

accumulation of objects (potential hiding places for bugs) in the house. While features 9

and 10 may appear similar, the survey responses are not always correlated; thus, both

features merit future exploration in a reduced dataset. Features 53 and 55 (house wall

material and house wall condition) are present in the networks for El Chaperno and El

Carrizal (Figure 3.9A & 3.9B), but are not present in the network of the combined dataset

(Figure 3.9C). If the user is willing to relax the filter on the importance threshold to FPI

≥ 0.85, then feature 54 (condition of the bedroom walls) would have been common to all

three networks, stressing the importance of using feature identification tools in concert

with domain experts.

92

Figure 3.9: The feature and feature pair importance are represented as a network. The nodes and

edges are sized based on the FI and FPI, respectively. The networks are filtered so that only FPI ≥

0.95 are visible for the A) El Chaperno, B) El Carrizal, and C) combined datasets.

93

The median feature sensitivities for the El Chaperno, El Carrizal, and combined

datasets vary considerably (Figure 3.10). However, features 9, 10, and 34 have feature

sensitivity values greater than zero for all three datasets. Again, features 9 and 10 are the

age of the house and the years lived in the house, respectively; while feature 34 is the

hygienic condition of the beds. Interestingly, both the minimum and maximum feature

sensitivity (Feature 16: Type of house improvement is other has a feature sensitivity = -

5.0; Feature 17: How often are the walls plastered? (feature sensitivity = 2.4)) are found

in the combined dataset (Figure 3.10C). The latter is likely a result of the inverse

relationship that exists between probabilities (decreasing p-values) and increasing dataset

size and highlights the danger of relying on p-value criteria for datasets with large n

values. See Lin et al., (2013) for more detail.

94

Figure 3.10: Bar graphs showing median feature sensitivities for each of the 64 features for the A)

El Chaperno, B) El Carrizal, and C) combined datasets. Positive values indicate that removal of a

feature from an archived conjunctive clause decreases the fitness (i.e., the hypergeometric PMF

increases and the conjunctive clause becomes more likely due to chance).

95

The union of all features (i.e., binary, nominal, and ordinal) meeting the selection

criteria of the previous SNP disease dataset (i.e., filtered network feature-pair importance

and median feature sensitivities > 0) resulted in reducing the 64-feature dataset to the 22

in Table 3.5.

96

Table 3.5: Features selected using feature-pair importance and feature sensitivity for the El

Chaperno, El Carrizal, and combined datasets.

I

D Survey Question

FPI ≥ 0.95 Median Feature Sensitivity > 0

Chaperno Carrizal Combined Chaperno Carrizal Combined

2
Source of income is

day laborer
 X X

4
Source of income is

business
 X

6
Source of income is

other
X

9 Age of the house X X X X X X

10
Years lived in the

house
X X X X X X

17
How often are the

walls plastered?
 X

18 Number of dogs X

26
Presence/signs of

animals in the house
 X X X X

27

Presence/signs of

bird nests in the

house
 X X

29
Accumulation of

objects in the house
X X X X X

34
Hygienic condition

of the beds
 X X X X X

36
Hygienic condition

of the house
 X

37
Are grains stored in

the main room?
 X X

38
Accumulation of

firewood
 X X

41

Type of accumulated

construction material

is adobe
 X X

46

Location of

construction

materials
 X

53
Primary house wall

material
X X X

54
Condition of the

bedroom walls
X X X

55
Condition of walls in

rest of house
X X X

57
Primary house floor

material
X X X X

58
Is the main room

dark?
 X

60
Does the main room

have windows?
 X

97

3.4.2.1 CCEA Results for the Chagas Datasets Using the Reduced 22 Features

The simulated SNP disease results suggests that feature reduction helps shrink

the search space and elucidates drivers of a system. As a result, we perform similar

analysis on the three house infestation datasets. The accuracies and infested house

coverages for the archived CCEA conjunctive clauses are shown (Figure 3.11) for El

Chaperno, El Carrizal, and the combined dataset in panels A, B and C, respectively.

Interestingly, the range of accuracies and coverages that evolve when using all 64

features (Figure 3.8) is nearly the same for the reduced set of 22 features (Figure 3.11).

However, these 22 feature datasets contain less 2nd- and 3rd-order conjunctive clauses

with accuracy greater than 70%.

98

Figure 3.11: The accuracy and infested house coverage of the conjunctive clauses identified using

the CCEA on the reduced 22 features for the A) El Chaperno, B) El Carrizal, and C) combined

datasets. Each color-coded circle represents the order of a conjunctive clause.

99

The network representation of features (FPI ≥ 0.95) in the El Chaperno and El

Carrizal (Figure 3.12A & 3.12B) are a subset of feature pairs identified when all 64

features are used (Figure 3.9A & 3.9B). Figure 3.12C has three interconnected features

(9 = age of the house, 53 = primary wall material, and 57 = the primary floor material)

with 68% coverage and 56% accuracy implying that this 3rd-order conjunctive clause is

important.

100

Figure 3.12: The network representation of FI and filtered FPI ≥ 0.95 for the reduced 22-features

(Table 3.5) for the A) El Chaperno, B) El Carrizal, and C) combined datasets. Nodes and edges are

proportional to the FI and FPI, respectively.

101

The range of maximum and minimum median feature sensitivity is smaller for

the reduced 22-features compared to the 64-feature sensitivity (Figure 3.13). For each

Chagas dataset, only a minority of the features have positive median feature sensitivity.

Features 17, 18, 29, 36, 58, and 60 never have positive median feature sensitivity (Figure

3.13) and are not present in any of the filtered networks of Figure 3.12. Therefore, if

further feature reduction was desired, the reduced 22 feature set could be further reduced

to 16 features.

102

Figure 3.13: Bar graphs showing median feature sensitivities for each of the reduced 22 features

for the A) El Chaperno, B) El Carrizal, and C) combined datasets. Positive values indicate that

removal of the feature from an archived conjunctive clause decreases the fitness (i.e., the

hypergeometric PMF increases and the conjunctive clause becomes more likely due to chance).

103

3.4.3 Example of Conjunctive Clauses Archived by the CCEA

To better analyze how the feature sensitivities associated with the archived

conjunctive clauses might be used in practice, we selected three conjunctive clauses

along the Pareto front (Figure 3.14) for the combined (two-town, 64 feature) Chagas.

Figure 3.14: The accuracy and infested house coverage of the conjunctive clauses identified using

the CCEA and all 64 features for the combined datasets. Three CCs selected along the Pareto front

are circled; the circle color of the CC represents the order of a conjunctive clause.

The features associated with the 7th-order conjunctive clause of Figure 3.14 are

presented in Figure 3.15A and include binary, nominal, and discrete data types. This

conjunctive clause has the highest infested house coverage for clauses with 100%

accuracy. We select a 100% accurate conjunctive clause to critically examine the

possibility of overfitting. The arrows of Figure 3.15 point to the accuracy, coverage, and

hypergeometric PMF of the conjunctive clause when that particular feature is removed.

104

Because two of the seven features (one identifying that household source of income is

not salary and the other indicating that the house is owned) show no change in accuracy

or coverage (and negligible change in the hypergeometric PMF) when those features are

removed, we reduce the 7th-order conjunctive clause to produce the 5th-order conjunctive

clause of panel B.

105

Figure 3.15: The archived conjunctive clause resulting from the 64-feature, combined (two-town)

Chagas dataset with 100% accuracy and highest coverage. The arrows point to the resulting

accuracy, coverage, and hypergeometric PMF when the feature associated with the line is removed

from the conjunctive clause Panel A) shows the 7th-order conjunctive clause. Because there was no

change in accuracy or coverage for removal of two of the features, panel B shows the resulting 5th-

order conjunctive clause. The arrows in panel B again point to accuracy, coverage and fitness

when the associated feature is removed.

106

The two additional archived CCs selected along the Pareto front of Figure 3.14

include a 4th-order and 2nd-order CC. The 4th-order was selected because it is near the

knee of the Pareto front and is depicted in Figure 3.16A. This CC has high accuracy

(71%) and high infested house coverage (53%). Removing any one of these four features

results in less-fit 3rd-order CCs. Figure 3.15B shows a 2nd-order CC with the highest

infested house coverage for all archived CCs. The feature (house is owned or rented)

covers 96% (300/311) of the observations in the combined dataset. Note that when the

feature associated with the condition of the walls in the remainder of the house is

removed, the resulting main effect is many orders of magnitude less-fit.

107

Figure 3.16: Description of two additional archived conjunctive clauses from the Pareto front of

the 64-feature, combined (two-town) Chagas dataset. Panel A) describes the 4th-order conjunctive

clause near the knee of the Pareto front. Panel B) shows 2nd-order conjunctive clause with the

highest coverage for the archived CCs. Arrows point to the resulting accuracy, coverage, and

hypergeometric PMF when the feature associated with the line is removed from the conjunctive

clause.

108

3.5 Discussion

We develop a novel evolutionary algorithm (CCEA) to efficiently explore

complex feature interactions associated with disease datasets. The algorithm is capable

of dealing with survey data that contain missing data, varied data types (i.e., binary,

nominal, and ordinal), and additive features. We demonstrate, using a benchmark SNP

disease dataset specifically designed for feature interactions and heterogeneity by

Urbanowicz and Moore, (2010), that the CCEA is capable of identifying the four (two-

way) signals embedded in a benchmark SNP dataset. The algorithm successfully archives

the conjunctive clauses that are then mined for the most important features using FI and

FPI network models and feature sensitivity. When feature-reduction methods were

applied to the Chagas datasets, the coverage and accuracy for the archived conjunctive

clauses associated with infested houses did not increase; and the number of highly

accurate 2nd- and 3rd-order conjunctive clauses decreased. This is likely because the risk

factors (features) associated with the 2- and 3-way feature interactions were subsequently

removed during feature reduction showing the dangers of performing feature reduction

when datasets contain feature interactions and heterogeneity.

Feature sensitivity shows that while some of the archived conjunctive clauses

contain noise, we can obtain equally-fit, lower-order conjunctive clauses. We identify a

5th-order conjunctive clause that contains three features (earth floors, adobe walls, and

tile roofs) previously identified (King et al., 2011; Weeks et al., 2013; Bustamante et al.,

2014; Bustamante Zamora et al., 2015) as individually associated with infestation.

However, what is unique to this 5th-order conjunctive clause is that the CCEA is capable

109

of evolving both the feature set and the range of feature values. For example, the range

of values that evolved for the number of poultry lies between 7 – 35. Given the

computational limitations imposed by the large combinatorial constraints associated with

real multivariate interactions comprised of multiple data types, previous studies have no

choice but to bin survey data responses (e.g., bin the number of poultry into ranges 0, 1-

9 10-19, and ≥19) prior to statistical analysis (Bustamante Zamora et al., 2015). The

CCEA is able to relax this constraint and mine the entire set of feature combinations and

simultaneously evolve ranges for the number of poultry using statistical signals. The 5th-

order conjunctive clause described above paints a picture of a home that many Chagas

experts would suspect as being at high risk for T. dimidiata infestation (e.g., numerous

hiding places for the vector and readily available food sources such as large numbers of

poultry and animals inside the home). With that being said, we caution against making

any generalizations regarding this (100% accurate) 5th-order conjunctive clause for other

nearby towns. The lack of false positives is likely due to the towns being small rural

towns with only 311 houses. However, given that this clause covers nearly a quarter of

the infested houses across the two towns, this conjunctive clause may represent a driver

of T. dimidiata infestation. In addition, this conjunctive clause contains many of the

features already targeted by existing Ecohealth interventions, such as replacing dirt floors

with cement floors, plastering walls, and moving chickens outside of the home and into

coops constructed with wire (Monroy et al., 2009; Lucero et al., 2013; Pellecer et al.,

2013). These interventions, especially when taken together, are some of the most efficient

(i.e., lowest number of false positives) interventions.

110

There is evidence of heterogeneity in identifying models of infestation with

triatomine vectors of Chagas disease. Both Bustamante et al. (2014) and Bustamante

Zamora et al. (2015) found no statistical support for a single-best model of infestation.

Our results show there are conjunctive clauses that cover nearly every infested house

(Figure 3.8); however, these conjunctive clauses tend to have low accuracy and thus a

large number of false positives. Alternatively, stakeholders may want a compromise

between high infested house coverage and accuracy; and thus, they may be willing to

accept some false positives in favor of a simpler more general conjunctive clause such as

the 4th-order CC depicted in Figure 3.16A. Alternatively, multiple CCs with high

coverage and accuracy may be combined to cover all or nearly all infested houses, while

limiting false positives so that stakeholders can efficiently direct limited resources (e.g.,

it may be more cost effective to perform a preliminary screening of houses at risk of

infestation using information such as the age of the house than to acquire information on

the household source of income or number of animals). The range of conjunctive clauses

allows stakeholders to select the best combination that maximizes their desired coverage,

accuracy, model complexity, and the presence of features that have interventions that can

be easily and affordably applied.

111

3.6 Supplementary Tables

Table 3.S1: The first column is the feature number for the 64 features that are input into the

CCEA. The second column is the survey question associated with each feature.

Feature Survey Question

1 Total people in the house

2 Binary Source of Income: Day Laborer (1 = yes, 0 = no)

3 Binary Source of Income: Agriculture (1 = yes, 0 = no)

4 Binary Source of Income: Business (1 = yes, 0 = no)

5 Binary Source of Income: Salary (1 = yes, 0 = no)

6 Binary Source of Income: Other (1 = yes, 0 = no)

7 Highest household level of education

8 Is the house owned, rented, or borrowed?

9 Age of the house

10 Years lived in the house

11 Have you improved the house?

12 Binary Type of House Improvement: Plastered the Walls (1 = yes, 0 = no)

13 Binary Type of House Improvement: Improved the roof (1 = yes, 0 = no)

14 Binary Type of House Improvement: Improved the floor (1 = yes, 0 = no)

15 Binary Type of House Improvement: Addition to the house (1 = yes, 0 = no)

16 Binary Type of House Improvement: Other (1 = yes, 0 = no)

17 How often do you plaster the walls

18 Number of dogs

19 Where do the dogs sleep?

20 Number of poultry

21 Where do poultry birds sleep?

22 Number of cats

23 Where do cats sleep?

24 Number of pigs

25 Number of beasts (i.e., horses, cows, mules)

26 Presence or signs of animals in the house

27 Presence or signs of bird nests in the house

28 Presence or signs of mouse in the house

29 Accumulation of objects in the house

30 Binary Types of Objects Accumulated: Boxes (1 = yes, 0 = no)

31 Binary Types of Objects Accumulated: Sacks (1 = yes, 0 = no)

32 Binary Types of Objects Accumulated: Clothes (1 = yes, 0 = no)

33 Binary Types of Objects Accumulated: Other (1 = yes, 0 = no)

34 Hygienic condition of the beds

35 Are beds separated from the wall

36 Hygienic condition of the house

112

37 Are grains stored in the main room

38 Accumulation of firewood

39 Where is the firewood

40 Accumulation of construction materials

41 Binary Type of Accumulated Construction Material: Adobe (1 = yes, 0 = no)

42 Binary Type of Accumulated Construction Material: Tiles (1 = yes, 0 = no)

43 Binary Type of Accumulated Construction Material: Wood (1 = yes, 0 = no)

44

Binary Type of Accumulated Construction Material: Cinder Blocks (1 = yes, 0
= no)

45 Binary Type of Accumulated Construction Material: Other (1 = yes, 0 = no)

46 Where are the construction materials

47 Presence of chicken coop

48 Where is the chicken coop located

49 Primary material of the chicken coop walls

50 Primary material of the chicken coop roof

51 Hygienic condition of the chicken coop

52 Presence of another animal corral

53 Primary material of the house walls

54 Condition of the walls in the bedroom

55 Condition of the walls in the rest of the house

56 Primary material of the house roof

57 Primary material of the house floor

58 Is the main room dark?

59 Does the main room have a skylight?

60 Does the main room have windows?

61 Location of the kitchen

62 Does the house have running water?

63 Does the house have electricity?

64 How long ago was the electricity installed?

113

Table 3.S2: Table A contains the feature importance (FI) values for a dataset with eight features

and 10 observations with a target outcome (e.g., infested house). Table B contains the same FI

values that are present in Table A, however, each feature’s FI is independently sorted. The 90th

percentile FI values are highlighted in red.

A

Obs. FI1 FI2 FI3 FI4 FI5 FI6 FI7 FI8

1. 0.44 0.80 0.26 0.25 0.07 0.00 0.04 0.00

2. 0.99 1.00 0.06 0.10 0.00 0.29 0.07 0.04

3. 0.94 1.00 0.00 0.26 0.19 0.27 0.08 0.41

4. 1.00 0.98 0.51 0.64 0.00 0.05 0.21 0.38

5. 0.00 0.26 0.15 0.11 0.19 0.27 0.94 1.00

6. 0.35 0.34 0.23 0.00 0.26 0.17 0.95 1.00

7. 0.24 0.14 0.14 0.27 0.00 0.38 1.00 0.98

8. 0.28 0.58 0.09 0.00 0.16 0.28 0.99 1.00

9. 0.39 0.80 0.26 0.25 0.07 0.00 0.04 1.00

10. 0.99 1.00 0.06 0.10 0.00 0.29 0.07 0.04

B

Sort FI1 FI2 FI3 FI4 FI5 FI6 FI7 FI8

1. 0.00 0.14 0.00 0.00 0.00 0.00 0.04 0.00

2. 0.24 0.26 0.06 0.00 0.00 0.00 0.04 0.04

3. 0.28 0.34 0.06 0.10 0.00 0.05 0.07 0.04

4. 0.35 0.58 0.09 0.10 0.00 0.17 0.07 0.38

5. 0.39 0.80 0.14 0.11 0.07 0.27 0.08 0.41

6. 0.44 0.80 0.15 0.25 0.07 0.27 0.21 0.98

7. 0.94 0.98 0.23 0.25 0.16 0.28 0.94 1.00

8. 0.99 1.00 0.26 0.26 0.19 0.29 0.95 1.00

9. 0.99 1.00 0.26 0.27 0.19 0.29 0.99 1.00

10. 1.00 1.00 0.51 0.64 0.26 0.38 1.00 1.00

114

CHAPTER 4: USING NEXT GENERATION SEQUENCING TO

DETERMINE THE RANGE OF SPATIAL AUTOCORRELATION OF

TRIATOMA DIMIDIATA

4.1 Introduction

4.1.1 Chagas Disease Background

Chagas disease is a lethal, neglected, tropical disease that is endemic to every

Central American country (Chagas, 2015). Historically Rhodnius prolixus, and to a lesser

extent Triatoma dimidiata, were the principle vectors of Chagas disease in Central

America (WHO, 2002; Schofield and Dujardin, 1997). R. prolixus was accidentally

introduced to Central America (Zeledón, 2004) but, through an intensive insecticide

campaign in August 2011, transmission of Chagas disease via R. prolixus was

successfully eliminated from Central America (Hashimoto and Schofield, 2012). T.

dimidiata on the other hand is endemic to Central America and is found in domestic,

peridomestic, and sylvatic ecotopes from Mexico to northern South America (De León,

1959; Arzube Rodríguez, 1966; Zeledón et al., 1970; Petana, 1971; Zeledón et al., 1973;

Whitlaw and Chaniotis, 1978; Tabaru et al., 1999; Zeledón et al., 2001a; Zeledón et al.,

2001b; Dumonteil et al., 2002; Monroy et al., 2003a; Monroy et al., 2003b; Sasaki et al.,

2003; Ramírez et al., 2005; Zeledón et al., 2005; Hernández et al., 2006; Zeledón and

Rojas, 2006; Bustamante et al., 2007; Dorn et al., 2007). Efforts to eliminate T. dimidiata

through intensive insecticide spraying have proven generally unsuccessful (Tabaru et al.,

1998; Nakagawa et al., 2003a; Nakagawa et al., 2003b; Dumonteil et al., 2004;

Hashimoto et al., 2006; Manne et al., 2012; Yoshioka et al., 2015). Approximately 70

115

million people in Latin America are at risk of infection with T. cruzi and ~5.7 million

people are already infected (Chagas, 2015). In Central America, Guatemala has the

largest number of vector transmitted cases (~1,275) in 2010 (Chagas, 2015). Since

insecticides have proven to be ineffective at eliminating T. dimidiata in Guatemala

(Tabaru et al., 1998; Nakagawa et al., 2003a; Nakagawa et al., 2003b; Hashimoto et al.,

2006; Manne et al., 2012), recent interventions help reduce contact between people and

T. dimidiata using Ecohealth interventions (Monroy et al., 2009; Lucero et al., 2013;

Pellecer et al., 2013). In Guatemala, these interventions aim to remove domestic shelters

and food sources of T. dimidiata by plastering walls (Monroy et al., 2009; Lucero et al.,

2013; Pellecer et al., 2013), replacing dirt floors with cement floors (Lucero et al., 2013;

Pellecer et al., 2013), and distancing the chicken coops from the house while also

replacing the more common construction materials (i.e., wood and adobe) with metal

fencing (Lucero et al., 2013; Pellecer et al., 2013). Unfortunately, the initial costs of these

Ecohealth interventions are relatively high for many communities; and thus, resources

should be prioritized toward houses most at risk of T. dimidiata infestation. While

extensive evidence suggests that T. dimidiata move between the domestic, peridomestic,

and sylvatic ecotopes (Arzube Rodríguez, 1966; Zeledón et al., 1973; Monroy et al.,

2003b; Sasaki et al., 2003; Ramírez et al., 2005; Zeledón et al., 2005), the distance

traveled is currently unknown, thus complicating estimates of disease transmission. A

number of studies have modeled the movement of T. dimidiata from the sylvatic ecotope

to domestic ecotope in the Yucatan, Mexico (Barbu et al., 2010; Ramirez-Sierra et al.,

2010; Barbu et al., 2011), but the vector is associated with seasonal infestation in the

116

Yucatan, which is not the case in Guatemala. In Guatemala, Lucero et al. (2013) used

geostatistics and hot spot analysis to identify areas within a village most at risk for

infestation. Their analysis identified a range of spatial autocorrelation for bugs per house

found using man-hour collection methodology. However, Monroy et al. (1998) have

demonstrated that this collection method has a high variance and most likely results in

finding only 0.7 – 10.8% of the true population (Monroy et al., 1998; Valenҫa-Barbosa

et al., 2014). In addition, the method is biased toward houses with high numbers of bugs

(Abad-Franch et al., 2014). All of the above challenges help motivate the need for

alternative models for estimating the range of spatial autocorrelation associated with T.

dimidiata.

4.1.2 Background on a Genetic Geostatistical Method for Spatial Autocorrelation

Smouse and Peakall (1999) developed a methodology to characterize the range

of spatial autocorrelation that uses multiple genetic markers to create a correlogram.

Their methodology has subsequently been used on a variety of species such as emmer

wheat (T. turgidum L. ssp. dicoccoides) (Volis et al., 2014), beech trees (Fagus sylvatica

L.) (Piottti et al., 2013), bottlenose dolphins (Tursiops truncatus) (Richards et al., 2013),

Canada geese (Branta canadensis) (Finnegan et al., 2013), and the American black bear

(Ursus americanus) (Coster and Kovach, 2012). Foley et al. (2004) used the correlogram

to find the range of spatial autocorrelation for the mosquito vector (Ochlerotatus

notosciptus) of dog heartworm (Dirofilaria immitis) to be ~55 km. While Rašić et al.

(2015), found a range of 3-6 km for the mosquito Aedes aegypti, which is a vector of

dengue. Finally, Pérez de Rosas et al. (2013) investigated the range of spatial

117

autocorrelation for Triatoma infestans, the principle vector of Chagas disease in South

America, and found a range of ~400 m. They also investigated sex-biased dispersal

finding that females had a relatively larger range of spatial autocorrelation than males

(400 m versus 330 m), and used the range to guide the radius of insecticide applied

around an infested house or peridomestic structure.

4.1.3 Background on Spatial Autocorrelation in Human SNP Data

Spatial autocorrelation in the single nucleotide polymorphisms (SNPs) of humans

has been observed at various scales. Elhaik et al. (2013) found spatial autocorrelation at

the global scale and was relatively successful at leveraging georeferenced SNP data to

predict a person’s country of origin. On a finer scale, Lao et al. (2013) used Smouse and

Peakall’s (1999) correlogram to determine the range of spatial autocorrelation in people

in the Netherlands, which they attributed to historic settlement patterns, using to

georeferenced SNP data.

4.1.4 Genetics of Triatoma dimidiata

Spatial autocorrelation in the genetics of T. dimidiata have been observed at

various scales. Bargues et al. (2008) analyzed 31 haplotypes at 64 locations that spanned

a range from Mexico to northern South America. While they did not explicitly

characterize spatial autocorrelation, they did show geographic grouping of phenotype

trees. More recently, Stevens et al. (2015) investigated spatial autocorrelation using 7

highly polymorphic microsatellite loci from 178 T. dimidiata spread across 6 villages in

the department of Jutiapa, Guatemala. Using the relatedness function of Lynch and

Ritland (1999), Stevens et al. (2015) found some migration of T. dimidiata between

118

houses in a village as well as some spatial autocorrelation, despite the signal being weak.

These findings are contrary to earlier works that did not find spatial autocorrelation

among T. dimidiata in nearby villages in Guatemala (Dorn et al., 2003; Calderón et al.,

2004). Given that Melgar et al. (2007) found 41 families of T. dimidiata in a single house

in Guatemala, using tens of genetic markers is unlikely to provide sufficient genetic

information to sufficiently capture (characterize) within-town, spatial autocorrelation. As

a result, using the thousands of T. dimidiata SNPs from the Orantes (personal

communication, January 2017) database may provide a unique opportunity to explore

spatial autocorrelation at the finer village scale.

4.1.5 Summary of Work

In this work, we use the SNP database of Orantes (personal communication,

January 2017) and the genetic distance of Smouse and Peakall (1999) and relatedness of

Lynch and Ritland (1999) to explore spatial autocorrelation at the finer village scale. For

two towns in Jutiapa, Guatemala, Orantes (personal communication, January 2017)

extracted the DNA of 216 T. dimidiata, and through Rad-seq was able to create a database

of single nucleotide polymorphisms (SNPs). We use these T. dimidiata SNPs to (1) create

semivariograms, (2) characterize the range of spatial autocorrelation of the vector in both

villages, and (3) use these metrics as a surrogate for vector movement to produce maps

of homesteads most at risk of infestation.

119

4.2 Study Sites and Methods

4.2.1 Study Sites and Genetic Data

Our study sites are the small rural towns of El Chaperno and El Carrizal located

in the dry highlands of in Jutiapa, Guatemala (red and yellow dots of Figure 3.1). Jutiapa,

Guatemala (highlighted in red, Panel A) borders El Salvador with the study site locations

shown as a yellow star. El Carrizal (Panel B) has spur roads radiating from the main road

making the town less linear in shape. While El Chaperno (Panel C) is more linear in

shape since most of the houses are adjacent to the principal road running through the

town. Also, El Chaperno is more heavily forested than El Carrizal due to forest

conservation efforts.

120

Figure 4.1: Satellite image of the study sites with the houses in El Chaperno and El Carrizal

represented as red and yellow dots, respectively. Panel A is a map of the departments of

Guatemala with the department of Jutiapa highlighted in red and the location of the study sites

represented as a yellow star. Panels B and C are show the locations of the houses and roads in El

Carrizal and El Chaperno, respectively.

121

Teams comprised of personnel from the Escuela de Biología at La Universidad

de San Carlos Guatemala, and the Guatemalan Ministry of Health Office of Vector-Borne

Diseases conducted entomological surveys for the domestic and peridomestic ecotopes

of 182 and 129 homesteads in El Chaperno and El Carrizal, respectively (Table 4.1).

Informed consent was obtained from all adult participants and from parents or legal

guardians of minors. This project received ethical clearance from the Ministry of Health

in Guatemala, La Universidad de San Carlos bioethics committee, and the Panamerican

Health Organization.

Given the challenges with finding live T. dimidiata (Monroy et al., 1998), we

believe that signs of T. dimidiata indicate the vector has likely infested a homestead. As

a result, we categorized homesteads as infested if either their domestic or peridomestic

ecotopes contain any sign of T. dimidiata (i.e., live, dead, eggs, exuviae, or feces). In El

Chaperno and El Carrizal, Ministry of Health officials collected 276 and 222 live T.

dimidiata from 35 and 31 homesteads, respectively. Due to the cost associated with next

generation sequencing, only a proportion of the collected bugs were sequenced; all bugs

from houses with three or fewer bugs were sequenced; and for houses with larger

numbers (4-81 bugs), a select proportion were sequenced. For detail, see Table 4.1 &

Figures 4.S1 and 4.S2; and for details of the experimental design, see Orantes (personal

communication, January 2017).

122

Table 4.1: The characteristics of the El Chaperno and El Carrizal datasets collected during the

periods of October 1-3, 2012 in El Chaperno and February 4-5, 2013 in El Carrizal.

 El

Chaperno

El

Carrizal

Number of Homesteads Surveyed 182 129

Number of Homesteads Infested 56 (31%) 52 (40%)

Number of Homesteads with live T. dimidiata 35 (19%) 31 (24%)

Number of live T. dimidiata collected 276 222

Number of Homesteads with Sequenced T. dimidiata 34 (19%) 30 (23%)

Number of T. dimidiata Sequenced 95 (34%) 121 (55%)

Orantes (personal communication, January 2017) used next generation

sequencing on a subset of the T. dimdiata collected in El Chaperno and El Carrizal (Table

4.1) to determine the subsequent SNP loci for each population of bugs. Figures 4.2 and

4.3 present the sex, instar level, and homestead location of specimens sequenced in El

Chaperno and El Carrizal, respectively; the size of the pie charts are proportional to the

number of bugs sequenced from the same homestead.

123

Figure 4.2: The pie charts are proportional to the number of T. dimidiata sequenced for a given

homestead ranging from 1 to 10 sequenced per house. Colors represent the sex, instar level, and

homestead location of collected insects in El Chaperno.

124

Figure 4.3: The pie charts are proportional to the number of T. dimidiata sequenced for a given

homestead ranging from 1 to 23 sequenced per house. Colors represent the sex, instar level, and

homestead location of collected insects in El Carrizal.

For El Chaperno and El Carrizal, the number of SNPs is 1,870 and 2,265,

respectively; and the percent missing data (i.e., specimens and associated SNPs with

International Union of Pure and Applied Chemistry (IUPAC) nucleotide code N values)

is 37% and 41%, respectively. To test the impact of missing data, we analyzed each

dataset with and this filtering. We refer to these two datasets throughout the manuscript

as the original and filtered datasets. Original refers to the dataset containing all

sequenced specimens and all loci with a SNP. We then perform multiple levels of

filtering on the original dataset. One level refers to retaining only pairs of specimens that

125

have some threshold of loci in common (referred to Level 1). Level 2 refers to refers to

removing all specimens with >50% missing values, followed by removal of any loci with

missing values. For Level 2 filtering, the El Chaperno was reduced to 73 specimens and

287 loci across 34 homesteads; El Carrizal was reduced to 97 specimens and 250 loci

across 30 homesteads.

4.2.2 Geostatistical methodology

While the correlograms of Smouse and Peakall (1999) were certainly ahead of

their time in the field of genetics, semivariograms (the inverse of correlograms) were

introduced in the mining industry as early as the 1930s and have been used extensively

to leverage spatial autocorrelation in subsurface site investigations. Semivariograms

express the range of autocorrelation (spatial or temporal) as a dissimilarity between

measurement points rather than normalized similarity (i.e., correlograms).

Semivariograms are generally the preferred method for measuring spatial autocorrelation

because they (1) allow for empirical derivation of 95% confidence intervals, (2) plotting

of raw semivariance (prior to binning), which allows for easier visualization of natural

geographic breakpoints for binning, and (3) preserve the relative error variance between

measured variables.

The equation of the semivariance (Isaaks and Srivastava, 1989) is given as:

 𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑧(𝑢𝛼) − 𝑧(𝑢𝛼+|ℎ|)]

2𝑁(ℎ)
𝛼=1 , (4.1)

where, 𝑧(𝑢𝛼) is the measurement at a point in space or time, 𝑧(𝑢𝛼+|ℎ|) is the

measurement of a point at a distance, h, from location 𝑢𝛼, and N is the total number of

paired points separated by distance, h.

126

The correlogram of Smouse and Peakall (1999) calculates a genetic distance 𝑑2

that is similar to the semivariance in equation (4.1). For example, the genetic distance

using SNPs for the diploid T. dimidiata may be calculated as:

 𝑑2(ℎ) = ∑
1

2
[

(𝐴(𝑢𝛼) − 𝐴(𝑢𝛼+|ℎ|))
2

+ (𝐶(𝑢𝛼) − 𝐶(𝑢𝛼+|ℎ|))
2

+ (𝐺(𝑢𝛼) − 𝐺(𝑢𝛼+|ℎ|))
2

+ (𝑇(𝑢𝛼) − 𝑇(𝑢𝛼+|ℎ|))
2] 𝐾

𝑘=1 , (4.2)

where, A, C, G, and T represent the total number of purine adenine, pyrimidine cytosine,

purine guanine, and pyrimidine thymine, respectively, 𝐾 is the total number of loci,

𝐴(𝑢𝛼) is the total number of purine adenine (A) (i.e., 0, 1, or 2) at the kth locus for the

specimen at location 𝑢𝛼, and 𝐴(𝑢𝛼+|ℎ|) is the total number of purine adenine associated

with a specimen that is distance h from 𝑢𝛼. Both equations 4.1 and 4.2 represent half the

squared difference between two points, with the exception that equation 4.2 is designed

for nominal genetic data, and equation 4.1 is designed for continuous data. We, therefore,

refer to the Smouse and Peakall (1999) genetic distance as a genetic semivariance in the

remainder of this manuscript.

A common geostatistical practice is to bin semivariances based on geographic

distance in order to more easily visualize the pattern of spatial autocorrelation. Since

there were no natural break points and to maintain consistency between the two towns

the semivariances were binned using the same fixed distance bins for both towns. The

first bin consists of all semivariances in the same house. The median nearest neighbors

for El Chaperno and El Carrizal are 35 and 62 meters, respectively, so an approximate

midpoint of 50 meters was selected for the second bin. The third bin was all pairs of bugs

between 50-100 meters. The fourth through twelfth bins increased at 100 meter intervals

127

and the final bin contained all bugs >1,000 meters apart. Each binned semivariance is

centered on the median of the distances for that bin.

Semivariance is often represented by a model that is best fit to the average

semivariance (i.e., all paired data within select bin (or range of distances, h) are

averaged); and a 95% confidence interval that may be placed around the binned averages.

The latter assumes the population follows a normal distribution. Lucero et al. (2013)

assumed a normal distribution when creating a semivariogram model for the number of

T. dimidiata collected at homesteads. However, given that most of the homesteads had

zero values (i.e., no insects were found), the majority of the raw semivariance values

were zero, which violates the assumption of a normal distribution. Therefore, we propose

representing the binned (mean) semivariance as Tukey box plots (Tukey, 1977) and use

the box plot median as a surrogate for the mean. When the binned semivariances do not

follow a normal distribution, the median, midspread (i.e., interquartile range), and

outliers of the box plots, help visualize the distribution of binned semivariances. When

the binned semivariances are normally distributed, then the mean and median should be

equivalent. Once the semivariances are binned and plotted as box plots, a domain expert

can select the parameters (i.e., the nugget, range, and sill) needed to characterize/model

spatial (or temporal) autocorrelation of the data. The nugget represents measurement

error or the general variability within the measured parameter that is not spatially

dependent. Range (also referred to as the range of decorrelation) defines the distance

beyond which the variable (in our case, genetic distance and relatedness) is no longer

correlated. The sill represents the median variance in vector genetic distance or

128

relatedness for homesteads separated by distances greater than the range of decorrelation

(Isaaks and Srivastava, 1989). Summary statistics (e.g., mean, median) are used to

describe the nugget, range, and sill of spatial autocorrelation in order to fit a model a

model to the semivariance. The model is then used to map a variable such as genetic

distance. The model will produce two spatial maps using kriging; one map will plot the

estimated variable value and the other will plot the error variance associated with the

estimate.

In addition to using the genetic distance of Smouse and Peakall (1999), we used

the relatedness of Lynch and Ritland (1999) as an alternative (genetic semivariance)

equation, because it is a frequency-based, pairwise equation. Since higher values of

relatedness are associated with more similar individuals, we simply invert the vertical

axis such that paired individuals who are more related plot below the x-axis and those

less-related plot above the x-axis. We used GenAlEx 6.503 (Peakall and Smouse, 2006;

2012) to calculate both genetic distance and relatedness for all pairs of insects collected

in El Chaperno and El Carrizal. However, GenAlEx 6.503 has two options for handling

missing data; one treats missing data as a base pair; and the other interpolates the missing

data. Smouse and Peakall (2006) do not recommend interpolating missing data for

individual statistics; whereas, filtering data often results in the loss of large amounts of

data. As a result, we tested the impact of filtering in two ways. First, we encoded the

genetic distance formula of Smouse and Peakall (1999) using Matlab® 2016a

(MathWorks, Natick, MA) and used the Level 1 filtering. We normalize each pair-wise

129

genetic distance by the maximum genetic distance for the given pair, given the number

of loci that have data.

To test the impact of data reduction (pairs of individuals that do not have loci in

common) when filtering, we created semivariograms using three thresholds for Level 1

filtering: (1) all data having at least one locus in common, (2) all data having 287 or 250

loci in common for El Chaperno and El Carrizal, respectively (i.e., the same number of

loci as Level 2 filtering), and (3) all data having at least 1,000 loci in common. We also

compare the Smouse and Peakall (1999) genetic distance semivariograms to the Lynch

and Ritland (1999) relatedness semivariograms for the Level 2 filtering of the El

Chaperno and El Carrizal datasets.

The semivariograms were each fit with a spherical model (Marsily, 1993) using

the nugget, range, and sill to help characterize the change in semivariance with distance.

Finally, a buffer sized by the range of spatial autocorrelation was placed around each

infested homestead for both villages; and the resulting overlap is plotted as increased risk

of infestation for homesteads that lie within multiple buffers. This risk assumes that

infestation comes from within the system (only infested homesteads are sources of risk)

and that spatial genetic structure is indicative of vector movement.

4.3 Results

4.3.1 Results Level 1 Filtering

For both towns, the genetic distance of equation (4.2) was modified to use only

the base pairs that were common between individuals. Figures 4.4 and 4.5 show the

binned semivariances for El Chaperno and El Carrizal, respectively. The nugget for each

130

panel was set to the median of the semivariance bin corresponding to a distance of zero.

Panels A, B, and C represent increasing thresholds of minimum common loci,

respectively; and a spherical model (red dashed line) was fit to the box plot medians. For

El Chaperno (Figure 4.4), the best fit spherical model has the same median range (28

meters; minimum and maximum bin distance are 9 and 48 meters, respectively) and sill

(0.08) for all three levels of filtering (minimum common loci thresholds of 1, 287, and

1,000, respectively). There is little difference between the three semivariograms, with the

exception that panel A, which uses all 4,465 pairs of T. dimidiata in the dataset, has larger

inter-whisker semivariance distances for each bin and more outliers than panels B or C.

That being said, the median range of spatial autocorrelation is 28 meters ([9, 48] meters)

regardless of the threshold, which is most likely due to the fact that the majority of our

data have over 1,000 loci in common.

131

Figure 4.4: Box plot semivariograms of genetic distance for El Chaperno generated using Level 1

filtering. Semivariogram using A) all paired individuals with at least 1 loci in common, B) all pairs

with at least 287 loci in common, and C) all pairs with 1,000 common loci. Best fit spherical models

(red dashed line) have the same range (28m) and sills (0.08) across all three panels.

132

A spherical model was also fit to the genetic distance data of El Carrizal (Figure

4.5). Again, all three datasets (panels A, B, and C using minimum common loci

thresholds of 1, 250, and 1,000, respectively) have the same median range (88 meters;

minimum and maximum bin distance are 59 and 97 meters, respectively) and sill (0.07).

Again, there is little difference between the three semivariograms, and panel A

(semivariogram generated with the largest amount of paired (7,260) T. dimidiata) has a

larger inter-whisker distances and more outliers than panels B and C. With that being

said, the median range of spatial autocorrelation is constant 88 meters ([59, 97] meters)

regardless of the amount of data used to generate the semivariogram. Interestingly, the

midspread of binned genetic distances appears to be similar for both El Chaperno (Figure

4.4) and El Carrizal (Figure 4.5).

133

Figure 4.5: Box plot semivariograms of genetic distance for El Carrizal generated using Level 1

filtering. Semivariogram using A) all paired individuals with at least 1 loci in common, B) all pairs

with at least 250 loci in common, and C) all pairs with 1,000 common loci. Best fit spherical models

(red dashed line) have the same range (88m) and sills (0.07) across all three panels.

134

We also generated semivariograms for El Chaperno and El Carrizal using only

the nymphs to characterize the spatial autocorrelation of T. dimidiata of T. dimidiata that

are not capable of flight. However, these results are not shown because the

semivariograms and range of spatial autocorrelation were nearly identical to the

semivariograms plotted in Figure 4.3 and 4.4, respectively.

To test for sex-biased dispersal, we created separate semivariograms for male and

female T. dimidiata. Again, there was little difference between sex in terms of the range

of spatial autocorrelation; however, the sex-based semivariograms were noisier, most

likely due to the smaller sample sizes.

4.3.2 Results Level 2 Filtering

The Level 2 filtering enabled us to use GenAlEx 6.503 to calculate the relatedness

of Lynch and Ritland (1999) and compare the results to the genetic distance of Smouse

and Peakall’s (1999). The semivariograms for El Chaperno (Figure 4.6) characterize

relatedness (panel A) and genetic distance (panel B) for the Level 2 dataset comprised of

73 specimens and 287 SNPs. The best-fit spherical model (red dashed line) shows a

median range of spatial autocorrelation of 28 meters ([9, 48] meters) for both relatedness

and genetic distance. This is the same range identified in the spherical models of Figure

4.4. The midspread for within-homestead semivariance (first box plot of Figure 4.6A) is

much larger than any other bins of relatedness. This midspread pattern was not observed

in Figure 4.6B for the within-homestead genetic distance.

135

Figure 4.6: Box plot semivariograms for El Chaperno characterize the A) relatedness of Lynch and

Ritland (1999) and B) genetic distance of Smouse and Peakall (1999) using a SNP dataset with 73

specimens and 287 loci. The best-fit spherical models (red dashed line) have the same range (28m);

and the sills are -0.01 and 0.05, respectively. The vertical-axis of panel A was flipped so that more

similar bugs (high relatedness) have positive values and those with low relatedness have negative

values.

Figure 4.7 displays the semivariograms for genetic distance (panel A) and

relatedness (B) generated using 97 specimens and 250 SNPs of El Carrizal. The best-fit

136

spherical model (dashed line) shows a median range of spatial autocorrelation of 160

meters ([104, 200] meters), which is nearly twice the median range (88m) of using the

Level 1 data (Figure 4.5). Similar to the town of El Chaperno (Figure 4.6A), the

midspread of semivariance for within-homestead relatedness is much larger than other

bins (Figure 4.7A).

137

Figure 4.7: Box plot semivariograms for El Carrizal characterize the A) relatedness of Lynch and

Ritland (1999) and B) genetic distance of Smouse and Peakall (1999) using SNP data with 97

specimens and 250 loci. The best fit spherical models (red dashed line) have the same range

(160m); and the sills are -0.01 and 0.05, respectively. The vertical-axis of panel A was flipped such

that more similar bugs (high relatedness) have positive values and those with low relatedness have

negative values.

138

4.3.3 Results – Risk Maps for El Chaperno and El Carrizal

If one assumes that every infested homestead is a potential source of T. dimidiata,

then a risk map can be created to highlight the parts of town that have higher risk of

infestation due to proximity to an infested neighbor. For El Chaperno, the T. dimidiata

median range of spatial autocorrelation was consistently 28 meters regardless of the (1)

level of filtering, and (2) metric used for genetic semivariance (relatedness or genetic

distance). The range of spatial autocorrelation was plotted as a red circle around every

infested homestead in El Chaperno, with overlap represented in deeper shades of red

(Figure 4.8); the deepest shade of red (i.e., maximum overlap) corresponds to 5

overlapping ranges. Infested homesteads are plotted with an x, and non-infested

homesteads with a +. Given the relatively small median range of spatial autocorrelation

(28 meters) in El Chaperno, we see that 68% (86/126) of non-infested homesteads fall

outside the range of risk of infestation; and only 6% (8/126) of the non-infested

homesteads lie within in the range of multiple infested homesteads.

139

Figure 4.8: Risk map for infestation of T. dimidiata in El Chaperno. Red circles show the range of

spatial autocorrelation for each homestead. Overlap is represented in darker shades of red using

the range of 28 meters. The deepest shade of red (i.e., maximum overlap) corresponds to 5

overlapping ranges. Infested homesteads are plotted as an x and non-infested homesteads as a +.

Every infested homestead is treated as a possible source of T. dimidiata.

140

For El Carrizal, the Level 1 filtered dataset had a median range of spatial

autocorrelation of 88 meters while the Level 2 filtered dataset had a median range of 160

meters. We use these two ranges of autocorrelation to create the risk maps of Figure 4.9

for El Carrizal. Figure 4.9A uses a range of 88 meters and shows that 23% (18/77) of the

non-infested homesteads lie outside the range of an infested homestead. The maximum

number of overlapping ranges is equal to 10; Figure 4.9B has a maximum overlap of 18,

and uses a range of 160 meters. Only 8% (6/77) of the non-infested homesteads lie

outside the range of an infested homestead; and all but one of these homesteads is located

in the northwest part of the village. Note: If one uses the less conservative estimate of

spatial autocorrelation (i.e., 88 meters), then 70% (54/77) of the non-infested homesteads

fall within the range of multiple infested homesteads; this increases to 92% (71/77) when

the range increases to 160 meters. Both risk maps show an area located between the two

eastern spur roads of El Carrizal to be high risk (darker overlapping areas of red in

Figures 4.9A and 4.9B).

141

Figure 4.9: Risk maps for infestation of T. dimidiata in El Carrizal. Red circles show the range of

spatial autocorrelation for each homestead. Overlap is represented in darker shades of red using

the range of A) 88 meters and B) 160 meters. The deepest shade of red (i.e., maximum overlap)

corresponds to A) 10 and B) 18 overlapping ranges. Infested homesteads are plotted as an x and

non-infested homesteads as a +. Every infested homestead is treated as a possible source of T.

dimidiata.

142

4.4 Discussion

In this work, we first used the genetic distance of Smouse and Peakall (1999) to

determine the range of spatial autocorrelation as a surrogate for the movement of the

Chagas vector T. dimidiata in two towns in Guatemala. For each town, the original

datasets had ~100 collected specimens and around 2,000 SNPs. Given the time and

money that goes into collecting the T. dimidiata, extracting their DNA, and then

sequencing each bug’s genome, we thought it prudent to explore how filtering the data

might impact the semivariograms. We modified genetic distance of Smouse and Peakall

(1999) to use only the loci that are common to both specimens and then standardized the

genetic distance between each pair. Next, we performed a semivariogram analysis on this

modified genetic distance using several thresholds for the number of loci common to

both specimens. For both El Chaperno and El Carrizal, the semivariograms identify the

same median range of spatial autocorrelation, regardless of whether all paired specimens

were included in the analysis or whether only specimens with at least 1,000 loci in

common were used. This resiliency to filtering may result from the majority of our

specimen pairs having at least 1,000 loci in common. Also, the resiliency is due in part

to our decision to use box plots to represent binned genetic semivariance.

Next we performed Level 2 filtering for both the datasets for both towns reducing

the dataset size. We reanalyzed these Level 2 filtered datasets using semivariograms

analysis and the normalized Smouse and Peakall (1999) genetic distance and Lynch and

Ritland (1999) relatedness, a frequency based method. The ranges of spatial

autocorrelation were independent of both measures of genetic similarity.

143

For El Chaperno, the median range of spatial autocorrelation remained at 28

meters for the reduced dataset regardless of which measure of similarity is selected for

the genetic semivariance analysis. El Carrizal, on the other hand, saw an increase in the

median range of autocorrelation from 88 meters in the original dataset and Level 1

filtering to 160 meters when using the Level 2 filtering. This difference in range is

concerning since it leaves us uncertain as to which dataset is better for measuring the

range of spatial autocorrelation. The Level 2 filtering of the El Carrizal dataset has 80%

(97/121) of the pre-filtered specimens and only 11% (250/2,265) of the pre-filtered SNPs.

We would like to err toward not filtering the data, or at most using low thresholds for

Level 1 filtering, due to the big data concept that more data are better and perfect data

are not necessary (Mayer-Schönberger and Cukier, 2014). Also, when we performed

Level 1 filtering, we did not observe a change in the range of spatial autocorrelation.

Finally, we used the ranges of spatial autocorrelation derived from the

semivariogram analyses to create risk maps of T. dimidiata infestation. Given that we

cannot find any empirical study demonstrating the distances that T. dimidiata move in a

natural environment, we used the range of genetic structure as a surrogate for vector

movement at the village scale. In El Chaperno, the median range of spatial

autocorrelation was only 28 meters; and thus, most of the non-infested homesteads fell

outside the range of an infested homestead and would be less likely to be infested by an

infested homestead. However, the El Chaperno semivariograms show that T. dimidiata

within the same homestead are more similar (i.e., closely related) than T. dimidiata

outside the homestead. This relationship could be explained by nymphs having the same

144

parent(s). Therefore, it is possible that the El Chaperno population is panmictic. Thus,

the distance of a non-infested homestead from an infested homestead will not affect the

risk of infestation. For El Carrizal, the majority of non-infested homesteads lie within the

range of multiple infested homesteads, regardless of whether the median range of spatial

autocorrelation is 88 meters or 160 meters. Therefore, the T. dimidiata population of El

Carrizal are not panmictic and the non-infested homesteads within the range of an

infested homestead have a higher risk of infestation from nearby homesteads. That being

said, the reported median ranges of spatial autocorrelation are summary statistics and

thus the true range of spatial autocorrelation can lie anywhere between the reported

minimum and maximum bin range. This difference in spatial autocorrelation between the

two towns may be attributed to their land use/cover. El Chaperno is less open and has

more forest due to conservation efforts than El Carrizal. Therefore, T. dimidiata may

need to travel further in El Carrizal to find suitable shelter. Also, if T. dimidiata is sylvatic

in Jutiapa, Guatemala as postulated by Hernández et al. (2006), then the nearby forests

in El Chaperno may serve as a source of T. dimidiata infestation; whereas, for El Carrizal,

particularly in the part of town most at risk (Figure 4.9), the primary sources of infestation

may be other homesteads.

When using the relatedness of Lynch and Ritland (1999) as a metric of similarity,

both El Chaperno (Figure 4.5A) and El Carrizal (Figure 4.6A) exhibited a within-

homestead midspread that was larger than the midspreads corresponding to greater

spatial ranges. This may be indicative of having a large number of T. dimidiata families

with individual households similar to that documented by Melgar et al. (2007) in

145

neighboring Santa Rosa, Guatemala. It is interesting that despite the large within-

homestead diversity for El Chaperno and El Carrizal, both towns still exhibited within

village spatial autocorrelation using SNPs.

While using semivariogram analysis on genetic markers has not been offered as

an alternative to the correlograms of Smouse and Peakall (1999), semivariograms are not

a foreign concept in genetics. Elhaik et al. (2013) plot what is essentially a semivariogram

and determine a range of spatial autocorrelation for humans using loess distribution

fitting and SNPs; and Bradburd et al. (2013) do something similar for the ancestors of

corn Teosinte zea mays mexicana and Teosinte zea mays parviglumis. In addition, the

methodology of Smouse and Peakall has been used to study the range of spatial

autocorrelation of mosquito disease vectors (Foley et al., 2004; Rašić et al., 2015) and

the principal Chagas disease vector Triatoma infestans (Pérez de Rosas et al., 2013).

However, one advantage of fitting the semivariogram data with a monotonic model is

that it enables the use of estimation methods that can minimize the error variance in an

unbiased way (Isaaks and Srivastava, 1989). The nugget, range, sill, and spherical model

can enable one to estimate/interpolate parameter fields (e.g., map genetic

distance/relatedness) using multiple data and the estimates of error variance may be used

to improve risk maps. For example, the semivariogram model of genetic distance could

be paired with another variable such homestead attractiveness (e.g., house risk level,

sources of light) to perform co-kriging that can be leverage two variables to create

potentially better risk maps.

146

To our knowledge this is the first study that uses the range of spatial

autocorrelation to plot the risk of homestead infestation. Our risk maps enable

stakeholders to assess the parts of town that are in most need of intervention and provide

clues as to whether the source of infestation is sylvatic or domestic/peridomestic.

4.5 Conclusion

In this study, we demonstrate that Level 2 filtering of data may not be necessary

when using SNPs to identify the range of spatial autocorrelation. In addition, we observed

spatial autocorrelation among T. dimidiata at relatively small distances within towns

implying that they are likely moving between neighboring homesteads, at least in El

Carrizal. Finally, we were able map the risk to non-infested homesteads using the range

of spatial autocorrelation derived from semivariogram analysis. Since there is little

empirical evidence for how far T. dimidiata might travel in the field, we feel that

semivariogram analysis using metrics of genetic similarity may provide a sufficient

model for vector movement or disease transmission.

147

4.6 Supplementary Figures

Figure 4.S1: The black squares represent homesteads where no T. dimidiata were found during the

entomologic search in El Chaperno. The red circles are proportional to the number of T. dimidiata

collected for a given homestead ranging from 1 to 81.

148

Figure 4.S2: The black squares represent homesteads where no T. dimidiata were found during the

entomologic search in El Chaperno. The red circles are proportional to the number of T. dimidiata

collected for a given homestead ranging from 1 to 45.

149

CHAPTER 5: GEOSPATIAL AND TEMPORAL ANALYSIS OF THYROID

CANCER INCIDENCE IN A RURAL POPULATION

5.1 Introduction

Thyroid cancer incidence is increasing at an annual rate of 3–5%, resulting in the

rate tripling over the past 30 years in the United States as well as in other countries

(Curado et al., 2007; Kilfoy et al., 2009; Jemal et al., 2011; Morris et al., 2013; Pellegriti

et al., 2013). In the United States, the number of cases has risen from 4.3 cases per

100,000 in 1980 to 12.9 cases per 100,000 individuals in 2008. Mortality rates have

slightly increased (+0.8% annual percent change [APC]) (Enewold et al., 2009; Cramer

et al., 2010; NCI, 2012). A recent study noted a disproportional increase in women

(Edwards et al., 2006). The basis for the increase in thyroid cancer incidence is not

known. Some studies suggest enhanced diagnostic scrutiny and better detection of

subclinical cancers result in widespread over diagnosis and thus not a true increase in

incidence (Davies and Welch, 2006; Ross, 2006; Grodski et al., 2008; Enewold et al.,

2009; Hall et al., 2009; Yu et al., 2010; Morris et al., 2013; Reitzel et al., 2014). Other

studies note that an increase in both large tumors and microcarcinomas as well as a

change in relative frequencies of histological types implicate other contributing factors

(Chen et al.; 2005; Kilfoy et al., 2009; Pazaitou-Panayiotou et al., 2013; Ward et al.,

2010; Aschebrook-Kilfoy et al., 2013). Of note, recent reports of aggressive, metastatic

microcarcinomas of the thyroid that correlate with the risk of second cancers (Kim et al.,

2013) suggest that microcarcinomas once considered subclinical might emerge as

150

important new healthcare concerns and reflect an important dimension of the increase in

thyroid cancer incidence.

Environmental and demographic factors may be critical determinants in the

increase in thyroid cancer incidence (Leux and Guénel, 2010; Morris and Myssiorek,

2010; Li et al., 2013; Pellegriti et al., 2013). A recognized risk factor for thyroid cancer

is ionizing radiation exposure through medical procedures, including x-rays, as well as

radioactive fallout (Richardson, 2009; Wartofsky, 2010; NCI, 2013). A study of the

overall geographic distribution of thyroid cancer in the United States revealed a higher

incidence in areas proximate to nuclear power reactors (Mangano, 2009). High levels of

nitrate in public drinking water supplies have been linked to increased thyroid cancer

incidence (Ward et al., 2010), and environmental endocrine disruptors including

polyhalogenated aromatic hydrocarbons (PHAHs), notably polybrominated diphenyl

ethers (PBDEs) and organochlorine insecticides, are postulated factors (Grimalt et al.,

1994; Zhang et al., 2008; Zhu et al., 2009; Leux and Guénel, 2010). Leux and Guénel

(2010) noted that many environmental chemicals interfere with thyroid function and

increase the risk of goiters, nodules, and possibly neoplasia. Additional known risk

factors include family history, sex, and age (Pellegriti et al., 2013). Socioeconomic

factors (SES) may also indicate that access to healthcare affects incidence (Sprague et

al., 2008; Morris et al., 2013). Thus, novel analyses are needed to elucidate both

incidence and contributing factors.

With the capability to visualize, analyze, interpret, and map geo-located data, the

field of geostatistics, notably the geographic information system (GIS) tool, has emerged

151

as a powerful geospatial technology that is gaining prominence in healthcare applications

(Musa et al., 2013). GIS-based cancer mortality maps produced by the National Cancer

Institute and Centers for Disease Control and Prevention (CDC) are widely used by

public health officials to guide disease surveillance and control activities throughout the

United States (Shaw, 2012). Beyond traditional GIS mapping capabilities, more

sophisticated spatial statistical analyses have been utilized to identify spatial disease

clusters (i.e., nonrandom spatial distributions of disease cases, incidence, or prevalence),

map and monitor disease patterns and trends over time and space, and assess the impact

of ecological and SES on the spatial distribution of diseases. Although there are still

many technical (e.g., knowledgeable users, data quality control) and organizational (e.g.,

access and sharing) barriers to the wide-scale adoption of geospatial technologies in the

healthcare sector (Boulos et al., 2011), recent advances in the understanding of disease

dynamics, healthcare management has demonstrated the power of geospatial

technologies to identify new drivers of public health concerns and advance the field of

public health research. The present objective was to examine the characteristics of

thyroid cancer incidence and determine the geospatial distribution in the state of

Vermont, United States.

This study postulated that geospatial analyses would reveal important risk factors

of thyroid cancer incidence in a rural population that would provide the framework for

investigation of potential drivers of disease patterns. It was determined that the

characteristics of thyroid cancer incidence, including significant nonrandom clusters, are

most likely due to environmental and lifestyle factors. Spatial statistical analyses

152

revealed that the overall distribution of thyroid cancer incidence and higher APC in these

rural regions provide the framework for evaluating demographic and environmental

drivers that may contribute to thyroid cancer incidence.

5.2 Methods

5.2.1 Data Sources

Data on thyroid cancer (1994–2007) were obtained from the Vermont

Department of Health, and U.S. data on thyroid cancer were obtained from the National

Cancer Institute at the United States National Institutes of Health Surveillance,

Epidemiology, and End Results (SEER) Program. State mandated data collection began

in 1994 and included year of initial diagnosis, age at diagnosis, sex, primary site of

disease at diagnosis, histology code, histological grade, behavior code, size of tumor,

postal code at diagnosis, year last contacted, vital status, and death place code. Data

exchange agreements between neighboring states minimize underreporting in border

counties. Data pertaining to residents of neighboring states were not included in this

study. Thyroid cancers were grouped based on histology codes, including papillary

(8050, 8052, 8130, 8260, 8340–8344, 8450, 8452), follicular (8290, 8330–8332, 8335),

medullary (8345, 8346), anaplastic (8021), and other/indeterminate/not specified (8012,

8032, 8046, 8070, 8140, 8190, 8335, 8337, 8347, 8350) (Fritz et al., 2000).

Population data, used to calculate incidence, were obtained from the Vermont

Department of Health’s intercensal population estimates (VPE, 2013). The Vermont

population in 1994, 2000, and 2007 was 585,544, 608,827, and 623,481, respectively.

Incidence and mortality rates were age adjusted to the U.S. 2000 Standard Population (as

153

per SEER practice (SPAA, 2013)) and normalized per 100,000 person-years (Breslow

and Day, 1987). For the geospatial analyses, zip code boundaries were downloaded from

the U.S. Census Bureau, and all map layers projected to the Vermont State Plane

Coordinate System North American Datum 1983. Information regarding SES was

obtained from the 2000 U.S. Census variables, which included percent of the population

by age, length of household occupancy, median household income, and post–high school

education. The percent of the population with health insurance was obtained from

Vermont Household Health Insurance Survey, Department of Financial Regulation, State

of Vermont (VDB, 2010).

The study was approved by the Institutional Review Board of the University of

Vermont Committee on Human Research and the Vermont Cancer Center.

5.2.2 Statistical Analyses

Age-adjusted incidence (also known as age-standardized rate) was calculated as

described by Boyle and Parkin (1991). This method adjusts each age group’s contribution

to the overall population incidence so that incidence is based on the same age structure.

Proportional age-adjusted incidence was also calculated that quantified the contribution

of various age strata (e.g., 30–39 year olds) to the age-adjusted incidence. The

proportional age-adjusted incidence for each age group of interest was calculated by

summing the product of the crude incidence and the respective frequency of the standard

population for each single year of age within the age group of interest (e.g., for age group

30–39, sum product for ages 30, 31,.,39). The standard errors of the overall age-adjusted

154

incidence and proportional age-adjusted incidence were calculated using the Poisson

approximation method (Boyle and Parkin, 1991).

The estimated APC is a summary statistic used to measure trends over time by

taking the average rate of change in incidence over several years (Breslow and Day,

1987). The values were calculated by fitting a regression line to the natural logarithm of

the incidence using the calendar year as the independent variable (Ries et al., 2000). The

estimated APC is equal to 100×(𝑒𝑠𝑙𝑜𝑝𝑒 − 1). The statistical significance (p < 0.05) of

the linear slope was GEOSPATIAL ANALYSIS OF THYROID CANCER INCIDENCE

813 compared to zero, and confidence intervals (CI) were calculated from the standard

error of the slope. The time period was split into 1994–2000 and 2001–2007 in order to

compare trends from the first half of the study period to the second half of the study

period, and the estimated APC was calculated for incidence for time periods 1994–2007,

1994–2000, and 2001–2007 for males, females, and both sexes combined, respectively.

The age-adjusted incidence for each county was compared to the overall age-

adjusted incidence of Vermont by creating a standardized rate ratio (SRR) (Boyle and

Parkin, 1991). To determine whether national incidence was significantly different from

the incidence in Vermont, the confidence interval of each SRR was approximated as

described by Smith (1987). There was a significant difference between incidences if the

confidence interval did not include SRR 1.0, indicating equal incidence. All statistical

analysis, including estimation of the APC and age-adjusted incidence, were performed

using Excel 2013 (Microsoft Corp., Redmond, WA), JMP® Pro v10.0.0 (SAS Institute,

Cary, NC), ArcGIS® v10.2 (esri®, Redlands, CA), and MATLAB® 2014a (MathWorks,

155

Natick, MA). All incidence data were age adjusted to the U.S. 2000 Standard Population

baseline.

5.2.3 Trend Analyses

Significant (p < 0.05) annual trends in the age-adjusted incidence for Vermont

females, males, and the total population of Vermont were performed using the Ljung-

Box Q analysis in JMP® Pro. The same analysis was used to test for significant annual

trends for sex-specific proportional age-adjusted incidence for three age groups (<30

years old, 30–59 years old, and >59 years old). In addition, the study tested for significant

proportional annual trends in thyroid cancer tumors ≤1.0 cm, 1.1–2.0 cm, and >2.0 cm

in size.

5.2.4 Socioeconomic Analyses

Socioeconomic data from the 2000 U.S. census was analyzed at both the zip code

and county scale. As a result, the study used both logistic and linear regression analysis

to test for significance between the annual age-adjusted incidence of thyroid cancer and

with socioeconomic variables related to income, education, length of residency, and

access to healthcare at both the zip code and county scales.

5.2.5 Geospatial Analyses

ArcGIS® v10.2 software was used to perform geospatial analyses and map

visualization. The number of thyroid cancer cases in each zip code was mapped to show

their spatial locations in Vermont. The cases were normalized per 100,000 to the

population for each zip code based on the Vermont Department of Health’s intercensal

population estimates. Due to the nature of zip code data and inconsistencies between the

156

2010 census zip code boundaries and zip code census data, some zip codes were

combined. For two zip codes with recorded thyroid cancer cases and no zip code

associated with those zip codes, the cases were added to the zip code that shared the

greatest area of the zip code. Calculated normalized incidence was mapped to illustrate

the effect of population on incidence distribution. The cases and incidence distributions

for each image were classified based on Jenks Natural Breaks. This method of

classification partitions data into the specified number of classes based on natural groups

or clusters of data values.

Spatial statistics use inferential statistics to test a null hypothesis that the features

are randomly distributed in space. In this case, the feature tested is the average annual

age-adjusted incidence of thyroid cancer for each zip code. A p-value and z-score are

computed to determine the statistical significance of observed spatial patterns. A p-value

calculates the probability that the observed patterns were due to random chance;

statistically significant clustering is evident at a p-value of < 0.05. The z-score is the

standard deviation of the result, which is calculated using the logistic regression model.

Very high (>1.96) and very low (<-1.96) z-scores correspond to low p-values (0.05) and

indicate the spatial distribution of age-adjusted incidence is not random.

The Getis-Ord Gi* statistic was calculated for each age-adjusted incidence in a

weighted set of zip codes using the Hot Spot Analyses tool. Although a particular zip

code may have high incidence, Hot Spot Analysis identifies those zip codes with

statistically higher incidence of cancer cases, that is, those zip codes that have

significantly higher values than can be expected by chance. The Gi* local statistic

157

identifies individual members (zip codes) of local clusters by looking at each target zip

code compared to neighboring zip codes within a specified ‘‘Zone of Indifference.’’ This

distance metric calculation enables each age-adjusted incidence within the critical

distance to be equally weighted and the age-adjusted incidence of each zip code outside

the specified distance with diminishing weights as distance increases. A significant Hot

Spot (p < 0.05) is identified if the sum of a zip code’s value and the values of all its

neighboring zip codes is proportionally higher than expected when compared to the sum

of all zip codes in the state. Likewise, a zip code is a significant Cold Spot (p < 0.05) if

the sum of its value and the values of its neighboring zip codes is proportionally lower

than expected.

The Hot Spot Analysis tool requires the input of a specified distance, which

determines the scale of the analysis. This value was calculated using the ‘‘Calculate

Distance Band from Neighbor Count’’ geoprocessing tool to determine the distance

between every zip code and, in this work, its eight nearest neighbors, and returns the

minimum, maximum, and average distance. The minimum value is the distance (in

meters) one would travel away from a zip code to ensure that at least one zip code has

eight neighbors, the maximum value is the distance one would travel away from a zip

code to ensure that each zip code has at least eight neighbors, and the average value is

the average distance between each zip code and its eight nearest neighbors. Maximum

and average distances were chosen to test for clustering at multiple scales across the state

(Supplementary Figure 5.S1; Supplementary Data are available online at

www.liebertpub.com/thy).

158

5.3 Results

5.3.1 Incidence Trends

The age-adjusted thyroid cancer incidence in Vermont rose significantly 2.4-fold

from 5.3 in 1994 to 12.6 in 2007 with a significant estimated APC of 8.3% [CI 5.7–11.0]

compared to the national estimated APC of 5.7% [CI 5.2–6.3] (Table 5.1 and

Supplementary Figure 5.S2). Although the overall average annual aged-adjusted

incidence for females in Vermont was similar to that in the United States (11.8 and 12.3,

respectively), the estimated APC was higher at 9.9 for Vermont and 5.9 for the United

States. For males, both the average annual age-adjusted incidence and the estimated APC

were similar to national trends, with both significantly increased over time (Table 5.1

and Supplementary Figure 5.S1). The thyroid cancer age-adjusted incidence in Vermont

(8.0 per 100,000) was comparable to the national incidence (8.4 per 100,000). Also, the

overall mortality rate was 0.5 per 100,000 for males and females, which is similar to the

national rate (NCI, 2012).

Table 5.1: Age-adjusted incidence of thyroid cancer per 100,000 people for the United States (U.S.)

and Vermont (VT), 1994-2007. Annual percent changes were significant at p < 0.001 (df = 12) or p

< 0.05 (df = 12) as indicated.

 Age-adjusted

incidence

1994-2007

Annual

percent

change

Confidence

interval t-Test

VT 8.0 8.3 [5.7-11.0] p < 0.001

U.S. 8.4 5.7 [5.2-6.1] p < 0.001

VT females 11.8 9.9 [5.9-14.0] p < 0.001

U.S. females 12.3 5.9 [5.4-6.3] p < 0.001

VT males 4.1 4.9 [0.2-9.9] p < 0.05

U.S. males 4.4 5.1 [4.4-5.7] p < 0.001

159

5.3.2 Trends by Sex and Age

Using the Ljung-Box Q analysis, increasing trends for annual age-adjusted

thyroid cancer incidence in Vermont were significant between 1994 and 2000 and 2002

and 2007 for the total population, and between 1994 and 1999 and 2002 and 2007 for

females, reflecting changes within the overall increase (Figure 5.1). While the overall

ratio of age-adjusted incidence for females to males is 3.1 to 1, the rate of change differed

during the time frame. The estimated APC among females was a little more than double

that of males: 9.9 versus 4.9, respectively. The estimated APC for both females and males

was higher for more recent years (2001–2007) at 13.2% for females [CI 7.3-19.1] and

11% for males [CI 0.7-21.2]. The proportional age-adjusted incidence was higher among

females than males for all ages except those younger than 10 years of age (Figure 5.2).

From 1994–2000, the peak age of diagnosis was between 30 and 49 years for females

and between 40 and 49 years for males. However, from 2001 to 2007, the peak age of

diagnosis was between 40 and 49 years for females and between 30 and 69 years for

males. Overall, 29.8% of the cases were diagnosed below the age of 40 years, and 57.7%

of the cases below the age of 50 years. The overall increase in incidence for females was

in the 30–59 year age group for females, while no overall change in incidence by age was

noted for males (Figure 5.3). There is no significant difference in the statewide

distribution of the population by age or sex.

160

Figure 5.1: Annual age-adjusted thyroid cancer incidence significantly increased in Vermont,

1994-2007. Significant annual trends are noted for Vermont (1994-2000, 2002-2007) and Vermont

females (1994-1999, 2002-2007). Significance is p < 0.05, n = 14, using Ljung-Box Q analysis in

JMP® Pro v10.0.0.

161

Figure 5.2: Average annual proportional age-adjusted incidence (1994-2007) for Vermont overall,

Vermont females, and Vermont males. For Vermont females, the age groups with the three highest

annual average age-adjusted incidence are ages 30-39 years, 40-49 years, and 50-59 years.

162

Figure 5.3: Proportional age-adjusted incidence of thyroid cancer differed by age and sex in

Vermont, 1994-2007. Significant trends were identified for females (A) younger than 30 years of

age (1994-1996), females aged 30-59 years old (1994-2007), females older than 59 years old (2006-

2007), and males (B) younger than 30 years of age (1997-2007) by Ljung-Box Q analysis in JMP®

Pro v10.0.0 (p < 0.05, n = 14).

163

5.3.3 Incidence by Tumor Size and Type

In Vermont, during 1994–2007, 86% of thyroid cancer cases were papillary, 9%

follicular, 2% medullary, and <2% anaplastic comparable to national data. Of particular

note, the findings reveal that sex is a factor in the distribution of cases by histological

type (Figure 5.4). In females, papillary thyroid cancer (PTC) incidence was 89%,

follicular (FTC) 8%, medullary (MTC) 2%, and anaplastic (ATC) 0.6%, while in males,

PTC was 77%, FTC 15%, MTC 1%, and ATC 3%, respectively. The increase in females

encompasses primarily PTCs with a small increase in follicular cancer types, but in males

the increase is primarily in differentiated follicular cancers (Table 5.2). National data

(Aschebrook-Kilfoy et al., 2013) indicate that PTC and FTC increased for both males

and females, whereas data from the present study indicate an increase in PTC for females

and FTC and ATC for males.

164

Figure 5.4: The percent of thyroid cancer types between females and males in VT differ

significantly. Females (A) have proportionally more cases of papillary cancer and fewer cases of

follicular and anaplastic cancer than males (B). (Pearson chi square test; p < 0.001, n = 702, df = 4).

165

Table 5.2: Thyroid cancer histological type varies by age and sex.

 Age group

 <30

years, n

<30

years, %

30-59

years, n

30-59

years, %

>59

years, n

>59

years, %

Both sexes:

Papillary 60 92.3 415 88.7 127 75.1

Follicular 2 3.1 41 8.8 26 15.4

Medullary 3 4.6 6 1.3 3 1.8

Anaplastic 0 0 1 0.2 7 4.1

Indeterminate 0 0 5 1.1 6 3.6

Total 65 100 468 100 169 100

Males:

Papillary 10 90.9 87 83.7 36 63.2

Follicular 1 9.1 14 13.5 11 19.3

Medullary 0 0 1 1 1 1.8

Anaplastic 0 0 1 1 4 7

Indeterminate 0 0 1 1 5 8.8

Total 11 100 104 100 57 100

Females:

Papillary 50 92.6 328 90.1 91 81.3

Follicular 1 1.9 27 7.4 15 13.4

Medullary 3 5.6 5 1.4 2 1.8

Anaplastic 0 0 0 0 3 2.7

Indeterminate 0 0 4 1.1 1 0.9

Total 54 100 364 100 112 100

Although some studies have indicated that the increase in thyroid cancer could

be attributed to an increase in detection of small tumors and microcarcinomas, using the

Ljung-Box Q analysis, the present data for Vermont indicate no significant difference in

tumor size over time (Figure 5.5). For both females and males, the distribution of tumors

by size did not vary over time; ≤1.0 cm, 1.1–2.0 cm, and >2.0 cm represented 38%, 22%,

and 40%, respectively. While the distribution of tumors ≤1.0 cm, 1.1–2.0 cm, and >2.0

cm varies from year to year, the increase in thyroid cancer incidence is not due to a

166

significant increase in small tumors but to an overall increase in cases diagnosed with

tumors.

Figure 5.5: Thyroid cancer incidence classified by tumor size in Vermont, 1994-2007. The minimum
number of tumors measured in any given year was 14 (1995); the maximum was 79 (2006). Using

Ljung-Box Q analysis, the only significant trend occurred for tumors 1.1-2.0 cm in size in 2001-2004.
When the 1.1-2.0 cm category was combined with either of the other two categories, there were no

significant trends.

5.3.4 Geospatial Distribution of Thyroid Cancer Incidence

Between 1994 and 2007, thyroid cancer age-adjusted incidence varied widely

throughout Vermont, ranging from no incidence to >30 per 100,000. The wide variability

in incidence is striking as noted across adjacent zip codes (Figure 5.6). This was further

supported by no spatial autocorrelation being detected between the annual age-adjusted

thyroid cancer incidence at the zip code scale, indicating the high spatial heterogeneity

of incidence across the state. Even with the high spatial variability of incidence, nine zip

code Hot Spots were identified, highlighting specific focus areas that could provide

167

insight into future research regarding SES and environmental drivers of thyroid cancer.

No other significant relationships between thyroid cancer incidence and other U.S.

census variables were found.

168

Figure 5.6: Geospatial distribution of thyroid cancer incidence. Average annual age-adjusted

incidence for Vermont (1994-2007) mapped to the U.S. 2010 Census zip code tabulation areas (zip

codes). Jenks Natural Breaks was used to create the four classification categories of cancer

incidence.

169

At the county scale, Vermont health data showed a significant (df = 13, F = 12.82,

p = 0.004, R2
adj = 0.48) negative linear relationship between thyroid cancer incidence and

the number of medical practices per 100,000 people. In addition, no significant linear

relationship was found between thyroid cancer incidence and the percent insured or the

number of primary care physicians per 100,000 people at the county scale. Several

nonrandom clusters of high thyroid cancer incidence were revealed by Getis-Ord Gi*

analyses. These clusters are located in 8 of 14 counties, and include northern and central

regions of the state. The geographic distribution of the clusters occurred predominantly

in the regions of highest elevation along the north–south axis of the state, which

encompasses the Green Mountain Range.

When SES and demographic factors and measures of health care access were

analyzed, thyroid cancer incidence was not correlated with mean family income,

education at more than high school level, mean travel time to work, and long-term

residents (in residence prior to 1979). At the county scale, the high thyroid cancer

incidence was negatively correlated with access to healthcare, as measured by location

and concentration of primary care physicians compared to the population (HISA-VT

2008). No Hot Spots were identified in the highest income counties whether by per capita

or median household income. According to Vermont Health Insurance Survey, >92% of

the population has health insurance coverage (reference BISHCA) since 1990 when the

surveys were initiated.

170

5.4 Discussion

Between 1994 and 2007, the incidence of thyroid cancer more than doubled in

Vermont. The present findings suggest that during 1994–2007, the thyroid cancer

incidence in Vermont (8.0%) was comparable to the national trend (8.4%). However, the

estimated APC for women was higher in Vermont (9.9%) compared with the national

APC (5.9%) as also reflected in the total estimated APC in Vermont and the United States

(8.3% and 5.7%, respectively). Strikingly, the estimated APC for females in Vermont

was double that for males (9.9% and 4.9%, respectively). When categorized by age

groups, the thyroid cancer incidence more than doubled for females aged between 30 and

59 years over the study period, while all other categories increased but less dramatically.

The total incidence increased for males, but there was no significant difference among

age groups. Various studies have indicated a relation between reproductive factors and

hormone use that may partially explain the increasing thyroid cancer incidence in

younger women (Negri et al., 1999). Although the overall health insurance rate in

Vermont (>92%) is near complete, it is unclear in this study whether female access to

healthcare is greater than for males, which might contribute to the sex difference in

estimated APC.

Overall, PTC accounts for more than 85% and FTC 10% of the tumors detected,

as anticipated. However, the distribution varies by age (Table 5.2); PTC represents >92%

of the tumors in those younger than 30 years of age, but only 75% in patients older than

59 years of age. The incidence of FTC and ATC increases for those older than 59 years

of ages for both men and women. For men, PTC is most common in those younger than

171

59 years of age (>90%), but in those older than 59 years of age, PTC drops to <63%, and

FTC and ATC increase to 19% and 7%, respectively. For females, the change in

distribution of thyroid cancer type is less pronounced such that in those aged 59 years

and older, PTC accounts for >81% of cases, while FTC and ATC increase to 13.4% and

2.7%, respectively. Aschebrook–Kilfoy et al. (2013) recently reported an increase in age-

adjusted FTC in women and men, with an increase in aggressive tumors as well as small

tumors particularly in women. Unfortunately, the grade of tumor and metastatic lesions

were not reported in the Vermont registry in >80% of cases, so a comparison of

aggressive tumors is not possible.

While previous studies have reported a significant increase in small (≤1.0 cm)

tumors (Davies and Welch, 2006; Davies et al., 2010; Morris and Myssiorek, 2010;

Morris et al., 2013), the present findings did not reveal a significant selective increase in

these tumors. An increase in small tumors and a decrease in larger tumors (>2.0 cm)

would be predicted if increased diagnostic scrutiny accounted for the increase in thyroid

cancer incidence. An incidence of ≤1.0 cm tumor size that does not significantly increase

over time would argue against an increased detection due to improved diagnosis.

The present findings for the entire state do not show concordance with higher

SES and increase in thyroid cancer incidence as has been previously shown (Sprague et

al., 2008; Li et al., 2013; Morris et al., 2013). Unexpectedly, the higher thyroid cancer

incidence by county was not located in the counties with the highest per capita income,

family income, and education as would have been predicted from previous studies. No

correlation was observed between zip codes with high incidence of thyroid cancers and

172

SES or access to enhanced medical diagnostics. Data on tumor characteristics by zip code

would be necessary to determine a potential correlation between SES and tumor size and

stage at diagnosis. Nevertheless, the distribution of higher incidence of thyroid cancer

incidence is not consonant with higher diagnostic scrutiny that would be expected with

higher SES and access to healthcare. Aside from healthcare access, variation in

healthcare provider culture and practices could contribute to the geospatial and temporal

patterns that were observed in thyroid cancer incidence, but this could not be addressed

in this study. Future studies could examine variation across healthcare provider networks.

This study was unable to determine causal relations between healthcare access,

diagnostic approaches, environmental factors, and thyroid cancer incidence based on the

geospatial analyses, but regions were identified where an assessment of possible

environmental and demographic drivers may be focused. Although the geostatistical

analysis did not identify a spatial autocorrelation at the zip code scale, the possibility of

autocorrelation cannot be ruled out. As with any geo-referenced data set, there is always

the possibility that the scale or range of autocorrelation will be missed if the spacing

between observations is too large (Goovaerts, 1998). As a result, it is suggested that a

database geo-referenced at the household scale is needed to identify spatial correlations

better between environmental factors and risk of thyroid cancer. Future studies are

necessary to evaluate the role of diagnostic evaluation, environmental factors directly in

thyroid cancer incidence trends.

This study may also be limited by the usual concerns of population-based studies,

including nonreview of histopathological diagnoses, incomplete data collection, and

173

variations in tumor classifications related to analyses of registry data. The 1994–2007

data collection time frame is subsequent to the World Health Organization recommended

change in thyroid tumor classification that occurred in 1988 (Hedinger et al., 1988).

Further, the population of Vermont is generally racially homogenous (>95% white

Caucasian), and thus caution must be taken in generalizing the results to other

populations with greater representation of racial groups. The finding that variation in

access to healthcare does not fully explain temporal and spatial trends in thyroid cancer

incidence in Vermont warrants further investigation in other study populations,

particularly those with increased racial diversity. Healthcare insurance coverage is high

(>92%) in Vermont and should be taken into consideration when generalizing to other

states or population groups.

In summary, in rural Vermont with nearly complete healthcare coverage and a

relatively stable population, the incidence of thyroid cancer is increasing among both

women and men. The increase is most profound for women between the ages of 30 and

59 years. The increase in thyroid cancer is reflected in both small and large tumors; there

is no significant difference in tumor size detected over the time period studied.

Furthermore, geospatial analysis revealed a distribution of thyroid cancer incidence

across the state that did not correlate with proximity to tertiary healthcare centers or SES.

Similarly, the data did not support the often-reported hypothesis of increased incidence

over time due to improved diagnostic scrutiny. These findings strongly suggest that other

SES and environmental factors may likely contribute to the increase in thyroid cancer

174

incidence. Investigation into naturally occurring and man-made environmental factors as

well as lifestyle impact on thyroid cancer development is clearly warranted.

5.5 Supplementary Figures

Figure 5.S1: Clusters of thyroid cancer incidence in Vermont, United States, 1994–2007. For the

Getis-Ord Gi* statistic, two zones of indifference of 18,000m and 42,000m were used. Clusters were

significant (p < 0.05) if there was a higher (red) or lower (blue) proportion of thyroid cancer

incidence (normalized per 100,000) than expected within the specified distance.

175

Figure 5.S2: Age-adjusted incidence of thyroid cancer per 100,000 people for the United States and

Vermont, 1994–2007. (A) The average annual age-adjusted incidence was 8.0 (VT) and 8.4 (U.S.).

The annual percent change (EAPC) at 8.3 [CI 5.7–11.0] for Vermont and 5.7 [CI 5.2–6.3] for the

United States were significant (p < 0.001). (B) The average annual age-adjusted incidence for

females was 11.8 (VT) and 12.3 (U.S.). The EAPC was 9.9 [CI 5.9–4.0] for Vermont and 5.9 [CI

5.4–6.3] for the United States were significant (p < 0.001). (C) The average annual age-adjusted for

males was 4.1 (VT) and 4.4 (U.S.). The EAPC was 4.9 [CI 0.2–9.9] for Vermont and 5.1 [CI 4.4–5.7]

for the United States were significant at p < 0.05 (VT) and p < 0.001 (U.S.).

176

CHAPTER 6: CONCLUSION

In this dissertation, I initially develop the conjunctive clause evolutionary

algorithm (CCEA) and the disjunction of the conjunctive clauses evolutionary algorithm

(DNFEA) a set of evolutionary algorithms (EAs), with the intent that they be used in

tandem to mine real-world datasets that include epistatic and heterogeneous associations.

The EAs were developed to efficiently explore real-world datasets that contain missing

data, varied data types (i.e., nominal, discrete, and ordinal), inherent feature interactions,

numerous combinations of risk factors, and implicit heterogeneity. To demonstrate

effectiveness of this set of EAs, I first tested my algorithms on three benchmark

problems. These three classifier test cases (the majority-on, the multiplexer and a

simulated SNP dataset developed by Urbanowicz and Moore (2010)) exhibit some

combination of feature interaction (epistasis), heterogeneity, and noise. The CCEA in

tandem with the DNFEA was able to successfully solve all three benchmark problems

by repeatedly evolving the optimal solution set for each problem. Next, using inspiration

from Big Data analysis in Mayer-Schönberger and Cukier (2014), the solution sets

archived by the CCEA were mined to perform feature selection. These feature selection

techniques were successfully applied to the simulated SNP dataset and consistently

selected the features that comprise the true signals. Finally, the CCEA was applied to the

T. dimidiata infestation datasets for two towns in Jutiapa, Guatemala. The CCEA was

able to efficiently search these large, noisy datasets with multiple datatypes to find strong

probabilistic signals for complex multivariate interactions associated with infestation.

These probabilistically significant interactions could then be utilized by domain experts

177

and town managers to improve mitigation strategies and make efficient use of limited

resources to reduce the risk of T. dimidiata infestation. In addition, I developed a proof-

of-concept for mapping risk that leverages the SNPs from next generation sequencing of

T. dimidiata, and the genetic distance equation of Smouse and Peakall (1999) to

determine the range of spatial autocorrelation of the vector’s genetic structure. This range

of spatial autocorrelation was then used as a surrogate to the movement of T. dimidiata

and plotted to visualize the risk of infestation. The risk maps for the two Guatemalan

villages seemed to suggest that the source of infestation for one town was sylvatic, and

the other was domestic/peridomestic. These novel and modified statistical tools were

successful in characterizing the risk of infestation across the two villages.

Finally, the risk of thyroid cancer over a 14-year period in Vermont was assessed

on the zip code scale, which is larger than the individual household scale used for the

Chagas disease datasets. This aggregated US census data did not show spatial

autocorrelation and limited my ability to determine individual risk factors associated with

thyroid cancer on an individual scale. That being said, traditional risk factors such as age

and gender were associated with higher rates of thyroid cancer. Also, geospatial analyses

of incidence of thyroid cancer at the zip code scale did reveal Hot Spots associated with

thyroid cancer. However, whether these Hot Spots are signals or noise could not be

determined given the available aggregated data.

This research was an initial venture into assessing disease risk in the age of Big

Data. The methods developed in this dissertation were designed specifically for the

dataset available (data-driven). With that being said, these methodologies are not so

178

specific that they cannot be applied to other datasets and applications. For instance, the

CCEA is a general, non-parametric classification tool that can be applied to a wide range

of problems without violating assumptions inherent to the CCEA. This is not the case

with many traditional statistical methods such as analysis of variance and linear

regression that are limited to specific data types, assume normality, non-correlation

between data and are challenged by missing data. The CCEA is not limited to assessing

multivariate interactions associated with disease; it can be applied to variety of fields and

topics including but not limited to analysis of political party association, marketing, and

ecological niche modeling. As for the modifications made to the genetic distance

correlograms of the Smouse and Peakall (1999), switching to a semivariogram allows for

the use of the most appropriate pairwise distance or relatedness metric to measure genetic

spatial autocorrelation. In addition, using box plots for the semivariograms relaxes the

assumption of normality, helps visualize the distribution of the semivariance data, and is

not limited to genetic data.

The hope is that the methodology developed in this dissertation will continually

be improved by myself and others. I view this as one of many initial explorations in

analyzing Big Data and will hopefully inspire new algorithms as this field continues to

grow.

179

CHAPTER 7: LITERATURE CITED

Abad-Franch, Fernando, Carolina Valença-Barbosa, Otília Sarquis, and Marli M. Lima.

2014. “All That Glisters Is Not Gold: Sampling-Process Uncertainty in Disease-

Vector Surveys with False-Negative and False-Positive Detections.” Edited by

Alon Warburg. PLoS Neglected Tropical Diseases 8 (9): e3187.

doi:10.1371/journal.pntd.0003187.

Acevedo, F, E Godoy, and CJ Schofield. 2000. “Comparison of Intervention Strategies

for Control of Triatoma Dimidiata in Nicaragua.” Memórias Do Instituto Oswaldo

Cruz 95 (6). doi:10.1590/S0074-02762000000600022.

Arzube Rodríguez, Manuel. 1966. “Investigación de La Fuente Alimenticia Del T.

Dimidiata, Latr. 1811 (Hemiptera: Reduvidae), Mediante La Reacción de

Precipitina.” Revista Ecuatoriana de Higiene Y Medicina Tropical 23: 137–52.

Aschebrook-Kilfoy, Briseis, Raymon H. Grogan, Mary H. Ward, Edwin Kaplan, and

Susan S. Devesa. 2013. “Follicular Thyroid Cancer Incidence Patterns in the

United States, 1980-2009.” Thyroid: Official Journal of the American Thyroid

Association 23 (8): 1015–21. doi:10.1089/thy.2012.0356.

Barbu, Corentin, Eric Dumonteil, and Sébastien Gourbière. 2010. “Characterization of

the Dispersal of Non-Domiciliated Triatoma Dimidiata through the Selection of

Spatially Explicit Models.” Edited by Ricardo E. Gürtler. PLoS Neglected

Tropical Diseases 4 (8): e777. doi:10.1371/journal.pntd.0000777.

———. 2011. “Evaluation of Spatially Targeted Strategies to Control Non-

Domiciliated Triatoma Dimidiata Vector of Chagas Disease.” Edited by Ricardo

E. Gürtler. PLoS Neglected Tropical Diseases 5 (5): e1045.

doi:10.1371/journal.pntd.0001045.

Bargues, María Dolores, Debora R. Klisiowicz, Fernando Gonzalez-Candelas, Janine

M. Ramsey, Carlota Monroy, Carlos Ponce, Paz María Salazar-Schettino, et al.

2008. “Phylogeography and Genetic Variation of Triatoma Dimidiata, the Main

Chagas Disease Vector in Central America, and Its Position within the Genus

Triatoma.” Edited by Ricardo E. Gurtler. PLoS Neglected Tropical Diseases 2 (5):

e233. doi:10.1371/journal.pntd.0000233.

Barto, A. G. 1985. “Learning by Statistical Cooperation of Self-Interested Neuron-like

Computing Elements.” Human Neurobiology 4 (4): 229–56.

Bastian, Mathieu, Sebastien Heymann, and Mathieu Jacomy. 2009. “Gephi: An Open

Source Software for Exploring and Manipulating Networks.” In International

AAAI Conference on Weblogs and Social Media.

http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

Bomblies, Arne. 2012. “Modeling the Role of Rainfall Patterns in Seasonal Malaria

Transmission.” Climatic Change 112 (3–4): 673–85. doi:10.1007/s10584-011-

0230-6.

Booker, Lashon B. 1989. “Triggered Rule Discovery in Classifier Systems.” In

Proceedings of the Third International Conference on Genetic Algorithms, 3:265–

74.

180

Boulos, Dina N. Kamel, Ramy R. Ghali, Ezzeldin M. Ibrahim, Maged N. Kamel

Boulos, and Philip AbdelMalik. 2011. “An Eight-Year Snapshot of Geospatial

Cancer Research (2002-2009): Clinico-Epidemiological and Methodological

Findings and Trends.” Medical Oncology (Northwood, London, England) 28 (4):

1145–62. doi:10.1007/s12032-010-9607-z.

Boyle, P., and D. M. Parkin. 1991. “Cancer Registration: Principles and Methods.

Statistical Methods for Registries.” IARC Scientific Publications, no. 95: 126–58.

Bradburd, Gideon S., Peter L. Ralph, and Graham M. Coop. 2013.

“DISENTANGLING THE EFFECTS OF GEOGRAPHIC AND ECOLOGICAL

ISOLATION ON GENETIC DIFFERENTIATION: ISOLATION BY

GEOGRAPHIC AND ECOLOGICAL DISTANCE.” Evolution 67 (11): 3258–73.

doi:10.1111/evo.12193.

Breslow, Norman E., and Nicholas E. Day. 1987. Statistical Methods in Cancer

Research. Bd. 2: The Design and Analysis of Cohort Studies. IARC Scientific

Publications 82. Lyon: International Agency for Research on Cancer.

Briceño-León, Roberto, and Jorge Méndez Galván. 2007. “The Social Determinants of

Chagas Disease and the Transformations of Latin America.” Memorias Do

Instituto Oswaldo Cruz 102 Suppl 1 (October): 109–12.

Buescher Jr., Charles A. 2017. “History of Environmental Engineering.” Washing

University in St. Louis: School of Engineering & Applied Science. Accessed

February 23. https://eece.wustl.edu/eeceatwashu/about/Pages/environmental-

engineering-history.aspx.

Bustamante, Dulce M., Sandra M. De Urioste-Stone, José G. Juárez, and Pamela M.

Pennington. 2014. “Ecological, Social and Biological Risk Factors for Continued

Trypanosoma Cruzi Transmission by Triatoma Dimidiata in Guatemala.” Edited

by Claudio R. Lazzari. PLoS ONE 9 (8): e104599.

doi:10.1371/journal.pone.0104599.

Bustamante, Dulce Maria, Maria Carlota Monroy, Antonieta Guadalupe Rodas, Jaime

Abraham Juarez, and John B. Malone. 2007. “Environmental Determinants of the

Distribution of Chagas Disease Vectors in South-Eastern Guatemala.” Geospatial

Health 1 (2): 199–211. doi:10.4081/gh.2007.268.

Bustamante Zamora, D. M., M. M. Hernandez, N. Torres, C. Zuniga, W. Sosa, V. de

Abrego, and M. C. Monroy Escobar. 2015. “Information to Act: Household

Characteristics Are Predictors of Domestic Infestation with the Chagas Vector

Triatoma Dimidiata in Central America.” American Journal of Tropical Medicine

and Hygiene 93 (1): 97–107. doi:10.4269/ajtmh.14-0596.

Butz, Martin V., David E. Goldberg, and Kurian Tharakunnel. 2003. “Analysis and

Improvement of Fitness Exploitation in XCS: Bounding Models, Tournament

Selection, and Bilateral Accuracy.” Evolutionary Computation 11 (3): 239–77.

doi:10.1162/106365603322365298.

Butz, Martin V., and Martin Pelikan. 2006. “Studying XCS/BOA Learning in Boolean

Functions: Structure Encoding and Random Boolean Functions.” In Proceedings

of the 8th Annual Conference on Genetic and Evolutionary Computation, 1449.

ACM Press. doi:10.1145/1143997.1144236.

181

Butz, Martin V., Kumara Sastry, and David E. Goldberg. 2005. “Strong, Stable, and

Reliable Fitness Pressure in XCS due to Tournament Selection.” Genetic

Programming and Evolvable Machines 6 (1): 53–77. doi:10.1007/s10710-005-

7619-9.

Butz, M.V., T. Kovacs, P.L. Lanzi, and S.W. Wilson. 2004. “Toward a Theory of

Generalization and Learning in XCS.” IEEE Transactions on Evolutionary

Computation 8 (1): 28–46. doi:10.1109/TEVC.2003.818194.

Buxbaum, Joseph D., Jeremy M. Silverman, Christopher J. Smith, Mario Kilifarski,

Jennifer Reichert, Eric Hollander, Brian A. Lawlor, Michael Fitzgerald, David A.

Greenberg, and Kenneth L. Davis. 2001. “Evidence for a Susceptibility Gene for

Autism on Chromosome 2 and for Genetic Heterogeneity.” The American Journal

of Human Genetics 68 (6): 1514–20. doi:10.1086/320588.

Calderón, Claudia I., Patricia L. Dorn, Sergio Melgar, Juan José Chávez, Antonieta

Rodas, Regina Rosales, and Carlota M. Monroy. 2004. “A Preliminary

Assessment of Genetic Differentiation of Triatoma Dimidiata (Hemiptera:

Reduviidae) in Guatemala by Random Amplification of Polymorphic DNA-

Polymerase Chain Reaction.” Journal of Medical Entomology 41 (5): 882–87.

doi:10.1603/0022-2585-41.5.882.

Campos Franci, Luciana de, Jacob Nabe-Nielsen, Jens-Christian Svenning, and

Fernando Roberto Martins. 2016. “Short-Term Spatial Variation in the

Demography of a Common Neotropical Liana Is Shaped by Tree Community

Structure and Light Availability.” Plant Ecology 217 (10): 1273–90.

doi:10.1007/s11258-016-0655-0.

“Chagas Disease in Latin America: An Epidemiological Update Based on 2010

Estimates.” 2015. Releve Epidemiologique Hebdomadaire 90 (6): 33–43.

Chen, Amy Y., Ahmedin Jemal, and Elizabeth M. Ward. 2009. “Increasing Incidence

of Differentiated Thyroid Cancer in the United States, 1988-2005.” Cancer 115

(16): 3801–7. doi:10.1002/cncr.24416.

Coster, Stephanie S., and Adrienne I. Kovach. 2012. “Anthropogenic Influences on the

Spatial Genetic Structure of Black Bears.” Conservation Genetics 13 (5): 1247–

57. doi:10.1007/s10592-012-0368-4.

Coura, José Rodrigues. 2015. “The Main Sceneries of Chagas Disease Transmission.

The Vectors, Blood and Oral Transmissions - A Comprehensive Review.”

Memórias Do Instituto Oswaldo Cruz 110 (3): 277–82. doi:10.1590/0074-

0276140362.

Cramer, John D., Pingfu Fu, Karem C. Harth, Seunghee Margevicius, and Scott M.

Wilhelm. 2010. “Analysis of the Rising Incidence of Thyroid Cancer Using the

Surveillance, Epidemiology and End Results National Cancer Data Registry.”

Surgery 148 (6): 1147-1152; discussion 1152-1153.

doi:10.1016/j.surg.2010.10.016.

Cucunubá, Zulma M., Omolade Okuwoga, María-Gloria Basáñez, and Pierre

Nouvellet. 2016. “Increased Mortality Attributed to Chagas Disease: A Systematic

Review and Meta-Analysis.” Parasites & Vectors 9 (1). doi:10.1186/s13071-016-

1315-x.

182

Curado, M. P., and International Agency for Research on Cancer, eds. 2008. Cancer

Incidence in Five Continents. Vol. 9: [...]. IARC Scientific Publications 160.

Lyon: International Agency for Research on Cancer.

Davies, Louise, Michelle Ouellette, Mark Hunter, and H. Gilbert Welch. 2010. “The

Increasing Incidence of Small Thyroid Cancers: Where Are the Cases Coming

From?” The Laryngoscope 120 (12): 2446–51. doi:10.1002/lary.21076.

Davies, Louise, and H. Gilbert Welch. 2006. “Increasing Incidence of Thyroid Cancer

in the United States, 1973-2002.” JAMA 295 (18): 2164–67.

doi:10.1001/jama.295.18.2164.

De Andrade, A. L., F. Zicker, R. M. De Oliveira, I. G. Da Silva, S. A. Silva, S. S. De

Andrade, and C. M. Martelli. 1995. “Evaluation of Risk Factors for House

Infestation by Triatoma Infestans in Brazil.” The American Journal of Tropical

Medicine and Hygiene 53 (5): 443–47.

De Jong, Kenneth A., and William M. Spears. 1991. “Learning Concept Classification

Rules Using Genetic Algorithms.” In Proceedings of the Twelfth International

Joint Conference on Artificial Intelligence, 12:651–56. Sydney, Australia: Morgan

Kaufmann.

De León, J. Romeo. 1959. “Estado Actual de La Enfermedad de Chagas En

Guatemala.” Revista Goiana de Medicina 5: 445–55.

De Urioste-Stone, S. M., P. M. Pennington, E. Pellecer, T. M. Aguilar, G. Samayoa, H.

D. Perdomo, H. Enriquez, and J. G. Juarez. 2015. “Development of a Community-

Based Intervention for the Control of Chagas Disease Based on Peridomestic

Animal Management: An Eco-Bio-Social Perspective.” Transactions of the Royal

Society of Tropical Medicine and Hygiene 109 (2): 159–67.

doi:10.1093/trstmh/tru202.

Dorn, Patricia L., Sergio Melgar, Vanessa Rouzier, Astrid Gutierrez, Crescent Combe,

Regina Rosales, Antonieta Rodas, Sarah Kott, Debra Salvia, and Carlota M.

Monroy. 2003. “The Chagas Vector, Triatoma Dimidiata (Hemiptera:Reduviidae),

Is Panmictic within and Among Adjacent Villages in Guatemala : Table 1.”

Journal of Medical Entomology 40 (4): 436–40. doi:10.1603/0022-2585-40.4.436.

Dorn, Patricia L., Carlota Monroy, and Andrew Curtis. 2007. “Triatoma Dimidiata

(Latreille, 1811): A Review of Its Diversity across Its Geographic Range and the

Relationship among Populations.” Infection, Genetics and Evolution 7 (2): 343–

52. doi:10.1016/j.meegid.2006.10.001.

Dumonteil, Eric, Sebastien Gourbière, Mario Barrera-Pérez, Eugenia Rodriguez-Félix,

Hugo Ruiz-Piña, Othón Baños-Lopez, María Jesús Ramirez-Sierra, Frédéric

Menu, and Jorge E. Rabinovich. 2002. “Geographic Distribution of Triatoma

Dimidiata and Transmission Dynamics of Trypanosoma Cruzi in the Yucatan

Peninsula of Mexico.” The American Journal of Tropical Medicine and Hygiene

67 (2): 176–83.

Dumonteil, Eric, Hugo Ruiz-Piña, Eugenia Rodriguez-Félix, Mario Barrera-Pérez,

María Jesús Ramirez-Sierra, Jorge E Rabinovich, and Frédéric Menu. 2004. “Re-

Infestation of Houses by Triatoma Dimidiata after Intra-Domicile Insecticide

183

Application in the Yucatán Peninsula, Mexico.” Memórias Do Instituto Oswaldo

Cruz 99 (3): 253–56. doi:10.1590/S0074-02762004000300002.

Edwards, Brenda K., Elizabeth Ward, Betsy A. Kohler, Christie Eheman, Ann G.

Zauber, Robert N. Anderson, Ahmedin Jemal, et al. 2010. “Annual Report to the

Nation on the Status of Cancer, 1975-2006, Featuring Colorectal Cancer Trends

and Impact of Interventions (Risk Factors, Screening, and Treatment) to Reduce

Future Rates.” Cancer 116 (3): 544–73. doi:10.1002/cncr.24760.

Eiben, Agoston E., and James E. Smith. 2010. Introduction to evolutionary computing.

1. ed., 2. printing, Softcover version of original hardcover ed. 2003. Natural

computing series. Berlin: Springer.

Elhaik, Eran, Tatiana Tatarinova, Dmitri Chebotarev, Ignazio S. Piras, Carla Maria

Calò, Antonella De Montis, Manuela Atzori, et al. 2014. “Geographic Population

Structure Analysis of Worldwide Human Populations Infers Their

Biogeographical Origins.” Nature Communications 5 (April).

doi:10.1038/ncomms4513.

Enander, Richard T., Antonio Ramírez Amaya, Richard A. Enander, and David M.

Gute. 2010. “Neurocysticercosis: Risk and Primary Prevention Strategies Update.”

International Journal of Environmental Health Research 20 (5): 329–65.

doi:10.1080/09603123.2010.482152.

Enewold, Lindsey, Kangmin Zhu, Elaine Ron, Aizen J. Marrogi, Alexander

Stojadinovic, George E. Peoples, and Susan S. Devesa. 2009. “Rising Thyroid

Cancer Incidence in the United States by Demographic and Tumor Characteristics,

1980-2005.” Cancer Epidemiology, Biomarkers & Prevention: A Publication of

the American Association for Cancer Research, Cosponsored by the American

Society of Preventive Oncology 18 (3): 784–91. doi:10.1158/1055-9965.EPI-08-

0960.

Enger, Kyle S., Rosalinda Ordoñez, Mark L. Wilson, and Janine M. Ramsey. 2004.

“Evaluation of Risk Factors for Rural Infestation by Triatoma Pallidipennis

(Hemiptera: Triatominae), a Mexican Vector of Chagas Disease.” Journal of

Medical Entomology 41 (4): 760–67.

Eppstein, M. J., and P Haake,. 2008. “Very Large Scale Relieff for Genome-Wide

Association Analysis.” In Computational Intelligence in Bioinformatics and

Computational Biology, 2008, 112–19. IEEE.

Eppstein, Margaret J., and Paul D. H. Hines. 2012. “A ‘Random Chemistry’ Algorithm

for Identifying Collections of Multiple Contingencies That Initiate Cascading

Failure.” IEEE Transactions on Power Systems 27 (3): 1698–1705.

doi:10.1109/TPWRS.2012.2183624.

Eppstein, Margaret J., Joshua L. Payne, Bill C. White, and Jason H. Moore. 2007.

“Genomic Mining for Complex Disease Traits with ‘random Chemistry.’” Genetic

Programming and Evolvable Machines 8 (4): 395–411. doi:10.1007/s10710-007-

9039-5.

Finnegan, Laura, Sarrah Castillo, Jack Hughes, Ken F. Abraham, Rodney W. Brook,

and Christopher J. Kyle. 2013. “Fine-Scale Analysis Reveals Cryptic Patterns of

184

Genetic Structure in Canada Geese.” The Condor 115 (4): 738–49.

doi:10.1525/cond.2013.120117.

Foley, D. H., R. C. Russell, and J. H. Bryan. 2004. “Population Structure of the

Peridomestic Mosquito Ochlerotatus Notoscriptus in Australia.” Medical and

Veterinary Entomology 18 (2): 180–90. doi:10.1111/j.0269-283X.2004.00497.x.

Fritz, April G., ed. 2013. International Classification of Diseases for Oncology: ICD-

O. Third edition, First revision. Geneva: World Health Organization.

Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization, and Machine

Learning. Reading, Mass: Addison-Wesley Pub. Co.

González-Ramos, J., L. Noguera-Morel, H.Y. Tong, E. Ramírez, E. Ruiz-Bravo, T.

Bellón, R. Cabañas, L. Cachafeiro, and P. Herranz-Pinto. 2016. “Two Cases of

Overlap Severe Cutaneous Adverse Reactions to Benznidazole Treatment for

Asymptomatic Chagas Disease in a Nonendemic Country.” British Journal of

Dermatology 175 (3): 604–7. doi:10.1111/bjd.14451.

Goovaerts, P. 1998. “Geostatistical Tools for Characterizing the Spatial Variability of

Microbiological and Physico-Chemical Soil Properties.” Biology and Fertility of

Soils 27 (4): 315–34. doi:10.1007/s003740050439.

Grimalt, J. O., J. Sunyer, V. Moreno, O. C. Amaral, M. Sala, A. Rosell, J. M. Anto, and

J. Albaiges. 1994. “Risk Excess of Soft-Tissue Sarcoma and Thyroid Cancer in a

Community Exposed to Airborne Organochlorinated Compound Mixtures with a

High Hexachlorobenzene Content.” International Journal of Cancer 56 (2): 200–

203.

Grodski, Simon, Tani Brown, Stan Sidhu, Anthony Gill, Bruce Robinson, Diana

Learoyd, Mark Sywak, Tom Reeve, and Leigh Delbridge. 2008. “Increasing

Incidence of Thyroid Cancer Is due to Increased Pathologic Detection.” Surgery

144 (6): 1038–1043; discussion 1043. doi:10.1016/j.surg.2008.08.023.

Hall, Stephen F., Hugh Walker, Robert Siemens, and Amy Schneeberg. 2009.

“Increasing Detection and Increasing Incidence in Thyroid Cancer.” World

Journal of Surgery 33 (12): 2567–71. doi:10.1007/s00268-009-0226-9.

Hanley, John P., Margaret J. Eppstein, Jeffrey S. Buzas, and Donna M. Rizzo. 2016.

“Evolving Probabilistically Significant Epistatic Classification Rules for

Heterogeneous Big Datasets.” In Proceedings of the 18th Annual Conference on

Genetic and Evolutionary Computation, 445–52. ACM Press.

doi:10.1145/2908812.2908931.

Hashimoto, Ken, Celia Cordon-Rosales, Ranfery Trampe, and Masato Kawabata. 2006.

“Impact of Single and Multiple Residual Sprayings of Pyrethroid Insecticides

against Triatoma Dimidiata (Reduviiade; Triatominae), the Principal Vector of

Chagas Disease in Jutiapa, Guatemala.” The American Journal of Tropical

Medicine and Hygiene 75 (2): 226–30.

Hashimoto, Ken, and Christopher J Schofield. 2012. “Elimination of Rhodnius Prolixus

in Central America.” Parasites & Vectors 5 (1): 45. doi:10.1186/1756-3305-5-45.

Hasslocher-Moreno, A. M., P. E. A. A. do Brasil, A. S. de Sousa, S. S. Xavier, M. C.

Chambela, and G. M. Sperandio da Silva. 2012. “Safety of Benznidazole Use in

185

the Treatment of Chronic Chagas’ Disease.” Journal of Antimicrobial

Chemotherapy 67 (5): 1261–66. doi:10.1093/jac/dks027.

Hedinger, Christoph Ernst, Edward Dillwyn Williams, and

Weltgesundheitsorganisation, eds. 1993. Histological Typing of Thyroid Tumours.

2. ed., 1. reprint. International Histological Classification of Tumours 11. Berlin:

Springer.

Hempel, Sandra. 2007. The Strange Case of the Broad Street Pump: John Snow and the

Mystery of Cholera. Berkeley: University of California Press.

Hernández, Marianela Menes, Carlota Monroy, Dulce María Bustamante, Bárbara

Moguel, Antonieta Rodas, Elizabeth Solórzano, and Mauricio García. 2006.

“Estudio de Las Preferencias de Hábitat No Domiciliar Del Principal Vector de La

Enfermedad de Chagas En Guatemala, Triatoma Dimidiata, Y Sus Implicaciones

Para El Control Vectorial.” Dirección General de Investigación. Laboratorio de

Entomología Aplicada y Parasitología – LENAP – Escuela de Biología:

Universidad de San Carlos de Guatemala.

Holland, John H, and Judith S Reitman. 1978. “Cognitive Systems Based on Adaptive

Algorithms.” In An Overview of Pattern-Directed Inference Systems, 313–29.

Santa Monica, CA: Rand Corporation.

Hornby, Gregory S. 2006. “ALPS: The Age-Layered Population Structure for Reducing

the Problem of Premature Convergence.” In Proceedings of the 8th Annual

Conference on Genetic and Evolutionary Computation, 815. ACM Press.

doi:10.1145/1143997.1144142.

Ioannides, Charalambos, Geoff Barrett, and Kerstin Eder. 2011. “XCS Cannot Learn

All Boolean Functions.” In Proceedings of the 13th Annual Conference on Genetic

and Evolutionary Computation, 1283. ACM Press. doi:10.1145/2001576.2001749.

Iqbal, Muhammad, Will N. Browne, and Mengjie Zhang. 2014. “Reusing Building

Blocks of Extracted Knowledge to Solve Complex, Large-Scale Boolean

Problems.” IEEE Transactions on Evolutionary Computation 18 (4): 465–80.

doi:10.1109/TEVC.2013.2281537.

Iqbal, Muhammad, Will N. Browne, and Mengjie Zhang. 2012. “Extracting and Using

Building Blocks of Knowledge in Learning Classifier Systems.” In Proceedings of

the 14th Annual Conference on Genetic and Evolutionary Computation, 863.

ACM Press. doi:10.1145/2330163.2330283.

———. 2013a. “Extending Learning Classifier System with Cyclic Graphs for

Scalability on Complex, Large-Scale Boolean Problems.” In Proceedings of the

15th Annual Conference on Genetic and Evolutionary Computation, 1045. ACM

Press. doi:10.1145/2463372.2463500.

———. 2013b. “Evolving Optimum Populations with XCS Classifier Systems: XCS

with Code Fragmented Action.” Soft Computing 17 (3): 503–18.

doi:10.1007/s00500-012-0922-5.

———. 2013c. “Learning Complex, Overlapping and Niche Imbalance Boolean

Problems Using XCS-Based Classifier Systems.” Evolutionary Intelligence 6 (2):

73–91. doi:10.1007/s12065-013-0091-1.

186

———. 2015. “Improving Genetic Search in XCS-Based Classifier Systems through

Understanding the Evolvability of Classifier Rules.” Soft Computing 19 (7): 1863–

80. doi:10.1007/s00500-014-1369-7.

Isaaks, Edward H., and R. Mohan Srivastava. 1989. Applied Geostatistics. New York:

Oxford University Press.

Jarlenski, Marian, Seo Hyon Baik, and Yuting Zhang. 2016. “Trends in Use of

Medications for Smoking Cessation in Medicare, 2007–2012.” American Journal

of Preventive Medicine 51 (3): 301–8. doi:10.1016/j.amepre.2016.02.018.

Jemal, Ahmedin, Freddie Bray, Melissa M. Center, Jacques Ferlay, Elizabeth Ward,

and David Forman. 2011. “Global Cancer Statistics.” CA: A Cancer Journal for

Clinicians 61 (2): 69–90. doi:10.3322/caac.20107.

Julian, Timothy R., Amy J. Pickering, James O. Leckie, and Alexandria B. Boehm.

2013. “Enterococcus Spp on Fomites and Hands Indicate Increased Risk of

Respiratory Illness in Child Care Centers.” American Journal of Infection Control

41 (8): 728–33. doi:10.1016/j.ajic.2012.10.013.

Kaplinski, Michelle, Malasa Jois, Gerson Galdos-Cardenas, Victoria R. Rendell, Vishal

Shah, Rose Q. Do, Rachel Marcus, et al. 2015. “Sustained Domestic Vector

Exposure Is Associated With Increased Chagas Cardiomyopathy Risk but

Decreased Parasitemia and Congenital Transmission Risk Among Young Women

in Bolivia.” Clinical Infectious Diseases 61 (6): 918–26. doi:10.1093/cid/civ446.

Kendall, Maurice G. 1952. The Advanced Theory of Statistics. 5th ed. Vol. 1. New

York, New York: Hafner Publishing Company.

Kilfoy, Briseis A., Tongzhang Zheng, Theodore R. Holford, Xuesong Han, Mary H.

Ward, Andreas Sjodin, Yaqun Zhang, et al. 2009. “International Patterns and

Trends in Thyroid Cancer Incidence, 1973-2002.” Cancer Causes & Control:

CCC 20 (5): 525–31. doi:10.1007/s10552-008-9260-4.

Kim, Christopher, Xiaofeng Bi, Dongsheng Pan, Yingtai Chen, Tobias Carling,

Shuangge Ma, Robert Udelsman, and Yawei Zhang. 2013. “The Risk of Second

Cancers after Diagnosis of Primary Thyroid Cancer Is Elevated in Thyroid

Microcarcinomas.” Thyroid: Official Journal of the American Thyroid Association

23 (5): 575–82. doi:10.1089/thy.2011.0406.

King, Raymond J., Celia Cordon-Rosales, Jonathan Cox, Clive R. Davies, and Uriel D.

Kitron. 2011. “Triatoma Dimidiata Infestation in Chagas Disease Endemic

Regions of Guatemala: Comparison of Random and Targeted Cross-Sectional

Surveys.” Edited by Ricardo E. Gürtler. PLoS Neglected Tropical Diseases 5 (4):

e1035. doi:10.1371/journal.pntd.0001035.

Kirino, Yohei, George Bertsias, Yoshiaki Ishigatsubo, Nobuhisa Mizuki, Ilknur Tugal-

Tutkun, Emire Seyahi, Yilmaz Ozyazgan, et al. 2013. “Genome-Wide Association

Analysis Identifies New Susceptibility Loci for Behçet’s Disease and Epistasis

between HLA-B*51 and ERAP1.” Nature Genetics 45 (2): 202–7.

doi:10.1038/ng.2520.

Kovacs, T. 2002. “What Should a Classifier System Learn and How Should We

Measure It?” Soft Computing - A Fusion of Foundations, Methodologies and

Applications 6 (3–4): 171–82. doi:10.1007/s005000100114.

187

Kovacs, Tim. 1998. “XCS Classifier System Reliably Evolves Accurate, Complete, and

Minimal Representations for Boolean Functions.” In Soft Computing in

Engineering Design and Manufacturing, edited by P. K. Chawdhry, R. Roy, and

R. K. Pant, 59–68. London: Springer London.

http://link.springer.com/10.1007/978-1-4471-0427-8_7.

Lao, Oscar, Eveline Altena, Christian Becker, Silke Brauer, Thirsa Kraaijenbrink,

Mannis van Oven, Peter Nürnberg, Peter de Knijff, and Manfred Kayser. 2013.

“Clinal Distribution of Human Genomic Diversity across the Netherlands despite

Archaeological Evidence for Genetic Discontinuities in Dutch Population

History.” Investigative Genetics 4 (1): 9. doi:10.1186/2041-2223-4-9.

Larivière, Serge. 2001. “Ursus Americanus.” Mammalian Species 647 (January): 1–11.

doi:10.1644/1545-1410(2001)647<0001:UA>2.0.CO;2.

Larouche, Richard, Michelle Stone, Ron N. Buliung, and Guy Faulkner. 2016. “‘I’d

Rather Bike to School!’: Profiling Children Who Would Prefer to Cycle to

School.” Journal of Transport & Health 3 (3): 377–85.

doi:10.1016/j.jth.2016.06.010.

Lee, Bruce Y, Kristina M Bacon, Maria Elena Bottazzi, and Peter J Hotez. 2013.

“Global Economic Burden of Chagas Disease: A Computational Simulation

Model.” The Lancet Infectious Diseases 13 (4): 342–48. doi:10.1016/S1473-

3099(13)70002-1.

Lent, Herman, and Pedro Wygodzinsky. 1979. “Revision of the Triatominae

(Hemiptera, Reduviidae), and Their Significance as Vectors of Chagas’ Disease.”

Bulletin of the American Museum of Natural History 163 (3): 123–520.

Leux, C., and P. Guénel. 2010. “Risk Factors of Thyroid Tumors: Role of

Environmental and Occupational Exposures to Chemical Pollutants.” Revue

D’epidemiologie Et De Sante Publique 58 (5): 359–67.

doi:10.1016/j.respe.2010.05.005.

Li, Kaigang, Bruce Simons-Morton, Benjamin Gee, and Ralph Hingson. 2016.

“Marijuana-, Alcohol-, and Drug-Impaired Driving among Emerging Adults:

Changes from High School to One-Year Post-High School.” Journal of Safety

Research 58 (September): 15–20. doi:10.1016/j.jsr.2016.05.003.

Li, Nan, Xianglin L. Du, Lorraine R. Reitzel, Li Xu, and Erich M. Sturgis. 2013.

“Impact of Enhanced Detection on the Increase in Thyroid Cancer Incidence in the

United States: Review of Incidence Trends by Socioeconomic Status within the

Surveillance, Epidemiology, and End Results Registry, 1980-2008.” Thyroid:

Official Journal of the American Thyroid Association 23 (1): 103–10.

doi:10.1089/thy.2012.0392.

Llorà, X., K. Sastry, and D.E. Goldberg. 2005. “The Compact Classifier System:

Scalability Analysis and First Results.” In The 2005 IEEE Congress on

Evolutionary Computation, 1:596–603. IEEE. doi:10.1109/CEC.2005.1554737.

Llorà, Xavier, Rohith Reddy, Brian Matesic, and Rohit Bhargava. 2007. “Towards

Better than Human Capability in Diagnosing Prostate Cancer Using Infrared

Spectroscopic Imaging.” In Proceedings of the 9th Annual Conference on Genetic

and Evolutionary Computation, 2098. ACM Press. doi:10.1145/1276958.1277366.

188

Lucero, D. E., L. A. Morrissey, D. M. Rizzo, A. Rodas, R. Garnica, L. Stevens, D. M.

Bustamante, and M. C. Monroy. 2013. “Ecohealth Interventions Limit Triatomine

Reinfestation Following Insecticide Spraying in La Brea, Guatemala.” American

Journal of Tropical Medicine and Hygiene 88 (4): 630–37. doi:10.4269/ajtmh.12-

0448.

Lynch, M., and K. Ritland. 1999. “Estimation of Pairwise Relatedness with Molecular

Markers.” Genetics 152 (4): 1753–66.

Mangano, Joseph J. 2009. “Geographic Variation in U.S. Thyroid Cancer Incidence and

a Cluster near Nuclear Reactors in New Jersey, New York, and Pennsylvania.”

International Journal of Health Services: Planning, Administration, Evaluation 39

(4): 643–61. doi:10.2190/HS.39.4.c.

Manne, Jennifer, Jun Nakagawa, Yoichi Yamagata, Alexander Goehler, John S.

Brownstein, and Marcia C. Castro. 2012. “Triatomine Infestation in Guatemala:

Spatial Assessment after Two Rounds of Vector Control.” The American Journal

of Tropical Medicine and Hygiene 86 (3): 446–54. doi:10.4269/ajtmh.2012.11-

0052.

Markellos, Raphael N., Dimitris Psychoyios, and Friedrich Schneider. 2016.

“Sovereign Debt Markets in Light of the Shadow Economy.” European Journal of

Operational Research 252 (1): 220–31. doi:10.1016/j.ejor.2015.12.039.

Marsily, Ghislain de. 1993. Quantitative Hydrogeology: Groundwater Hydrology for

Engineers. 5. [print.]. San Diego: Acad. Press.

Mayer-Schönberger, Viktor, and Kenneth Cukier. 2014. Big Data: A Revolution That

Will Transform How We Live, Work, and Think. First Mariner Books edition.

Boston: Mariner Books, Houghton Mifflin Harcourt.

McDermott, James, Kenneth De Jong, Una-May O’Reilly, David R. White, Sean Luke,

Luca Manzoni, Mauro Castelli, et al. 2012. “Genetic Programming Needs Better

Benchmarks.” In Proceedings of the 14th Annual Conference on Genetic and

Evolutionary Computation, 791. ACM Press. doi:10.1145/2330163.2330273.

McKinney, B.A., D.M. Reif, B.C. White, J.E. Crowe, and J.H. Moore. 2007.

“Evaporative Cooling Feature Selection for Genotypic Data Involving

Interactions.” Bioinformatics 23 (16): 2113–20.

doi:10.1093/bioinformatics/btm317.

Melgar, Sergio, Juan José Chávez, Patricia Landaverde, Franklin Herrera, Antonieta

Rodas, Eunice Enríquez, Patricia Dorn, and Carlota Monroy. 2007. “The Number

of Families of Triatoma Dimidiata in a Guatemalan House.” Memórias Do

Instituto Oswaldo Cruz 102 (2): 221–23. doi:10.1590/S0074-

02762007005000001.

Molina, I., F. Salvador, A. Sánchez-Montalvá, B. Treviño, N. Serre, A. Sao Avilés, and

B. Almirante. 2015. “Toxic Profile of Benznidazole in Patients with Chronic

Chagas Disease: Risk Factors and Comparison of the Product from Two Different

Manufacturers.” Antimicrobial Agents and Chemotherapy 59 (10): 6125–31.

doi:10.1128/AAC.04660-14.

Monroy, Carlota, Dulce Maria Bustamante, Sandy Pineda, Antonieta Rodas, Xochitl

Castro, Virgilio Ayala, Javier Quiñónes, and Bárbara Moguel. 2009. “House

189

Improvements and Community Participation in the Control of Triatoma Dimidiata

Re-Infestation in Jutiapa, Guatemala.” Cadernos De Saude Publica 25 Suppl 1:

S168-178.

Monroy, Carlota, Antonieta Rodas, Mildred Mejía, Regina Rosales, and Yuichiro

Tabaru. 2003. “Epidemiology of Chagas Disease in Guatemala: Infection Rate of

Triatoma Dimidiata, Triatoma Nitida and Rhodnius Prolixus (Hemiptera,

Reduviidae) with Trypanosoma Cruzi and Trypanosoma Rangeli (Kinetoplastida,

Trypanosomatidae).” Memórias Do Instituto Oswaldo Cruz 98 (3): 305–10.

doi:10.1590/S0074-02762003000300003.

Monroy, Carlota, Antonieta Rodas, Mildred Mejia, and Yuichiro Tabaru. 1998. “Wall

Plastering and Paints as Methods to Control Vectors of Chagas Disease in

Guatemala.” Medical Entomology and Zoology 49 (3): 187–93.

doi:10.7601/mez.49.187.

Monroy, Maria Carlota, Dulce Maria Bustamante, Antonieta Guadalupe Rodas, Maria

Eunice Enriquez, and Regina Guadalupe Rosales. 2003. “Habitats, Dispersion and

Invasion of Sylvatic <I>Triatoma Dimidiata</I> (Hemiptera:

Reduviidae: Triatominae) in Petén, Guatemala.” Journal of Medical Entomology

40 (6): 800–806. doi:10.1603/0022-2585-40.6.800.

Moore, J. H., and B. C. White. 2007. “Tuning Relieff for Genome-Wide Genetic

Analysis.” In European Conference on Evolutionary Computation, Machine

Learning and Data Mining in Bioinformatics, 166–75. Springer.

Moore, Jason H. 2003. “The Ubiquitous Nature of Epistasis in Determining

Susceptibility to Common Human Diseases.” Human Heredity 56 (1–3): 73–82.

doi:10.1159/000073735.

Morris, Luc G. T., and David Myssiorek. 2010. “Improved Detection Does Not Fully

Explain the Rising Incidence of Well-Differentiated Thyroid Cancer: A

Population-Based Analysis.” American Journal of Surgery 200 (4): 454–61.

doi:10.1016/j.amjsurg.2009.11.008.

Morris, Luc G. T., Andrew G. Sikora, Tor D. Tosteson, and Louise Davies. 2013. “The

Increasing Incidence of Thyroid Cancer: The Influence of Access to Care.”

Thyroid: Official Journal of the American Thyroid Association 23 (7): 885–91.

doi:10.1089/thy.2013.0045.

Murray, Christopher J L, Theo Vos, Rafael Lozano, Mohsen Naghavi, Abraham D

Flaxman, Catherine Michaud, Majid Ezzati, et al. 2012. “Disability-Adjusted Life

Years (DALYs) for 291 Diseases and Injuries in 21 Regions, 1990–2010: A

Systematic Analysis for the Global Burden of Disease Study 2010.” The Lancet

380 (9859): 2197–2223. doi:10.1016/S0140-6736(12)61689-4.

Musa, George J., Po-Huang Chiang, Tyler Sylk, Rachel Bavley, William Keating,

Bereketab Lakew, Hui-Chen Tsou, and Christina W. Hoven. 2013. “Use of GIS

Mapping as a Public Health Tool-From Cholera to Cancer.” Health Services

Insights 6: 111–16. doi:10.4137/HSI.S10471.

Nakagawa, J, C Cordón-Rosales, J Juárez, C Itzep, and T Nonami. 2003. “Impact of

Residual Spraying on Rhodnius Prolixus and Triatoma Dimidiata in the

190

Department of Zacapa in Guatemala.” Memórias Do Instituto Oswaldo Cruz 98

(2): 277–82. doi:10.1590/S0074-02762003000200019.

Nakagawa, J., K. Hashimoto, C. Cordón-Rosales, J. Abraham Juárez, R. Trampe, and

L. Marroquín Marroquín. 2003. “The Impact of Vector Control on Triatoma

Dimidiata in the Guatemalan Department of Jutiapa.” Annals of Tropical Medicine

and Parasitology 97 (3): 288–97. doi:10.1179/000349803235001895.

“National Cancer Institute 2012 Surveillance, Epidemiology and End Results (SEER)

Stat Fact Sheets: Thyroid Cancer.” 2013. Accessed September 30. Available at:

http://seer.cancer.gov/statfacts/html/thyro.html.

“National Cancer Institute. Thyroid Cancer.” 2013. September 30. www

.cancer.gov/cancertopics/types/thyroid.

Negri, E., L. Dal Maso, E. Ron, C. La Vecchia, S. D. Mark, S. Preston-Martin, A.

McTiernan, et al. 1999. “A Pooled Analysis of Case-Control Studies of Thyroid

Cancer. II. Menstrual and Reproductive Factors.” Cancer Causes & Control: CCC

10 (2): 143–55.

Nesheli, Mahmood Mahmoodi, Avishai (Avi) Ceder, and Simon Estines. 2016. “Public

Transport User’s Perception and Decision Assessment Using Tactic-Based

Guidelines.” Transport Policy 49 (July): 125–36.

doi:10.1016/j.tranpol.2016.04.007.

Nuzzo, Regina. 2014. “Scientific Method: Statistical Errors.” Nature 506 (7487): 150–

52. doi:10.1038/506150a.

Olivera, M. J., Z. M. Cucunuba, C. A. Alvarez, and R. S. Nicholls. 2015. “Safety

Profile of Nifurtimox and Treatment Interruption for Chronic Chagas Disease in

Colombian Adults.” American Journal of Tropical Medicine and Hygiene 93 (6):

1224–30. doi:10.4269/ajtmh.15-0256.

Orantes, Lucia. 2017. “The Dissertation Will Be Defended On April, 19, 2017.”

Pazaitou-Panayiotou, K., P. Kappa Iliadou, A. Chrisoulidou, P. Mitsakis, E. Doumala,

A. Fotareli, M. Boudina, L. Mathiopoulou, F. Patakiouta, and K. Tziomalos. 2013.

“The Increase in Thyroid Cancer Incidence Is Not Only due to Papillary

Microcarcinomas: A 40-Year Study in 1 778 Patients.” Experimental and Clinical

Endocrinology & Diabetes: Official Journal, German Society of Endocrinology

[and] German Diabetes Association 121 (7): 397–401. doi:10.1055/s-0033-

1345125.

Peakall, R., and P. E. Smouse. 2012. “GenAlEx 6.5: Genetic Analysis in Excel.

Population Genetic Software for Teaching and Research--an Update.”

Bioinformatics 28 (19): 2537–39. doi:10.1093/bioinformatics/bts460.

Peakall, Rod, and Peter E. Smouse. 2006. “Genalex 6: Genetic Analysis in Excel.

Population Genetic Software for Teaching and Research.” Molecular Ecology

Notes 6 (1): 288–95. doi:10.1111/j.1471-8286.2005.01155.x.

Pearson, Karl. 1899. “On Certain Properties of the Hypogeometrical Series, and on the

Fitting of Such Series to Observation Polygons in the Theory of Chance.”

Philosophical Magazine, 5, 47 (285): 236–46.

Pellecer, M. J., P. L. Dorn, D. M. Bustamante, A. Rodas, and M. C. Monroy. 2013.

“Vector Blood Meals Are an Early Indicator of the Effectiveness of the Ecohealth

191

Approach in Halting Chagas Transmission in Guatemala.” American Journal of

Tropical Medicine and Hygiene 88 (4): 638–44. doi:10.4269/ajtmh.12-0458.

Pellegriti, Gabriella, Francesco Frasca, Concetto Regalbuto, Sebastiano Squatrito, and

Riccardo Vigneri. 2013. “Worldwide Increasing Incidence of Thyroid Cancer:

Update on Epidemiology and Risk Factors.” Journal of Cancer Epidemiology

2013: 1–10. doi:10.1155/2013/965212.

Pérez de Rosas, Alicia R., Elsa L. Segura, Octavio Fusco, Adolfo L. Bareiro Guiñazú,

and Beatriz A. García. 2013. “Fine-Scale Genetic Structure in Populations of the

Chagas’ Disease Vector Triatoma Infestans (Hemiptera, Reduvidae).” Genetica

141 (1–3): 107–17. doi:10.1007/s10709-013-9710-0.

Petana, W B. 1971. “American Trypanosomiasis in British Honduras – X: Natrual

Habitats and Ecology of Triatoma Dimidiata ((Hemiptera, Reduviidae) in the El

Cayo and Toledo Districts, and the Prevalence of Infection with Trypanosoma

(Schizotrypanum) Cruzi in the Wild-Caught Bugs.” Annals of Tropical Medicine

and Parasitology 65 (2): 168–78.

Piotti, Andrea, Stefano Leonardi, Myriam Heuertz, Joukje Buiteveld, Thomas Geburek,

Sophie Gerber, Koen Kramer, Cristina Vettori, and Giovanni Giuseppe

Vendramin. 2013. “Within-Population Genetic Structure in Beech (Fagus

Sylvatica L.) Stands Characterized by Different Disturbance Histories: Does

Forest Management Simplify Population Substructure?” Edited by Pär K.

Ingvarsson. PLoS ONE 8 (9): e73391. doi:10.1371/journal.pone.0073391.

Poole, Keith T, and Howard Rosenthal. 1984. “The Polarization of American Politics.”

The Journal of Politics 46 (4): 1061–79.

Quinde-Calderón, Leonardo, Paulina Rios-Quituizaca, Luis Solorzano, and Eric

Dumonteil. 2016. “Ten Years (2004-2014) of Chagas Disease Surveillance and

Vector Control in Ecuador: Successes and Challenges.” Tropical Medicine &

International Health 21 (1): 84–92. doi:10.1111/tmi.12620.

Ramírez, Carolina J., Carlos A. Jaramillo, María del Pilar Delgado, Néstor A. Pinto,

Germán Aguilera, and Felipe Guhl. 2005. “Genetic Structure of Sylvatic,

Peridomestic and Domestic Populations of Triatoma Dimidiata (Hemiptera:

Reduviidae) from an Endemic Zone of Boyaca, Colombia.” Acta Tropica 93 (1):

23–29. doi:10.1016/j.actatropica.2004.09.001.

Ramirez-Sierra, Maria Jesus, Melba Herrera-Aguilar, Sébastien Gourbière, and Eric

Dumonteil. 2010. “Patterns of House Infestation Dynamics by Non-Domiciliated

Triatoma Dimidiata Reveal a Spatial Gradient of Infestation in Rural Villages and

Potential Insect Manipulation by Trypanosoma Cruzi: Patterns of House

Infestation Dynamics by Non-Domiciliated Triatoma Dimidiata .” Tropical

Medicine & International Health 15 (1): 77–86. doi:10.1111/j.1365-

3156.2009.02422.x.

Rapp, J P, M R Garrett, and A Y Deng. 1998. “Construction of a Double Congenic

Strain to Prove an Epistatic Interaction on Blood Pressure between Rat

Chromosomes 2 and 10.” Journal of Clinical Investigation 101 (8): 1591–95.

doi:10.1172/JCI2251.

192

Rašić, Gordana, Nancy Endersby-Harshman, Warsito Tantowijoyo, Anjali Goundar,

Vanessa White, Qiong Yang, Igor Filipović, Petrina Johnson, Ary A. Hoffmann,

and Eggi Arguni. 2015. “Aedes Aegypti Has Spatially Structured and Seasonally

Stable Populations in Yogyakarta, Indonesia.” Parasites & Vectors 8 (1).

doi:10.1186/s13071-015-1230-6.

Rassi, Anis, Anis Rassi, William C. Little, Sérgio S. Xavier, Sérgio G. Rassi,

Alexandre G. Rassi, Gustavo G. Rassi, Alejandro Hasslocher-Moreno, Andrea S.

Sousa, and Maurício I. Scanavacca. 2006. “Development and Validation of a Risk

Score for Predicting Death in Chagas’ Heart Disease.” The New England Journal

of Medicine 355 (8): 799–808. doi:10.1056/NEJMoa053241.

Reitzel, Lorraine R., Nga Nguyen, Nan Li, Li Xu, Seann D. Regan, and Erich M.

Sturgis. 2014. “Trends in Thyroid Cancer Incidence in Texas from 1995 to 2008

by Socioeconomic Status and Race/Ethnicity.” Thyroid: Official Journal of the

American Thyroid Association 24 (3): 556–67. doi:10.1089/thy.2013.0284.

Richards, V. P., T. W. Greig, P. A. Fair, S. D. McCulloch, C. Politz, A. Natoli, C. A.

Driscoll, et al. 2013. “Patterns of Population Structure for Inshore Bottlenose

Dolphins along the Eastern United States.” Journal of Heredity 104 (6): 765–78.

doi:10.1093/jhered/est070.

Richardson, David B. 2009. “Exposure to Ionizing Radiation in Adulthood and Thyroid

Cancer Incidence.” Epidemiology (Cambridge, Mass.) 20 (2): 181–87.

doi:10.1097/EDE.0b013e318196ac1c.

Ries, L. A., P. A. Wingo, D. S. Miller, H. L. Howe, H. K. Weir, H. M. Rosenberg, S.

W. Vernon, K. Cronin, and B. K. Edwards. 2000. “The Annual Report to the

Nation on the Status of Cancer, 1973-1997, with a Special Section on Colorectal

Cancer.” Cancer 88 (10): 2398–2424.

Ritchie, Marylyn D., Lance W. Hahn, Nady Roodi, L. Renee Bailey, William D.

Dupont, Fritz F. Parl, and Jason H. Moore. 2001. “Multifactor-Dimensionality

Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in

Sporadic Breast Cancer.” The American Journal of Human Genetics 69 (1): 138–

47. doi:10.1086/321276.

Robnik-Šikonja, M., and I Kononenko. 2003. “Theoretical and Empirical Analysis of

Relieff and Rrelieff.” 53 (1–2): 23–69.

Ross, Douglas S. 2006. “Editorial: Predicting Thyroid Malignancy.” The Journal of

Clinical Endocrinology and Metabolism 91 (11): 4253–55. doi:10.1210/jc.2006-

1772.

Rueda, Karina, Jorge Eduardo Trujillo, Julio César Carranza, and Gustavo Adolfo

Vallejo. 2014. “Transmisión Oral de Trypanosoma Cruzi: Un Nuevo Escenario

Epidemiológico de La Enfermedad de Chagas En Colombia Y Otros Países

Suramericanos.” Biomédica 34 (4). doi:10.7705/biomedica.v34i4.2204.

Sasaki, Hitoshi, Regina Rosales, and Yuichiro Tabaru. 2003. “Host Feeding Profiles of

Rhodnius Prolixus and Triatoma Dimidiata in Guatemala (Hemiptera: Reduviidae:

Triatominae).” Medical Entomology and Zoology 54 (3): 283–89.

doi:10.7601/mez.54.283.

193

Schofield, C.J, and J-P Dujardin. 1997. “Chagas Disease Vector Control in Central

America.” Parasitology Today 13 (4): 141–44. doi:10.1016/S0169-

4758(97)89811-0.

Shaw, Nicola T. 2012. “Geographical Information Systems and Health: Current State

and Future Directions.” Healthcare Informatics Research 18 (2): 88–96.

doi:10.4258/hir.2012.18.2.88.

Smith, Stephen F. 1980. “A Learning System Based on Genetic Adaptive Algorithms.”

University of Pittsburgh.

———. 1983. “Flexible Learning of Problem Solving Heuristics through Adaptive

Search.” In Proceedings of the 8th International Joint Conference on Artificial

Intelligence, 8:422–25. Los Altos, California: William Kaufman Inc.

———. 1984. “Adaptive Learning Systems.” In Expert Systems: Principles and Case

Studies, 169–89. London, UK: Chapman & Hall, Ltd.

Smith, Stephen L., and Jon Timmis. 2008. “An Immune Network Inspired Evolutionary

Algorithm for the Diagnosis of Parkinson’s Disease.” Biosystems 94 (1–2): 34–46.

doi:10.1016/j.biosystems.2008.05.024.

Smouse, Peter E, and Rod Peakall. 1999. “Spatial Autocorrelation Analysis of

Individual Multiallele and Multilocus Genetic Structure.” Heredity 82 (5): 561–73.

doi:10.1038/sj.hdy.6885180.

Sprague, Brian L., Shaneda Warren Andersen, and Amy Trentham-Dietz. 2008.

“Thyroid Cancer Incidence and Socioeconomic Indicators of Health Care Access.”

Cancer Causes & Control: CCC 19 (6): 585–93. doi:10.1007/s10552-008-9122-0.

Stanaway, Jeffrey D., and Gregory Roth. 2015. “The Burden of Chagas Disease.”

Global Heart 10 (3): 139–44. doi:10.1016/j.gheart.2015.06.001.

“Standard Populations (Millions) for Age-Adjustment.” 2017. September 30.

http://seer.cancer.gov/stdpopulations/.

Stevens, L., M. C. Monroy, A. G. Rodas, R. M. Hicks, D. E. Lucero, L. A. Lyons, and

P. L. Dorn. 2015. “Migration and Gene Flow Among Domestic Populations of the

Chagas Insect Vector Triatoma Dimidiata (Hemiptera: Reduviidae) Detected by

Microsatellite Loci.” Journal of Medical Entomology 52 (3): 419–28.

doi:10.1093/jme/tjv002.

Tabaru, Yuichiro, Carlota Monroy, Antonieta Rodas, Mildred Mejia, and Regina

Rosales. 1998. “Chemical Control of Triatoma Dimidiata and Rhodnius Prolixus

(Reduviidae : Triatominae), the Principal Vectors of Chagas’ Disease in

Guatemala.” Medical Entomology and Zoology 49 (2): 87–92.

doi:10.7601/mez.49.87.

———. 1999. “The Geographical Distribution of Vectors of Chagas’ Disease and

Populations at Risk of Infection in Guatemala.” Medical Entomology and Zoology

50 (1): 9–17. doi:10.7601/mez.50.9_1.

Thornton-Wells, Tricia A., Jason H. Moore, and Jonathan L. Haines. 2004. “Genetics,

Statistics and Human Disease: Analytical Retooling for Complexity.” Trends in

Genetics 20 (12): 640–47. doi:10.1016/j.tig.2004.09.007.

Tukey, John Wilder. 1977. Exploratory Data Analysis. Addison-Wesley Series in

Behavioral Science. Reading, Mass: Addison-Wesley Pub. Co.

194

Urbanowicz, Ryan, Ambrose Granizo-Mackenzie, and Jason Moore. 2012. “Instance-

Linked Attribute Tracking and Feedback for Michigan-Style Supervised Learning

Classifier Systems.” In , 927. ACM Press. doi:10.1145/2330163.2330291.

Urbanowicz, Ryan J., and Jason H. Moore. 2009. “Learning Classifier Systems: A

Complete Introduction, Review, and Roadmap.” Journal of Artificial Evolution

and Applications 2009: 1–25. doi:10.1155/2009/736398.

———. 2010. “The Application of Michigan-Style Learning Classifier Systems to

Address Genetic Heterogeneity and Epistasis in Association Studies.” In

Proceedings of the 12th Annual Conference on Genetic and Evolutionary

Computation, 195. ACM Press. doi:10.1145/1830483.1830518.

———. 2015. “ExSTraCS 2.0: Description and Evaluation of a Scalable Learning

Classifier System.” Evolutionary Intelligence 8 (2–3): 89–116.

doi:10.1007/s12065-015-0128-8.

Urbanowicz, Ryan John, Angeline S Andrew, Margaret Rita Karagas, and Jason H

Moore. 2013. “Role of Genetic Heterogeneity and Epistasis in Bladder Cancer

Susceptibility and Outcome: A Learning Classifier System Approach.” Journal of

the American Medical Informatics Association 20 (4): 603–12.

doi:10.1136/amiajnl-2012-001574.

Valença-Barbosa, Carolina, Marli M. Lima, Otília Sarquis, Claudia M. Bezerra, and

Fernando Abad-Franch. 2014. “Modeling Disease Vector Occurrence When

Detection Is Imperfect II: Drivers of Site-Occupancy by Synanthropic Triatoma

Brasiliensis in the Brazilian Northeast.” Edited by Martin Donnelly. PLoS

Neglected Tropical Diseases 8 (5): e2861. doi:10.1371/journal.pntd.0002861.

Vázquez-Martínez, María Guadalupe, Blanca Elva Cirerol-Cruz, José Luis Torres-

Estrada, and Mario Henry Rodríguez López. 2014. “Potential for

Entomopathogenic Fungi to Control Triatoma Dimidiata (Hemiptera: Reduviidae),

a Vector of Chagas Disease in Mexico.” Revista Da Sociedade Brasileira de

Medicina Tropical 47 (6): 716–22. doi:10.1590/0037-8682-0193-2014.

“Vermont Department of Banking ISaHCA.” 2010. Vermont Household Health

Insurance Survey (2009). Presentation to the State Legislature. Market Decisions.

“Vermont Population Estimates.” 2017. September 30. http://

healthvermont.gov/research/pop_estimate.aspx.

Volis, Sergei, Minshu Song, Yong-Hong Zhang, and Irina Shulgina. 2013. “Fine-Scale

Spatial Genetic Structure in Emmer Wheat and the Role of Population Range

Position.” Evolutionary Biology, August. doi:10.1007/s11692-013-9256-1.

Waleckx, Etienne, Sébastien Gourbière, and Eric Dumonteil. 2015. “Intrusive versus

Domiciliated Triatomines and the Challenge of Adapting Vector Control Practices

against Chagas Disease.” Memórias Do Instituto Oswaldo Cruz 110 (3): 324–38.

doi:10.1590/0074-02760140409.

Ward, Elizabeth M., Ahmedin Jemal, and Amy Chen. 2010. “Increasing Incidence of

Thyroid Cancer: Is Diagnostic Scrutiny the Sole Explanation?” Future Oncology

(London, England) 6 (2): 185–88. doi:10.2217/fon.09.161.

Ward, Mary H., Briseis A. Kilfoy, Peter J. Weyer, Kristin E. Anderson, Aaron R.

Folsom, and James R. Cerhan. 2010. “Nitrate Intake and the Risk of Thyroid

195

Cancer and Thyroid Disease.” Epidemiology (Cambridge, Mass.) 21 (3): 389–95.

doi:10.1097/EDE.0b013e3181d6201d.

Wartofsky, Leonard. 2010. “Increasing World Incidence of Thyroid Cancer: Increased

Detection or Higher Radiation Exposure?” Hormones (Athens, Greece) 9 (2): 103–

8.

Weeks, E. N. I., C. Cordón-Rosales, C. Davies, S. Gezan, M. Yeo, and M. M.

Cameron. 2013. “Risk Factors for Domestic Infestation by the Chagas Disease

Vector, Triatoma Dimidiata in Chiquimula, Guatemala.” Bulletin of

Entomological Research 103 (06): 634–43. doi:10.1017/S000748531300014X.

White, David R., James McDermott, Mauro Castelli, Luca Manzoni, Brian W.

Goldman, Gabriel Kronberger, Wojciech Jaśkowski, Una-May O’Reilly, and Sean

Luke. 2013. “Better GP Benchmarks: Community Survey Results and Proposals.”

Genetic Programming and Evolvable Machines 14 (1): 3–29. doi:10.1007/s10710-

012-9177-2.

Whitlaw, J. T., and B. N. Chaniotis. 1978. “Palm Trees and Chagas’ Disease in

Panama.” The American Journal of Tropical Medicine and Hygiene 27 (5): 873–

81.

Wilson, I. D. 2009. “Drugs, Bugs, and Personalized Medicine: Pharmacometabonomics

Enters the Ring.” Proceedings of the National Academy of Sciences 106 (34):

14187–88. doi:10.1073/pnas.0907721106.

Wilson, Norbert L.W., Bradley J. Rickard, Rachel Saputo, and Shuay-Tsyr Ho. 2017.

“Food Waste: The Role of Date Labels, Package Size, and Product Category.”

Food Quality and Preference 55 (January): 35–44.

doi:10.1016/j.foodqual.2016.08.004.

Wilson, Stewart W. 1987a. “Classifier Systems and the Animat Problem.” Machine

Learning 2 (3): 199–228.

———. 1987b. “Quasi-Darwinian Learning in a Classifier System.” In Proceedings of

the Fourth International Machine Learning Workshop, 4:59–65.

———. 1995. “Classifier Fitness Based on Accuracy.” Evolutionary Computation 3

(2): 149–75. doi:10.1162/evco.1995.3.2.149.

World Health Organization, ed. 2002. Control of Chagas Disease: Second Report of the

WHO Expert Committee. Control of Chagas Disease, 2.2002. Geneva: WHO.

Yoshioka, K., J. Nakamura, B. Perez, D. Tercero, L. Perez, and Y. Tabaru. 2015.

“Effectiveness of Large-Scale Chagas Disease Vector Control Program in

Nicaragua by Residual Insecticide Spraying Against Triatoma Dimidiata.”

American Journal of Tropical Medicine and Hygiene 93 (6): 1231–39.

doi:10.4269/ajtmh.15-0403.

Young Kim, Eun, and Youn‐Kyung Kim. 2004. “Predicting Online Purchase Intentions

for Clothing Products.” European Journal of Marketing 38 (7): 883–97.

doi:10.1108/03090560410539302.

Yousefi, Saleh, Hamidreza Moradi, Jan Boll, and Sarah Schönbrodt-Stitt. 2016.

“Effects of Road Construction on Soil Degradation and Nutrient Transport in

Caspian Hyrcanian Mixed Forests.” Geoderma 284 (December): 103–12.

doi:10.1016/j.geoderma.2016.09.002.

196

Yu, Guo-Pei, James Chun-Lun Li, Daniel Branovan, Steven McCormick, and Stimson

P. Schantz. 2010. “Thyroid Cancer Incidence and Survival in the National Cancer

Institute Surveillance, Epidemiology, and End Results Race/Ethnicity Groups.”

Thyroid: Official Journal of the American Thyroid Association 20 (5): 465–73.

doi:10.1089/thy.2008.0281.

Zeledón, R., V. M. Guardia, A. Zúñiga, and J. C. Swartzwelder. 1970. “Biology and

Ethology of Triatoma Dimidiata (Latreille, 1811). I. Life Cycle, Amount of Blood

Ingested, Resistance of Starvation, and Size of Adults.” Journal of Medical

Entomology 7 (3): 313–19.

Zeledon, R., G. Solano, A. Zuniga, and J. C. Swartzwelder. 1973. “Biology and

Ethology of Triatoma Dimidiata (Latreille, 1811). III. Habitat and Blood Sources.”

Journal of Medical Entomology 10 (4): 363–70. doi:10.1093/jmedent/10.4.363.

Zeledón, Rodrigo. 2004. “Some Historical Facts and Recent Issues Related to the

Presence of Rhodnius Prolixus (STAL, 1859) (HEMIPTERA: REDUVIIDAE) in

Central America.” Entomología Y Vectores 11 (2): 233–46.

Zeledón, Rodrigo, Nidia Calvo, Víctor M Montenegro, Elias Seixas Lorosa, and

Carolina Arévalo. 2005. “A Survey on Triatoma Dimidiata in an Urban Area of

the Province of Heredia, Costa Rica.” Memórias Do Instituto Oswaldo Cruz 100

(6): 607–12. doi:10.1590/S0074-02762005000600002.

Zeledón, Rodrigo, Víctor M Montenegro, and Oswaldo Zeledón. 2001. “Evidence of

Colonization of Man-Made Ecotopes by Triatoma Dimidiata (Latreille, 1811) in

Costa Rica.” Memórias Do Instituto Oswaldo Cruz 96 (5). doi:10.1590/S0074-

02762001000500012.

Zeledón, Rodrigo, and Julio C Rojas. 2006. “Environmental Management for the

Control of Triatoma Dimidiata (Latreille, 1811), (Hemiptera: Reduviidae) in Costa

Rica: A Pilot Project.” Memórias Do Instituto Oswaldo Cruz 101 (4): 379–86.

doi:10.1590/S0074-02762006000400006.

Zeledón, Rodrigo, Julio C Rojas, Andrea Urbina, Marlen Cordero, Sue H Gamboa,

Elias S Lorosa, and Sergio Alfaro. 2008. “Ecological Control of Triatoma

Dimidiata (Latreille, 1811): Five Years after a Costa Rican Pilot Project.”

Memórias Do Instituto Oswaldo Cruz 103 (6): 619–21. doi:10.1590/S0074-

02762008000600020.

Zeledón, Rodrigo, Jesús A Ugalde, and Luis A Paniagua. 2001. “Entomological and

Ecological Aspects of Six Sylvatic Species of Triatomines (Hemiptera,

Reduviidae) from the Collection of the National Biodiversity Institute of Costa

Rica, Central America.” Memórias Do Instituto Oswaldo Cruz 96 (6): 757–64.

doi:10.1590/S0074-02762001000600002.

Zhang, Yawei, Grace L. Guo, Xuesong Han, Cairong Zhu, Briseis A. Kilfoy, Yong

Zhu, Peter Boyle, and Tongzhang Zheng. 2008. “Do Polybrominated Diphenyl

Ethers (PBDEs) Increase the Risk of Thyroid Cancer?” Bioscience Hypotheses 1

(4): 195–99. doi:10.1016/j.bihy.2008.06.003.

Zhu, Cairong, Tongzhang Zheng, Briseis A. Kilfoy, Xuesong Han, Shuangge Ma, Yue

Ba, Yana Bai, Rong Wang, Yong Zhu, and Yawei Zhang. 2009. “A Birth Cohort

Analysis of the Incidence of Papillary Thyroid Cancer in the United States, 1973-

197

2004.” Thyroid: Official Journal of the American Thyroid Association 19 (10):

1061–66. doi:10.1089/thy.2008.0342.

198

CHAPTER 8: APPENDIX

8.1 Matlab® Code

8.1.1 Convert Data to Ones and Zeros (Data2Binary)

function [DataBin, DataType, FeatVals, FeatInd, NaNMask, DataSum]=...

 Data2Binary(Data,Output,ContData,CatData,UniqCatData)

%%

% Created by John Hanley

%

% October 14, 2016

% Last updated: October 14, 2016

%

% Data2Binary converts input data to binary and supplies some summary

% information for each of the features.

%

% Inputs:

% Data = A matrix of ones and zeros where each row represents an

% observation and each column represents a feature.

% Output = The output class for each observation.

% ContData = The feature index for all continuous or discrete input

% features.

% CatData = The feature index for all nominal features that have more than

% two categories and/or the user desires an or statement between.

199

% UniqCatData = The feature index of any feature that the user desires to

% not have a range or an or statement between categories

% and/or there are only 2 unique values for the feature.

%

% Outputs:

% DataBin = The data in logical binary matrix form where each row

% represents an observation and each column represents a value

% for a feature.

% DataType = A categorical reference to the type of data for each feature.

% 1 = ContData, 2 = CatData, 3 = UniqCatData

% FeatVals = The unique values for each of the features.

% FeatInd = The column index in the DataBin for each feature where each

% column indexed for a given feature is represented by the

% FeatVals.

% NaNMask = A NaN mask for the original dataset. This represents which

% features for a given observation have a NaN.

% DataSum = Is a structure array with an overall summary of the data for

% each feature. Each row represents a unique output class and

% each column represents a feature.

% DataSum.NaNs = counts the number of NaNs for each output class

% for each feature.

% DataSum.Tabs = is a tabulation for the number of times values

200

% are present for each output class.

%

%%

% Determine the number of features

NumFeat=size(Data,2);

% Create a vector for dataype where 1 = continuous data, 2 = categorical

% data, 3 = unique categorical data.

DataType=NaN(1,NumFeat);

% Now set the DataTypes

DataType(ContData)=1;

DataType(CatData)=2;

DataType(UniqCatData)=3;

% Now for each feature convert the features to binary data

% Determine the output classes

OutClasses=unique(Output);

% Determine the number of output classes

NumOut=length(OutClasses);

% For efficiency

DataSum.NaNs=NaN(NumOut,NumFeat); % # NaNs per feature class

DataSum.Tabs=cell(NumOut,NumFeat); % Tabulate of feature vals

FeatVals=cell(1,NumFeat);

NumUniVals=NaN(1,NumFeat);

201

FeatInd=cell(1,NumFeat);

% Determine the NaNMask

NaNMask=isnan(Data);

% Create a counter

count=1;

% First go through for each feature and determine the number of categories

% Note if the number of unique values is 2 then convert the datatype to 3

for i=1:NumFeat

 % First determine the unique values for the feature

 FeatVals(i)={unique(Data(~NaNMask(:,i),i))};

 % Determine the number of unique values

 NumUniVals(i)=length(FeatVals{i});

 % Determine the current feature index

 FeatInd(i)={count:sum(NumUniVals(1:i))};

 % update the counter

 count=sum(NumUniVals(1:i))+1;

 if NumUniVals==2

 % Ensure that the current DataType is set to 3

 DataType(i)=3;

 elseif NumUniVals<2

 % Then end the algorithm and display the warning that the ith

 % feature has less then 2 unique values and is not useful

202

 disp(['Warning Feature # ' num2str(i) ...

 ' Has < 2 Unique Values. Please Remove.'])

 break

 end

 % For each feature determine the number of NaNs for each class

 for j=1:NumOut

 % Create a TempMask for the current class

 TempMask=Output==OutClasses(j);

 % Count the number of NaNs for the current class

 DataSum.NaNs(j,i)=sum(NaNMask(TempMask,i));

 % Tabulate the values for each class

 DataSum.Tabs(j,i)={tabulate(Data(TempMask,i))};

 clear TempMask

 end

end

clear count

clear NumOut

clear OutClasses

clear j

clear i

% Now convert the Data to a binary logical matrix

DataBin=false(size(Data,1),sum(NumUniVals));

203

% Now run a for loop to set the values of each input

for i=1:NumFeat

 % Extract the ith features Values

 CurVals=FeatVals{i};

 % Extract the Current Index

 CurInd=FeatInd{i};

 % Now for each value place a true in the new binary input data

 for j=1:NumUniVals(i)

 % Create a Mask for the data with the jth value for the ith feature

 TempMask=Data(:,i)==CurVals(j);

 % Set the current values to true

 DataBin(TempMask,CurInd(j))=true();

 clear TempMask

 end

 clear CurVals

 clear CurInd

end

clear NumFeat

clear i

clear j

clear NumUniVals

204

8.1.2 Conjunctive Clause Evolutionary Algorithm (CCEA)

function [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,...

 ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,...

 NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,...

 NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=...

 CCEA(Param,DataBin,NaNMask,TargetClass)

%%

% Created by John Hanley

%

% October 19, 2016

% Last Updated: October 19, 2016

%

% CCEA is the evolutionary algorithm for the conjunctive clauses.

%

% Inputs:

% Param = General parameters for the evolutionary algorithm. The general

% parameters are set up as a structure and the following

% paramaters are necessary to run the algorithm.

% .NumNewPop = The number of offspring created every time a new

% randomly created population of offspring is

% created.

% .TotGens = The total number of generations to run the

205

% algorithm.

% .DataType = The DataType of each feature. This is a vector

% where each value represents the feature data type

% (1 = a continuous or discrete feature, 2 = a

% categorical feature where more than one category

% can be present in the conjunctive clause, 3 = a

% feature where only one value or category can be

% present (e.g., binary feature)).

% .Thresh = A matrix with the initial threshold settings. The

% matrix has 4 columns with the first column containing

% all of the orders of the conjunctive clause that the

% user is interested in. For instance if the user wants

% to explore conjunctive clauses of orders 1 - 6, then

% each row represents the order with the exception of

% the last row where the order is the order listed and

% any order greater than 6. This way the algorithm does

% not assume an order. The second column is the initial

% probability threshold [0, 1]. The third column is the

% minimum number of conjunctive clauses the user wants

% to save for each order. The fourth and final column

% is the maximum number of conjunctive clauses the

% user wants to archive for the given order. If the

206

% maximum is exceeded then the threshold for the given

% order is replaced.

% .MaxNumFeat = The maximum number of features allowed during

% crossover. No offspring that is the product of

% crossover will have more features than this

% number.

% .FeatInd = The index for each feature. Each cell represents a

% feature and the numbers in the cell represent the

% columns in the binary data where the feature is

% represented.

% .ALna = The number of non-archived age layers

% .GENn = The number of generations until a novel population is

% introduced.

% .NonArchLMax = The maximum population for each non-archived

% layer.

% .ArchOff = The maximum number of archived offsrping that will

% undergo mutation or crossover.

% .Px = The probability of crossover.

% .Pwc = The probability that a feature will be turned into a

% wild card during mutation.

% .Pm = the probability that an individual feature will undergo

% mutation.

207

% .TournSize = The size of the tournament with relacement of

% selecting the mate for crossover.

% .BestFit = Set to true if the user wants to record the best

% fitness of each order each generation. Otherwise set

% to false.

% DataBin = The data as a binary logical matrix.

% NaNMask = A logical mask of the location of the NaN values in the

% dataset.

% TargetClass = A logical vector of the observations that have the output

% class.

% CCstats = Structure array statistics on the conjunctive clauses.

%

% Outputs:

% ArchCCs = The archived conjunctive clauses.

% ArchCCFeats = The features present in the archived conjunctive clauses.

% ArchCCFit = The fitness of the archived conjunctive clauses.

% ArchCCFitComp = The raw inputs used to calculate the archived fitness.

% ArchCCOrder = The order of the archived conjunctive clause.

% ArchCCMatchLocs = A logical matrix that shows which observations the

% archived conjunctive clauses match.

% ArchCCAge = The age of the archived conjunctive clause.

% NonArchCCs = The non-archived conjunctive clauses.

208

% NonArchCCFeats = The features present in the non-archived conjunctive

% clauses.

% NonArchCCFit = The fitness of the non-archived conjunctive clauses.

% NonArchCCFitComp = The raw inputs used to calculate the non-archived

% fitness.

% NonArchCCOrder = The order of the non-archived conjunctive clause.

% NonArchCCMatchLocs = A logical matrix that shows which observations the

% non-archived conjunctive clauses match.

% NonArchCCAge = The age of the non-archived conjunctive clause.

% Param = A structure array with many of the parameters for the algorithm.

% CCstats = Structure array statistics on the conjunctive clauses.

%

%%

% For efficiency

CCstats.EvalsAll=zeros(Param.TotGens,Param.MaxNumFeat);

CCstats.EvalsArchive=zeros(Param.TotGens,Param.MaxNumFeat);

CCstats.EvalsNonArchive=zeros(Param.TotGens,Param.MaxNumFeat);

if Param.BestFit

 % Then the best fitness for each order for each generation will be

 % recorded

 CCstats.BestFit=NaN(Param.TotGens,Param.MaxNumFeat);

end

209

% Determine the number of observation and features in the dataset

[Param.NumObs, Param.NumFeat]=size(NaNMask);

% Determine the number of binary columns in the data

Param.NumBinCols=size(DataBin,2);

% Determine the number of Target Class observations

Param.TotTargetClass=sum(TargetClass);

% Determine the number of features that are not NaN for the target class

Param.TargetNotNaNMask=~NaNMask(TargetClass,:);

Param.TargetNumNotNaN=sum(Param.TargetNotNaNMask,2);

% Extract the target observations

Param.TargetObs=DataBin(TargetClass,:);

% Set the current generation parameter

Param.CurGen=1;

% Create a roulette wheel probability distribution for selecting each

% observation to serve as the basis for the conjunctive clauses

Param.PrObsSel=ones(Param.TotTargetClass,1)*1/Param.TotTargetClass;

% Create an initial population of conjunctive clauses

[NewCCs, NewCCFeats, NewCCFit, NewCCFitComp, NewCCOrder, ...

 NewCCMatchLocs, ArchiveMask, CCstats]=...

 CCPopInit(Param,DataBin,NaNMask,TargetClass,CCstats);

% Seperate the CCs into Archive and Non-archive

ArchCCs=NewCCs(ArchiveMask,:);

210

ArchCCFeats=NewCCFeats(ArchiveMask,:);

ArchCCFit=NewCCFit(ArchiveMask);

ArchCCFitComp.TotObs=NewCCFitComp.TotObs(ArchiveMask);

ArchCCFitComp.TotObsT=NewCCFitComp.TotObsT(ArchiveMask);

ArchCCFitComp.TotCCObs=NewCCFitComp.TotCCObs(ArchiveMask);

ArchCCFitComp.TotCCObsT=NewCCFitComp.TotCCObsT(ArchiveMask);

ArchCCOrder=NewCCOrder(ArchiveMask);

ArchCCMatchLocs=NewCCMatchLocs(:,ArchiveMask);

% Set the age of the CCs to 1

ArchCCAge=ones(size(ArchCCFit));

% Now seperate the NonarchiveCCs

NonArchCCs=NewCCs(~ArchiveMask,:);

NonArchCCFeats=NewCCFeats(~ArchiveMask,:);

NonArchCCFit=NewCCFit(~ArchiveMask);

NonArchCCFitComp.TotObs=NewCCFitComp.TotObs(~ArchiveMask);

NonArchCCFitComp.TotObsT=NewCCFitComp.TotObsT(~ArchiveMask);

NonArchCCFitComp.TotCCObs=NewCCFitComp.TotCCObs(~ArchiveMask);

NonArchCCFitComp.TotCCObsT=NewCCFitComp.TotCCObsT(~ArchiveMask);

NonArchCCOrder=NewCCOrder(~ArchiveMask);

NonArchCCMatchLocs=NewCCMatchLocs(:,~ArchiveMask);

% Set the age of the CCs to 1

NonArchCCAge=ones(size(NonArchCCFit));

211

clear NewCCs

clear NewCCFeats

clear NewCCFit

clear NewCCFitComp

clear NewCCOrder

clear NewCCMatchLocs

clear ArchiveMask

% Run the population reduction algorithm

[ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,...

 ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,...

 NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,...

 NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=...

 CCreducepop(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,...

 ArchCCOrder,ArchCCMatchLocs,ArchCCAge,NonArchCCs,...

 NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,...

 NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,Param,...

 CCstats);

% Now work on the for loop for the ALPS like evolution

for gen=2:Param.TotGens

 % Set the current current gen parameter

 Param.CurGen=gen;

 % Increase the age of the non-archived population

212

 NonArchCCAge=NonArchCCAge+1;

 % Now determine if a new population should be added

 if mod(gen,Param.GENn)~=0

 % Then just perform crossover or mutation on population

 [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,...

 ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,...

 NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,...

 NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=...

 CCEvolution(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,...

 ArchCCOrder,ArchCCMatchLocs,ArchCCAge,...

 NonArchCCs,NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,...

 NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,...

 DataBin,NaNMask,TargetClass,Param,CCstats);

 % Clean conjunctive clauses

 [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,...

 ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,...

 NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,...

 NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=...

 CCreducepop(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,...

 ArchCCOrder,ArchCCMatchLocs,ArchCCAge,NonArchCCs,...

 NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,...

 NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,Param,...

213

 CCstats);

 else

 % Then add a new population and perform crossover or mutation on

 % population

 % first perform mutation or crossover

 [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,...

 ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,...

 NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,...

 NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=...

 CCEvolution(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,...

 ArchCCOrder,ArchCCMatchLocs,ArchCCAge,...

 NonArchCCs,NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,...

 NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,...

 DataBin,NaNMask,TargetClass,Param,CCstats);

 if ~isempty(ArchCCFit)

 % Calculate a new probability of selecting an observation for

 % the template of a new conjunctive clause. Increase the odds

 % of selecting a target observation that is underrepresented in

 % the archive

 % First sum the total number of times that a target observation

 % is covered in the archive population.

 TotObsArchive=sum(ArchCCMatchLocs(TargetClass,:),2);

214

 % Determine the maximum sum

 MaxSum=max(TotObsArchive);

 % Now subtract TotObsArchive from MaxSum-1

 DiffSum=(MaxSum+1)-TotObsArchive;

 clear TotObsArchive

 clear MaxSum

 % Now normalize to get a total probability of 1

 Param.PrObsSel=DiffSum/sum(DiffSum);

 clear DiffSum

 end

 % Now create a new population of CCs

 [NewCCs, NewCCFeats, NewCCFit, NewCCFitComp, NewCCOrder, ...

 NewCCMatchLocs, ArchiveMask, CCstats]=...

 CCPopInit(Param,DataBin,NaNMask,TargetClass,CCstats);

 % First set the age of the NewCCs to one

 NewCCAge=ones(size(NewCCFit));

 % Now combine the new CCs with the population of CCs

 ArchCCs=[ArchCCs; NewCCs(ArchiveMask,:)];

 ArchCCFeats=[ArchCCFeats; NewCCFeats(ArchiveMask,:)];

 ArchCCFit=[ArchCCFit; NewCCFit(ArchiveMask)];

 ArchCCFitComp.TotObs=[ArchCCFitComp.TotObs;...

 NewCCFitComp.TotObs(ArchiveMask)];

215

 ArchCCFitComp.TotObsT=[ArchCCFitComp.TotObsT;...

 NewCCFitComp.TotObsT(ArchiveMask)];

 ArchCCFitComp.TotCCObs=[ArchCCFitComp.TotCCObs;...

 NewCCFitComp.TotCCObs(ArchiveMask)];

 ArchCCFitComp.TotCCObsT=[ArchCCFitComp.TotCCObsT;...

 NewCCFitComp.TotCCObsT(ArchiveMask)];

 ArchCCOrder=[ArchCCOrder; NewCCOrder(ArchiveMask)];

 ArchCCMatchLocs=[ArchCCMatchLocs NewCCMatchLocs(:,ArchiveMask)];

 ArchCCAge=[ArchCCAge; NewCCAge(ArchiveMask)];

 NonArchCCs=[NonArchCCs; NewCCs(~ArchiveMask,:)];

 NonArchCCFeats=[NonArchCCFeats; NewCCFeats(~ArchiveMask,:)];

 NonArchCCFit=[NonArchCCFit; NewCCFit(~ArchiveMask)];

 NonArchCCFitComp.TotObs=[NonArchCCFitComp.TotObs;...

 NewCCFitComp.TotObs(~ArchiveMask)];

 NonArchCCFitComp.TotObsT=[NonArchCCFitComp.TotObsT;...

 NewCCFitComp.TotObsT(~ArchiveMask)];

 NonArchCCFitComp.TotCCObs=[NonArchCCFitComp.TotCCObs;...

 NewCCFitComp.TotCCObs(~ArchiveMask)];

 NonArchCCFitComp.TotCCObsT=[NonArchCCFitComp.TotCCObsT;...

 NewCCFitComp.TotCCObsT(~ArchiveMask)];

 NonArchCCOrder=[NonArchCCOrder; NewCCOrder(~ArchiveMask)];

 NonArchCCMatchLocs=[NonArchCCMatchLocs ...

216

 NewCCMatchLocs(:,~ArchiveMask)];

 NonArchCCAge=[NonArchCCAge; NewCCAge(~ArchiveMask)];

 clear NewCCs

 clear NewCCFeats

 clear NewCCFit

 clear NewCCFitComp

 clear NewCCOrder

 clear NewCCMatchLocs

 clear NewCCAge

 clear ArchiveMask

 % Clean conjunctive clauses

 [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,...

 ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,...

 NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,...

 NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=...

 CCreducepop(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,...

 ArchCCOrder,ArchCCMatchLocs,ArchCCAge,NonArchCCs,...

 NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,...

 NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,Param,...

 CCstats);

 end

end

217

8.1.2.1 Conjunctive Clause Population Initialization (CCPopInit)

function [NewCCs, NewCCFeats, NewCCFit, NewCCFitComp, NewCCOrder, ...

 NewCCMatchLocs, ArchiveMask, CCstats]=...

 CCPopInit(Param,DataBin,NaNMask,TargetClass,CCstats)

%%

% Created by John Hanley

%

% October 14, 2016

% Last updated: October 14, 2016

%

% CCPopInit is a population initialization algorithm for the conjunctive

% clauses. It randomly creates conjunctive clauses of various sizes using

% observations from the dataset that has an output equal to the current

% target class.

%

% Inputs:

% Param = A structure array with many of the parameters for the algorithm.

% DataBin = The data as a binary logical matrix.

% NaNMask = A logical mask of the location of the NaN values in the

% dataset.

% TargetClass = A logical vector of the observations that have the output

% class.

218

% CCstats = Structure array statistics on the conjunctive clauses.

%

% Outputs:

% NewCCs = The newly created conjunctive clauses.

% NewCCFeats = The active features of the new conjunctive clauses.

% NewCCFit = The fitness of the new conjunctive clauses measured using the

% hypergeometric PMF.

% NewCCFitComp = The inputs for the calculation of NewCCFit.

% NewCCOrder = The order of the conjunctive clause.

% NewCCMatchLocs = A logical matrix of the observations the conjunctive

% clause matches. Each row represents an observation and

% each column represents a conjunctive clause.

% ArchiveMask = Is a logical vector of the new conjunctive clauses that are

% to be archived.

% CCstats = Structure array statistics on the conjunctive clauses.

%

%%

% For efficiency

NewCCs=false(Param.NumNewPop,Param.NumBinCols);

NewCCFeats=false(Param.NumNewPop,Param.NumFeat);

NewCCFit=NaN(Param.NumNewPop,1);

NewCCFitComp.TotObs=NaN(Param.NumNewPop,1);

219

NewCCFitComp.TotObsT=NaN(Param.NumNewPop,1);

NewCCFitComp.TotCCObs=NaN(Param.NumNewPop,1);

NewCCFitComp.TotCCObsT=NaN(Param.NumNewPop,1);

NewCCOrder=NaN(Param.NumNewPop,1);

NewCCMatchLocs=false(Param.NumObs,Param.NumNewPop);

KeepMask=false(Param.NumNewPop,1);

ArchiveMask=false(Param.NumNewPop,1);

% Create a vector of the feature indices

PosFeats=1:Param.NumFeat;

% Create the conjunctive clauses for each new offspring

for i=1:Param.NumNewPop

 % Create a logical Index of the observation that will be selected

 SelObs=false(Param.TotTargetClass,1);

 % Randomly determine the number of features present in the conjunctive

 % clause

 CurFeatNum=randi(Param.MaxNumFeat);

 % Now determine which observations have the requisite number of current

 % features

 CurObsMask=Param.TargetNumNotNaN>=CurFeatNum;

 % Now recalculate the Param.PrObsSel based on the observations that

 % were eliminated

 CurPrObsSel=Param.PrObsSel(CurObsMask)*1/...

220

 (1-sum(Param.PrObsSel(~CurObsMask)));

 % Turn CurPrObsSel into lower bound and upper bound

 UBCurPrObsSel=cumsum(CurPrObsSel);

 LBCurPrObsSel=[0; UBCurPrObsSel(1:end-1)];

 clear CurPrObsSel

 % Select a random number (0,1)

 CurRand=rand();

 % Now determine which observation is between the LB and UB

 CurObsSel=CurRand>LBCurPrObsSel&CurRand<=UBCurPrObsSel;

 clear CurRand

 clear LBCurPrObsSel

 clear UBCurPrObsSel

 % Update the selected observation

 SelObs(CurObsMask)=CurObsSel;

 clear CurObsMask

 clear CurObsSel

 % Now Extract the Current Observation Data

 CurObsData=Param.TargetObs(SelObs,:);

 % Now randomly select the features for the rule

 CurPosFeats=PosFeats(Param.TargetNotNaNMask(SelObs,:));

 clear SelObs

 CurSelFeatInd=randperm(length(CurPosFeats),CurFeatNum);

221

 CurSelFeats=CurPosFeats(CurSelFeatInd);

 clear CurPosFeats

 clear CurSelFeatInd

 % Now Extract the feature indices for the current selected features

 CurFeatInds=[Param.FeatInd{CurSelFeats}];

 % Insert the data into the New CC

 NewCCs(i,CurFeatInds)=CurObsData(1,CurFeatInds);

 NewCCFeats(i,CurSelFeats)=true();

 clear CurObsData

 % Now Determine the fitness of the new rule

 % First Determine the Total Observations that have data for the

 % selected features

 TotObs=sum(sum(~NaNMask(:,CurSelFeats),2)==CurFeatNum);

 TotObsT=sum(sum(~NaNMask(TargetClass,CurSelFeats),2)==CurFeatNum);

 % Now determine which observations the current Conjunctive clause

 % Matches

 % First add the conjunctive clause to the data

 TwosSum=bsxfun(@plus,NewCCs(i,CurFeatInds),DataBin(:,CurFeatInds));

 % Now create a twos mask

 TwosMask=TwosSum==2;

 clear TwosSum

 % Now determine the total number of twos

222

 TotTwos=sum(TwosMask,2);

 clear TwosMask

 % Now create an observation match mask

 NewCCMatchLocs(:,i)=TotTwos==CurFeatNum;

 clear TotTwos

 % Determine the total number of observations that match and are target

 % class

 TotCCObs=sum(NewCCMatchLocs(:,i));

 TotCCObsT=sum(NewCCMatchLocs(TargetClass,i));

 % If TotCCObsT/TotCCObs > TotObsT/TotObs then evaluate the fitness of

 % the Conjunctive clause using hypergeometric PMF

 if TotCCObsT/TotCCObs>TotObsT/TotObs

 % Calculate the fitness

 NewCCFit(i)=hygepdf(TotCCObsT,TotObs,TotObsT,TotCCObs);

 % Update the keep mask

 KeepMask(i)=true();

 % Determine if the CC is archivable

 % First extract the order mask

 OrderMask=Param.Thresh(:,1)==CurFeatNum;

 if sum(OrderMask)==0

 % Then set the last OrderMask to true

 OrderMask(end)=true();

223

 end

 ArchiveMask(i)=NewCCFit(i)<=Param.Thresh(OrderMask,2);

 if ArchiveMask(i)

 % Then record an archived evaluation

 CCstats.EvalsArchive(Param.CurGen,CurFeatNum)=...

 CCstats.EvalsArchive(Param.CurGen,CurFeatNum)+1;

 else

 % Record a non-archived evaluation

 CCstats.EvalsNonArchive(Param.CurGen,CurFeatNum)=...

 CCstats.EvalsNonArchive(Param.CurGen,CurFeatNum)+1;

 end

 clear OrderMask

 else

 NewCCFit(i)=1;

 end

 % Record the total number of evaluations for the current order

 CCstats.EvalsAll(Param.CurGen,CurFeatNum)=...

 CCstats.EvalsAll(Param.CurGen,CurFeatNum)+1;

 % Save the fitness component values

 NewCCFitComp.TotObs(i)=TotObs;

 NewCCFitComp.TotObsT(i)=TotObsT;

 NewCCFitComp.TotCCObs(i)=TotCCObs;

224

 NewCCFitComp.TotCCObsT(i)=TotCCObsT;

 NewCCOrder(i)=CurFeatNum;

 clear TotObs

 clear TotObsT

 clear TotCCObs

 clear TotCCObsT

 clear CurFeatNum

 clear CurSelFeats

 clear CurFeatInds

end

clear PosFeats

clear i

% Only keep the values in the keep mask

NewCCs=NewCCs(KeepMask,:);

NewCCFeats=NewCCFeats(KeepMask,:);

NewCCFit=NewCCFit(KeepMask,1);

NewCCFitComp.TotObs=NewCCFitComp.TotObs(KeepMask,1);

NewCCFitComp.TotObsT=NewCCFitComp.TotObsT(KeepMask,1);

NewCCFitComp.TotCCObs=NewCCFitComp.TotCCObs(KeepMask,1);

NewCCFitComp.TotCCObsT=NewCCFitComp.TotCCObsT(KeepMask,1);

NewCCOrder=NewCCOrder(KeepMask,1);

NewCCMatchLocs=NewCCMatchLocs(:,KeepMask);

225

ArchiveMask=ArchiveMask(KeepMask,1);

clear KeepMask

8.1.2.2 Remove Repeat CCs (CCreducepop)

function [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,...

 ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,...

 NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,...

 NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=...

 CCreducepop(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,...

 ArchCCOrder,ArchCCMatchLocs,ArchCCAge,NonArchCCs,...

 NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,...

 NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,Param,...

 CCstats)

%%

% Created by John Hanley

%

% October 18, 2016

% Last updated: October 18, 2016

%

% CCreducepop will remove any repeat conjunctive clauses and will reduce

% the conjunctive clause populations if they exceed their thresholds

%

% Inputs:

226

% ArchCCs = The archived conjunctive clauses.

% ArchCCFeats = The features present in the archived conjunctive clauses.

% ArchCCFit = The fitness of the archived conjunctive clauses.

% ArchCCFitComp = The raw inputs used to calculate the archived fitness.

% ArchCCOrder = The order of the archived conjunctive clause.

% ArchCCMatchLocs = A logical matrix that shows which observations the

% archived conjunctive clauses match.

% ArchCCAge = The age of the archived conjunctive clause.

% NonArchCCs = The non-archived conjunctive clauses.

% NonArchCCFeats = The features present in the non-archived conjunctive

% clauses.

% NonArchCCFit = The fitness of the non-archived conjunctive clauses.

% NonArchCCFitComp = The raw inputs used to calculate the non-archived

% fitness.

% NonArchCCOrder = The order of the non-archived conjunctive clause.

% NonArchCCMatchLocs = A logical matrix that shows which observations the

% non-archived conjunctive clauses match.

% NonArchCCAge = The age of the non-archived conjunctive clause.

% Param = A structure array with many of the parameters for the algorithm.

% CCstats = Structure array statistics on the conjunctive clauses.

%

% Outputs:

227

% ArchCCs = The archived conjunctive clauses.

% ArchCCFeats = The features present in the archived conjunctive clauses.

% ArchCCFit = The fitness of the archived conjunctive clauses.

% ArchCCFitComp = The raw inputs used to calculate the archived fitness.

% ArchCCOrder = The order of the archived conjunctive clause.

% ArchCCMatchLocs = A logical matrix that shows which observations the

% archived conjunctive clauses match.

% NonArchCCAge = The age of the non-archived conjunctive clause.

% NonArchCCs = The non-archived conjunctive clauses.

% NonArchCCFeats = The features present in the non-archived conjunctive

% clauses.

% NonArchCCFit = The fitness of the non-archived conjunctive clauses.

% NonArchCCFitComp = The raw inputs used to calculate the non-archived

% fitness.

% NonArchCCOrder = The order of the non-archived conjunctive clause.

% NonArchCCMatchLocs = A logical matrix that shows which observations the

% non-archived conjunctive clauses match.

% NonArchCCAge = The age of the non-archived conjunctive clause.

% Param = A structure array with many of the parameters for the algorithm.

% CCstats = Structure array statistics on the conjunctive clauses.

%

%%

228

% Start by reducing the any repeated conjunctive clauses in the Archive

% population

if length(ArchCCAge)>1

 % Then check to see if there are any repeat conjunctive clause

 [ArchCCs, ID]=unique(ArchCCs,'rows');

 % Now save the unique conjunctive clauses

 ArchCCFeats=ArchCCFeats(ID,:);

 ArchCCFit=ArchCCFit(ID);

 ArchCCFitComp.TotObs=ArchCCFitComp.TotObs(ID);

 ArchCCFitComp.TotObsT=ArchCCFitComp.TotObsT(ID);

 ArchCCFitComp.TotCCObs=ArchCCFitComp.TotCCObs(ID);

 ArchCCFitComp.TotCCObsT=ArchCCFitComp.TotCCObsT(ID);

 ArchCCOrder=ArchCCOrder(ID);

 ArchCCMatchLocs=ArchCCMatchLocs(:,ID);

 ArchCCAge=ArchCCAge(ID);

 clear ID

end

if length(ArchCCAge)>1

 % Determine if any of the archive bins are over their limit

 % First create a temporary order so that all Conjunctive clauses

 % greater than the max bin are set to max bin

 TempOrder=ArchCCOrder;

229

 TempMask=TempOrder>max(Param.Thresh(:,1));

 TempOrder(TempMask)=max(Param.Thresh(:,1));

 clear TempMask

 % Now tabulate the temporary order

 TabTempOrder=tabulate(TempOrder);

 % Remove any rows that do not have a value

 TabTempOrder=TabTempOrder(TabTempOrder(:,2)>0,:);

 % Compare the tabulated TempOrder to the associated maximum allowable

 % populations

 % Test to see if TabTempOrder are the same

 if size(TabTempOrder,1)==size(Param.Thresh,1)

 % Then all orders a present

 % Determine how many if any bins are over the limit

 LimitMask=TabTempOrder(:,2)>Param.Thresh(:,4);

 else

 % Then not all orders are present so need to determine which orders

 % are present

 % First set up a logical vector for efficiency

 LimitMask=false(size(Param.Thresh,1),1);

 % for each of the orders present, determine if the limit is

 % surpassed

 for i=1:size(TabTempOrder,1)

230

 % Grab the ith order

 CurOrder=TabTempOrder(i,1);

 % Create a mask of the Order

 TempMask=CurOrder==Param.Thresh(:,1);

 clear CurOrder

 % Now check to see if the limit is surpassed

 LimitMask(TempMask)=TabTempOrder(i,2)>Param.Thresh(TempMask,4);

 clear TempMask

 end

 clear i

 end

 % If the sum of limit mask is greater than 0 then at least one bin is

 % over the limit so reduce the population of the bin

 if sum(LimitMask)>0

 % Then for each bin over the limit reduce the bin population

 % Fist determine the orders of conjunctive clauses that are over

 % the mask

 OrderOver=Param.Thresh(LimitMask,1);

 % Create a keep mask for efficiency

 KeepMask=true(size(ArchCCAge));

 for i=1:length(OrderOver)

 % Create a mask of the current OrderOver

231

 OrderMask=OrderOver(i)==TempOrder;

 % sort the fitness of the current order fitness

 CurSortFit=sort(ArchCCFit(OrderMask));

 % Create a mask for Param.Thresh Table

 ThreshMask=OrderOver(i)==Param.Thresh(:,1);

 % Find the minimum number for this bin

 CurMin=Param.Thresh(ThreshMask,3);

 % Now use the CurMin to find the fitness of sorted fitness and

 % use this to set the new threshold

 Param.Thresh(ThreshMask,2)=CurSortFit(CurMin);

 clear CurMin

 clear CurSortFit

 % Now create a mask of all the archived conjunctive clauses

 % with a fitness greater than the new threshold

 AboveThreshMask=ArchCCFit>Param.Thresh(ThreshMask,2);

 clear ThreshMask

 % Now create a mask for Removal

 RemoveMask=AboveThreshMask&OrderMask;

 clear AboveThreshMask

 clear OrderMask

 % Now set the RemoveMask locations to false

 KeepMask(RemoveMask)=false();

232

 clear RemoveMask

 end

 % Determine if any of the removed Archived conjunctive clauses have

 % an age that can be moved to the non-archive population

 % Create a mask of the archive population that is young enough to

 % fit in the non-archive population

 YoungPop=ArchCCAge<=(Param.GENn*Param.ALna);

 % Now determine if there are any young popvalues that will be

 % removed

 Move2NonArch=YoungPop&~KeepMask;

 clear YoungPop

 if sum(Move2NonArch)>0

 % Then move the selected features to the non-archive population

 NonArchCCs=[NonArchCCs; ArchCCs(Move2NonArch,:)];

 NonArchCCFit=[NonArchCCFit; ArchCCFit(Move2NonArch)];

 NonArchCCFeats=[NonArchCCFeats; ArchCCFeats(Move2NonArch,:)];

 NonArchCCFitComp.TotObs=[NonArchCCFitComp.TotObs;...

 ArchCCFitComp.TotObs(Move2NonArch)];

 NonArchCCFitComp.TotObsT=[NonArchCCFitComp.TotObsT;...

 ArchCCFitComp.TotObsT(Move2NonArch)];

 NonArchCCFitComp.TotCCObs=[NonArchCCFitComp.TotCCObs;...

 ArchCCFitComp.TotCCObs(Move2NonArch)];

233

 NonArchCCFitComp.TotCCObsT=[NonArchCCFitComp.TotCCObsT;...

 ArchCCFitComp.TotCCObsT(Move2NonArch)];

 NonArchCCOrder=[NonArchCCOrder; ArchCCOrder(Move2NonArch)];

 NonArchCCMatchLocs=[NonArchCCMatchLocs ...

 ArchCCMatchLocs(:,Move2NonArch)];

 NonArchCCAge=[NonArchCCAge; ArchCCAge(Move2NonArch)];

 clear Move2NonArch

 end

 % Keep only those conjunctive clauses that are in the KeepMask

 ArchCCs=ArchCCs(KeepMask,:);

 ArchCCFit=ArchCCFit(KeepMask);

 ArchCCFeats=ArchCCFeats(KeepMask,:);

 ArchCCFitComp.TotObs=ArchCCFitComp.TotObs(KeepMask);

 ArchCCFitComp.TotObsT=ArchCCFitComp.TotObsT(KeepMask);

 ArchCCFitComp.TotCCObs=ArchCCFitComp.TotCCObs(KeepMask);

 ArchCCFitComp.TotCCObsT=ArchCCFitComp.TotCCObsT(KeepMask);

 ArchCCOrder=ArchCCOrder(KeepMask);

 ArchCCMatchLocs=ArchCCMatchLocs(:,KeepMask);

 ArchCCAge=ArchCCAge(KeepMask);

 clear KeepMask

 end

 clear LimitMask

234

 clear TabTempOrder

end

% Remove Any NonArchAge that is now aged out

YoungMask=NonArchCCAge<(Param.GENn*Param.ALna);

% If there are any NonArchCCs to remove then remove them

if sum(~YoungMask)>0

 NonArchCCs=NonArchCCs(YoungMask,:);

 NonArchCCFeats=NonArchCCFeats(YoungMask,:);

 NonArchCCFit=NonArchCCFit(YoungMask);

 NonArchCCFitComp.TotObs=NonArchCCFitComp.TotObs(YoungMask);

 NonArchCCFitComp.TotObsT=NonArchCCFitComp.TotObsT(YoungMask);

 NonArchCCFitComp.TotCCObs=NonArchCCFitComp.TotCCObs(YoungMask);

 NonArchCCFitComp.TotCCObsT=NonArchCCFitComp.TotCCObsT(YoungMask);

 NonArchCCOrder=NonArchCCOrder(YoungMask);

 NonArchCCMatchLocs=NonArchCCMatchLocs(:,YoungMask);

 NonArchCCAge=NonArchCCAge(YoungMask);

end

clear YoungMask

% Now check to see if the Non-archived population is exceeded for each

% layer

if ~isempty(NonArchCCAge)

 % First determine the non-archive age layers for each conjunctive

235

 % clause

 NonArchCCAgeLayer=ceil(NonArchCCAge/Param.GENn);

 % Now tabulate the NonArchCCAgeLayers

 TabNonArchLayer=tabulate(NonArchCCAgeLayer);

 % Remove any TabNonArchLayer that does not have a value

 TabNonArchLayer=TabNonArchLayer(TabNonArchLayer(:,2)>0,:);

 % Determine if any of the TabNonArchLayer is greater than the maximum

 % allowed

 LimitMask=TabNonArchLayer(:,2)>Param.NonArchLMax;

else

 % Set the limit mask to false

 LimitMask=false();

end

% If any layer is greater then need to remove individuals from the

% non-archive layer

if sum(LimitMask)>0

 % Then determine which layers need to be reduced in size

 Layers=TabNonArchLayer(LimitMask,1);

 % Determine the number of features that should be present per feature

 NumPerFeat=floor(Param.NonArchLMax/Param.NumFeat);

 % for efficiency create a keep mask

 KeepMask=true(size(NonArchCCFit));

236

 for i=1:length(Layers)

 % Create vector index of the current layer

 LayerInd=find(Layers(i)==NonArchCCAgeLayer);

 % Sort the fitness of the current layer

 [~, ID]=sort(NonArchCCFit(LayerInd));

 % Create a vector that has the maximum number of features capped at

 % NumPerFeat

 % First sum the features present

 CurFeatMax=sum(NonArchCCFeats(LayerInd,:));

 % Now replace any sum greater than NumPerFeat with NumPerFeat

 CurFeatMax(CurFeatMax>NumPerFeat)=NumPerFeat;

 % Check to see if the most fit in the layer meet the CurFeatMax

 % First Sum the most fit individuals in the layer

 MostFitSum=...

 sum(NonArchCCFeats(LayerInd(ID(1:Param.NonArchLMax)),:));

 % Now compare to CurFeatMax

 if sum(MostFitSum>=CurFeatMax)==Param.NumFeat

 % Then the most fit individuals in the current layer should be

 % saved

 % So set the others to false in the keep mask

 KeepMask(LayerInd(ID(Param.NonArchLMax+1:end)))=false();

 else

237

 % Then need to try an alternative method

 % First determine the Problem features and the number of

 % conjunctive clauses needed for each feature

 ProbFeats=find(MostFitSum<CurFeatMax);

 % Create a RandFeatOrder

 RandFeatOrder=randperm(length(ProbFeats),length(ProbFeats));

 % Now go through and grab the most fit CCs for each of the

 % problem features

 % For Efficiency

 ProbFeatKeep=false(length(ID),1);

 for ii=1:length(ProbFeats)

 % Create a mask for the current feature

 CurFeatMask=NonArchCCFeats(LayerInd(ID),...

 ProbFeats(RandFeatOrder(ii)));

 % Now Create a cumsum for the number of times the feature

 % is present

 CumSumFeat=cumsum(CurFeatMask);

 % Create a cumsum mask

 CumSumMask=CumSumFeat<=CurFeatMax(ProbFeats(ii));

 % Find where cumsum Mask and feature mask overlap

 SaveMask=CumSumMask&CurFeatMask;

 % Set the SaveMask locations to true

238

 ProbFeatKeep(SaveMask)=true();

 end

 % Now determine how many of the Problem FeatKeep are saved

 TotProbFeat=sum(ProbFeatKeep);

 % Determine the difference with Param.NonArchLMax

 CurDiff=Param.NonArchLMax-TotProbFeat;

 % Determine the ID of the Problem Keep Feat

 IDnum=ID(ProbFeatKeep);

 % Determine if new total meets the requirements

 NewFeatTot=sum(NonArchCCFeats(LayerInd([ID(1:CurDiff);...

 IDnum]),:));

 if sum(NewFeatTot>=CurFeatMax)==Param.NumFeat

 % Then the current population of CCs are to be saved

 % Write the KeepIDnums

 KeepIDnums=[ID(1:CurDiff); IDnum];

 % Determine the difference

 RemoveIDnums=setdiff(ID,KeepIDnums);

 % Now set the remove values to false

 KeepMask(LayerInd(RemoveIDnums))=false();

 else

 % Need to more thoroughly search CCs

 % Determine the features that can be kept

239

 PosKeepFeat=find(CurFeatMax>0);

 % First randomly determine a feature order

 RandFeatOrd=randperm(length(PosKeepFeat),...

 length(PosKeepFeat));

 % Set a vector for conjunctive clauses that are available

 AvailCCs=true(length(ID),1);

 % set a list to keep

 KeepFeat=false(length(ID),1);

 for ii=1:length(PosKeepFeat)

 % Create a mask for the current feature

 CurFeatMask=NonArchCCFeats(LayerInd(ID), ...

 PosKeepFeat(RandFeatOrd(ii)));

 % Remove any features that are not available

 CurFeatMask=CurFeatMask&AvailCCs;

 % Now Create a cumsum for the number of times the

 % feature is present

 CumSumFeat=cumsum(CurFeatMask);

 % Create a cumsum mask

 CumSumMask=CumSumFeat<=CurFeatMax(PosKeepFeat(ii));

 % Find where cumsum Mask and feature mask overlap

 SaveMask=CumSumMask&CurFeatMask;

 % Set the SaveMask locations to true

240

 KeepFeat(SaveMask)=true();

 % Update the available CCs

 AvailCCs(SaveMask)=false();

 end

 % Write the KeepIDnums

 KeepIDnums=ID(KeepFeat);

 % Determine the difference

 RemoveIDnums=setdiff(ID,KeepIDnums);

 % Now set the remove values to false

 KeepMask(LayerInd(RemoveIDnums))=false();

 end

 end

 end

 % Now keep all the information in the keep mask

 NonArchCCs=NonArchCCs(KeepMask,:);

 NonArchCCFit=NonArchCCFit(KeepMask);

 NonArchCCFeats=NonArchCCFeats(KeepMask,:);

 NonArchCCFitComp.TotObs=NonArchCCFitComp.TotObs(KeepMask);

 NonArchCCFitComp.TotObsT=NonArchCCFitComp.TotObsT(KeepMask);

 NonArchCCFitComp.TotCCObs=NonArchCCFitComp.TotCCObs(KeepMask);

 NonArchCCFitComp.TotCCObsT=NonArchCCFitComp.TotCCObsT(KeepMask);

 NonArchCCOrder=NonArchCCOrder(KeepMask);

241

 NonArchCCMatchLocs=NonArchCCMatchLocs(:,KeepMask);

 NonArchCCAge=NonArchCCAge(KeepMask);

 clear KeepMask

end

clear NonArchCCAgeLayer

clear LimitMask

clear TabNonArchLayer

% If the user wants to record the best fitness of each order then record

if Param.BestFit

 % Determine the best fitness for each order

 TempFit=[ArchCCFit; NonArchCCFit];

 for i=1:Param.MaxNumFeat

 if i~=Param.MaxNumFeat

 % Then mask by current order

 CurOrderMask=[ArchCCOrder; NonArchCCOrder]==i;

 if sum(CurOrderMask)>0

 % Then record the best fitness

 CCstats.BestFit(Param.CurGen,i)=min(TempFit(CurOrderMask));

 end

 else

 % The mask by the current order and any larger order

 CurOrderMask=[ArchCCOrder; NonArchCCOrder]>=i;

242

 if sum(CurOrderMask)>0

 % Then record the best fitness

 CCstats.BestFit(Param.CurGen,i)=min(TempFit(CurOrderMask));

 end

 end

 clear CurOrderMask

 end

 clear i

 clear TempFit

end

8.1.2.3 Conjunctive Clause Evolution (CCEvolution)

function [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,...

 ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,...

 NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,...

 NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=...

 CCEvolution(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,...

 ArchCCOrder,ArchCCMatchLocs,ArchCCAge,...

 NonArchCCs,NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,...

 NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,...

 DataBin,NaNMask,TargetClass,Param,CCstats)

%%

% Created by John Hanley

243

%

% October 18, 2016

% Last Updated: October 18, 2016

%

% CCEvolution evolves the population of conjunctive clauses.

%

% Inputs:

% ArchCCs = The archived conjunctive clauses.

% ArchCCFeats = The features present in the archived conjunctive clauses.

% ArchCCFit = The fitness of the archived conjunctive clauses.

% ArchCCFitComp = The raw inputs used to calculate the archived fitness.

% ArchCCOrder = The order of the archived conjunctive clause.

% ArchCCMatchLocs = A logical matrix that shows which observations the

% archived conjunctive clauses match.

% ArchCCAge = The age of the archived conjunctive clause.

% NonArchCCs = The non-archived conjunctive clauses.

% NonArchCCFeats = The features present in the non-archived conjunctive

% clauses.

% NonArchCCFit = The fitness of the non-archived conjunctive clauses.

% NonArchCCFitComp = The raw inputs used to calculate the non-archived

% fitness.

% NonArchCCOrder = The order of the non-archived conjunctive clause.

244

% NonArchCCMatchLocs = A logical matrix that shows which observations the

% non-archived conjunctive clauses match.

% NonArchCCAge = The age of the non-archived conjunctive clause.

% DataBin = The data as a binary logical matrix.

% NaNMask = A logical mask of the location of the NaN values in the

% dataset.

% TargetClass = A logical vector of the observations that have the output

% class.

% Param = A structure array with many of the parameters for the algorithm.

% CCstats = Structure array statistics on the conjunctive clauses.

%

% Outputs:

% ArchCCs = The archived conjunctive clauses.

% ArchCCFeats = The features present in the archived conjunctive clauses.

% ArchCCFit = The fitness of the archived conjunctive clauses.

% ArchCCFitComp = The raw inputs used to calculate the archived fitness.

% ArchCCOrder = The order of the archived conjunctive clause.

% ArchCCMatchLocs = A logical matrix that shows which observations the

% archived conjunctive clauses match.

% ArchCCAge = The age of the archived conjunctive clause.

% NonArchCCs = The non-archived conjunctive clauses.

% NonArchCCFeats = The features present in the non-archived conjunctive

245

% clauses.

% NonArchCCFit = The fitness of the non-archived conjunctive clauses.

% NonArchCCFitComp = The raw inputs used to calculate the non-archived

% fitness.

% NonArchCCOrder = The order of the non-archived conjunctive clause.

% NonArchCCMatchLocs = A logical matrix that shows which observations the

% non-archived conjunctive clauses match.

% NonArchCCAge = The age of the non-archived conjunctive clause.

% Param = A structure array with many of the parameters for the algorithm.

% CCstats = Structure array statistics on the conjunctive clauses.

%

%%

% Calculate the age layer of the non-archived population

NonArchCCAgeLayer=ceil(NonArchCCAge/Param.GENn);

% If there is arhive layer, then add an archive age layer that is one more

% than the max age-layer in non-archived population

if ~isempty(ArchCCAge)

 % Check to make sure there is an non-archive population

 if ~isempty(NonArchCCAge)

 ArchCCAgeLayer=ones(size(ArchCCAge))+max(NonArchCCAgeLayer);

 else

 ArchCCAgeLayer=ones(size(ArchCCAge));

246

 end

end

% First determine if there is an archive population and how big the

% archive population is

if length(ArchCCFit)>Param.ArchOff

 % Then need to select offspring to undergo mutation

 % Sort the Archived CCs by ArchCCAge

 [~, ID]=sort(ArchCCAge);

 % Determine the number of offspring per feature

 NumOffPerFeat=floor(Param.ArchOff/Param.NumFeat);

 % Determine the number of times the features are present in the archive

 PosFeatTots=sum(ArchCCFeats);

 % Now set any of the feat Totals greater than NumOffPerFeat to

 % NumOffPerFeat

 PosFeatTots(PosFeatTots>NumOffPerFeat)=NumOffPerFeat;

 % Now sum the sorted offsrping for number of times feature is

 % present

 CurFeatTotals=sum(ArchCCFeats(ID(1:Param.ArchOff),:));

 % Determine if the features are present the requisite number of

 % times

 if sum(CurFeatTotals>=PosFeatTots)==Param.NumFeat

 % Create a selected CC vector

247

 SelCCVec=false(size(ArchCCFit));

 % Now set 1:Param.ArchOff to true

 SelCCVec(1:Param.ArchOff)=true();

 % set the number of archived offspring

 NumArchOff=sum(SelCCVec);

 % Then the selected CCs have enough diversity

 MateCC=[ArchCCs(ID(SelCCVec),:);...

 ArchCCs(ID(~SelCCVec),:);...

 NonArchCCs];

 MateCCFeats=[ArchCCFeats(ID(SelCCVec),:);...

 ArchCCFeats(ID(~SelCCVec),:);...

 NonArchCCFeats];

 MateCCFit=[ArchCCFit(ID(SelCCVec));...

 ArchCCFit(ID(~SelCCVec));...

 NonArchCCFit];

 MateCCAge=[ArchCCAge(ID(SelCCVec));...

 ArchCCAge(ID(~SelCCVec));...

 NonArchCCAge];

 MateCCAgeLayer=[ArchCCAgeLayer(ID(SelCCVec));...

 ArchCCAgeLayer(ID(~SelCCVec));...

 NonArchCCAgeLayer];

 else

248

 % Need to smartly select the features to help with

 % diversity

 % Find the features that did not meet the requirements

 % in the first pop

 ProbFeatLocs=find(CurFeatTotals<PosFeatTots);

 % For efficiency

 ProbFeatLogVec=false(size(ArchCCFit));

 % For each problem feature find the least evolved CCs

 for i=1:length(ProbFeatLocs)

 % find the CCs with the current feature

 CurFeatCCs=ArchCCFeats(ID,ProbFeatLocs(i));

 % Select the NumOffPerFeat first CCs

 TempMask=CurFeatCCs&cumsum(CurFeatCCs)<= ...

 PosFeatTots(ProbFeatLocs(i));

 % Now set the TempMask locations ot true

 ProbFeatLogVec(TempMask)=true();

 clear CurFeatCCs

 clear TempMask

 end

 % Now determine if there is any overlap between the

 % offspring origingall selected and the ProbFeatLocs

 NumOverlap=sum(ProbFeatLogVec(1:Param.ArchOff));

249

 % Determine the number selected

 NumSel=sum(ProbFeatLogVec);

 % Now subtract NumOverlap from NumSel

 DiffSelOver=NumSel-NumOverlap;

 clear NumOverlap

 clear NumSel

 % Create a new vector for the selected features

 SelCCVec=false(size(ArchCCFit));

 SelCCVec(1:Param.ArchOff-DiffSelOver)=true();

 SelCCVec(ProbFeatLogVec)=true();

 % Determine if all of the features are now represented

 NewFeatTots=sum(ArchCCFeats(ID(SelCCVec),:));

 % Determine if there are any NewFeatTots that now have

 % features that are not included in the first group.

 if sum(NewFeatTots<PosFeatTots)>0

 % Then some of the features that were not problematic

 % before are now problematic so go through based on the

 % most problematic to least to select the CCs

 [~,SortTotID]=sort(NewFeatTots);

 % Remove features that were already selected

 SortTotID=setdiff(SortTotID,ProbFeatLocs);

 for ii=1:length(SortTotID)

250

 % find the CCs with the current feature

 CurFeatCCs=ArchCCFeats(ID,SortTotID(ii));

 % Select the NumOffPerFeat first CCs

 TempMask=CurFeatCCs&cumsum(CurFeatCCs)<= ...

 PosFeatTots(SortTotID(ii));

 % Now set the TempMask locations to true

 ProbFeatLogVec(TempMask)=true();

 clear CurFeatCCs

 clear TempMask

 % Determine if the minimum has been found for each

 % feature remaining in SortTotID

 NewTots=sum(ArchCCFeats(ID(ProbFeatLogVec),SortTotID));

 if sum(NewTots>=PosFeatTots(SortTotID))==length(SortTotID)

 % Then break

 break

 end

 end

 % Determine the total ProbFeatLogVec

 if sum(ProbFeatLogVec)==Param.ArchOff

 % Then set ProbFeatLogVec to the logical index

 % vector

 SelCCVec=false(size(ArchCCFit));

251

 SelCCVec(ProbFeatLogVec)=true();

 else

 % Add CCs to get to the total

 % Determine the number of CCs to add

 Num2Add=Param.ArchOff-sum(ProbFeatLogVec);

 % Determine the cumsum of ~ProbFeatLogVec

 CumsumProb=cumsum(~ProbFeatLogVec);

 % Now create a mask of

 TempMask=CumsumProb<=Num2Add;

 SelCCVec=false(size(ArchCCFit));

 SelCCVec(ProbFeatLogVec)=true();

 SelCCVec(TempMask)=true();

 end

 end

 % set the number of archived offspring

 NumArchOff=sum(SelCCVec);

 % Create the MatingPop

 MateCC=[ArchCCs(ID(SelCCVec),:);...

 ArchCCs(ID(~SelCCVec),:);...

 NonArchCCs];

 MateCCFeats=[ArchCCFeats(ID(SelCCVec),:);...

 ArchCCFeats(ID(~SelCCVec),:);...

252

 NonArchCCFeats];

 MateCCFit=[ArchCCFit(ID(SelCCVec));...

 ArchCCFit(ID(~SelCCVec));...

 NonArchCCFit];

 MateCCAge=[ArchCCAge(ID(SelCCVec));...

 ArchCCAge(ID(~SelCCVec));...

 NonArchCCAge];

 MateCCAgeLayer=[ArchCCAgeLayer(ID(SelCCVec));...

 ArchCCAgeLayer(ID(~SelCCVec));...

 NonArchCCAgeLayer];

 end

elseif ~isempty(ArchCCFit)

 % Then all archived offspring will be selected

 MateCC=[ArchCCs; NonArchCCs];

 MateCCFeats=[ArchCCFeats; NonArchCCFeats];

 MateCCFit=[ArchCCFit; NonArchCCFit];

 MateCCAge=[ArchCCAge; NonArchCCAge];

 MateCCAgeLayer=[ArchCCAgeLayer; NonArchCCAgeLayer];

 % Set the SelCCVec to the length of ArchCCFit and to True

 SelCCVec=true(size(ArchCCFit));

 % Set the number of offspring

253

 NumArchOff=sum(SelCCVec);

 % set ID

 ID=1:length(ArchCCAge);

else

 % set the number of ArchOffsping to zero

 NumArchOff=0;

 % Then there is no archive population

 % Then the Mating population is simply the non-archive

 % population

 MateCC=NonArchCCs;

 MateCCFeats=NonArchCCFeats;

 MateCCFit=NonArchCCFit;

 MateCCAge=NonArchCCAge;

 MateCCAgeLayer=NonArchCCAgeLayer;

end

% For Effificiency

EvoCC=false(NumArchOff+length(NonArchCCFit),Param.NumBinCols);

EvoCCFeats=false(NumArchOff+length(NonArchCCFit),Param.NumFeat);

EvoCCFit=NaN(NumArchOff+length(NonArchCCFit),1);

EvoCCFitComp.TotObs=NaN(NumArchOff+length(NonArchCCFit),1);

EvoCCFitComp.TotObsT=NaN(NumArchOff+length(NonArchCCFit),1);

EvoCCFitComp.TotCCObs=NaN(NumArchOff+length(NonArchCCFit),1);

254

EvoCCFitComp.TotCCObsT=NaN(NumArchOff+length(NonArchCCFit),1);

EvoCCOrder=NaN(NumArchOff+length(NonArchCCFit),1);

EvoCCMatchLocs=false(Param.NumObs,NumArchOff+length(NonArchCCFit));

EvoCCAge=NaN(NumArchOff+length(NonArchCCFit),1);

EvoArchiveMask=false(NumArchOff+length(NonArchCCFit),1);

% If there is an ArchPop then perform one task otherwise another

if NumArchOff>0

 % Then an archive age layer is present

 % Determine the number of age layers

 UniqueLayers=unique(MateCCAgeLayer);

 NumLayers=length(UniqueLayers);

 % Initialize start

 start=1;

 % Run a for loop so that each age layer can undergo either

 % mutation or crossover

 for i=1:NumLayers

 % perform crossover or mutation on the current layer

 CurLayer=UniqueLayers(NumLayers-i+1);

 % Create a mask for the CCs that will evolve

 CurMask=MateCCAgeLayer==CurLayer;

 % Now select the necessary data for mutation or crossover

 CurMateCC=MateCC(CurMask,:);

255

 CurCCFeats=MateCCFeats(CurMask,:);

 CurCCFit=MateCCFit(CurMask);

 CurCCAge=MateCCAge(CurMask);

 % If this is the 1st loop then CurNumOff=ArchNumOff

 if i~=1

 CurNumOff=sum(CurMask);

 else

 CurNumOff=NumArchOff;

 % Also add 1 to the age of the selected archived offspring

 CurCCAge(1:NumArchOff)=CurCCAge(1:NumArchOff)+1;

 end

 clear CurMask

 % If the current layer isn't one then add the younger layer

 % to mate with

 if CurLayer~=1

 % Add a layer to the current layer for mating

 CurMask=MateCCAgeLayer==CurLayer-1;

 CurMateCC=[CurMateCC; MateCC(CurMask,:)];

 CurCCFeats=[CurCCFeats; MateCCFeats(CurMask,:)];

 CurCCFit=[CurCCFit; MateCCFit(CurMask)];

 CurCCAge=[CurCCAge; MateCCAge(CurMask)];

 clear CurMask

256

 end

 % Now perform crossover and or mutation

 [OffCC, OffCCFeats, OffCCFit, OffCCFitComp, OffCCOrder,...

 OffCCMatchLocs, OffCCAge, ArchiveMask, CCstats]=...

 CCMutCross(CurMateCC,CurCCFeats,CurCCFit,CurCCAge,...

 CurNumOff,Param,DataBin,NaNMask,TargetClass,CCstats);

 clear CurLayer

 clear CurMateCC

 clear CurCCFeats

 clear CurCCAge

 clear CurNumOff

 % Now save the offspring

 % Determine the number of offspring

 NumOff=length(ArchiveMask);

 EvoCC(start:start+NumOff-1,:)=OffCC;

 EvoCCFeats(start:start+NumOff-1,:)=OffCCFeats;

 EvoCCFit(start:start+NumOff-1)=OffCCFit;

 EvoCCFitComp.TotObs(start:start+NumOff-1)=OffCCFitComp.TotObs;

 EvoCCFitComp.TotObsT(start:start+NumOff-1)=OffCCFitComp.TotObsT;

 EvoCCFitComp.TotCCObs(start:start+NumOff-1)=OffCCFitComp.TotCCObs;

 EvoCCFitComp.TotCCObsT(start:start+NumOff-1)= ...

 OffCCFitComp.TotCCObsT;

257

 EvoCCOrder(start:start+NumOff-1)=OffCCOrder;

 EvoCCMatchLocs(:,start:start+NumOff-1)=OffCCMatchLocs;

 EvoCCAge(start:start+NumOff-1)=OffCCAge;

 EvoArchiveMask(start:start+NumOff-1)=ArchiveMask;

 % update the start

 start=start+NumOff;

 clear NumOff

 end

 % Increase only the age of the archive population that underwent either

 % mutation or crossover

 ArchCCAge(ID(SelCCVec))=ArchCCAge(ID(SelCCVec))+1;

else

 % then age layers do not have an archive layer

 % Determine the number of age layers

 UniqueLayers=unique(MateCCAgeLayer);

 NumLayers=length(UniqueLayers);

 % set a start counter

 start=1;

 % Run a for loop so that each age layer can undergo either

 % mutation or crossover

 for i=1:NumLayers

 % perform crossover or mutation on the current layer

258

 CurLayer=UniqueLayers(NumLayers-i+1);

 % Create a mask for the CCs that will evolve

 CurMask=MateCCAgeLayer==CurLayer;

 % Now select the necessary data for mutation or crossover

 CurMateCC=MateCC(CurMask,:);

 CurCCFeats=MateCCFeats(CurMask,:);

 CurCCFit=MateCCFit(CurMask);

 CurCCAge=MateCCAge(CurMask);

 CurNumOff=sum(CurMask);

 clear CurMask

 % If the current layer isn't one then add the younger layer

 % to mate with

 if CurLayer~=1

 % Add a layer to the current layer for mating

 CurMask=MateCCAgeLayer==CurLayer-1;

 CurMateCC=[CurMateCC; MateCC(CurMask,:)];

 CurCCFeats=[CurCCFeats; MateCCFeats(CurMask,:)];

 CurCCFit=[CurCCFit; MateCCFit(CurMask)];

 CurCCAge=[CurCCAge; MateCCAge(CurMask)];

 clear CurMask

 end

 % Now perform crossover and or mutation

259

 [OffCC, OffCCFeats, OffCCFit, OffCCFitComp, OffCCOrder,...

 OffCCMatchLocs, OffCCAge, ArchiveMask, CCstats]=...

 CCMutCross(CurMateCC,CurCCFeats,CurCCFit,CurCCAge,...

 CurNumOff,Param,DataBin,NaNMask,TargetClass,CCstats);

 clear CurLayer

 clear CurMateCC

 clear CurCCFeats

 clear CurCCAge

 clear CurNumOff

 % Now save the offspring

 % Determine the number of offspring

 NumOff=length(ArchiveMask);

 EvoCC(start:start+NumOff-1,:)=OffCC;

 EvoCCFeats(start:start+NumOff-1,:)=OffCCFeats;

 EvoCCFit(start:start+NumOff-1)=OffCCFit;

 EvoCCFitComp.TotObs(start:start+NumOff-1)=OffCCFitComp.TotObs;

 EvoCCFitComp.TotObsT(start:start+NumOff-1)=OffCCFitComp.TotObsT;

 EvoCCFitComp.TotCCObs(start:start+NumOff-1)=OffCCFitComp.TotCCObs;

 EvoCCFitComp.TotCCObsT(start:start+NumOff-1)=...

 OffCCFitComp.TotCCObsT;

 EvoCCOrder(start:start+NumOff-1)=OffCCOrder;

 EvoCCMatchLocs(:,start:start+NumOff-1)=OffCCMatchLocs;

260

 EvoCCAge(start:start+NumOff-1)=OffCCAge;

 EvoArchiveMask(start:start+NumOff-1)=ArchiveMask;

 % update the start

 start=start+NumOff;

 clear NumOff

 end

end

% Reduce offspring to only those that were actually kept

EvoCC=EvoCC(1:start-1,:);

EvoCCFeats=EvoCCFeats(1:start-1,:);

EvoCCFit=EvoCCFit(1:start-1);

EvoCCFitComp.TotObs=EvoCCFitComp.TotObs(1:start-1);

EvoCCFitComp.TotObsT=EvoCCFitComp.TotObsT(1:start-1);

EvoCCFitComp.TotCCObs=EvoCCFitComp.TotCCObs(1:start-1);

EvoCCFitComp.TotCCObsT=EvoCCFitComp.TotCCObsT(1:start-1);

EvoCCOrder=EvoCCOrder(1:start-1);

EvoCCMatchLocs=EvoCCMatchLocs(:,1:start-1);

EvoCCAge=EvoCCAge(1:start-1);

EvoArchiveMask=EvoArchiveMask(1:start-1);

clear start

% Now extract the archived population

ArchCCs=[ArchCCs; EvoCC(EvoArchiveMask,:)];

261

ArchCCFeats=[ArchCCFeats; EvoCCFeats(EvoArchiveMask,:)];

ArchCCFit=[ArchCCFit; EvoCCFit(EvoArchiveMask)];

ArchCCFitComp.TotObs=[ArchCCFitComp.TotObs; ...

 EvoCCFitComp.TotObs(EvoArchiveMask)];

ArchCCFitComp.TotObsT=[ArchCCFitComp.TotObsT; ...

 EvoCCFitComp.TotObsT(EvoArchiveMask)];

ArchCCFitComp.TotCCObs=[ArchCCFitComp.TotCCObs; ...

 EvoCCFitComp.TotCCObs(EvoArchiveMask)];

ArchCCFitComp.TotCCObsT=[ArchCCFitComp.TotCCObsT; ...

 EvoCCFitComp.TotCCObsT(EvoArchiveMask)];

ArchCCOrder=[ArchCCOrder; EvoCCOrder(EvoArchiveMask)];

ArchCCMatchLocs=[ArchCCMatchLocs EvoCCMatchLocs(:,EvoArchiveMask)];

ArchCCAge=[ArchCCAge; EvoCCAge(EvoArchiveMask)];

% Now extract the non-archived population

NonArchCCs=[NonArchCCs; EvoCC(~EvoArchiveMask,:)];

NonArchCCFeats=[NonArchCCFeats; EvoCCFeats(~EvoArchiveMask,:)];

NonArchCCFit=[NonArchCCFit; EvoCCFit(~EvoArchiveMask)];

NonArchCCFitComp.TotObs=[NonArchCCFitComp.TotObs; ...

 EvoCCFitComp.TotObs(~EvoArchiveMask)];

NonArchCCFitComp.TotObsT=[NonArchCCFitComp.TotObsT; ...

 EvoCCFitComp.TotObsT(~EvoArchiveMask)];

NonArchCCFitComp.TotCCObs=[NonArchCCFitComp.TotCCObs; ...

262

 EvoCCFitComp.TotCCObs(~EvoArchiveMask)];

NonArchCCFitComp.TotCCObsT=[NonArchCCFitComp.TotCCObsT; ...

 EvoCCFitComp.TotCCObsT(~EvoArchiveMask)];

NonArchCCOrder=[NonArchCCOrder; EvoCCOrder(~EvoArchiveMask)];

NonArchCCMatchLocs=[NonArchCCMatchLocs

EvoCCMatchLocs(:,~EvoArchiveMask)];

NonArchCCAge=[NonArchCCAge; EvoCCAge(~EvoArchiveMask)];

clear EvoArchiveMask

8.1.2.4 Conjunctive Clause Mutation/Crossover (CCMutCross)

function [OffCC, OffCCFeats, OffCCFit, OffCCFitComp, OffCCOrder,...

 OffCCMatchLocs, OffCCAge, ArchiveMask, CCstats]=...

CCMutCross(MateCC,MateCCFeats,MateCCFit,MateCCAge,NumOff,Param,...

 DataBin,NaNMask,TargetClass,CCstats)

%%

% Created by John Hanley

%

% October 17, 2016

% Last updated: October 18, 2016

%

% CCMutCross performs mutation or crossover for my evolutionary algoirthm.

% The crossover is a little different than typical crossover since the

263

% tournament selection selects the potential mate with the most features in

% common. Also, the crossover will take active features from both parents.

%

% Inputs:

% MateCC = The mating population of conjunctive clauses. Only conjunctive

% clauses 1:NumOff will undergo crossover or mutation

% MateCCFeats = The features present for each of the conjunctive clauses in

% the mating population.

% MateCCFit = The fitness of the mates.

% MateCCAge = The age of the conjunctive clauses in the mating population.

% NumOff = The number of conjunctive clauses that will undergo either

% crossover or mutation and produce one offspring each.

% Param = general parameters for the evolutionary algorithm.

% DataBin = The data as a binary logical matrix.

% NaNMask = A logical mask of the location of the NaN values in the

% dataset.

% TargetClass = A logical vector of the observations that have the output

% class.

% CCstats = Structure array statistics on the conjunctive clauses.

%

% Outputs:

% OffCC = The conjunctive clauses of the offspring of either crossover or

264

% mutation.

% OffCCFeats = The features that are present in the OffCC.

% OffCCFit = The fitness of the OffCC using the hypergeometric PMF.

% OffCCFitComp = The raw values that are fed into the fitness function.

% OffCCOrder = The order of the conjunctive clauses.

% OffCCMatchLocs = A logical matrix indicating which observations the OffCC

% matches.

% OffCCAge = The age of the OffCC, calculated as the maximum age of the

% parents.

% ArchiveMask = A logical mask indicating teh offspring that should be

% archived.

% CCstats = Structure array statistics on the conjunctive clauses.

%

%%

% First determine the number of CCs in the mating Pop

NumCCs=size(MateCC,1);

% First randomly determine which inidividuals will undergo mutation and

% which will undergo crossover

if NumCCs~=1

 % Then randomly select crossover or mutation

 CrossOver=rand(NumOff,1)<Param.Px;

else

265

 CrossOver=false(1);

end

% For efficiency

OffCC=false(NumOff,Param.NumBinCols);

OffCCFeats=false(NumOff,Param.NumFeat);

OffCCFit=NaN(NumOff,1);

OffCCFitComp.TotObs=NaN(NumOff,1);

OffCCFitComp.TotObsT=NaN(NumOff,1);

OffCCFitComp.TotCCObs=NaN(NumOff,1);

OffCCFitComp.TotCCObsT=NaN(NumOff,1);

OffCCOrder=NaN(NumOff,1);

OffCCMatchLocs=false(Param.NumObs,NumOff);

OffCCAge=NaN(NumOff,1);

ArchiveMask=false(NumOff,1);

KeepMask=false(NumOff,1);

% Now run a for loop where each selected individual will either undergo

% mutation or crossover

for i=1:NumOff

 if CrossOver(i)

 % Then the current MateCC will undergo crossover

 % Set up random mate population

 PotMatePop=setdiff(1:NumCCs,i);

266

 % Now randomly select the potential mates

 PotMateInd=randi(NumCCs-1,[Param.TournSize,1]);

 PotMates=PotMatePop(PotMateInd);

 clear PotMatePop

 clear PotMateInd

 % Determine the best feat

 BestMask=MateCCFit(PotMates)==min(MateCCFit(PotMates));

 % If there is more than one mate selected then randomly pick mate

 if sum(BestMask)==1

 % Then rthe the mate ID is easy

 MateID=PotMates(BestMask);

 else

 % Randomly choose a Mate

 PotMates=PotMates(BestMask);

 RandPick=randi(sum(BestMask),1);

 MateID=PotMates(RandPick);

 clear RandPick

 end

 clear PotMates

 % Set the offspring age

 % The age of the offspring is the age of the oldest parent

 OffCCAge(i)=max([MateCCAge(i) MateCCAge(MateID)]);

267

 % Now randomly determine the features from the 1st parent

 P1FeatInd=rand(1,Param.NumFeat)<0.5;

 % Now Determine the parent 1 and 2 CC columns

 P1CCcols=[Param.FeatInd{P1FeatInd}];

 P2CCcols=[Param.FeatInd{~P1FeatInd}];

 % Insert the data for the offspring

 OffCC(i,P1CCcols)=MateCC(i,P1CCcols);

 OffCC(i,P2CCcols)=MateCC(MateID,P2CCcols);

 % Create the feature matrix

 OffCCFeats(i,P1FeatInd)=MateCCFeats(i,P1FeatInd);

 OffCCFeats(i,~P1FeatInd)=MateCCFeats(MateID,~P1FeatInd);

 % check to see if the offsrping is the same as either parent or

 % there are no features selected

 if isequal(OffCC(i,:),MateCC(i,:))||...

 isequal(OffCC(i,:),MateCC(MateID,:))||...

 sum(OffCCFeats(i,:))==0

 % Then switch the offspring

 OffCC(i,P2CCcols)=MateCC(i,P2CCcols);

 OffCC(i,P1CCcols)=MateCC(MateID,P1CCcols);

 OffCCFeats(i,~P1FeatInd)=MateCCFeats(i,~P1FeatInd);

 OffCCFeats(i,P1FeatInd)=MateCCFeats(MateID,P1FeatInd);

 end

268

 clear P1CCcols

 clear P2CCcols

 clear P1FeatInd

 clear MateID

 else

 % Then the current MateCC will undergo mutation

 % First randomly choose which features will undergo mutation

 MutLocs=rand(1,Param.NumFeat)<Param.Pm;

 % If no location was selected then randomly change one feature

 if sum(MutLocs)==0;

 MutLocs(randi(Param.NumFeat))=true();

 end

 % Set the offspring equal to the parent

 OffCC(i,:)=MateCC(i,:);

 OffCCFeats(i,:)=MateCCFeats(i,:);

 OffCCAge(i)=MateCCAge(i);

 % Extract the mutation feature indeces

 MutInd=find(MutLocs);

 clear MutLocs

 % Determine if any of the mutation locations should be made

 % inactive

 InActFeat=rand(1,length(MutInd))<Param.Pwc;

269

 % Check to see that at least one feature will be left active in the

 % offspring

 if sum(InActFeat)==length(MutInd)&&sum(OffCCFeats(i,MutInd))== ...

 sum(OffCCFeats(i,:))

 % Then randomly change one location to false for wildcard

 InActFeat(randi(length(MutInd)))=false();

 end

 % Run a for loop to change the features at each location

 for j=1:length(MutInd)

 % Grab the jth MutInd and determine if the feature is active

 % and if it is active and InActFeat is true then make it

 % inactive

 if OffCCFeats(i,MutInd(j))&&InActFeat(j)

 % Then make the feature inactive

 % First find the index of feature values

 CurInd=[Param.FeatInd{MutInd(j)}];

 % Now set the conjunctive clause here to false

 OffCC(i,CurInd)=false();

 clear CurInd

 % Now set the feature to false

 OffCCFeats(i,MutInd(j))=false();

 elseif ~OffCCFeats(i,MutInd(j))

270

 % Then activate the feature and randomly fill in values

 OffCCFeats(i,MutInd(j))=true();

 % Now determine the datatype of the feature

 if Param.DataType(MutInd(j))==1

 % Then the data is continuous or discrete

 % Determine the CurIndex in the CCs

 CurInd=[Param.FeatInd{MutInd(j)}];

 % Determine the range of the data

 CurRange=length(CurInd);

 % Now randomly select a range that will be covered

 RandSelRange=randi(CurRange-1,1);

 % Now randomly select a lower bound

 LB=randi(CurRange-RandSelRange+1,1);

 % Now calculate the upperbound

 UB=LB+RandSelRange-1;

 clear RandSelRange

 % Create a logical vector the same size as the CurInd

 NewVals=false(1,CurRange);

 clear CurRange

 % Set the new values LB:UB range as true

 NewVals(LB:UB)=true();

 % Insert the new values

271

 OffCC(i,CurInd)=NewVals;

 clear CurInd

 clear LB

 clear UB

 clear NewVals

 elseif Param.DataType(MutInd(j))==2

 % Then the data is categorical

 % Determine the CurIndex in the CCs

 CurInd=[Param.FeatInd{MutInd(j)}];

 % Determine the number of categories of the feature

 CurNumCats=length(CurInd);

 % Determine how many categories will be in the CC

 SelNumCats=randi(CurNumCats-1,1);

 % Randomly select the categories

 SelCats=randperm(CurNumCats,SelNumCats);

 clear SelNumCats

 % Create a logical vector the same size as the CurInd

 NewVals=false(1,CurNumCats);

 clear CurNumCats

 % Now set the selected categories to true

 NewVals(SelCats)=true();

 % Insert the new values

272

 OffCC(i,CurInd)=NewVals;

 clear CurInd

 clear SelCats

 clear NewVals

 elseif Param.DataType(MutInd(j))==3

 % Then the data is unique categorical or binary

 % Determine the CurIndex in the CCs

 CurInd=[Param.FeatInd{MutInd(j)}];

 % Determine the number of categories of the feature

 CurNumCats=length(CurInd);

 % Randomly select a category to put into the CC

 SelCat=randi(CurNumCats,1);

 % Create a logical vector the same size as the CurInd

 NewVals=false(1,CurNumCats);

 clear CurNumCats

 % Now set the selected categories to true

 NewVals(SelCat)=true();

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

 clear CurInd

 clear SelCat

 clear NewVals

273

 end

 else

 % Then the feature is active and should have the values

 % changed

 if Param.DataType(MutInd(j))==1

 % Then the data is continuous or discrete

 % Determine the CurIndex in the CCs

 CurInd=[Param.FeatInd{MutInd(j)}];

 % Determine the number of values for the feature

 CurNumVals=length(CurInd);

 % Determine the values that are currently active

 CurVals=find(OffCC(i,CurInd));

 % Determine the current lower and upper bounds

 LB=min(CurVals);

 UB=max(CurVals);

 % Determine if the lower bound is at the min and if the

 % upper bound is at the max

 if LB==1

 % Then ensure that the upper bound is not changed

 % to the max

 % Randomly choose to change the upper or lower

 % bound unless LB==UB then the UB will be changed

274

 if LB==UB

 % Then the upperbound will be changed

 % Randomly pick a new upper bound

 UB=randi(CurNumVals-2,1)+1;

 elseif randi(2,1)==1

 % then the lower bound will be increased

 % Randomly pick a new lower bound

 LB=randi(UB-1,1)+1;

 else

 % then the upper bound will be changed

 % Determine the values that the upperbound can

 % take

 PosUB=1:CurNumVals-1;

 % Remove the current upper bound from the set

 % of values

 PosUB=setdiff(PosUB,UB);

 % Randomly pick a new upper bound index

 UBInd=randi(length(PosUB),1);

 % Now extract the new upper bound

 UB=PosUB(UBInd);

 clear PosUB

 clear UBInd

275

 end

 elseif UB==CurNumVals

 % Then ensure that the lower bound is not changed

 % to the min

 if LB==UB

 % Then the lower bound will be decreased

 % Randomly pick a new lower bound

 LB=randi(CurNumVals-2,1)+1;

 elseif randi(2,1)==1

 % Then the lower bound will be changed

 % Determine the values the lower bound can take

 PosLB=2:CurNumVals;

 % Remove thecurrent lower bound from the set of

 % values

 PosLB=setdiff(PosLB,LB);

 % Randomly pick a new lower bound index

 LBInd=randi(length(PosLB),1);

 % Now extract the new lower bound

 LB=PosLB(LBInd);

 clear PosLB

 clear LBInd

 else

276

 % Then the upper bound will be decreased

 % Determine the values the upper bound can take

 PosUB=LB:UB-1;

 % Now randomly pick a new UB index

 UBInd=randi(length(PosUB),1);

 % Now extract the new upper bound

 UB=PosUB(UBInd);

 clear PosUB

 clear UBInd

 end

 else

 % Then no need to worry about the LB being the min

 % nor the UB being the max

 % randomly choose if the lower or upper bound will

 % change

 if randi(2,1)==1

 % Then the lower bound will change

 % Determine the possible lower bound values

 PosLB=1:UB;

 % Remove the current lower bound from the set

 % of values

 PosLB=setdiff(PosLB,LB);

277

 % Randomly pick a new LB index

 LBInd=randi(length(PosLB),1);

 % Now extract the new lower bound

 LB=PosLB(LBInd);

 clear PosLB

 clear LBInd

 else

 % Then the upper bound will change

 % Determine the possible upper bound values

 PosUB=LB:CurNumVals;

 % Remove the current upper bound from the set

 % of values

 PosUB=setdiff(PosUB,UB);

 % Randomly pick a new upper bound index

 UBInd=randi(length(PosUB),1);

 % Now extract the new upper bound

 UB=PosUB(UBInd);

 clear PosUB

 clear UBInd

 end

 end

 % Now with the new upper or lower bounds create the new

278

 % values

 % Create a logical vector the same size as the CurInd

 NewVals=false(1,CurNumVals);

 % Insert true between LB and UB

 NewVals(LB:UB)=true();

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

 clear LB

 clear UB

 clear CurInd

 clear NewVals

 clear CurNumVals

 clear CurVals

 elseif Param.DataType(MutInd(j))==2

 % Then the data is categorical

 % Determine the CurIndex in the CCs

 CurInd=[Param.FeatInd{MutInd(j)}];

 % Determine the number of categories of the feature

 CurNumCats=length(CurInd);

 % Determine CurLogic vector of values

 NewVals=OffCC(i,CurInd);

 % Determine the categories that are currently active

279

 CurCats=find(NewVals);

 if length(CurCats)==1

 % Then the category can either be changed or

 % another category can be addded

 % Randomly choose which one will be selected

 RandChoice=randi(2,1);

 if RandChoice==1

 % Then a category will be randomly changed

 % Determine the categories to choose from

 PosCats=setdiff(1:CurNumCats,CurCats);

 % Randomly choose a category to add

 AddInd=randi(length(PosCats),1);

 % Randomly choose a category to remove

 RemoveInd=randi(length(CurCats),1);

 % Now add the category that is meant to be

 % added and remove the category that is meant

 % to be removed

 NewVals(PosCats(AddInd))=true();

 NewVals(CurCats(RemoveInd))=false();

 clear PosCats

 clear AddInd

 clear RemoveInd

280

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

 else

 % Then a category will be randomly added

 % Determine the categories to choose from

 PosCats=setdiff(1:CurNumCats,CurCats);

 % Randomly choose a category to add

 AddInd=randi(length(PosCats),1);

 % Now add the category that is meant to be

 % added and remove the category that is meant

 % to be removed

 NewVals(PosCats(AddInd))=true();

 clear AddInd

 clear PosCats

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

 end

 elseif length(CurCats)==CurNumCats-1

 % Then a category can either be changed or a

 % category can be removed

 % Randomly choose which one will be selected

 RandChoice=randi(2,1);

281

 if RandChoice==1

 % Then a category will be randomly changed

 % Determine the categories to choose from

 PosCats=setdiff(1:CurNumCats,CurCats);

 % Randomly choose a category to add

 AddInd=randi(length(PosCats),1);

 % Randomly choose a category to remove

 RemoveInd=randi(length(CurCats),1);

 % Now add the category that is meant to be

 % added and remove the category that is meant

 % to be removed

 NewVals(PosCats(AddInd))=true();

 NewVals(CurCats(RemoveInd))=false();

 clear PosCats

 clear AddInd

 clear RemoveInd

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

 else

 % Then a category will be randomly removed

 % Randomly choose a category to remove

 RemoveInd=randi(length(CurCats),1);

282

 % Now add the category that is meant to be

 % added and remove the category that is meant

 % to be removed

 NewVals(CurCats(RemoveInd))=false();

 clear RemoveInd

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

 end

 else

 % Then either a category can be chaged a category

 % can be added or a category can be deleted

 % Randomly choose which one will be selected

 RandChoice=randi(3,1);

 if RandChoice==1

 % Then a category will be randomly changed

 % Determine the categories to choose from

 PosCats=setdiff(1:CurNumCats,CurCats);

 % Randomly choose a category to add

 AddInd=randi(length(PosCats),1);

 % Randomly choose a category to remove

 RemoveInd=randi(length(CurCats),1);

 % Now add the category that is meant to be

283

 % added and remove the category that is meant

 % to be removed

 NewVals(PosCats(AddInd))=true();

 NewVals(CurCats(RemoveInd))=false();

 clear PosCats

 clear AddInd

 clear RemoveInd

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

 elseif RandChoice==2

 % Then a category will be randomly added

 % Determine the categories to choose from

 PosCats=setdiff(1:CurNumCats,CurCats);

 % Randomly choose a category to add

 AddInd=randi(length(PosCats),1);

 % Now add the category that is meant to be

 % added and remove the category that is meant

 % to be removed

 NewVals(PosCats(AddInd))=true();

 clear AddInd

 clear PosCats

 % Insert the new values

284

 OffCC(i,CurInd)=NewVals;

 else

 % Then a category will be randomly removed

 % Randomly choose a category to remove

 RemoveInd=randi(length(CurCats),1);

 % Now add the category that is meant to be

 % added and remove the category that is meant

 % to be removed

 NewVals(CurCats(RemoveInd))=false();

 clear RemoveInd

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

 end

 end

 clear CurNumCats

 clear CurCats

 clear RandChoice

 clear CurInd

 clear NewVals

 elseif Param.DataType(MutInd(j))==3

 % Then the data is unique categorical or binary

 % Determine the CurIndex in the CCs

285

 CurInd=[Param.FeatInd{MutInd(j)}];

 % Determine the number of categories of the feature

 CurNumCats=length(CurInd);

 % Determine the category that is currently active

 CurCat=find(OffCC(i,CurInd));

 % Create a list of possible categories that can be

 % activated

 PosCats=setdiff(1:CurNumCats,CurCat);

 clear CurCat

 % Now randomly select a category index

 SelCatInd=randi(CurNumCats-1,1);

 % Grab the selected category

 SelCat=PosCats(SelCatInd);

 clear PosCats

 clear SelCatInd

 % Create a logical vector the same size as the CurInd

 NewVals=false(1,CurNumCats);

 clear CurNumCats

 % Now set the selected categories to true

 NewVals(SelCat)=true();

 % Insert the new values

 OffCC(i,CurInd)=NewVals;

286

 clear CurInd

 clear SelCat

 clear NewVals

 end

 end

 end

 end

 % Calculate the fitness of the newly created offspring

 % First calculate the order of the offspring

 OffCCOrder(i)=sum(OffCCFeats(i,:),2);

 % Create a temporary Order to handle CCs with too many features

 if OffCCOrder(i)<=Param.Thresh(end,1)

 % Then the order is unchanged

 TempOrder=OffCCOrder(i);

 else

 TempOrder=Param.Thresh(end,1);

 end

 % Now Determine the fitness of the new rule

 % First Determine the Total Observations that have data for the

 % selected features

 TotObs=sum(sum(~NaNMask(:,OffCCFeats(i,:)),2)==OffCCOrder(i));

 TotObsT=sum(sum(~NaNMask(TargetClass,OffCCFeats(i,:)),2)== ...

287

 OffCCOrder(i));

 % Now determine which observations the current Conjunctive clause

 % Matches

 % Need to index the columns of the features that are selected

 CurInd=[Param.FeatInd{OffCCFeats(i,:)}];

 % First add the conjunctive clause to the data

 TwosSum=bsxfun(@plus,OffCC(i,CurInd),DataBin(:,CurInd));

 clear CurInd

 % Now create a twos mask

 TwosMask=TwosSum==2;

 clear TwosSum

 % Now determine the total number of twos

 TotTwos=sum(TwosMask,2);

 clear TwosMask

 % Now create an observation match mask

 OffCCMatchLocs(:,i)=TotTwos==OffCCOrder(i);

 clear TotTwos

 % Determine the total number of observations that match and are target

 % class

 TotCCObs=sum(OffCCMatchLocs(:,i));

 TotCCObsT=sum(OffCCMatchLocs(TargetClass,i));

 % If TotCCObsT/TotCCObs > TotObsT/TotObs then evaluate the fitness of

288

 % the Conjunctive clause using hypergeometric PMF

 if TotCCObsT/TotCCObs>TotObsT/TotObs

 % Calculate the fitness

 OffCCFit(i)=hygepdf(TotCCObsT,TotObs,TotObsT,TotCCObs);

 % Update the keep mask

 KeepMask(i)=true();

 % Determine if the CC is archivable

 % First extract the order mask

 OrderMask=Param.Thresh(:,1)==TempOrder;

 if sum(OrderMask)==0

 % Then set the last OrderMask to true

 OrderMask(end)=true();

 end

 ArchiveMask(i)=OffCCFit(i)<=Param.Thresh(OrderMask,2);

 if ArchiveMask(i)

 % Then record an archived evaluation

 CCstats.EvalsArchive(Param.CurGen,TempOrder)=...

 CCstats.EvalsArchive(Param.CurGen,TempOrder)+1;

 else

 % Record a non-archived evaluation

 CCstats.EvalsNonArchive(Param.CurGen,TempOrder)=...

 CCstats.EvalsNonArchive(Param.CurGen,TempOrder)+1;

289

 end

 clear OrderMask

 else

 OffCCFit(i)=1;

 end

 % Record the total number of evaluations for the current order

 CCstats.EvalsAll(Param.CurGen,TempOrder)=...

 CCstats.EvalsAll(Param.CurGen,TempOrder)+1;

 % Save the fitness component values

 OffCCFitComp.TotObs(i)=TotObs;

 OffCCFitComp.TotObsT(i)=TotObsT;

 OffCCFitComp.TotCCObs(i)=TotCCObs;

 OffCCFitComp.TotCCObsT(i)=TotCCObsT;

 clear TotObs

 clear TotObsT

 clear TotCCObs

 clear TotCCObsT

 clear TempOrder

end

% Only keep the values in the keep mask

OffCC=OffCC(KeepMask,:);

OffCCFeats=OffCCFeats(KeepMask,:);

290

OffCCFit=OffCCFit(KeepMask,1);

OffCCFitComp.TotObs=OffCCFitComp.TotObs(KeepMask,1);

OffCCFitComp.TotObsT=OffCCFitComp.TotObsT(KeepMask,1);

OffCCFitComp.TotCCObs=OffCCFitComp.TotCCObs(KeepMask,1);

OffCCFitComp.TotCCObsT=OffCCFitComp.TotCCObsT(KeepMask,1);

OffCCOrder=OffCCOrder(KeepMask,1);

OffCCMatchLocs=OffCCMatchLocs(:,KeepMask);

OffCCAge=OffCCAge(KeepMask);

ArchiveMask=ArchiveMask(KeepMask,1);

clear KeepMask

8.1.3 Disjunctive Normal Form EA (DNFEA)

 function [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc,...

 ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,...

 NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ...

 NonArchDNFage, ParamDNF, DNFstats]=...

 DNFEA(CCMatchLocs,TargetClass,ParamDNF)

%%

% Created by John Hanley

%

% October 24, 2016

% Last Updated: October 25, 2016

%

291

% DNFEA is the evolutionary algorithm designed to find the disjunctive

% normal form (DNF) of the conjunctive clauses found using

% the CCEA function.

%

% Inputs:

% CCMatchLocs = A logical matrix where each row represents an observation

% and each column represents a conjunctive clause (CC).

% TargetClass = A logical vector indicating the observations that are part

% of the target class.

% ParamDNF = A structure array with the parameters needed to run the

% algorithm.

% .ALna = Number of non-archived age-layers.

% .GENn = The number of generations until a novel population is

% introduced.

% .POPn = Number of DNFs created in novel population.

% .MAXcc = The maximum number of CCs allowed in novel population

% .TotGens = Total number of generations to run the algorithm.

% .Prx = The probability of crossover.

% .Pm = The probability of loci mutation.

% .Pbf = The probability that mutation is standard bit flip vs

% targeted mutation.

% .Pxf = The Probability that mate is selected based on best

292

% fitness vs other metrics.

% .PxAlt = The cumulative sum for alternative mate selection.

% .PmAlt = The probabilities for targeted mutation (must sum to

% one).

% .TournSize = The size of the tournament for mate selection

% with replacement.

% .NonArchLMax = The maximum number of non-archived DNFs

% allowed in each non-archive layer.

% .ArchOff = The maximum number of archived offsrping that will

% undergo mutation or crossover.

% .Thresh = A matrix with the initial threshold settings. The

% matrix has 4 columns with the first column

% containing all of the orders of the DNFs that the

% user is interested in. For instance if the user

% wants to explore DNFs of orders 1 - 6, then each

% row represents the order. The second column is the

% initial probability threshold [0, 1]. The third

% column is the minimum number of DNFs the user wants

% to save for each order. The fourth and final column

% is the maximum number of DNFs the user wants to

% archive for the given order. If the maximum is

% exceeded then the threshold for the given order is

293

% replaced.

% .BestFit = A logical indicator if the user wants to record the

% the best fit each generation for each order.

%

% Outputs:

% ArchDNF = The archived disjunctive normal form (DNF). Each

% column represents a DNF and each row represents a conjunctive

% clause.

% ArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an ArchDNF.

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF.

% ArchDNFacc = The accuracy of the ArchDNF.

% ArchDNFcov = The coverage of the ArchDNF.

% ArchDNFage = The age of the ArchDNF.

% NonArchDNF = The non-archived disjunctive normal form (DNF).

% Each column represents a DNF and each row represents a

% conjunctive clause.

% NonArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an

% NonArchDNF.

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the

% NonArchDNF.

294

% NonArchDNFacc = The accuracy of the NonArchDNF.

% NonArchDNFcov = The coverage of the NonArchDNF.

% NonArchDNFage = The age of the NonArchDNF.

% ParamDNF = A structure array with the parameters needed to run the

% algorithm.

% DNFstats = A struture array with various statistics on the DNF for each

% generation and each order. The main statistics are the number

% of fitness evaluations and the best fitness each generation

% for each order DNF.

%

%%

% For efficiency

DNFstats.EvalsAll=zeros(ParamDNF.TotGens, ParamDNF.MAXcc);

DNFstats.EvalsArchive=zeros(ParamDNF.TotGens, ParamDNF.MAXcc);

DNFstats.EvalsNonArchive=zeros(ParamDNF.TotGens, ParamDNF.MAXcc);

if ParamDNF.BestFit

 % Then the best fitness for each order for each generation will be

 % recorded

 DNFstats.BestFit=NaN(ParamDNF.TotGens, ParamDNF.MAXcc);

end

% Determine the current number of observations and number of target

% observations

295

ParamDNF.NumObs=length(TargetClass);

ParamDNF.TotTarC=sum(TargetClass);

% Determine the number of conjunctive clauses

ParamDNF.NumCCs=size(CCMatchLocs,2);

% Set the current generation

ParamDNF.CurGen=1;

% first randomly create DNFs

% Maybe create a probability that will pick conjunctive clauses that cover

% target observations that are not well covered in the archiveDNF

[NewDNF, NewDNFMatchLocs, NewDNFfit, NewDNFacc, NewDNFcov,...

 ArchiveMask, DNFstats]=DNFPopInit(CCMatchLocs,TargetClass,...

 ParamDNF,DNFstats);

% Separate into archive and non-archive conjunctive clauses

ArchDNF=NewDNF(ArchiveMask,:);

ArchDNFMatchLocs=NewDNFMatchLocs(:,ArchiveMask);

ArchDNFfit=NewDNFfit(ArchiveMask);

ArchDNFacc=NewDNFacc(ArchiveMask);

ArchDNFcov=NewDNFcov(ArchiveMask);

ArchDNFage=ones(size(ArchDNFfit));

NonArchDNF=NewDNF(~ArchiveMask,:);

NonArchDNFMatchLocs=NewDNFMatchLocs(:,~ArchiveMask);

NonArchDNFfit=NewDNFfit(~ArchiveMask);

296

NonArchDNFacc=NewDNFacc(~ArchiveMask);

NonArchDNFcov=NewDNFcov(~ArchiveMask);

NonArchDNFage=ones(size(NonArchDNFfit));

clear NewDNF

clear NewDNFMatchLocs

clear NewDNFfit

clear NewDNFacc

clear NewDNFcov

clear NewDNFage

clear ArchiveMask

% Clean the DNFs

[ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ArchDNFcov,...

 ArchDNFage, NonArchDNF, NonArchDNFMatchLocs, NonArchDNFfit,...

 NonArchDNFacc, NonArchDNFcov, NonArchDNFage, ParamDNF, ...

 DNFstats]=...

 DNFreducepop(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,ArchDNFacc,...

 ArchDNFcov,ArchDNFage,NonArchDNF,NonArchDNFMatchLocs,...

 NonArchDNFfit,NonArchDNFacc,NonArchDNFcov,NonArchDNFage,...

 ParamDNF,DNFstats);

for gen=2:ParamDNF.TotGens

 % set the current generation

 ParamDNF.CurGen=gen;

297

 % Increase the age of the non-archived population

 NonArchDNFage=NonArchDNFage+1;

 % Determine if a new population should be added

 if mod(gen,ParamDNF.GENn)~=0

 % Then just perform crossover or mutation on population

 [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ...

 ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,...

 NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ...

 NonArchDNFage, DNFstats]=...

 DNFEvolution(ArchDNF,ArchDNFMatchLocs,ArchDNFfit, ...

 ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF, ...

 NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc, ...

 NonArchDNFcov,NonArchDNFage,CCMatchLocs,TargetClass,...

 ParamDNF,DNFstats);

 % Clean the DNFs

 [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ...

 ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,...

 NonArchDNFfit,NonArchDNFacc, NonArchDNFcov, ...

 NonArchDNFage, ParamDNF, DNFstats]=...

 DNFreducepop(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,...

 ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,...

 NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,...

298

 NonArchDNFcov,NonArchDNFage,ParamDNF,DNFstats);

 else

 % Then add a new population and perform crossover or mutation on

 % population

 % first perform mutation or crossover

 % Then just perform crossover or mutation on population

 [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ...

 ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,...

 NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ...

 NonArchDNFage, DNFstats]=...

 DNFEvolution(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,...

 ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,...

 NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,...

 NonArchDNFcov,NonArchDNFage,CCMatchLocs,TargetClass,...

 ParamDNF,DNFstats);

 % Now create a new population of DNFs

 [NewDNF, NewDNFMatchLocs, NewDNFfit, NewDNFacc, NewDNFcov,...

 ArchiveMask, DNFstats]=DNFPopInit(CCMatchLocs,TargetClass,...

 ParamDNF,DNFstats);

 % First set the age of the NewDNF

 NewDNFage=ones(size(NewDNFfit));

 % Now combine the new DNFs with the existing population

299

 ArchDNF=[ArchDNF; NewDNF(ArchiveMask,:)];

 ArchDNFMatchLocs=[ArchDNFMatchLocs ...

 NewDNFMatchLocs(:,ArchiveMask)];

 ArchDNFfit=[ArchDNFfit; NewDNFfit(ArchiveMask)];

 ArchDNFacc=[ArchDNFacc; NewDNFacc(ArchiveMask)];

 ArchDNFcov=[ArchDNFcov; NewDNFcov(ArchiveMask)];

 ArchDNFage=[ArchDNFage; NewDNFage(ArchiveMask)];

 NonArchDNF=[NonArchDNF; NewDNF(~ArchiveMask,:)];

 NonArchDNFMatchLocs=[NonArchDNFMatchLocs...

 NewDNFMatchLocs(:,~ArchiveMask)];

 NonArchDNFfit=[NonArchDNFfit; NewDNFfit(~ArchiveMask)];

 NonArchDNFacc=[NonArchDNFacc; NewDNFacc(~ArchiveMask)];

 NonArchDNFcov=[NonArchDNFcov; NewDNFcov(~ArchiveMask)];

 NonArchDNFage=[NonArchDNFage; NewDNFage(~ArchiveMask)];

 clear NewDNF

 clear NewDNFMatchLocs

 clear NewDNFfit

 clear NewDNFacc

 clear NewDNFcov

 clear NewDNFage

 clear ArchiveMask

 % Clean the DNFs

300

 [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ...

 ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,...

 NonArchDNFfit,NonArchDNFacc, NonArchDNFcov, ...

 NonArchDNFage, ParamDNF, DNFstats]=...

 DNFreducepop(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,...

 ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,...

 NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,...

 NonArchDNFcov,NonArchDNFage,ParamDNF,DNFstats);

 end

end

8.1.3.1 Disjunction of CC Population Initialization (DNFPopInit)

function [NewDNF, NewDNFMatchLocs, NewDNFfit, NewDNFacc, NewDNFcov,...

 ArchiveMask, DNFstats]=...

 DNFPopInit(CCMatchLocs,TargetClass,ParamDNF,DNFstats)

%%

% Created by John Hanley

%

% October 20, 2016

% Last Updated: October 20, 2016

%

% DNFPopInit is the population initialization algorithm for the DNF EA.

%

301

% Inputs:

% CCMatchLocs = A logical matrix with each column representing a

% conjunctive clause and each row representing an

% observation.

% TargetClass = A logical vector indicating the observations that are in

% the target class.

% ParamDNF = A structure array with the parameters needed to run DNFEA.

% DNFstats = Statistics on the DNF evolution.

%

% Outputs:

% NewDNF = The disjunctive normal form index. Each row

% represents a DNF and each column indexes a conjunctive clause.

% NewDNFMatchLocs = Each column represents a DNF and each row represents

% anobservation. NewDNFMatchLocs indexes the

% observations the DNF matches.

% NewDNFfit = The fitness of the DNF using the hypergeometric PMF

% NewDNFacc = The accuracy (% True Positives) of the DNF.

% NewDNFcov = The coverage of the DNF (i.e., % coverage of target

% observations).

% ArchiveMask = A mask indicating the DNFs that should be archived.

% DNFstats = Statistics on the DNF evolution.

%

302

%%

% first randomly create DNFs

% Maybe create a probability that will pick conjunctive clauses that cover

% target observations that are not well covered in the archiveDNF

NewDNF=false(ParamDNF.POPn,ParamDNF.NumCCs);

NewDNFMatchLocs=false(ParamDNF.NumObs,ParamDNF.POPn);

NewDNFfit=NaN(ParamDNF.POPn,1);

NewDNFacc=NaN(ParamDNF.POPn,1);

NewDNFcov=NaN(ParamDNF.POPn,1);

KeepMask=false(ParamDNF.POPn,1);

ArchiveMask=false(ParamDNF.POPn,1);

for i=1:ParamDNF.POPn

 % First randomly determine the number of conjunctive clauses

 NumCCs=randi(ParamDNF.MAXcc,1);

 % Now randomly determine the conjunctive clauses that will be in DNF

 CCind=randperm(ParamDNF.NumCCs,NumCCs);

 % Set the new DNF

 NewDNF(i,CCind)=true();

 % Extract the CCs to create the DNF

 CurCCs=CCMatchLocs(:,CCind);

 clear CCind

 % Now determine the DNFMatchLocs

303

 CurCCsSum=sum(CurCCs,2);

 clear CurCCs

 % DNFMatchLocs is simply a mask of CurCCsSum>0

 NewDNFMatchLocs(:,i)=CurCCsSum>0;

 clear CurCCsSum

 % Now determine the fitness

 ntot=sum(NewDNFMatchLocs(:,i));

 xmatch=sum(NewDNFMatchLocs(TargetClass,i));

 % Ensure the order will be recorded

 if NumCCs>ParamDNF.Thresh(end,1)

 NumCCs=ParamDNF.Thresh(end,1);

 end

 % Determine if the DNF is a target class DNF

 if xmatch/ntot>ParamDNF.TotTarC/ParamDNF.NumObs

 % calculate the fitness function

 NewDNFfit(i)=hygepdf(xmatch,ParamDNF.NumObs,ParamDNF.TotTarC,...

 ntot);

 % Calculate the accuracy and coverage

 NewDNFacc(i)=xmatch/ntot*100;

 NewDNFcov(i)=xmatch/ParamDNF.TotTarC*100;

 % Set the KeepMask to true

 KeepMask(i)=true();

304

 % Determine if the new DNF should be archived

 Tmask=ParamDNF.Thresh(:,1)==NumCCs;

 if NewDNFfit(i)<=ParamDNF.Thresh(Tmask,2)

 % Then it is archiveable

 ArchiveMask(i)=true();

 DNFstats.EvalsArchive(ParamDNF.CurGen,NumCCs)=...

 DNFstats.EvalsArchive(ParamDNF.CurGen,NumCCs)+1;

 else

 % then it is non-archiveable

 DNFstats.EvalsNonArchive(ParamDNF.CurGen,NumCCs)=...

 DNFstats.EvalsNonArchive(ParamDNF.CurGen,NumCCs)+1;

 end

 clear Tmask

 end

 % Record the an evaluation for the current order

 DNFstats.EvalsAll(ParamDNF.CurGen,NumCCs)=...

 DNFstats.EvalsAll(ParamDNF.CurGen,NumCCs)+1;

 clear NumCCs

 clear ntot

 clear xmatch

end

% Keep only the DNFs in the DNF mask

305

NewDNF=NewDNF(KeepMask,:);

NewDNFMatchLocs=NewDNFMatchLocs(:,KeepMask);

NewDNFfit=NewDNFfit(KeepMask,1);

NewDNFacc=NewDNFacc(KeepMask,1);

NewDNFcov=NewDNFcov(KeepMask,1);

ArchiveMask=ArchiveMask(KeepMask,1);

clear KeepMask

8.1.3.2 Remove Repeat DNFs (DNFreducepop)

function [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ...

 ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,...

 NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ...

 NonArchDNFage, ParamDNF, DNFstats]=...

 DNFreducepop(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,...

 ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,...

 NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,...

 NonArchDNFcov,NonArchDNFage,ParamDNF,DNFstats)

%%

% Created by John Hanley

%

% October 24, 2016

% Last Updated: October 24, 2016

%

306

% DNFreducepop will remove any repeat disjunctive normal forms

% (DNFS) and will reduce the DNFs populations if they exceed their

% thresholds.

%

% Inputs:

% ArchDNF = The archived disjunctive normal form (DNF). Each

% column represents a DNF and each row represents a conjunctive

% clause.

% ArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an ArchDNF.

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF.

% ArchDNFacc = The accuracy of the ArchDNF.

% ArchDNFcov = The coverage of the ArchDNF.

% ArchDNFage = The age of the ArchDNF.

% NonArchDNF = The non-archived disjunctive normal form (DNF).

% Each column represents a DNF and each row represents a

% conjunctive clause.

% NonArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an

% NonArchDNF.

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the

% NonArchDNF.

307

% NonArchDNFacc = The accuracy of the NonArchDNF.

% NonArchDNFcov = The coverage of the NonArchDNF.

% NonArchDNFage = The age of the NonArchDNF.

% ParamDNF = A structure array with the parameters needed to run the

% algorithm.

% DNFstats = Statistics on the DNF evolution.

%

% Outputs:

% ArchDNF = The archived disjunctive normal form (DNF). Each

% column represents a DNF and each row represents a conjunctive

% clause.

% ArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an ArchDNF.

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF.

% ArchDNFacc = The accuracy of the ArchDNF.

% ArchDNFcov = The coverage of the ArchDNF.

% ArchDNFage = The age of the ArchDNF.

% NonArchDNF = The non-archived disjunctive normal form (DNF).

% Each column represents a DNF and each row represents a

% conjunctive clause.

% NonArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an

308

% NonArchDNF.

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the

% NonArchDNF.

% NonArchDNFacc = The accuracy of the NonArchDNF.

% NonArchDNFcov = The coverage of the NonArchDNF.

% NonArchDNFage = The age of the NonArchDNF.

% ParamDNF = A structure array with the parameters needed to run the

% algorithm.

% DNFstats = Statistics on the DNF evolution.

%

%%

% Start by reducing the any repeated DNFs in the Archive population

if length(ArchDNFage)>1

 % Then check to see if there are any repeat DNFs

 [ArchDNF, ID]=unique(ArchDNF,'rows');

 % Now save the unique conjunctive clauses

 ArchDNFMatchLocs=ArchDNFMatchLocs(:,ID);

 ArchDNFfit=ArchDNFfit(ID);

 ArchDNFacc=ArchDNFacc(ID);

 ArchDNFcov=ArchDNFcov(ID);

 ArchDNFage=ArchDNFage(ID);

 clear ID

309

end

if length(ArchDNFage)>1

 % Determine if any of the archive bins are over their limit

 % First create a temporary order so that all conjunctive clauses

 % greater than the max bin are set to max bin

 TempOrder=sum(ArchDNF,2);

 % Now tabulate the temporary order

 TabTempOrder=tabulate(TempOrder);

 % Remove any rows that do not have a value

 TabTempOrder=TabTempOrder(TabTempOrder(:,2)>0,:);

 % Compare the tabulated TempOrder to the associated maximum allowable

 % populations

 % Test to see if TabTempOrder are the same

 if size(TabTempOrder,1)==size(ParamDNF.Thresh,1)

 % Then all orders are present

 % Determine how many if any bins are over the limit

 LimitMask=TabTempOrder(:,2)>ParamDNF.Thresh(:,4);

 else

 % Then not all orders are present so need to determine which orders

 % are present

 % First set up a logical vector for efficiency

 LimitMask=false(size(ParamDNF.Thresh,1),1);

310

 % for each of the orders present, determine if the limit is

 % surpassed

 for i=1:size(TabTempOrder,1)

 % Grab the ith order

 CurOrder=TabTempOrder(i,1);

 % Create a mask of the Order

 TempMask=CurOrder==ParamDNF.Thresh(:,1);

 clear CurOrder

 % Now check to see if the limit is surpassed

 LimitMask(TempMask)=TabTempOrder(i,2)> ...

 ParamDNF.Thresh(TempMask,4);

 clear TempMask

 end

 clear i

 end

 % If the sum of limit mask is greater than 0 then at least one bin is

 % over the limit so reduce the population of the bin

 if sum(LimitMask)>0

 % Then for each bin over the limit reduce the bin population

 % Fist determine the orders of conjunctive clauses that are over

 % the mask

 OrderOver=ParamDNF.Thresh(LimitMask,1);

311

 % Create a keep mask for efficiency

 KeepMask=true(size(ArchDNFage));

 for i=1:length(OrderOver)

 % Create a mask of the current OrderOver

 OrderMask=OrderOver(i)==TempOrder;

 % Create a mask for ParamDNF.Thresh Table

 ThreshMask=OrderOver(i)==ParamDNF.Thresh(:,1);

 % Determine if the current threshold is 0

 if OrderOver(i)==1

 % Then randomly choose the order 1 DNFs to keep. This

 % ensures that there is diversity in order 1 since we

 % already know the order 1 population.

 % First determine the number in the mask

 TotOrd1=sum(OrderMask);

 % Now find the minimum allowed

 CurMin=ParamDNF.Thresh(ThreshMask,3);

 % Now find the number to remove

 Num2Remove=TotOrd1-CurMin;

 clear TotOrd1

 % Now find the locations of the Order 1 DNFs

 Ord1Locs=find(OrderMask);

 % Now randomly select the order 1 to remove

312

 Ord1ID=randperm(length(Ord1Locs),Num2Remove);

 clear Num2Remove

 % Create a remove mask

 RemoveMask=false(size(KeepMask));

 % Set the randomly chosen locations to true

 RemoveMask(Ord1Locs(Ord1ID))=true();

 clear Ord1Locs

 clear Ord1ID

 % Now set the RemoveMask locs to false in the KeepMask

 KeepMask(RemoveMask)=false();

 elseif ParamDNF.Thresh(ThreshMask,2)~=0

 % Then need to sort based on fitness

 % sort the fitness of the current order fitness

 CurSortFit=sort(ArchDNFfit(OrderMask));

 % Find the minimum number for this bin

 CurMin=ParamDNF.Thresh(ThreshMask,3);

 % Now use the CurMin to find the fitness of sorted fitness

 % and use this to set the new threshold

 ParamDNF.Thresh(ThreshMask,2)=CurSortFit(CurMin);

 clear CurSortFit

 % Create a Mask with all the DNFs that are below or equal

 % to the threshold

313

 BelowThreshMask=ArchDNFfit<= ...

 ParamDNF.Thresh(ThreshMask,2);

 % Now determine if the number that will be saved is greater

 % than the max

 if sum(BelowThreshMask&OrderMask)<=...

 ParamDNF.Thresh(ThreshMask,4)

 % Now create a mask of all the archived conjunctive

 % clauses with a fitness greater than the new threshold

 AboveThreshMask=ArchDNFfit> ...

 ParamDNF.Thresh(ThreshMask,2);

 % Now create a mask for Removal

 RemoveMask=AboveThreshMask&OrderMask;

 clear AboveThreshMask

 % Now set the RemoveMask locations to false

 KeepMask(RemoveMask)=false();

 else

 % There are too many to save

 % First determine the number in the current order that

 % are equal to the current threshold

 EqualThreshMask=ArchDNFfit== ...

 ParamDNF.Thresh(ThreshMask,2);

 NumEqual=sum(EqualThreshMask&OrderMask);

314

 % Determine the number in the current order that are

 % below the current threshold

 BelowThreshMask=ArchDNFfit< ...

 ParamDNF.Thresh(ThreshMask,2);

 NumBelow=sum(BelowThreshMask&OrderMask);

 % Determine locations of the ones that are equal

 EqualDNFs=find(EqualThreshMask&OrderMask);

 clear EqualThreshMask

 % Determine the number to remove from the above

 Num2Remove=(NumEqual+NumBelow)-CurMin;

 % Now randomly select the ones above to remove

 RandID=randperm(NumEqual,Num2Remove);

 clear Num2Remove

 clear NumBelow

 clear NumEqual

 % Then create a mask of all the archived DNFs with an

 % ArchDNFsum less than the SumThresh

 AboveThreshMask=ArchDNFfit> ...

 ParamDNF.Thresh(ThreshMask,2);

 % Now create a mask for Removal

 RemoveMask=AboveThreshMask&OrderMask;

 clear AboveThreshMask

315

 % Now set the BelowDNFs that were randomly selected to

 % true

 RemoveMask(EqualDNFs(RandID))=true();

 clear EqualDNFs

 clear RandID

 % Now set the RemoveMask locations to false

 KeepMask(RemoveMask)=false();

 end

 clear BelowThreshMask

 else

 % Then need to sort based on sum of acc + cov

 % Determine the sum of acc and cov

 ArchDNFsum=ArchDNFacc+ArchDNFcov;

 % sort the sum of Acc and Cov of the current order

 CurSortFit=sort(ArchDNFsum(OrderMask),'descend');

 % Find the minimum number for this bin

 CurMin=ParamDNF.Thresh(ThreshMask,3);

 % Now determine the sum Thresh

 SumThresh=CurSortFit(CurMin);

 clear CurSortFit

 % Now create a mask of all the archived DNFs with an

 % ArchDNFsum greater than or equal to the SumThresh

316

 AboveThreshMask=ArchDNFsum>=SumThresh;

 % Determine if the number that will be saved in the current

 % order is greater than the maximum allowed to be saved

 if sum(AboveThreshMask&OrderMask)<=...

 ParamDNF.Thresh(ThreshMask,4)

 % Then create a mask of all the archived DNFs with an

 % ArchDNFsum less than the SumThresh

 BelowThreshMask=ArchDNFsum<SumThresh;

 % Now create a mask for Removal

 RemoveMask=BelowThreshMask&OrderMask;

 clear BelowThreshMask

 % Now set the RemoveMask locations to false

 KeepMask(RemoveMask)=false();

 else

 % Then need to randomly choose from the DNFs above the

 % thresholdhold mask

 % First determine the number in the current orer that

 % are equal to the current threshold

 EqualThreshMask=ArchDNFsum==SumThresh;

 NumEqual=sum(EqualThreshMask&OrderMask);

 % Determine the number in the current order that

 % are abovel to the current threshold

317

 AboveThreshMask=ArchDNFsum>SumThresh;

 NumAbove=sum(AboveThreshMask&OrderMask);

 % Determine locations of the ones above

 EqualDNFs=find(EqualThreshMask&OrderMask);

 clear EqualThreshMask

 % Determine the number to remove from the above

 Num2Remove=(NumAbove+NumEqual)-CurMin;

 % Now randomly select the ones above to remove

 RandID=randperm(NumEqual,Num2Remove);

 clear Num2Remove

 clear NumAbove

 clear NumEqual

 % Then create a mask of all the archived DNFs with an

 % ArchDNFsum less than the SumThresh

 BelowThreshMask=ArchDNFsum<SumThresh;

 % Now create a mask for Removal

 RemoveMask=BelowThreshMask&OrderMask;

 clear BelowThreshMask

 % Now set the AboveDNFs that were randomly selected to

 % true

 RemoveMask(EqualDNFs(RandID))=true();

 clear EqualDNFs

318

 clear RandID

 % Now set the RemoveMask locations to false

 KeepMask(RemoveMask)=false();

 end

 clear AboveThreshMask

 clear ArchDNFsum

 clear SumThresh

 end

 clear CurMin

 clear ThreshMask

 clear OrderMask

 clear RemoveMask

 end

 % Determine if any of the removed Archived conjunctive clauses have

 % an age that can be moved to the non-archive population

 % Create a mask of the archive population that is young enough to

 % fit in the non-archive population

 YoungPop=ArchDNFage<=(ParamDNF.GENn*ParamDNF.ALna);

 % Now determine if there are any young popvalues that will be

 % removed

 Move2NonArch=YoungPop&~KeepMask;

 clear YoungPop

319

 if sum(Move2NonArch)>0

 % Then move the selected features to the non-archive population

 NonArchDNF=[NonArchDNF; ArchDNF(Move2NonArch,:)];

 NonArchDNFMatchLocs=[NonArchDNFMatchLocs...

 ArchDNFMatchLocs(:,Move2NonArch)];

 NonArchDNFfit=[NonArchDNFfit; ArchDNFfit(Move2NonArch)];

 NonArchDNFacc=[NonArchDNFacc; ArchDNFacc(Move2NonArch)];

 NonArchDNFcov=[NonArchDNFcov; ArchDNFcov(Move2NonArch)];

 NonArchDNFage=[NonArchDNFage; ArchDNFage(Move2NonArch)];

 clear Move2NonArch

 end

 % Keep only those conjunctive clauses that are in the KeepMask

 ArchDNF=ArchDNF(KeepMask,:);

 ArchDNFMatchLocs=ArchDNFMatchLocs(:,KeepMask);

 ArchDNFfit=ArchDNFfit(KeepMask);

 ArchDNFacc=ArchDNFacc(KeepMask);

 ArchDNFcov=ArchDNFcov(KeepMask);

 ArchDNFage=ArchDNFage(KeepMask);

 clear KeepMask

 end

 clear LimitMask

 clear TabTempOrder

320

end

% Remove Any NonArchAge that is now aged out

YoungMask=NonArchDNFage<(ParamDNF.GENn*ParamDNF.ALna);

% If there are any NonArchCCs to remove then remove them

if sum(~YoungMask)>0

 NonArchDNF=NonArchDNF(YoungMask,:);

 NonArchDNFMatchLocs=NonArchDNFMatchLocs(:,YoungMask);

 NonArchDNFfit=NonArchDNFfit(YoungMask);

 NonArchDNFacc=NonArchDNFacc(YoungMask);

 NonArchDNFcov=NonArchDNFcov(YoungMask);

 NonArchDNFage=NonArchDNFage(YoungMask);

end

clear YoungMask

% Now check to see if the Non-archived population is exceeded for each

% layer

if ~isempty(NonArchDNFage)

 % First determine the non-archive age layers for each conjunctive

 % clause

 NonArchDNFageLayer=ceil(NonArchDNFage/ParamDNF.GENn);

 % Now tabulate the NonArchCCAgeLayers

 TabNonArchLayer=tabulate(NonArchDNFageLayer);

 % Remove any TabNonArchLayer that does not have a value

321

 TabNonArchLayer=TabNonArchLayer(TabNonArchLayer(:,2)>0,:);

 % Determine if any of the TabNonArchLayer is greater than the maximum

 % allowed

 LimitMask=TabNonArchLayer(:,2)>ParamDNF.NonArchLMax;

else

 % Set the limit mask to false

 LimitMask=false();

end

% If any layer is greater then need to remove individuals from the

% non-archive layer

if sum(LimitMask)>0

 % Then determine which layers need to be reduced in size

 Layers=TabNonArchLayer(LimitMask,1);

 % for efficiency create a keep mask

 KeepMask=true(size(NonArchDNFfit));

 for i=1:length(Layers)

 % for each age layer select the most fit

 % First create a layer mask

 LayerMask=NonArchDNFageLayer==Layers(i);

 % Now sort by fitness

 CurSortFit=sort(NonArchDNFfit(LayerMask));

 % set a temporary threshold based on the CurSortFit

322

 TempThresh=CurSortFit(ParamDNF.NonArchLMax);

 clear CurSortFit

 % Now create a mask baed on threshold

 ThreshMask=NonArchDNFfit>TempThresh;

 clear TempThresh

 % Now create a remove mask

 RemoveMask=ThreshMask&LayerMask;

 clear LayerMask

 clear ThreshMask

 % Set all of the RemoveMask locations to false

 KeepMask(RemoveMask)=false();

 clear RemoveMask

 end

 % Now keep all the information in the keep mask

 NonArchDNF=NonArchDNF(KeepMask,:);

 NonArchDNFMatchLocs=NonArchDNFMatchLocs(:,KeepMask);

 NonArchDNFfit=NonArchDNFfit(KeepMask);

 NonArchDNFacc=NonArchDNFacc(KeepMask);

 NonArchDNFcov=NonArchDNFcov(KeepMask);

 NonArchDNFage=NonArchDNFage(KeepMask);

 clear KeepMask

end

323

clear NonArchDNFageLayer

clear LimitMask

clear TabNonArchLayer

% If the user wants to record the best fitness of each order then record

if ParamDNF.BestFit

 % Determine the best fitness for each order

 TempFit=[ArchDNFfit; NonArchDNFfit];

 % Determine the

 for i=1:ParamDNF.MAXcc

 if i~=ParamDNF.MAXcc

 % Then mask by current order

 CurOrderMask=[ArchCCOrder; NonArchCCOrder]==i;

 if sum(CurOrderMask)>0

 % Then record the best fitness

 DNFstats.BestFit(ParamDNF.CurGen,i)= ...

 min(TempFit(CurOrderMask));

 end

 else

 % The mask by the current order and any larger order

 CurOrderMask=[ArchCCOrder; NonArchCCOrder]>=i;

 if sum(CurOrderMask)>0

 % Then record the best fitness

324

 DNFstats.BestFit(ParamDNF.CurGen,i)= ...

 min(TempFit(CurOrderMask));

 end

 end

 clear CurOrderMask

 end

 clear i

 clear TempFit

end

8.1.3.3 Disjunctive Normal Form Evolution (DNFEvolution)

function [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ...

 ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,...

 NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ...

 NonArchDNFage, DNFstats]=...

 DNFEvolution(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,...

 ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,...

 NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,...

 NonArchDNFcov,NonArchDNFage,CCMatchLocs,TargetClass,...

 ParamDNF,DNFstats)

%%

% Created by John Hanley

%

325

% October 24, 2016

% Last Updated: October 24, 2016

%

% DNFEvolution evolves the population of disjunction of conjunctive

% clauses.

%

% Inputs:

% ArchDNF = The archived disjunctive normal forms (DNFs). Each

% column represents a DNF and each row represents a conjunctive

% clause.

% ArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an ArchDNF.

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF.

% ArchDNFacc = The accuracy of the ArchDNF.

% ArchDNFcov = The coverage of the ArchDNF.

% ArchDNFage = The age of the ArchDNF.

% NonArchDNF = The non-archived disjunctive normal form

% (DNF). Each column represents a DNF and each row

% represents a conjunctive clause.

% NonArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an

% NonArchDNF.

326

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the

% NonArchDNF.

% NonArchDNFacc = The accuracy of the NonArchDNF.

% NonArchDNFcov = The coverage of the NonArchDNF.

% NonArchDNFage = The age of the NonArchDNF.

% CCMatchLocs = A logical matrix where each row represents an observation

% and each column represents a conjunctive clause.

% TargetClass = A logical vector indicating which observations are in the

% target class.

% ParamDNF = A structure array with the parameters needed to run the

% algorithm.

% DNFstats = Statistics on the DNF evolution.

%

% Outputs:

% ArchDNF = The archived disjunctive normal form (DNF). Each

% column represents a DNF and each row represents a conjunctive

% clause.

% ArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an ArchDNF.

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF.

% ArchDNFacc = The accuracy of the ArchDNF.

% ArchDNFcov = The coverage of the ArchDNF.

327

% ArchDNFage = The age of the ArchDNF.

% NonArchDNF = The non-archived disjunctive normal form (DNF).

% Each column represents a DNF and each row represents a

% conjunctive clause.

% NonArchDNFMatchLocs = A logical matrix where each row represents an

% observation and each column represents an

% NonArchDNF.

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the

% NonArchDNF.

% NonArchDNFacc = The accuracy of the NonArchDNF.

% NonArchDNFcov = The coverage of the NonArchDNF.

% NonArchDNFage = The age of the NonArchDNF.

% DNFstats = Statistics on the DNF evolution.

%

%%

% Calculate the age layer of the non-archived population

NonArchDNFageLayer=ceil(NonArchDNFage/ParamDNF.GENn);

% If there is arhive layer, then add an archive age layer that is one more

% than the max age-layer in non-archived population

if ~isempty(ArchDNFage)

 % Check to make sure there is an non-archive population

 if ~isempty(NonArchDNFage)

328

 ArchDNFageLayer=ones(size(ArchDNFage))+max(NonArchDNFageLayer);

 else

 ArchDNFageLayer=ones(size(ArchDNFage));

 end

end

% First determine if there is an archive population and how big the

% archive population is

if length(ArchDNFfit)>ParamDNF.ArchOff

 % Then need to select offspring to undergo mutation

 % Sort the Archived DNFs by ArchDNFage

 [~, ID]=sort(ArchDNFage);

 % Create a selected DNF vector

 SelDNFVec=false(size(ArchDNFfit));

 % Now set 1:ParamDNF.ArchOff to true

 SelDNFVec(1:ParamDNF.ArchOff)=true();

 % set the number of archived offspring

 NumArchOff=sum(SelDNFVec);

 % Then the selected DNFs have enough diversity

 MateDNF=[ArchDNF(ID(SelDNFVec),:);...

 ArchDNF(ID(~SelDNFVec),:);...

 NonArchDNF];

 MateDNFfit=[ArchDNFfit(ID(SelDNFVec));...

329

 ArchDNFfit(ID(~SelDNFVec));...

 NonArchDNFfit];

 MateDNFage=[ArchDNFage(ID(SelDNFVec));...

 ArchDNFage(ID(~SelDNFVec));...

 NonArchDNFage];

 MateDNFMatchLocs=[ArchDNFMatchLocs(:,ID(SelDNFVec))...

 ArchDNFMatchLocs(:,ID(~SelDNFVec))...

 NonArchDNFMatchLocs];

 MateDNFageLayer=[ArchDNFageLayer(ID(SelDNFVec));...

 ArchDNFageLayer(ID(~SelDNFVec));...

 NonArchDNFageLayer];

elseif ~isempty(ArchDNFfit)

 % Then all archived offspring will be selected

 MateDNF=[ArchDNF; NonArchDNF];

 MateDNFfit=[ArchDNFfit; NonArchDNFfit];

 MateDNFage=[ArchDNFage; NonArchDNFage];

 MateDNFMatchLocs=[ArchDNFMatchLocs NonArchDNFMatchLocs];

 MateDNFageLayer=[ArchDNFageLayer; NonArchDNFageLayer];

 % Set the SelDNFVec to the lenght of ArchDNFfit and to True

 SelDNFVec=true(size(ArchDNFfit));

 % Set the number of offspring

 NumArchOff=sum(SelDNFVec);

330

 % set ID

 ID=1:length(ArchDNFage);

else

 % set the number of ArchOffsping to zero

 NumArchOff=0;

 % Then there is no archive population

 % Then the Mating population is simply the nonarchive

 % population

 MateDNF=NonArchDNF;

 MateDNFfit=NonArchDNFfit;

 MateDNFage=NonArchDNFage;

 MateDNFMatchLocs=NonArchDNFMatchLocs;

 MateDNFageLayer=NonArchDNFageLayer;

end

% For Effificiency

EvoDNF=false(NumArchOff+length(NonArchDNFfit),ParamDNF.NumCCs);

EvoDNFMatchLocs=false(ParamDNF.NumObs,NumArchOff+length(NonArchDNFfit

));

EvoDNFfit=NaN(NumArchOff+length(NonArchDNFfit),1);

EvoDNFacc=NaN(NumArchOff+length(NonArchDNFfit),1);

EvoDNFcov=NaN(NumArchOff+length(NonArchDNFfit),1);

EvoDNFage=NaN(NumArchOff+length(NonArchDNFfit),1);

331

EvoArchiveMask=false(NumArchOff+length(NonArchDNFfit),1);

% If there is an ArchPop then perform one task otherwise another

if NumArchOff>0

 % Then an archive age layer is present

 % Determine the number of age layers

 UniqueLayers=unique(MateDNFageLayer);

 NumLayers=length(UniqueLayers);

 % Initialize start

 start=1;

 % Run a for loop so that each age layer can undergo either

 % mutation or crossover

 for i=1:NumLayers

 % perform crossover or mutation on the current layer

 CurLayer=UniqueLayers(NumLayers-i+1);

 % Create a mask for the DNFs that will evolve

 CurMask=MateDNFageLayer==CurLayer;

 % Now select the necessary data for mutation or crossover

 CurMateDNF=MateDNF(CurMask,:);

 CurMateDNFfit=MateDNFfit(CurMask);

 CurMateDNFage=MateDNFage(CurMask);

 CurDNFMatchLocs=MateDNFMatchLocs(:,CurMask);

 % If this is the 1st loop then CurNumOff=ArchNumOff

332

 if i~=1

 CurNumOff=sum(CurMask);

 else

 CurNumOff=NumArchOff;

 % Also add 1 to the age of the selected archived offspring

 CurMateDNFage(1:NumArchOff)=CurMateDNFage(1:NumArchOff)+1;

 end

 clear CurMask

 % If the current layer isn't one then add the younger layer

 % to mate with

 if CurLayer~=1

 % Add a layer to the current layer for mating

 CurMask=MateDNFageLayer==CurLayer-1;

 CurMateDNF=[CurMateDNF; MateDNF(CurMask,:)];

 CurMateDNFfit=[CurMateDNFfit; MateDNFfit(CurMask)];

 CurMateDNFage=[CurMateDNFage; MateDNFage(CurMask)];

 CurDNFMatchLocs=[CurDNFMatchLocs ...

 MateDNFMatchLocs(:,CurMask)];

 clear CurMask

 end

 % Now perform crossover and or mutation

 [OffDNF, OffDNFMatchLocs, OffDNFfit, OffDNFacc, OffDNFcov,...

333

 OffDNFage, ArchiveMask, DNFstats]=...

 DNFMutCross(CurMateDNF,CurMateDNFfit,CurMateDNFage,...

 CurDNFMatchLocs,CCMatchLocs,TargetClass,CurNumOff,...

 ParamDNF,DNFstats);

 clear CurLayer

 clear CurMateDNF

 clear CurMateDNFfit

 clear CurMateDNFage

 clear CurDNFMatchLocs

 clear CurNumOff

 % Now save the offspring

 % Determine the number of offspring

 NumOff=length(ArchiveMask);

 EvoDNF(start:start+NumOff-1,:)=OffDNF;

 EvoDNFMatchLocs(:,start:start+NumOff-1)=OffDNFMatchLocs;

 EvoDNFfit(start:start+NumOff-1)=OffDNFfit;

 EvoDNFacc(start:start+NumOff-1)=OffDNFacc;

 EvoDNFcov(start:start+NumOff-1)=OffDNFcov;

 EvoDNFage(start:start+NumOff-1)=OffDNFage;

 EvoArchiveMask(start:start+NumOff-1)=ArchiveMask;

 % update the start

 start=start+NumOff;

334

 clear NumOff

 end

 % Increase only the age of the archive population that underwent either

 % mutation or crossover

 ArchDNFage(ID(SelDNFVec))=ArchDNFage(ID(SelDNFVec))+1;

else

 % then age layers do not have an archive layer

 % Determine the number of age layers

 UniqueLayers=unique(MateDNFageLayer);

 NumLayers=length(UniqueLayers);

 % set a start counter

 start=1;

 % Run a for loop so that each age layer can undergo either

 % mutation or crossover

 for i=1:NumLayers

 % perform crossover or mutation on the current layer

 CurLayer=UniqueLayers(NumLayers-i+1);

 % Create a mask for the DNFs that will evolve

 CurMask=MateDNFageLayer==CurLayer;

 % Now select the necessary data for mutation or crossover

 CurMateDNF=MateDNF(CurMask,:);

 CurMateDNFfit=MateDNFfit(CurMask);

335

 CurMateDNFage=MateDNFage(CurMask);

 CurDNFMatchLocs=MateDNFMatchLocs(:,CurMask);

 % Set the number of offspring

 CurNumOff=sum(CurMask);

 % If the current layer isn't one then add the younger layer

 % to mate with

 if CurLayer~=1

 % Add a layer to the current layer for mating

 CurMask=MateDNFageLayer==CurLayer-1;

 CurMateDNF=[CurMateDNF; MateDNF(CurMask,:)];

 CurMateDNFfit=[CurMateDNFfit; MateDNFfit(CurMask)];

 CurMateDNFage=[CurMateDNFage; MateDNFage(CurMask)];

 CurDNFMatchLocs=[CurDNFMatchLocs ...

 MateDNFMatchLocs(:,CurMask)];

 clear CurMask

 end

 % Now perform crossover and or mutation

 [OffDNF, OffDNFMatchLocs, OffDNFfit, OffDNFacc, OffDNFcov,...

 OffDNFage, ArchiveMask, DNFstats]=...

 DNFMutCross(CurMateDNF,CurMateDNFfit,CurMateDNFage,...

 CurDNFMatchLocs,CCMatchLocs,TargetClass,CurNumOff,...

 ParamDNF,DNFstats);

336

 clear CurLayer

 clear CurMateDNF

 clear CurMateDNFfit

 clear CurMateDNFage

 clear CurDNFMatchLocs

 clear CurNumOff

 % Now save the offspring

 % Determine the number of offspring

 NumOff=length(ArchiveMask);

 EvoDNF(start:start+NumOff-1,:)=OffDNF;

 EvoDNFMatchLocs(:,start:start+NumOff-1)=OffDNFMatchLocs;

 EvoDNFfit(start:start+NumOff-1)=OffDNFfit;

 EvoDNFacc(start:start+NumOff-1)=OffDNFacc;

 EvoDNFcov(start:start+NumOff-1)=OffDNFcov;

 EvoDNFage(start:start+NumOff-1)=OffDNFage;

 EvoArchiveMask(start:start+NumOff-1)=ArchiveMask;

 % update the start

 start=start+NumOff;

 clear NumOff

 end

end

% Reduce offspring to only those that were actually kept

337

EvoDNF=EvoDNF(1:start-1,:);

EvoDNFMatchLocs=EvoDNFMatchLocs(:,1:start-1);

EvoDNFfit=EvoDNFfit(1:start-1);

EvoDNFacc=EvoDNFacc(1:start-1);

EvoDNFcov=EvoDNFcov(1:start-1);

EvoDNFage=EvoDNFage(1:start-1);

EvoArchiveMask=EvoArchiveMask(1:start-1);

clear start

% Now extract the archived population

ArchDNF=[ArchDNF; EvoDNF(EvoArchiveMask,:)];

ArchDNFMatchLocs=[ArchDNFMatchLocs EvoDNFMatchLocs(:,EvoArchiveMask)];

ArchDNFfit=[ArchDNFfit; EvoDNFfit(EvoArchiveMask)];

ArchDNFacc=[ArchDNFacc; EvoDNFacc(EvoArchiveMask)];

ArchDNFcov=[ArchDNFcov; EvoDNFcov(EvoArchiveMask)];

ArchDNFage=[ArchDNFage; EvoDNFage(EvoArchiveMask)];

% Now extract the non-archived population

NonArchDNF=[NonArchDNF; EvoDNF(~EvoArchiveMask,:)];

NonArchDNFMatchLocs=[NonArchDNFMatchLocs ...

 EvoDNFMatchLocs(:,~EvoArchiveMask)];

NonArchDNFfit=[NonArchDNFfit; EvoDNFfit(~EvoArchiveMask)];

NonArchDNFacc=[NonArchDNFacc; EvoDNFacc(~EvoArchiveMask)];

NonArchDNFcov=[NonArchDNFcov; EvoDNFcov(~EvoArchiveMask)];

338

NonArchDNFage=[NonArchDNFage; EvoDNFage(~EvoArchiveMask)];

clear EvoArchiveMask

8.1.3.4 DNF Mutation/Crossover (DNFMutCross)

function [OffDNF, OffDNFMatchLocs, OffDNFfit, OffDNFacc, OffDNFcov,...

 OffDNFage, ArchiveMask, DNFstats]=...

 DNFMutCross(MateDNF,MateDNFfit,MateDNFage,...

 MateDNFMatchLocs,CCMatchLocs,TargetClass,NumOff,ParamDNF,...

 DNFstats)

%%

% Created by John Hanley

%

% October 21, 2016

% Last updated: October 24, 2016

%

% DNFMutCross performs either mutation or crossover on the disjunction

% of conjunctive clauses (DNF) of the classifiers.

%

% Inputs:

% MateDNF = The population of DNFs that will be involved in mating. Each

% row represents a DNF and each column points to a conjunctive

% clause used in the DNF. Only the 1:NumOff will undergo either

% crossover or mutation.

339

% MateDNFfit = The fitness of the MateDNFs.

% MateDNFage = The age of the MateDNFs.

% MateDNFMatchLocs = A logical matrix where each from represents an

% observation and each column represents a DNF.

% CCMatchLocs = A logical matrix where each row represents an observation

% and each column represents a conjunctive clause.

% TargetClass = A logical vector indicating the observations that are part

% of the target class.

% NumOff = The number of offspring that will be produced through either

% crossover or mutation.

% ParamDNF = A structure array with the usr defined parameters to run the

% algorithm.

% DNFstats = Statistics on the DNF evolution.

%

% Ouputs:

% OffDNF = The DNF of the offsrping that are classifiers for the current

% target class.

% OffDNFMatchLocs = A logical matrix associated with the OffDNF. Each row

% represents an observation and each column represents a

% DNF.

% OffDNFfit = The fitness of the OffDNF using the hypergeometric PMF

% distribution.

340

% OffDNFacc = The accuracy of the OffDNF.

% OffDNFcov = The coverage of the OffDNF.

% OffDNFage = The age of the OffDNF.

% ArchiveMask = A logical vector indicating the OffDNF that belong in the

% archive.

% DNFstats = Statistics on the DNF evolution.

%

%%

% Determine the number of DNFs in the mating population

NumDNFs=size(MateDNF,1);

% First randomly determine which inidividuals will undergo mutation and

% which will undergo crossover

if NumDNFs~=1

 % Then randomly select crossover or mutation

 CrossOver=rand(NumOff,1)<ParamDNF.Prx;

else

 CrossOver=false(1);

end

% For efficiency

OffDNF=false(NumOff,ParamDNF.NumCCs);

OffDNFMatchLocs=false(ParamDNF.NumObs,NumOff);

OffDNFfit=NaN(NumOff,1);

341

OffDNFacc=NaN(NumOff,1);

OffDNFcov=NaN(NumOff,1);

OffDNFage=NaN(NumOff,1);

KeepMask=false(NumOff,1);

ArchiveMask=false(NumOff,1);

for i=1:NumOff

 if CrossOver(i)

 % Then perform crossover

 % Set up the random mating population

 PotMatePop=setdiff(1:NumDNFs,i);

 % Now randomly select the potential mates

 PotMateInd=randi(NumDNFs-1,[ParamDNF.TournSize,1]);

 PotMates=PotMatePop(PotMateInd);

 clear PotMatePop

 clear PotMateInd

 % Determine whether the crossover should be based on fitness or

 % based on other metrics

 if rand(1)<=ParamDNF.Pxf

 % then the mate is the most fit in the tournament

 BestMask=MateDNFfit(PotMates)==min(MateDNFfit(PotMates));

 else

 % Run another metric to determine the mate

342

 % There are three ways to determine best mate for crossover:

 % 1) The DNF that covers the most target observations not

 % covered by the current DNF; 2) the DNF that covers the most

 % target observations that are not covered by current DNF

 % while minimizing the number of new non-target observations

 % covered; 3) the DNF with the least number of non-target

 % observations that are not covered by the current DNF

 % First randomly select a number to determine how the mate will

 % be selected

 RandNum=rand(1);

 if RandNum<=ParamDNF.PxAlt(1)

 % Then mate based on the most target observations not

 % covered by the current DNF

 % Create a mask of the current target observations that are

 % not covered by current mate

 Tmask=TargetClass&~MateDNFMatchLocs(:,i);

 % Now find the sum of the Tmask for the potential Mates

 MateSum=sum(MateDNFMatchLocs(Tmask,PotMates));

 clear Tmask

 % The BestMask is the max of the MateSum

 BestMask=MateSum==max(MateSum);

 clear MateSum

343

 elseif RandNum<=ParamDNF.PxAlt(2)

 % Then the mate selection is based on the most target

 % observation not covered by the current DNF and least

 % non-target observations not covered by the current DNF

 % not covered by current mate

 Tmask=TargetClass&~MateDNFMatchLocs(:,i);

 % Now find the sum of the Tmask for the potential Mates

 MateTSum=sum(MateDNFMatchLocs(Tmask,PotMates));

 clear Tmask

 % Now create a mask of the non-target observations that are

 % not covered by the current mate

 Tmask=~TargetClass&~MateDNFMatchLocs(:,i);

 % Now sum the Tmask for potential mates

 MateNTSum=sum(MateDNFMatchLocs(Tmask,PotMates));

 clear Tmask

 % Now subtract MatNTSum from MateTSum

 MateSum=MateTSum-MateNTSum;

 clear MateTSum

 clear MateNTSum

 % The BestMask is the max of the MateSum

 BestMask=MateSum==max(MateSum);

 clear MateSum

344

 else

 % Then the mate selection is based on the mate that has the

 % least number of non-target observations not covered by

 % the first parent

 % Now create a mask of the non-target observations that are

 % not covered by the current mate

 Tmask=~TargetClass&~MateDNFMatchLocs(:,i);

 % Now sum the Tmask for potential mates

 MateSum=sum(MateDNFMatchLocs(Tmask,PotMates));

 clear Tmask

 % The BestMask is the min of the MateSum

 BestMask=MateSum==min(MateSum);

 clear MateSum

 end

 end

 % If there is more than one mate selected then randomly pick mate

 if sum(BestMask)==1

 % Then rthe the mate ID is easy

 MateID=PotMates(BestMask);

 else

 % Randomly choose a Mate

 PotMates=PotMates(BestMask);

345

 RandPick=randi(sum(BestMask),1);

 MateID=PotMates(RandPick);

 clear RandPick

 end

 clear PotMates

 % Set the age of the OffDNF to the age of the oldest parent

 OffDNFage(i)=max([MateDNFage(i) MateDNFage(MateID)]);

 % Randomly determine the bits from the first parent

 P1bits=rand(1,ParamDNF.NumCCs)<0.5;

 % Now insert the bits into the current offspring

 OffDNF(i,P1bits)=MateDNF(i,P1bits);

 OffDNF(i,~P1bits)=MateDNF(MateID,~P1bits);

 % Test to see if the Off spring DNF is the same as either parent,

 % or if there are no DNFs selected; if so swap the bits

 if isequal(OffDNF(i,:),MateDNF(i,:))||...

 isequal(OffDNF(i,:),MateDNF(MateID,:))||...

 sum(OffDNF(i,:))==0

 % then switch the bits around

 OffDNF(i,~P1bits)=MateDNF(i,~P1bits);

 OffDNF(i,P1bits)=MateDNF(MateID,P1bits);

 end

 else

346

 % Perform mutation

 % Set the offspring DNF equal to the current mate

 OffDNF(i,:)=MateDNF(i,:);

 OffDNFage(i)=MateDNFage(i);

 % Determine if random bit flip mutation will occur or if a more

 % targeted mutation will occur

 if rand(1)<ParamDNF.Pbf

 % Then perform standard bit flip mutation

 % Randomly determine which bits will be flipped

 FlipBitLocs=rand(1,ParamDNF.NumCCs)<ParamDNF.Pm;

 % Ensure that at least one bit is flipped

 if sum(FlipBitLocs)==0

 FlipBitLocs(randi(1))=true();

 end

 % Determine where the bits will be turned off

 BitOff=FlipBitLocs&MateDNF(i,:);

 % set all of the Flip Bit Locations to true

 OffDNF(i,FlipBitLocs)=true();

 % Now set all of the Bit off locations to false

 OffDNF(i,BitOff)=false();

 % if there are no bits on then randomly choose bits to keep

 if sum(OffDNF(i,:))==0

347

 % Reset the offspring to the mate

 OffDNF(i,:)=MateDNF(i,:);

 % Determine the number of bits

 if sum(MateDNF(i,:))<=2

 % Then add a bit

 PosBits=...

 setdiff(1:ParamDNF.NumCCs,find(MateDNF(i,:)));

 % Randomly choose a bit to add

 PosBitID=randi(length(PosBits),1);

 % Set the bit to true

 OffDNF(i,PosBits(PosBitID))=true();

 clear PosBits

 clear PosBitID

 else

 % Randomly delet a bit

 PosBits=find(MateDNF(i,:));

 % Randomly choose bit to delete

 PosBitID=randi(length(PosBits),1);

 % Now delete the selected bit

 OffDNF(i,PosBits(PosBitID))=false();

 clear PosBits

 clear PosBitID

348

 end

 end

 else

 % Perform a more targeted mutation there are 4 types of

 % targeted mutation: 1) select the CC that covers the

 % most target observations not covered by the DNF; 2) select

 % the CC that covers the most target observation while

 % minimizing the number of new non target observations covered;

 % 3) remove the CC that covers the least unique target

 % observations; 4) remove the CC that has most non-target

 % observations that are only covered by the CC

 % First determine if the mate has 100% accuracy or 100%

 % coverage, because if either of these is true then this will

 % affect which types of targeted mutation are possible

 CurAcc=sum(MateDNFMatchLocs(TargetClass,i))/...

 sum(MateDNFMatchLocs(:,i));

 CurCov=sum(MateDNFMatchLocs(TargetClass,i))/sum(TargetClass);

 % Extract the current probabilities

 CurProbs=ParamDNF.PmAlt;

 if CurAcc==1&&CurCov==1

 % Then need to replace the first two probabilities with 0

 CurProbs(1:2)=0;

349

 % Now renormalize

 CurProbs=CurProbs/sum(CurProbs);

 elseif CurCov==1

 % Then need to repalce the first probability with 0

 CurProbs(1)=0;

 % Now renormalize

 CurProbs=CurProbs/sum(CurProbs);

 if sum(OffDNF(i,:))==1

 % Remove the last two probabilities

 CurProbs(3:4)=0;

 end

 % Now renormalize

 CurProbs=CurProbs/sum(CurProbs);

 elseif sum(OffDNF(i,:))==1

 % Remove the last two probabilites

 CurProbs(3:4)=0;

 % Now renormalize

 CurProbs=CurProbs/sum(CurProbs);

 end

 % Now perform a cumsum on the probabilities

 ProbCumSum=cumsum(CurProbs);

 clear CurProbs

350

 % given the new probabilities determine the type of target

 % mutation

 % Randomly select a number

 RandNum=rand(1);

 if RandNum<=ProbCumSum(1)

 % Then select the CC that covers the most target

 % observations not covered by the DNF

 Tmask=TargetClass&~MateDNFMatchLocs(:,i);

 % sum the CCMatchLocs of TMask

 MutSum=sum(CCMatchLocs(Tmask,:));

 clear Tmask

 % Create mask of the maximum MutSum

 MaxMask=MutSum==max(MutSum);

 clear MutSum

 % If the MaxMask has more than one CC then randomly choose

 % one

 if sum(MaxMask)>1

 % Then randomly choose a max

 MaxOpts=find(MaxMask);

 % Now randomly draw a potential max

 MaxID=randi(length(MaxOpts),1);

 % Now set MaxMask to false

351

 MaxMask=false(size(MaxMask));

 % Insert the select location as true

 MaxMask(MaxOpts(MaxID))=true();

 clear MaxOpts

 clear MaxID

 end

 % Now insert the selected CC into the DNF

 OffDNF(i,MaxMask)=true();

 clear MaxMask

 elseif RandNum<=ProbCumSum(2)

 % Select the CC that covers the most target observations

 % and least non-target observations

 % target observations not covered by the DNF

 Tmask=TargetClass&~MateDNFMatchLocs(:,i);

 % sum the CCMatchLocs of TMask

 MutSumT=sum(CCMatchLocs(Tmask,:));

 clear Tmask

 % non-target observations not covered by the DNF

 Tmask=~TargetClass&~MateDNFMatchLocs(:,i);

 % sum the CCMatchLocs of the Tmask

 MutSumNT=sum(CCMatchLocs(Tmask,:));

 clear Tmask

352

 % Subtract the MutSumNT from MutSumT

 MutSum=MutSumT-MutSumNT;

 clear MutSumT

 clear MutSumNT

 % Create mask of the maximum MutSum

 MaxMask=MutSum==max(MutSum);

 clear MutSum

 % If the MaxMask has more than one CC then randomly choose

 % one

 if sum(MaxMask)>1

 % Then randomly choose a max

 MaxOpts=find(MaxMask);

 % Now randomly draw a potential max

 MaxID=randi(length(MaxOpts),1);

 % Now set MaxMask to false

 MaxMask=false(size(MaxMask));

 % Insert the select location as true

 MaxMask(MaxOpts(MaxID))=true();

 clear MaxOpts

 clear MaxID

 end

 % Now insert the selected CC into the DNF

353

 OffDNF(i,MaxMask)=true();

 clear MaxMask

 elseif RandNum<=ProbCumSum(3)

 % remove the CC that covers the least unique target

 % observations

 % First determine the total times each target observation

 % is covered

 ObsSums=sum(CCMatchLocs(:,OffDNF(i,:)),2);

 % Now determine the observations that are covered by only

 % one observation

 OneTargetMask=TargetClass&ObsSums==1;

 clear ObsSums

 % Now determine the total times a CC is the only CC to

 % cover a target observation

 NumCCUniq=sum(CCMatchLocs(OneTargetMask,OffDNF(i,:)));

 clear OneTargetMask

 % Now determine the minimum CC to remove

 MinMask=NumCCUniq==min(NumCCUniq);

 clear NumCCUniq

 % Determine if there is more than one minimum

 if sum(MinMask)>1

 % Then need to randomly choose a CC

354

 MinOpts=find(MinMask);

 % Now randomly draw a min

 MinID=randi(length(MinOpts),1);

 % Now set Min Mask to false

 MinMask=false(size(MinMask));

 % Set the selected min mask to true

 MinMask(MinOpts(MinID))=true();

 clear MinOpts

 clear MinID

 end

 % Now find the OffDNF ccs

 OffCCs=find(OffDNF(i,:));

 % Now set the current selected CC to mask

 OffDNF(i,OffCCs(MinMask))=false();

 clear OffCCs

 clear MinMask

 else

 % Then remove the CC with the most unique non-target

 % obesrvations

 ObsSums=sum(CCMatchLocs(:,OffDNF(i,:)),2);

 % Now determine the observations that are covered by only

 % one observation

355

 OneTargetMask=~TargetClass&ObsSums==1;

 clear ObsSums

 % Now determine the total times a CC is the only CC to

 % cover a target observation

 NumCCUniq=sum(CCMatchLocs(OneTargetMask,OffDNF(i,:)));

 clear OneTargetMask

 % Now determine the maximum CC to remove

 MaxMask=NumCCUniq==max(NumCCUniq);

 clear NumCCUniq

 % Determine if there is more than one minimum

 if sum(MaxMask)>1

 % Then need to randomly choose a CC

 MaxOpts=find(MaxMask);

 % Now randomly draw a min

 MaxID=randi(length(MaxOpts),1);

 % Now set Max Mask to false

 MaxMask=false(size(MaxMask));

 % Set the selected min mask to true

 MaxMask(MaxOpts(MaxID))=true();

 clear MaxOpts

 clear MaxID

 end

356

 % Now find the OffDNF ccs

 OffCCs=find(OffDNF(i,:));

 % Now set the current selected CC to mask

 OffDNF(i,OffCCs(MaxMask))=false();

 clear OffCCs

 clear MaxMask

 end

 end

 end

 % Now determine the fitness of the new DNF

 % First extract teh current CC match locations

 CurCCs=CCMatchLocs(:,OffDNF(i,:));

 % Now determine the DNFMatchLocs

 CurCCsSum=sum(CurCCs,2);

 clear CurCCs

 % DNFMatchLocs is simply a mask of CurCCsSum>0

 OffDNFMatchLocs(:,i)=CurCCsSum>0;

 clear CurCCsSum

 % Now determine the fitness

 ntot=sum(OffDNFMatchLocs(:,i));

 xmatch=sum(OffDNFMatchLocs(TargetClass,i));

 % Determine the number of CCs

357

 NumCCs=sum(OffDNF(i,:));

 % Ensure the order will be recorded

 if NumCCs>ParamDNF.Thresh(end,1)

 NumCCs=ParamDNF.Thresh(end,1);

 end

 % Determine if the DNF is a target class DNF

 if xmatch/ntot>ParamDNF.TotTarC/ParamDNF.NumObs

 % calculate the fitness function

 OffDNFfit(i)=...

 hygepdf(xmatch,ParamDNF.NumObs,ParamDNF.TotTarC,ntot);

 % Calculate the accuracy and coverage

 OffDNFacc(i)=xmatch/ntot*100;

 OffDNFcov(i)=xmatch/ParamDNF.TotTarC*100;

 % Set the KeepMask to true

 KeepMask(i)=true();

 % Determine if the new DNF should be archived

 Tmask=ParamDNF.Thresh(:,1)==sum(OffDNF(i,:));

 if OffDNFfit(i)<=ParamDNF.Thresh(Tmask,2)

 % Then it is archiveable

 ArchiveMask(i)=true();

 DNFstats.EvalsArchive(ParamDNF.CurGen,NumCCs)=...

 DNFstats.EvalsArchive(ParamDNF.CurGen,NumCCs)+1;

358

 else

 % then it is non-archiveable

 DNFstats.EvalsNonArchive(ParamDNF.CurGen,NumCCs)=...

 DNFstats.EvalsNonArchive(ParamDNF.CurGen,NumCCs)+1;

 end

 clear Tmask

 end

 % Record the an evaluation for the current order

 DNFstats.EvalsAll(ParamDNF.CurGen,NumCCs)=...

 DNFstats.EvalsAll(ParamDNF.CurGen,NumCCs)+1;

 clear NumCCs

 clear ntot

 clear xmatch

end

% Only keep the values in the KeepMask

OffDNF=OffDNF(KeepMask,:);

OffDNFMatchLocs=OffDNFMatchLocs(:,KeepMask);

OffDNFfit=OffDNFfit(KeepMask);

OffDNFacc=OffDNFacc(KeepMask);

OffDNFcov=OffDNFcov(KeepMask);

OffDNFage=OffDNFage(KeepMask);

ArchiveMask=ArchiveMask(KeepMask);

359

clear KeepMask

8.1.4 Smouse and Peakall (1999) Genetic Distance (GeneticDistance)

function [RawDist, NormDist, TotNonNaNs, TotSame]=...

 GeneticDistance(SNPsMat,Combos,GenDist)

%%

% Created by John Hanley

%

% January 31, 2017

% Last Updated: January 31, 2017

%

% Calculates the genetic distance using the Smouse and Peakall (1999)

% genetic distance equation or a hamming distance. The user needs to enter

% the genetic distance for every combination of SNPs.

%

% Inputs:

% SNPsMat = A matrix where every row is an observation (e.g., person,

% animal, plant) and each column is a SNP. The values in the

% matrix should be enetered as numbers (ideally enter the ascii

% number of the letter using the double() function; also set all

% Ns to NaN.

% Combos = A two column matrix where each row is the numerical equivalent

% of one of the possible combinations of SNPs (e.g., row 1 could

360

% be AC = [65 67]; row 45 could be WY = [87 89]).

% GenDist = A vector of the genetic distance that corresponds to the

% Combos.

%

% Outputs:

% RawDist = A vector of the raw genetic distance between every observation.

% NormDist = The normalized genetic distance based on the number of SNPs

% looked at (i.e., RawDist/TotNonNaNs).

% TotNonNaNs = The total number of SNPs where both of the observations had

% a non-NaN value.

% TotSame = A count of the total number of SNPs that are the same between

% two observations.

%

% Work Cited:

% Smouse, Peter E, and Rod Peakall. 1999. “Spatial Autocorrelation Analysis

% of Individual Multiallele and Multilocus Genetic Structure.” Heredity

% 82 (5): 561–73. doi:10.1038/sj.hdy.6885180.

%

%%

% Determine the number of observations and SNPs

[NumObs, ~]=size(SNPsMat);

% Determine the total number of Pairs

361

NumPairs=(NumObs*(NumObs-1))/2;

TotNonNaNs=NaN(NumPairs,1);

TotSame=NaN(NumPairs,1);

RawDist=NaN(NumPairs,1);

NormDist=NaN(NumPairs,1);

count=0;

for i=1:NumObs-1

 % Grab the current observation SNPs

 Obs1=SNPsMat(i,:);

 % Determine the NaN locations

 Obs1NaNs=isnan(Obs1);

 for j=i+1:NumObs

 count=count+1;

 % Grab the current observation SNPs

 Obs2=SNPsMat(j,:);

 % Determine the NaN locations

 Obs2NaNs=isnan(Obs2);

 % Determine the SNPs that do not have NaN values

 NonNaNs=~Obs1NaNs&~Obs2NaNs;

 % Record the number of NonNans

 TotNonNaNs(count)=sum(NonNaNs);

 % Now Grab only the columns with NonNans

362

 CurObs1=Obs1(NonNaNs);

 CurObs2=Obs2(NonNaNs);

 % Now Create a mask for all of the columns that are the same

 SameMask=CurObs1==CurObs2;

 % Determine the number of obs that are the same

 TotSame(count)=sum(SameMask);

 % Now grab only the columns that are not the same

 CurObs1=CurObs1(~SameMask);

 CurObs2=CurObs2(~SameMask);

 % Now Reorganize the SNPs into columns with the minimum in the

 % first column

 MinVals=min([CurObs1; CurObs2]);

 MaxVals=max([CurObs1; CurObs2]);

 % Combine the Mins and Maxs

 CombObs=[MinVals' MaxVals'];

 [UniRows, ~, IDs]=unique(CombObs,'rows');

 % Tabulate the IDs

 TabIDs=tabulate(IDs);

 TotDist=0;

 % For each of the unique rows determine the distance

 for r=1:size(UniRows,1)

 % Grab the Current unique row

363

 CurUniRow=UniRows(r,:);

 % Repeat the Current unique row

 RepCurUniRow=repmat(CurUniRow,[size(Combos,1),1]);

 % now compare to combos

 CmpComb=RepCurUniRow==Combos;

 % Create a mask to get the current genetic distance

 DistMask=sum(CmpComb,2)==2;

 % Grab the current genetic distance

 CurDist=GenDist(DistMask);

 % Now multiply the current distance by the number of times it

 % is present

 CurTotDist=CurDist*TabIDs(r,2);

 % Add the current total distance to the total Distance

 TotDist=TotDist+CurTotDist;

 end

 % Insert the raw genetic distance

 RawDist(count)=TotDist;

 % Calculate the normalized distance

 NormDist(count)=TotDist/TotNonNaNs(count);

 end

end

364

8.1.5 Box Plots (boxplotJH)

function boxplotJH(X,Y,Param)

%%

% Created by John Hanley

%

% October 26, 2016

% Last Updated: November 9, 2016

%

% boxplotJH is my version of boxplot that enables the user to change the

% x-axis setting.

%

% Inputs:

% X = The X-data entered either as a vector or matrix. If entered as a

% matrix, then set Param.DoubleBox to true.

% Y = The Y-data entered as a matrix with each column representing a

% different group.

% Param = A structure array with various parameters needed to run the

% function.

% .BoxColor = The color of the IQR for the boxplot.

% .MedColor = The color of the median for the boxplot.

% .WhiskColor = The color of the whiskers for the boxplot.

% .OutColor = The color of the outliers for the boxplot.

365

% .LineWidth = The line width for the boxplot.

% .Axis = The type of plot the user wants. Enter either

% 'cartesian', 'semilogx', 'semilogy', or 'loglog'

% .BoxWidth = The desired width of the box in the boxplot.

% .WhWidth = The desired width of the whisker cap.

% .DoubleBox = Enter either true() or false(). True means that the

% boxplot will be plotted in both x and y directions.

%

% Outputs:

% A boxplot of the data.

%

%%

% Determine the number of boxes

Param.NumBox=size(Y,2);

% First determine the 25th percentile, median and IQR

IQRY=iqr(Y);

P25Y=prctile(Y,25);

P50Y=prctile(Y,50);

P75Y=prctile(Y,75);

% For efficiency

WhLBY=NaN(1,Param.NumBox);

WhUBY=NaN(1,Param.NumBox);

366

% Now determine the whisker bounds

for i=1:Param.NumBox

 % For each column determine the possible and actual lower bound

 % First calculate a possible lower bound

 PosLB=P25Y(i)-1.5*IQRY(i);

 % Now create a mask for all values that fall in this range

 LBmask=Y(:,i)>=PosLB&Y(:,i)<P25Y(i);

 clear PosLB

 % If a value falls in this range set the WhLB to the minimum value in

 % the range

 if sum(LBmask)>0

 WhLBY(i)=min(Y(LBmask,i));

 end

 clear LBmask

 % Now calculate a possible upper bound

 PosUB=P75Y(i)+1.5*IQRY(i);

 % Now create a mask for all values that fall in this range

 UBmask=Y(:,i)<=PosUB&Y(:,i)>P75Y(i);

 clear PosUB

 % If a value falls in this range set the WhUB to the maximum value in

 % the range

 if sum(UBmask)>0

367

 WhUBY(i)=max(Y(UBmask,i));

 end

 clear UBmask

end

% check to see if there is a doublebox

if Param.DoubleBox

 % Then need to calculate the X 25th percentile, median and IQR

 IQRX=iqr(X);

 P25X=prctile(X,25);

 P50X=prctile(X,50);

 P75X=prctile(X,75);

 % For efficiency

 WhLBX=NaN(1,Param.NumBox);

 WhUBX=NaN(1,Param.NumBox);

 % Now determine the whisker bounds

 for i=1:Param.NumBox

 % For each column determine the possible and actual lower bound

 % First calculate a possible lower bound

 PosLB=P25X(i)-1.5*IQRX(i);

 % Now create a mask for all values that fall in this range

 LBmask=X(:,i)>=PosLB&X(:,i)<P25X(i);

 clear PosLB

368

 % If a value falls in this range set the WhLB to the minimum value

 % in the range

 if sum(LBmask)>0

 WhLBX(i)=min(X(LBmask,i));

 end

 clear LBmask

 % Now calculate a possible upper bound

 PosUB=P75X(i)+1.5*IQRX(i);

 % Now create a mask for all values that fall in this range

 UBmask=X(:,i)<=PosUB&X(:,i)>P75X(i);

 clear PosUB

 % If a value falls in this range set the WhUB to the maximum value

 % in the range

 if sum(UBmask)>0

 WhUBX(i)=max(X(UBmask,i));

 end

 clear UBmask

 end

 switch Param.Axis

 case 'cartesian'

 % The plot is cartesian

 % First plot the whiskers

369

 plot(repmat(P50X,[2,1]),[P25Y; WhLBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 hold on

 plot(repmat(P50X,[2,1]),[P75Y; WhUBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 plot([P25X; WhLBX],repmat(P50Y,[2,1]),'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 plot([P75X; WhUBX],repmat(P50Y,[2,1]),'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 % Set the whisker lower bounds and upper bounds in x direction

 LBX=P50X-Param.WhWidth;

 UBX=P50X+Param.WhWidth;

 LBY=P50Y-Param.WhWidth;

 UBY=P50Y+Param.WhWidth;

 % Now plot the cap of the whisker

 plot([LBX; UBX],repmat(WhLBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 plot([LBX; UBX],repmat(WhUBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 plot(repmat(WhLBX,[2,1]),[LBY; UBY],'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 plot(repmat(WhUBX,[2,1]),[LBY; UBY],'-',...

370

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 clear LBY

 clear UBY

 % Now plot the box

 for i=1:Param.NumBox

 % plot the IQR using rectangle

 rectangle('Position',[P25X(i) P25Y(i) IQRX(i) IQRY(i)],...

 'EdgeColor',Param.BoxColor,'LineWidth',...

 Param.LineWidth)

 end

 % Now plot the median

 plot([P25X; P75X],repmat(P50Y,[2,1]),'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 plot(repmat(P50X,[2,1]),[P25Y; P75Y],'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 % Now plot the outliers

 for i=1:Param.NumBox

 % Find Any Outliers

 OutMaskY=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i);

 OutMaskX=X(:,i)<WhLBX(i)|X(:,i)>WhUBX(i);

371

 % If there are outliers plot them

 if sum(OutMaskY)>0

 plot(repmat(P50X(i),[sum(OutMaskY),1]),...

 Y(OutMaskY,i),'+','Color',Param.OutColor,...

 'LineWidth',Param.LineWidth)

 end

 if sum(OutMaskX)>0

 plot(X(OutMaskX,i),repmat(P50Y(i),...

 [sum(OutMaskX),1]),'+','Color',...

 Param.OutColor,'LineWidth',Param.LineWidth)

 end

 end

 case 'semilogx'

 % The plot is semilogx

 % First plot the whiskers

 semilogx(repmat(P50X,[2,1]),[P25Y; WhLBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 hold on

 semilogx(repmat(P50X,[2,1]),[P75Y; WhUBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogx([P25X; WhLBX],repmat(P50Y,[2,1]),'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

372

 semilogx([P75X; WhUBX],repmat(P50Y,[2,1]),'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 % Set the whisker lower bounds and upper bounds in x direction

 LBX=10.^(log10(P50X)-Param.WhWidth);

 UBX=10.^(log10(P50X)+Param.WhWidth);

 LBY=10.^(log10(P50Y)-Param.WhWidth);

 UBY=10.^(log10(P50Y)+Param.WhWidth);

 % Now plot the cap of the whisker

 semilogx([LBX; UBX],repmat(WhLBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogx([LBX; UBX],repmat(WhUBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogx(repmat(WhLBX,[2,1]),[LBY; UBY],'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogx(repmat(WhUBX,[2,1]),[LBY; UBY],'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 clear LBY

 clear UBY

 % Now plot the box

 for i=1:Param.NumBox

373

 % plot the IQR using rectangle

 rectangle('Position',[P25X(i) P25Y(i) IQRX(i) IQRY(i)],...

 'EdgeColor',Param.BoxColor,'LineWidth',...

 Param.LineWidth)

 end

 % Now plot the median

 semilogx([P25X; P75X],repmat(P50Y,[2,1]),'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 semilogx(repmat(P50X,[2,1]),[P25Y; P75Y],'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 % Now plot the outliers

 for i=1:Param.NumBox

 % Find Any Outliers

 OutMaskY=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i);

 OutMaskX=X(:,i)<WhLBX(i)|X(:,i)>WhUBX(i);

 % If there are outliers plot them

 if sum(OutMaskY)>0

 semilogx(repmat(P50X(i),[sum(OutMaskY),1]),...

 Y(OutMaskY,i),'+','Color',Param.OutColor,...

 'LineWidth',Param.LineWidth)

 end

 if sum(OutMaskX)>0

374

 semilogx(X(OutMaskX,i),repmat(P50Y(i),...

 [sum(OutMaskX),1]),'+','Color',...

 Param.OutColor,'LineWidth',Param.LineWidth)

 end

 end

 case 'semilogy'

 % The plot is semilogy

 % First plot the whiskers

 semilogy(repmat(P50X,[2,1]),[P25Y; WhLBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 hold on

 semilogy(repmat(P50X,[2,1]),[P75Y; WhUBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogy([P25X; WhLBX],repmat(P50Y,[2,1]),'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogy([P75X; WhUBX],repmat(P50Y,[2,1]),'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 % Set the whisker lower bounds and upper bounds in x direction

 LBX=P50X-Param.WhWidth;

 UBX=P50X+Param.WhWidth;

 LBY=P50Y-Param.WhWidth;

 UBY=P50Y+Param.WhWidth;

375

 % Now plot the cap of the whisker

 semilogy([LBX; UBX],repmat(WhLBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogy([LBX; UBX],repmat(WhUBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogy(repmat(WhLBX,[2,1]),[LBY; UBY],'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogy(repmat(WhUBX,[2,1]),[LBY; UBY],'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 clear LBY

 clear UBY

 % Now plot the box

 for i=1:Param.NumBox

 % plot the IQR using rectangle

 rectangle('Position',[P25X(i) P25Y(i) IQRX(i) IQRY(i)],...

 'EdgeColor',Param.BoxColor,'LineWidth',...

 Param.LineWidth)

 end

 % Now plot the median

 semilogy([P25X; P75X],repmat(P50Y,[2,1]),'-',...

376

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 semilogy(repmat(P50X,[2,1]),[P25Y; P75Y],'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 % Now plot the outliers

 for i=1:Param.NumBox

 % Find Any Outliers

 OutMaskY=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i);

 OutMaskX=X(:,i)<WhLBX(i)|X(:,i)>WhUBX(i);

 % If there are outliers plot them

 if sum(OutMaskY)>0

 semilogy(repmat(P50X(i),[sum(OutMaskY),1]),...

 Y(OutMaskY,i),'+','Color',Param.OutColor,...

 'LineWidth',Param.LineWidth)

 end

 if sum(OutMaskX)>0

 semilogy(X(OutMaskX,i),repmat(P50Y(i),...

 [sum(OutMaskX),1]),'+','Color',...

 Param.OutColor,'LineWidth',Param.LineWidth)

 end

 end

 case 'loglog'

 % The plot is loglog

377

 % First plot the whiskers

 loglog(repmat(P50X,[2,1]),[P25Y; WhLBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 hold on

 loglog(repmat(P50X,[2,1]),[P75Y; WhUBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 loglog([P25X; WhLBX],repmat(P50Y,[2,1]),'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 loglog([P75X; WhUBX],repmat(P50Y,[2,1]),'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 % Set the whisker lower bounds and upper bounds in x direction

 LBX=10.^(log10(P50X)-Param.WhWidth);

 UBX=10.^(log10(P50X)+Param.WhWidth);

 LBY=10.^(log10(P50Y)-Param.WhWidth);

 UBY=10.^(log10(P50Y)+Param.WhWidth);

 % Now plot the cap of the whisker

 loglog([LBX; UBX],repmat(WhLBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 loglog([LBX; UBX],repmat(WhUBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 loglog(repmat(WhLBX,[2,1]),[LBY; UBY],'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

378

 loglog(repmat(WhUBX,[2,1]),[LBY; UBY],'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 clear LBY

 clear UBY

 % Now plot the box

 for i=1:Param.NumBox

 % plot the IQR using rectangle

 rectangle('Position',[P25X(i) P25Y(i) IQRX(i) IQRY(i)],...

 'EdgeColor',Param.BoxColor,'LineWidth',...

 Param.LineWidth)

 end

 % Now plot the median

 loglog([P25X; P75X],repmat(P50Y,[2,1]),'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 loglog(repmat(P50X,[2,1]),[P25Y; P75Y],'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 % Now plot the outliers

 for i=1:Param.NumBox

 % Find Any Outliers

 OutMaskY=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i);

379

 OutMaskX=X(:,i)<WhLBX(i)|X(:,i)>WhUBX(i);

 % If there are outliers plot them

 if sum(OutMaskY)>0

 loglog(repmat(P50X(i),[sum(OutMaskY),1]),...

 Y(OutMaskY,i),'+','Color',Param.OutColor,...

 'LineWidth',Param.LineWidth)

 end

 if sum(OutMaskX)>0

 loglog(X(OutMaskX,i),repmat(P50Y(i),...

 [sum(OutMaskX),1]),'+','Color',...

 Param.OutColor,'LineWidth',Param.LineWidth)

 end

 end

 end

else

 % Take the median of X

 X=prctile(X,50,1);

 switch Param.Axis

 case 'cartesian'

 % Cartesian plot

 % First plot the whiskers

 plot(repmat(X,[2,1]),[P25Y; WhLBY],'--',...

380

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 hold on

 plot(repmat(X,[2,1]),[P75Y; WhUBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 % Set the whisker lower bounds and upper bounds in x direction

 LBX=X-Param.WhWidth;

 UBX=X+Param.WhWidth;

 % Now plot the cap of the whisker

 plot([LBX; UBX],repmat(WhLBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 plot([LBX; UBX],repmat(WhUBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 % Now plot the box

 % First calculate the box lower and upper bounds in the x

 % direction

 LBX=X-Param.BoxWidth;

 UBX=X+Param.BoxWidth;

 for i=1:Param.NumBox

 % plot the IQR using rectangle

 rectangle('Position',...

381

 [LBX(i) P25Y(i) UBX(i)-LBX(i) IQRY(i)],...

 'EdgeColor',Param.BoxColor,'LineWidth',...

 Param.LineWidth)

 end

 % Now plot the median

 plot([LBX; UBX],repmat(P50Y,[2,1]),'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 % Now plot the outliers

 for i=1:Param.NumBox

 % Find Any Outliers

 OutMask=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i);

 % If there are outliers plot them

 if sum(OutMask)>0

 semilogy(repmat(X(i),[sum(OutMask),1]),Y(OutMask,i),...

 '+','Color',Param.OutColor,'LineWidth',...

 Param.LineWidth)

 end

 end

 case 'semilogx'

 % The plot is semilogx

382

 % First plot the whiskers

 semilogx(repmat(X,[2,1]),[P25Y; WhLBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 hold on

 semilogx(repmat(X,[2,1]),[P75Y; WhUBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 % Set the whisker lower bounds and upper bounds in x direction

 LBX=10.^(log10(X)-Param.WhWidth);

 UBX=10.^(log10(X)+Param.WhWidth);

 % Now plot the cap of the whisker

 semilogx([LBX; UBX],repmat(WhLBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogx([LBX; UBX],repmat(WhUBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 % Now plot the box

 % First calculate the box lower and upper bounds in the x

 % direction

 LBX=10.^(log10(X)-Param.BoxWidth);

 UBX=10.^(log10(X)+Param.BoxWidth);

 for i=1:Param.NumBox

383

 % plot the IQR using rectangle

 rectangle('Position',...

 [LBX(i) P25Y(i) UBX(i)-LBX(i) IQRY(i)],...

 'EdgeColor',Param.BoxColor,'LineWidth',...

 Param.LineWidth)

 end

 % Now plot the median

 semilogx([LBX; UBX],repmat(P50Y,[2,1]),'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 % Now plot the outliers

 for i=1:Param.NumBox

 % Find Any Outliers

 OutMask=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i);

 % If there are outliers plot them

 if sum(OutMask)>0

 loglog(repmat(X(i),[sum(OutMask),1]),Y(OutMask,i),...

 '+','Color',Param.OutColor,'LineWidth',...

 Param.LineWidth)

 end

 end

384

 case 'semilogy'

 % The plot is semilogy

 % First plot the whiskers

 semilogy(repmat(X,[2,1]),[P25Y; WhLBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 hold on

 semilogy(repmat(X,[2,1]),[P75Y; WhUBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 % Set the whisker lower bounds and upper bounds in x direction

 LBX=X-Param.WhWidth;

 UBX=X+Param.WhWidth;

 % Now plot the cap of the whisker

 semilogy([LBX; UBX],repmat(WhLBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 semilogy([LBX; UBX],repmat(WhUBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 % Now plot the box

 % First calculate the box lower and upper bounds in the x

 % direction

 LBX=X-Param.BoxWidth;

385

 UBX=X+Param.BoxWidth;

 for i=1:Param.NumBox

 % plot the IQR using rectangle

 rectangle('Position',...

 [LBX(i) P25Y(i) UBX(i)-LBX(i) IQRY(i)],...

 'EdgeColor',Param.BoxColor,'LineWidth',...

 Param.LineWidth)

 end

 % Now plot the median

 semilogy([LBX; UBX],repmat(P50Y,[2,1]),'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 % Now plot the outliers

 for i=1:Param.NumBox

 % Find Any Outliers

 OutMask=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i);

 % If there are outliers plot them

 if sum(OutMask)>0

 semilogy(repmat(X(i),[sum(OutMask),1]),Y(OutMask,i),...

 '+','Color',Param.OutColor,'LineWidth',...

 Param.LineWidth)

386

 end

 end

 case 'loglog'

 % The plot is a loglog

 % First plot the whiskers

 loglog(repmat(X,[2,1]),[P25Y; WhLBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 hold on

 loglog(repmat(X,[2,1]),[P75Y; WhUBY],'--',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 % Set the whisker lower bounds and upper bounds in x direction

 LBX=10.^(log10(X)-Param.WhWidth);

 UBX=10.^(log10(X)+Param.WhWidth);

 % Now plot the cap of the whisker

 loglog([LBX; UBX],repmat(WhLBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 loglog([LBX; UBX],repmat(WhUBY,[2,1]),'-',...

 'Color',Param.WhiskColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 % Now plot the box

 % First calculate the box lower and upper bounds in the x

387

 % direction

 LBX=10.^(log10(X)-Param.BoxWidth);

 UBX=10.^(log10(X)+Param.BoxWidth);

 for i=1:Param.NumBox

 % plot the IQR using rectangle

 rectangle('Position',...

 [LBX(i) P25Y(i) UBX(i)-LBX(i) IQRY(i)],...

 'EdgeColor',Param.BoxColor,'LineWidth',...

 Param.LineWidth)

 end

 % Now plot the median

 loglog([LBX; UBX],repmat(P50Y,[2,1]),'-',...

 'Color',Param.MedColor,'LineWidth',Param.LineWidth)

 clear LBX

 clear UBX

 % Now plot the outliers

 for i=1:Param.NumBox

 % Find Any Outliers

 OutMask=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i);

 % If there are outliers plot them

 if sum(OutMask)>0

 loglog(repmat(X(i),[sum(OutMask),1]),Y(OutMask,i),...

388

 '+','Color',Param.OutColor,'LineWidth',...

 Param.LineWidth)

 end

 end

 end

end

	University of Vermont
	ScholarWorks @ UVM
	2017

	A New Evolutionary Algorithm For Mining Noisy, Epistatic, Geospatial Survey Data Associated With Chagas Disease
	John P. Hanley
	Recommended Citation

	tmp.1493740099.pdf.E4GAO

