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ABSTRACT 

 

 

The scientific community is just beginning to understand some of the profound 

affects that feature interactions and heterogeneity have on natural systems. Despite the 

belief that these nonlinear and heterogeneous interactions exist across numerous real-world 

systems (e.g., from the development of personalized drug therapies to market predictions 

of consumer behaviors), the tools for analysis have not kept pace. This research was 

motivated by the desire to mine data from large socioeconomic surveys aimed at 

identifying the drivers of household infestation by a Triatomine insect that transmits the 

life-threatening Chagas disease. To decrease the risk of transmission, our colleagues at the 

laboratory of applied entomology and parasitology have implemented mitigation strategies 

(known as Ecohealth interventions); however, limited resources necessitate the search for 

better risk models. Mining these complex Chagas survey data for potential predictive 

features is challenging due to imbalanced class outcomes, missing data, heterogeneity, and 

the non-independence of some features. 

 

We develop an evolutionary algorithm (EA) to identify feature interactions in “Big 

Datasets” with desired categorical outcomes (e.g., disease or infestation). The method is 

non-parametric and uses the hypergeometric PMF as a fitness function to tackle challenges 

associated with using p-values in Big Data (e.g., p-values decrease inversely with the size 

of the dataset). To demonstrate the EA effectiveness, we first test the algorithm on three 

benchmark datasets. These include two classic Boolean classifier problems: (1) the 

‘majority-on’ problem and (2) the multiplexer problem, as well as (3) a simulated single 

nucleotide polymorphism (SNP) disease dataset. Next, we apply the EA to real-world 

Chagas Disease survey data and successfully archived numerous high-order feature 

interactions associated with infestation that would not have been discovered using 

traditional statistics. These feature interactions are also explored using network analysis. 

The spatial autocorrelation of the genetic data (SNPs of Triatoma dimidiata) was captured 

using geostatistics. Specifically, a modified semivariogram analysis was performed to 

characterize the SNP data and help elucidate the movement of the vector within two 

villages. For both villages, the SNP information showed strong spatial autocorrelation 

albeit with different geostatistical characteristics (sills, ranges, and nuggets). These metrics 

were leveraged to create risk maps that suggest the more forested village had a sylvatic 

source of infestation, while the other village had a domestic/peridomestic source. This 

initial exploration into using Big Data to analyze disease risk shows that novel and 

modified existing statistical tools can improve the assessment of risk on a fine-scale. 
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CHAPTER 1: INTRODUCTION 

The London cholera outbreaks of the mid 1800s are credited as one of the first 

times an environmental engineer assessed the risks associated with a disease (Buescher 

Jr.). The engineer, Mr. Grant, research into the water supply of the houses affected by 

Cholera on Albion Terrace that helped formulate the epidemiologist John Snow’s 

hypothesis that the source of cholera was water borne and not the result of bad smells as 

hypothesized by Dr. Milroy (Hempel, 2007). Since that time, engineers have continued 

to help assess of the risk of diseases ranging from assessing varying climate change 

scenarios on the abundance of the malaria vector Anopheles gambiae sensu lato 

(Bomblies, 2012), the risks associated with transmission of the parasitic tape worm 

Taenia solium (Enander et al., 2010), or the risk of child-acquired, respiratory illnesses 

associated with the presence of Enterococcus spp on hands (Julian et al., 2013). This 

dissertation is an environmental engineer’s attempt to geospatially assess the risk of 

Chagas disease and thyroid cancer. 

1.1 Summary of Research Contributions 

The primary contribution of this research lies in the development and 

modification of statistical tools to assess the risk of household infestation of Triatoma 

dimidiata, the principal vector of Chagas disease in Guatemala (WHO, 2015). These 

tools were applied using a unique set of socioeconomic, genetic and entomologic survey 

data collected from two towns in Jutiapa, Guatemala. The survey data were 

georeferenced at the household level and include next generation sequencing data on the 

T. dimidiata collected in domestic (i.e., houses) and peridomestic (i.e., areas immediately 
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surrounding the house such as a yard, chicken coops, wood piles, etc.) ecotopes. The first 

goal was to determine the risk of household infestation of T. dimidiata associated with 

numerous risk factors present in the socioeconomic and entomologic household surveys. 

This task was complicated by the presence of missing data, varied datatypes (e.g., 

nominal, discrete, and ordinal), inherent feature interactions associated with infestation, 

numerous combinations of risk factors, and implicit heterogeneity. Feature interactions 

are inherent in this data because, at a minimum, T. dimidiata need both shelter and a food 

source to successfully infest a household. One without the other will inhibit a successful 

infestation of a household. Heterogeneity is present in the diverse number of 

combinations of shelters and food sources that may be associated with successful 

infestation.  

The large number of combinations of risk factors in the survey data made 

exhaustive search of all combinations unrealistic in terms of computational effort. As a 

result, one of the main contributions of this work is the development of a new algorithm 

capable of (1) efficiently searching large datasets (“Big Data”) for multiple signals (i.e., 

true associations with an outcome, the opposite of noise), and (2) handling missing data 

as well as varied datatypes embedded in this large, epistatic, heterogeneous survey data. 

An evolutionary algorithm (EA) was designed to tackle this problem (Chapter 2). To 

address the challenges associated with p-values and Big Data (Lin et al., 2013; Nuzzo, 

2014), the hypergeometric probability mass function (hypergeometric PMF) was 

introduced as a novel fitness function (i.e., measurement of signal strength). This new 

EA and fitness were then tested on a set of benchmark problems from the EA community 
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to assess the EA’s ability to perform feature selection and reduce the search space. Next, 

the EA was tested on the T. dimidiata infestation datasets and was able to efficiently 

identify complex interactions associated with infestation (Chapter 3). 

The next generation sequencing of the georeferenced T. dimidiata collected in the 

houses and their peridomestic ecotopes in the two villages in Jutiapa, Guatemala resulted 

in thousands of single nucleotide polymorphisms (SNPs). Smouse and Peakall (1999) 

developed a genetics-based algorithm to measure spatial autocorrelation using 

correlograms. However, given the impact of outliers and the inability to empirically 

determine confidence intervals for the binned correlations, we modified the Smouse and 

Peakall (1999) algorithm; and the correlogram was replaced with what is known as a 

semivariogram (Chapter 4). Rather than measure the similarity between spatially 

autocorrelated data, semivariograms measure the dissimilarity between paired data 

points, and are the preferred measure of spatial autocorrelation in the geostatistics 

community for a variety of reasons. The modified algorithm of Smouse and Peakall 

(1999) was then used to determine the range of spatial autocorrelation of the genetic 

structure of T. dimidiata in both towns. Because we were unable to find any empirical 

study that has determined how far T. dimidiata moves in the field, the range of spatial 

autocorrelation identified by our modified semivariogram was then used as a surrogate 

to vector movement to map the risk of infestation in both towns. These maps provide 

support to one of the towns having a sylvatic source of infestation, and the other having 

domestic and peridomestic sources of infestation.  
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In Chapter 5, we assess the risk of thyroid cancer using 14 years of spatially 

referenced incidences of thyroid cancer in Vermont. Unlike the Chagas disease datasets, 

the incidence of thyroid cancer was georeferenced to the larger zip code scale; and the 

datasets had minimal demographic information. The socioeconomic data available for 

analyzing risk was the US census data, which aggregates the population data over a zip 

code. Thus, we were unable to identify novel combinations of risk factors associated with 

thyroid cancer using this aggregated socioeconomic data. That being said, the geospatial 

analysis of the thyroid cancer did allow for the visualization of Hot Spots in Vermont. 

Throughout the course of this research, novel and adapted statistical tools are 

developed and applied to disease datasets to assess risk. This work serves to highlight 

novel ways of analyzing Big Data that are becoming ubiquitous in research. While the 

methods presented here were successful in analyzing the risk associated with Chagas 

disease and thyroid cancer, these methods, like many traditional statistics that use p-

values, should not be shoe-horned into tackling problems they were not specifically 

designed for. These methods are designed to be part of a larger tool kit when analyzing 

Big Data associated with complex systems.  

1.2 Chagas Disease 

Chagas disease is caused by the protozoan parasite, Trypanosoma cruzi, and is 

primarily spread via blood feeding insects in the order Hemiptera, family Reduviidae, 

and subfamily Triatominae (WHO, 2002). While the primary vector food source is 

vertebrates, T. cruzi only infects mammals (Rassi et al., 2010). Human impacts, such as 

deforestation for agrarian land use, have caused triatomines to adapt (Coura, 2015); and 
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one of the main vectors of Chagas disease, T. dimidiata, has adapted to human domestic 

and peridomestic environments (Waleckx et al., 2015a). This vector is endemic from 

Mexico all the way south to parts of Peru, Ecuador, Colombia, and Venezuela (WHO, 

2002). People with Chagas disease often live in remote areas with poor sanitation, low 

socioeconomic status, and work manual labor jobs (Prata, 2001; Briceño-León et al., 

2007). Approximately 70 million people in Latin America are at risk of infection with T. 

cruzi and ~5.7 million people are infected (Chagas, 2015). In Central America, 

Guatemala has the largest number of vector transmitted cases (~1,275) in 2010 (Chagas, 

2015). Furthermore, Guatemala, El Salvador, and Honduras combined account for 85% 

of the new cases in Central America (Chagas, 2015). Chagas disease has an estimated 

disability-adjusted life years (DALY) of 546,000 (271,000–1,054,000), and is the second 

largest proportion of DALY in Latin America, after hookworm disease (Murray et al., 

2012). The estimated annual health-care cost per Chagas patient in Latin America is 

~$383 (range $207–$636); and the total annual cost to society (i.e., health-care plus 

productivity losses) per chronic Chagas disease patient in Latin America is ~$4,059 

(range $3,569–$4,434) (Lee et al., 2013). Thus, the disease burden of Chagas disease 

exceeds other infectious diseases such as cholera and rotavirus (Lee et al., 2013).  

Humans infected with T. cruzi can acquire Chagas disease by the transmission of 

the T. cruzi infected feces into the bite or open wound, or through the mucosa of the eye, 

nose, or mouth (Prata, 2001; Teixeira et al., 2006; Rassi et al., 2010). Another possible 

source is via consumption of the insect or infected feces in food items such as juice and 

vegetables, and possibly from eating wild meat (Rueda et al., 2014). Oral transmission is 
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believed to be the primary source of infection for wild animals (Coura, 2015); and the 

odoriferous glands of a marsupial infected with T. cruzi can directly transmit the parasite 

to humans (Coura, 2015). 

Chagas disease is broken into three phases. The first is the acute phase, which 

may last 1–4 months after infection with T. cruzi (Prata, 2001, Stanaway and Roth, 2015). 

This phase is characterized by an increase in heart size, heart cell destruction, and 

depopulation of neurons. (Teixeira et al., 2006). This phase is asymptomatic in 95% of 

cases (Teixeira et al., 2006; Stanaway and Roth, 2015); however, for the remaining 5%, 

symptoms may include malaise, fever, jaundice, skin hemorrhages, enlargement of the 

liver, and muscle and joint pain (Prata, 2001; Teixeira et al., 2006; Rassi et al., 2010; 

Stanaway and Roth, 2015). Less than 1 in 2,500 infections result in death; the latter is 

usually attributed to encephalomyelitis or severe cardiac failure (Prata, 2001; Teixeira et 

al., 2006; Stanaway and Roth, 2015). The indeterminate phase is asymptomatic and can 

last 10–30 years or throughout a lifetime (Prata, 2001; Stanaway and Roth, 2015). 

Finally, the chronic phase, occurs in about one third of those infected and has symptoms 

that include heart disease (i.e., destruction of target heart cells), megaesophagus, 

megacolon, nervous system lesions, and sudden death (Prata, 2001; Teixeira et al., 2006; 

Rassi et al., 2010; Stanaway and Roth, 2015). Heart disease is one of the most common 

and deadly symptoms; however, there appears to be heterogeneity in Chagas-related 

heart disease with three distinct groups (Rassi et al., 2006). The 10-year mortality rate 

across all three groups is ~27%, but ranges from ~10 to ~84% (Rassi et al., 2006). In 

general, the relative risk ratio of mortality is approximately 1.74 for individuals with 
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Chagas disease compared to similar individuals without the disease (Cucunubá et al., 

2016). In addition to the Chagas-related health effects, there is some evidence that 

Chagas is a risk factor for high blood pressure (Vicco et al., 2014), cognitive impairment 

in older adults (Lima-Costa et al., 2008), and ischemic stroke (Lima-Costa et al., 2008).  

Currently, there is no preventive medicine for Chagas disease. Nonetheless, there 

are two anti-trypanosome drugs, nifurtimox and benznidazole, used to treat T. cruzi 

infections (Teixeira et al., 2006; Jannin and Villa, 2007; Rassi et al., 2010; González-

Ramos et al., 2016). Both drugs have a common occurrence of adverse reactions that can 

prevent infected individuals from completing treatment (Hasslocher-Moreno et al., 2012; 

Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 2015); studies found 

that between 13–31% cannot complete drug treatment (Hasslocher-Moreno et al., 2012; 

Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 2015). 

Benznidazole is the preferred and most effective treatment of T. cruzi infections 

(Prata, 2001; Rassi et al., 2010; González-Ramos, et al. 2016). However, adverse 

reactions in adults include epigastric pain, skin disorders, nausea, abdominal bloating, 

sleep disturbance, temporary memory loss, headache, loss of appetite, myalgia, 

eosinophilia, and central and peripheral nervous system disorders; and the percentage of 

adults with at least one of these reactions ranges from 49 – 80% (Hasslocher-Moreno et 

al., 2012; Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 2015). 

Extreme cases have resulted in intensive care unit treatment with symptoms that included 

tonic-clonic seizures and in one case, decreased liver function and multiple general organ 

failure accompanied by 30% skin detachment in another case (González-Ramos et al., 
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2016). Currently, drug treatment is optional for people over 50, because no proven 

benefits exist for people in this age cohort (Rassi et al., 2010). For other age cohorts, 

treatment efficacy for people with acute Chagas is between 30–83.5% (Prata, 2001; 

Teixeira et al., 2006; Jannin and Villa, 2007); and for chronic Chagas, the efficacy is 

much lower (5–30%) (Teixeira et al., 2006; Jannin and Villa, 2007). 

Thus, given the lack of preventative medicine, coupled with the drug reactions 

and low efficacy of drug treatment, the preferred method of combating Chagas disease is 

by minimizing human contact with the vector. One of the most common tactics for 

controlling household infestation of T. dimidiata is the use of pyrethroid insecticide 

(Tabaru et al., 1998; Acevedo et al., 2000; Nakagawa et al., 2003a; 2003b; Dumonteil et 

al., 2004; Hashimoto et al., 2006; Manne et al., 2012; Yoshioka et al., 2015; Quinde-

Calderón et al., 2016). While pyrethroid insecticides have successfully reduced 

infestation rates of T. dimidiata, rarely is the infestation rate reduced to zero (Acevedo et 

al., 2000; Quinde-Calderón et al., 2016). Nonetheless, the residual effects of pyrethroid 

spraying appear to last only four months before adult T. dimidiata reinfest a house and 

nine months before nymphs are found in the house (Dumonteil et al., 2004). Thus, while 

residual pyrethroid spraying has been applied successfully to Rhodnius prolixus and 

Triatoma infestans, in most cases the same cannot be said for T. dimdiata (Waleckx et 

al., 2015a). The rebounding of infestation to original levels were observed almost three 

years after a single round of pyrethroid spraying in Jutiapa, Guatemala (Hashimoto et al., 

2006). In addition to spraying houses with pyrethroid insecticides, recent work shows the 

potential of the fungi Beauveria bassiana and Gliocladium virens to control T. dimidiata 
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(Vázquez-Martínez et al., 2014). Both fungi were shown to successfully kill T. dimidiata 

in a laboratory setting Vázquez-Martínez et al. (2014); however, short of extirpation of 

T. dimidiata, the vector will always pose the risk of infestation where it is endemic. 

The only proven long-term control of T. dimidiata infestation is the 

implementation of home improvements often accompanied by educational outreach on 

Chagas disease and the vector (Monroy et al., 2009; Ferral et al., 2010; De Urioste-Stone 

et al., 2015). Home improvements that minimize the risk of household infestation with 

T. dimidiata run the gamut of cleaning and organizing the peridomestic environment 

immediately surrounding a house (Zeledón and Rojas, 2006; Zeledón et al., 2008; Ferral 

et al., 2010), plastering walls (Monroy et al., 1998; Monroy et al., 2009; Lucero et al. 

2013; Pellecer et al., 2013), replacing dirt floors with cement floors (Lucero, et al., 2013; 

Pellecer et al., 2013), installing window screens (Ferral et al., 2010; Waleckx et al., 

2015b), impregnating curtains with insecticide  (Ferral et al., 2010), and domestic rodent 

control (De Urioste-Stone et al., 2015). These home improvements have led to a 

reduction in household infestation that often lasts longer than spraying insecticide; 

however, none have completely eliminated infestation. Some of the aforementioned 

interventions are considered Ecohealth interventions because they use sustainable 

methods and locally sourced materials (Monroy et al., 2009; Lucero et al., 2013; Pellecer 

et al., 2013). Window screens were very effective in nearly eliminating household 

infestation in pilot villages in the Yucatán penninsula, Mexico; however, in the Yucatán 

penninsula, T. dimidiata has been shown to invade homes seasonally, and thus barriers 

to entry are more effective (Ferral et al., 2010; Waleckx et al., 2015b). Therefore, risk 
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analyses capable of discovering unidentified factors or patterns may help successful 

elimination of infestation. 

1.3 Evolutionary Algorithm Background 

Evolutionary algorithms (EAs) are biologically inspired algorithms designed to 

solve complex non-linear problems. EAs have been used to provide a non-invasive means 

of diagnosing Parkinson’s disease (Smith and Timmis, 2008), better diagnose prostate 

cancer (Llorà et al., 2007), and determine the risk factors associated with bladder cancer 

(Urbanowicz et al., 2013). The latter two studies used EAs that could be applied to a 

Chagas disease dataset. Llorà et al. (2007) used an EA called a Pittsburgh-style learning 

classifier system (LCS) and Urbanowicz et al. (2013) used an EA called a Michigan-style 

LCS.  

The original Michigan-style LCS algorithm, cognitive system (i.e., CS-1), was 

designed for binary input features and the prediction of associated categorical outcomes 

in dynamically changing environments (Holland and Reitman, 1978). Thus, they do not 

perform batch learning, but often learn one observation at a time (Urbanowicz and 

Moore, 2009), which is computationally inefficient and subject to sampling order bias 

when the data are available in batch. The most reliable Michigan-style LCS, called XCS, 

is still in use today (Butz et al., 2003). LCSs evolve a population of classifiers that consist 

of a condition and an action. The condition is a mask of input features (F), with each 

feature having one of the following values ∈{0, 1, #}, where # symbolizes “don’t care” 

(or wild card) and implies a feature may be either 0 or 1. The classifier action is the 

outcome class (e.g., ∈{0, 1}) associated with the input feature condition. In the LCS 
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community, the condition is analogous to a conjunctive clause (CC). This condition 

(CC) and action (combined) equal a classifier, and the LCS evolves the classifiers using 

a genetic algorithm (GA). In a broad sense, the classifier fitness is a function of the 

number of times its condition (input feature mask) and the associated action match both 

the observed input features and associated outcome data collected from the system under 

investigation. Michigan-style LCSs use the population of CCs and weighted fitness 

function first proposed by Wilson (1995) to predict outcomes. The performance of a 

population of CCs is often evaluated on the prediction accuracy of the most recent input 

feature vectors.  

Smith (1980; 1983; 1984) is credited with the first Pittsburgh-style LCS named 

LS-1. Like the Michigan-style LCS, LS-1 was designed to predict multiple categorical 

outcomes given binary input features in a dynamic environment (early LS-1 tests 

included the ability to play poker). The LS-1 algorithm uses an encoding system similar 

to the Michigan-style LCS, except that instead of evaluating the fitness of individual 

classifiers, the fitness is evaluated based on a group of classifiers. Thus, the algorithm 

maintains a population of Pittsburgh-style classifiers, where each Pittsburgh-style 

classifier is the disjunction of Michigan-style classifiers, and a GA evolves the population 

of Pittsburgh-style classifiers. 

Thornton-Wells et al. (2004) proclaimed the need for the development of 

statistical tools that take into account heterogeneity and feature interactions in complex 

disease datasets. While LCSs have been successfully tested numerous times on the 

multiplexer problem, a toy Boolean problem that is available in batch and has epistasis 
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and heterogeneity (Wilson, 1987a; Wilson, 1987b; Booker, 1989; Goldberg, 1989; De 

Jong and Spears, 1991; Butz et al., 2003; 2004; 2005b; Llorà et al., 2005; Butz and 

Pelikan, 2006; Ioannides et al., 2011; Iqbal et al., 2012; 2013b; 2013c; 2014; 2015; 

Urbanowicz and Moore, 2015), this toy problem does not contain noise and as the 

complexity of the problem increases, the complexity of the solution is so great that it 

bears little resemblance to a real-world problem. Even though the multiplexer problem 

is useful in testing an algorithm’s ability to find epistatic and heterogeneous features; an 

algorithm’s ability to solve the multiplexer problem does not imply that it can solve 

complex real-world problems having epistasis and heterogeneity. Therefore, given that 

LCSs are not designed for solving problems in bulk and given that a number of LCSs 

have components that are uniquely designed to solve toy Boolean problems a new 

evolutionary algorithm needed to be developed. 

1.4 Spatial Autocorrelation in Disease-Related Studies 

We were unable to find any empirical study that measures how far T. dimidiata 

can move during their lifespan. Orantes (personal communication, January 2017) has 

used next generation Rad-seq to create a database of single nucleotide polymorphisms 

(SNPs) for T. dimidiata collected from two villages. Spatial autocorrelation in the single 

nucleotide polymorphisms (SNPs) of humans has been observed at various scales. Elhaik 

et al. (2013) found spatial autocorrelation at the global scale and was relatively successful 

at leveraging geospatial and SNP data to predict a person’s country of origin. On a finer 

scale, Lao et al. (2013) found spatial autocorrelation in people in the Netherlands, which 

they attributed to historic settlement patterns. 
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Spatial autocorrelation in the genetics of T. dimidiata have been observed at 

various scales. Bargues et al. (2008) analyzed 31 haplotypes at 64 locations that spanned 

a range from Mexico to northern South America. While they did not explicitly 

characterize spatial autocorrelation, they did show geographic grouping of phenotype 

trees. More recently, Stevens et al. (2015) investigated spatial autocorrelation using 7 

highly polymorphic microsatellite loci from 178 T. dimidiata spread across 6 villages in 

the department of Jutiapa, Guatemala. Using the relatedness function of Lynch and 

Ritland (1999), Stevens et al. (2015) found some migration of T. dimidiata between 

houses in a village as well as some spatial autocorrelation, despite the signal being weak. 

These findings are contrary to earlier works that did not find spatial autocorrelation 

among T. dimidiata in nearby villages in Guatemala (Dorn et al., 2003; Calderón et al., 

2004). Given that Melgar et al. (2007) found 41 families of T. dimidiata in a single house 

in Guatemala, using hundreds to thousands of markers can allow for fine scale, within-

town spatial autocorrelation. As a result, using the thousands of T. dimidiata SNPs from 

the Orantes (personal communication, January 2017) database may provide a unique 

opportunity to explore spatial autocorrelation at the finer village scale. 

Smouse and Peakall (1999) developed a methodology to characterize the range 

of spatial autocorrelation by using multiple genetic markers to create a correlogram. 

Their methodology has subsequently been used on a variety of species such as emmer 

wheat (T. turgidum L. ssp. dicoccoides) (Volis et al., 2014), beech trees (Fagus sylvatica 

L.) (Piottti et al., 2013), bottlenose dolphins (Tursiops truncatus) (Richards et al., 2013), 

Canada geese (Branta canadensis) (Finnegan et al., 2013), and the American black bear 
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(Ursus americanus) (Coster and Kovach, 2012). In a few instances, the correlogram of 

Smouse and Peakall (1999) has been used to measure the range of spatial autocorrelation 

of a disease vector. Foley et al. (2004) found the range of spatial autocorrelation for the 

mosquito vector (Ochlerotatus notosciptus) of dog heartworm (Dirofilaria immitis) to be 

~55 km. While Rašić et al. (2015), found the range of spatial autocorrelation to be 3-6 

km for the mosquito Aedes aegypti, which is a vector of dengue. Finally, Pérez de Rosas 

et al. (2013) investigated the range of spatial autocorrelation for Triatoma infestans, the 

principle vector of Chagas disease in South America, and found a range of ~400 m. They 

also investigated sex-biased dispersal and found that females had a relatively larger range 

of spatial autocorrelation than males (400 m versus 330 m). Pérez de Rosas et al. (2013) 

used the range of spatial autocorrelation as a guideline for the radius of insecticide 

applied around an infested house or peridomestic structure. Therefore, the Smouse and 

Peakall (1999) methodology for determining the range of spatial autocorrelation can be 

used as a foundation for determining the range of spatial autocorrelation for T. dimidiata. 

1.5 Thyroid Cancer 

Thyroid cancer incidence is increasing at an annual rate of 3–5%, resulting in the 

rate tripling over the past 30 years in the United States as well as in other countries 

(Curado et al., 2007; Kilfoy et al., 2009; Jemal et al., 2011; Morris et al., 2013; Pellegriti 

et al., 2013).  In the United States, the number of cases has risen from 4.3 cases per 

100,000 in 1980 to 12.9 cases per 100,000 individuals in 2008. Mortality rates have 

slightly increased (+0.8% annual percent change [APC]) (Enewold et al., 2009; Cramer 

et al., 2010; NCI, 2012). A recent study noted a disproportional increase in women 
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(Edwards et al., 2006). The basis for the increase in thyroid cancer incidence is not 

known. Some studies suggest enhanced diagnostic scrutiny and better detection of 

subclinical cancers result in widespread over diagnosis and thus not a true increase in 

incidence (Davies and Welch, 2006; Ross, 2006; Grodski et al., 2008; Enewold et al., 

2009; Hall et al., 2009; Yu et al., 2010; Morris et al., 2013; Reitzel et al., 2014). Other 

studies note that an increase in both large tumors and microcarcinomas as well as a 

change in relative frequencies of histological types implicate other contributing factors 

(Chen et al.; 2005; Kilfoy et al., 2009; Pazaitou-Panayiotou et al., 2013; Ward et al., 

2010; Aschebrook-Kilfoy et al., 2013). Of note, recent reports of aggressive, metastatic 

microcarcinomas of the thyroid that correlate with the risk of second cancers (Kim et al., 

2013) suggest that microcarcinomas once considered subclinical might emerge as 

important new healthcare concerns and reflect an important dimension of the increase in 

thyroid cancer incidence.  

Environmental and demographic factors may be critical determinants in the 

increase in thyroid cancer incidence (Leux and Guénel, 2010; Morris and Myssiorek, 

2010; Li et al., 2013; Pellegriti et al., 2013). A recognized risk factor for thyroid cancer 

is ionizing radiation exposure through medical procedures, including x-rays, as well as 

radioactive fallout (Richardson, 2009; Wartofsky, 2010; NCI, 2013). A study of the 

overall geographic distribution of thyroid cancer in the United States revealed a higher 

incidence in areas proximate to nuclear power reactors (Mangano, 2009). High levels of 

nitrate in public drinking water supplies have been linked to increased thyroid cancer 

incidence (Ward et al., 2010), and environmental endocrine disruptors including 
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polyhalogenated aromatic hydrocarbons (PHAHs), notably polybrominated diphenyl 

ethers (PBDEs) and organochlorine insecticides, are postulated factors (Grimalt et al., 

1994; Zhang et al., 2008; Zhu et al., 2009; Leux and Guénel, 2010). Leux and Guénel 

(2010) noted that many environmental chemicals interfere with thyroid function and 

increase the risk of goiters, nodules, and possibly neoplasia. Additional known risk 

factors include family history, sex, and age (Pellegriti et al., 2013). Socioeconomic 

factors (SES) may also indicate that access to healthcare affects incidence (Sprague et 

al., 2008; Morris et al., 2013). Thus, novel analyses are needed to elucidate both 

incidence and contributing factors.  

With the capability to visualize, analyze, interpret, and map geo-located data, the 

field of geostatistics, notably the geographic information system (GIS) tool, has emerged 

as a powerful geospatial technology that is gaining prominence in healthcare applications 

(Musa et al., 2013). GIS-based cancer mortality maps produced by the National Cancer 

Institute and Centers for Disease Control and Prevention (CDC) are widely used by 

public health officials to guide disease surveillance and control activities throughout the 

United States (Shaw, 2012). Beyond traditional GIS mapping capabilities, more 

sophisticated spatial statistical analyses have been utilized to identify spatial disease 

clusters (i.e., nonrandom spatial distributions of disease cases, incidence, or prevalence), 

map and monitor disease patterns and trends over time and space, and assess the impact 

of ecological and socioeconomic factors on the spatial distribution of diseases. Although 

there are still many technical (e.g., knowledgeable users, data quality control) and 

organizational (e.g., access and sharing) barriers to the wide-scale adoption of geospatial 
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technologies in the healthcare sector (Boulos et al., 2011), recent advances in the 

understanding of disease dynamics, healthcare management has demonstrated the power 

of geospatial technologies to identify new drivers of public health concerns and advance 

the field of public health research.  
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CHAPTER 2: A TANDEM EVOLUTIONARY ALGORITHM FOR 

IDENTIFYING OPTIMAL ASSOCIATION RULES FROM COMPLEX 

DATA 

2.1 Introduction 

The causal rules underlying emergent properties of complex systems often exhibit 

heterogeneity, epistasis, and/or overlap. Empirical observations of such systems may be 

high-dimensional and typically include missing data, noise, and/or imbalanced classes. 

All of these complexities complicate our ability to infer meaningful (potentially causal) 

associations between observed system features and outcomes of interest. 

Heterogeneity exists when there are multiple underlying causes for the same 

outcome class. Evidence for heterogeneity exists in many systems, including bladder 

cancer (Urbanowicz et al., 2013), autism (Buxbaum et al., 2001), and American political 

parties (Poole and Rosenthal, 1984). Epistasis occurs when combinations of different 

feature values exhibit non-additive effects on outcomes. Epistasis is believed to be 

ubiquitous for many diseases (Moore, 2003), including breast cancer (Ritchie et al., 

2001), blood pressure in rats (Rapp et al., 1998), and Behçet’s disease (Kirino et al., 

2013). Many systems exhibit both heterogeneity and epistasis. For example, different 

(i.e., heterogneous) combinations of non-linearly interacting (i.e., epistasic) transmission 

line outages can cause cascading failures that lead to the same patterns of power loss in 

the electrical grid (Eppstein and Hines, 2012). Similarly, the ecological niche of the 

American black bear (Ursus americanus) is epistatic (in that the species requires both a 

secluded area for denning and specific combinations of spring, summer, and autumn food 
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sources (Larivière, 2001)) and heterogeneous (because of the widely different 

combinations of denning and three-season diets that accommodate the bear population, 

contributing to a vast geographic range that spans from southern Mexico to northern 

Canada (Larivière, 2001)). Furthermore, real world datasets often include correlated 

features that can cause significant overlap in heterogeneous explanatory rules, highly 

imbalanced classes (i.e., when the outcome classes are not equally represented in the 

dataset), noise in measured outcomes, and missing data (Chapter 3). 

There are many practical applications that require an understanding of such 

complex relationships, such as in the development of personalized drug therapies 

(Wilson, 2009), making market predictions of consumer behaviors (Young Kim and 

Kim, 2004), identifying gene-gene and gene-environment causes for complex disease 

(Moore, 2003), and developing eco-intervention strategies to minimize the spread of 

disease in less developed countries (Chapter 3). However, while the size and complexity 

of available datasets has exploded in recent years, computational tools for analyzing such 

systems have not kept pace (Wu et al., 2014). 

Traditional statistical and data mining methods, such as analysis of variance 

(Wilson et al., 2017; Yousefi et al., 2016), logistic regression (Jarlenski et al., 2016; Li 

et al., 2016; Nesheli et al., 2016), and decision trees (Markellos et al., 2016; Nesheli et 

al., 2016) are well suited for univariate analysis of additive models. Some studies perform 

feature selection using univariate logistic regression models and then test higher-order 

interactions between the selected features (Kaplinski et al., 2015; Molina et al., 2015; 
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Olivera et al., 2015). However, if main effects are small or non-existent, these traditional 

approaches will fail. 

In very high-dimensional problems, researchers have used iterative feature 

reduction methods to reduce the search space (e.g., Moore and White (2007); McKinney 

et al. (2007)), often using the data-mining algorithm ReliefF (Robnik-Šikonja and 

Kononenko, 2003) to assess feature importance. For example, Eppstein et al. (2007) 

developed a computationally efficient feature reduction approach (logarithmic in the 

number of features) for identifying parsimonious epistatic interactions that can predict 

an outcome of interest, dubbed ‘Random Chemistry’. This general approach can also be 

used to find heterogenous, possibly overlapping, sets of different epistatic interactions 

associated with a given outcome, via independent runs (Eppstein and Hines, 2012). 

However, in noisy and high-dimensional association problems where there are many 

more features than input samples (e.g., as in genome wide association studies), 

algorithms such as ReliefF become unreliable (Eppstein and Haake, 2008). Furthermore, 

even when such methods are successful in identifying individual epistatic interactions, 

they are not designed to identify maximally explanatory combinations of such 

interactions in heterogeneous systems. 

Learning classifier systems (LCS) are a type of evolutionary algorithm (EA) often 

employed to analyze classification problems with epistatic, heterogeneous and/or 

overlapping rules (Urbanowicz and Moore, 2009). The most common type of LCS is the 

so-called Michigan-style LCS, first introduced by Holland and Reitman (1978). A 

Michigan-style LCS uses a genetic algorithm to evolve a population of classifiers, with 
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each classifier comprising a condition/action pair. For example, consider a problem with 

5 binary input features and binary outcome classes. The classifier 0##1# → 1 (where # 

is a wild card symbol) is interpreted as “if feature 1 has value 0 and feature 4 has value 

1, then the outcome class is predicted to be 1”. The condition 0##1# is thus equivalent to 

the conjunctive clause (𝐹1 ∈ {0} ∧ 𝐹4 ∈ {1}), where 𝐹𝑖 refers to the value of feature i and 

∧ represents the Boolean operator “AND.” (We use set notation so that this is easily 

generalizable to nominal, ordinal, or continuous features 𝐹𝑖 with arity > 2). Prediction is 

typically evaluated based on a weighted combination of all classifiers in the population, 

and fitness is based on the number of times a classifier correctly predicts the outcome of 

an input feature vector (Wilson, 1995). However, because Michigan-style LCS 

approaches have focused on prediction accuracy, they return large “black box” sets of 

classifiers, rather than seeking to identify parsimonious “white box” models that are 

potentially causal. Furthermore, Michigan-style LCS approaches were designed for real-

time data assimilation in dynamically changing environments (Holland and Reitman, 

1978) and can be inefficient and subject to bias (based on sampling order) when applied 

to data that are available in batch. 

In preliminary work, motivated by the desire to mine complex survey data, we 

introduced a new evolutionary approach for finding heterogeneous and epistatic 

associations between input features and multiple outcome classes in large datasets 

(Hanley et al., 2016). In the current work, we further develop this method, compare the 

results to published results on test problems from the LCS community, and discuss how 
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our approach can be applied to seek potentially causal rule sets in real-world survey data, 

with important practical implications (Chapter 3). 

Our approach uses two EAs in tandem, each using an age-layered population 

structure (Hornby, 2006), and assesses fitness using a hypergeometric probability mass 

function (Kendall, 1952) that accounts for the size of the dataset, the amount of missing 

data, and the distribution of outcome categories. The first EA is used to evolve an archive 

of conjunctive clauses (CCs) that have a high probability of a statistically significant 

association with a given outcome. The second EA evolves disjunctions of these archived 

CCs to create an archive of probabilistically significant clauses in disjunctive normal 

form (DNF). Problem-specific post-processing methods of the DNF archive can then be 

applied to identify potentially causal parsimonious rule sets for predicting the outcome. 

This paper is organized as follows. In Section 2.2, we present our evolutionary 

approach and in Section 2.3, we describe the test problems used. In Section 2.4, we show 

how our method efficiently finds the most parsimonious, explanatory models in all 

problems tested and compare our results to published results from the LCS community. 

Finally, in Section 2.5, we discuss our findings and propose some directions for future 

work in algorithm and benchmark problem development. 

2.2 Proposed Evolutionary Algorithm 

We propose a system of two EAs in tandem that is capable of mining large, 

heterogeneous datasets of N feature vectors, for possibly epistatic and heterogeneous 

associations between combinations of L nominal, ordinal, and/or real-valued features that 
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are possibly predictive of a given target class outcome k. This tandem algorithm is run 

independently for each target class k present in the input dataset. 

The first EA (dubbed CCEA) evolves an archive of probabilitistically significant 

conjunctive clauses (CCs) of various orders, where the order is the number of interacting 

features in an epistatic interaction; 1st-order clauses correspond to main (i.e, univariate) 

effects. The second EA (dubbed DNFEA) combines archived CCs with disjunctions to 

evolve an archive of probabilistically significant clauses in disjunctive normal form 

(DNFs) of various orders, where the order is the number of conjunctions in a 

heterogeneous rule sets; 1st-order DNFs comprise a single CC. Additional post-

processing of the DNF archive seeks the optimal rule set for the target class k. Further 

details of the algorithm are described below and a hard copy of the Matlab code is 

available in Chapter 8. 

2.2.1 Fitness Function 

For each target class k, we define the fitness of a given clause using a 

hypergeometric probability mass function (PMF) (Kendall 1952), as follows:: 

                         𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑐𝑙𝑎𝑢𝑠𝑒, 𝑘) =
(

𝑁𝑘
𝑁𝑚𝑎𝑡𝑐ℎ,𝑘

)(
𝑁𝑡𝑜𝑡−𝑁𝑘

𝑁𝑚𝑎𝑡𝑐ℎ−𝑁𝑚𝑎𝑡𝑐ℎ,𝑘
)

(
𝑁𝑡𝑜𝑡

𝑁𝑚𝑎𝑡𝑐ℎ
)

             ,                (2.1) 

where clause is a given CC or DNF; Nk = the total number of input feature vectors with 

the target class k that do not have missing values for any features present in the clause; 

Nmatch,k = the number of input feature vectors for which the given clause is true and that 

have the target class k; Ntot = the total number of input feature vectors that do not have 

missing values for any features present in the clause (regardless of class); and Nmatch = 

the number of input feature vectors for which the clause is true (regardless of class). Note 
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that these definitions are slightly modified from those in Hanley et al. (2016) to better 

accommodate missing data. 

Eq. (2.1) quantifies the likelihood that the observed association between the 

clause and the target class k is due to chance, taking into account the size of the dataset, 

the amount of missing data, and the distribution of outcome categories. We thus seek to 

minimize Eq. (2.1), since lower values are indicative of greater probability of association 

between a clause and a target class. Henceforth, when we refer to the “most fit” clauses, 

we mean those with the lowest values using Eq. (2.1).   

2.2.2 Population Structure 

Both the CCEA and the DNFEA are implemented using a customized version of 

an Age-Layered Population Structure (ALPS) (Hornby, 2006), with 5 linearly-spaced 

age-layers and an age gap of 5. In this study, we restrict each CCEA layer to a population 

size of L (where L is the total number of features in the input vectors), whereas we restrict 

each DNFEA layer to population size of 20. In both the CCEA and the DNFEA, there is 

an additional 6th layer that it is used as an archive of probabilistically significant clauses. 

We run the CCEA and DNFEA separately for each target class k that is present 

in the input data, thus creating separate archives for each possible outcome class. In 

Boolean benchmark problems, the optimal generative rule set for each target class is 

easily identified as the single archived DNF with the lowest fitness per Eq. (2.1). In the 

more realistic problems, additional problem-specific post-processing of the CC and DNF 

archives can be applied to identify parsimonious explanatory rule sets, as discussed later. 

A high-level flowchart of the algorithm is shown in Fig. 2.1. 
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Figure 2.1: Flowchart for the proposed tandem ALPS-based EAs. For each target class k, we use 

the CCEA to evolve an archive of conjunctive clauses (CCs) that have a statistically significant 

probability of being associated with outcome class k; the CCs can be of arbitrary order, thus 

representing epistatic interactions. The DNFEA then evolves disjunctions of these archived CCs 

(after optional post-processing of the CC archive) and archives the resulting probabilistically 

significant disjunctive normal forms (DNFs); the DNFs can be of arbitrary order, thus 

representing heterogeneity. Further postprocessing of the archived DNFs seeks potentially causal 

rule set(s), in the form of DNFs that are predictive of outcome class k. For benchmark problems, 

we seek the single known optimal generative rule set. 

2.2.2.1 Initialization, Reproduction, and Aging 

At the start of the first generation (and every 5 generations thereafter), a novel 

population of clauses, each with age 1, is introduced into the first age layer. Further 

details of the initialization of CCs and DNFs are described in Sections 2.2.3 and 2.2.4, 

respectively. During each generation, all of the individuals in layers 1-5, plus up to 𝐿×5 

of the youngest individuals from the archived layer 6 (or fewer, if the archive doesn’t yet 

hold this many individuals) are selected to reproduce with variation. The ages of these 

selected parents are incremented by 1 and they remain in the population. Variation is 

introduced either through crossover (with probability 𝑃𝐶 = 0.5) or through mutation. If 

selected for crossover, a second parent is selected from the same or preceding (if one 

exists) age layer, using tournament selection with replacement (tournament size of 3); 
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the age of the second parent is not incremented. Further details of the crossover and 

mutation operators on CCs and DNFs are described in Sections 2.2.3 and 2.2.4, 

respectively. The children are given the same age as the oldest parent. 

Upon creation of a new clause in any layer (whether via random initialization, 

mutation, or recombination), if  
𝑁𝑚𝑎𝑡𝑐ℎ,𝑘

𝑁𝑚𝑎𝑡𝑐ℎ
<

𝑁𝑘

𝑁𝑡𝑜𝑡
 ,  then clause is discarded; this biases the 

algorithm toward retaining clauses that are useful in finding associations with the target 

class k. Of those retained, clauses with order i for which Eq. (2.1) is less than or equal to 

an order-specific threshold Ti are put directly into the archive bin for order i (as further 

explained in Section 2.2.2.2); otherwise, they are added into the appropriate age layer. 

Every fifth generation, individuals in layers 1-5 age out of their layers into the 

next higher age layer and a new random population is created for layer 1. Those aging 

out of layer 5 are discarded from the population. 

At the end of each generation, all individuals within the same age layer compete 

with each other during survivor selection, as follows. For any of the layers 1-5 in the 

CCEA and DNFEA that exceed the maximum layer size of L or 20 individuals, 

respectively, we determine survivors through truncation selection retaining the L or 20 

most-fit CCs in that layer for the CCEA and DNFEA, respectively. 

2.2.2.2 Maintaining the Archive 

Each archive is partitioned into bins for different orders of clauses, to ensure 

diversity in the complexity of the archived clauses. The maximum order of these bins 

and the lower bounds on the sizes of these bins are dataset-dependent (see Table 2.5). In 

all cases, the upper bounds on the bin sizes were 10 more than the lower bound. All 
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clauses in an archive bin for order i have fitness values that are less than or equal to a 

dynamicallyadjusted order-specific threshold Ti. The highest order bin may accept 

clauses ≥ the order of the bin. In the CCEA and DNFEA, thresholds Ti for all orders i are 

initialized to 1/N. This translates to an initial probability of 1 in N that a CC with fitness 

= Ti is randomly associated with the target class k. 

2.2.3 Representation of Conjunctive Clauses (CC’s) 

We represent possibly epistatic interactions, which are predictive of a target class 

k, with CCs in the following form: 

                                   𝐶𝐶𝑘 ≔ 𝐹𝑖 ∈ 𝑎𝑖 ∧ 𝐹𝑗 ∈ 𝑎𝑗 …      ,                                     (2.2) 

where := means  “is defined as”, Fi represents a feature that may be nominal, ordinal, or 

continuous, and whose value lies in ai, and ∧ represents conjunction (i.e., logical AND). 

Note that ai is a specified range or set of values that is a proper non-empty subset of a 

pre-specified universal set or maximum range of each feature. The meaning of such a 

clause is interpreted as “if CCk is true for a given input feature vector, then the class 

outcome is predicted to be k.” 

Each CC is represented by two parallel data structures. The first is a Boolean 

vector of length L (where L is the number of features in each input vector) that encodes 

presence (1) or absence (0) of each possible feature Fi in the clause. Thus, the sum of this 

Boolean vector represents the order of the CC and each feature i can appear at most once 

in a CC. Note that 1st-order CCs represent main effects of individual features; and if a 

feature is absent from a clause, this is equivalent to the LCS notation of having a wild 

card in that feature’s position. We store the corresponding ranges or sets of values ai in 
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a parallel data structure (we represent this as a vector of L pointers, each of which points 

to a binary vector representation of the range or set of values, similar to that used by De 

Jong and Spears (1991); although this is not space-efficient, it is very time-efficient when 

checking to see if a given CC matches a given instance in the dataset). These parallel 

structures comprise the genome of an individual in the CCEA, and the values in the 

binary vectors representing feature presence/absence and feature ranges/sets are co-

evolved. 

We enforce that there is at least 1 feature present in each CC, and that the 

allowable set or range for each included feature is non-empty, to preclude the problem 

of evolving clauses that cannot match any instances in the dataset (as discussed in Llorà 

et al. (2005)). We allow CCs to have up to L features present, since we do not wish to 

make arbitrary a priori assumptions on the maximum order of epistasic interactions that 

may exist. Iqbal et al. (2015) showed that higher-order CCs are useful in finding epistatic 

lower-order CCs. 

2.2.3.1 CC initialization 

Novel CCs are randomly created for layer 1 such that they are guaranteed to 

match at least one input feature vector that is associated with the target class k (a process 

known as “covering”). To accomplish this, we first generate a uniformly distributed 

random integer 𝑗 ∈ {1, … , 𝐿} to specify the order of the CC, and then extract the subset 

of input feature vectors with class k that have at least this many non-missing values. From 

this subset, we choose one of these at random. While the archive is empty, this input 

feature vector is selected according to a uniform distribution. However, once the archive 
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has been populated with clauses, we use a non-uniform distribution to bias the selection 

toward input feature vectors that are not yet well-covered in the archive. Specifically, we 

first tally the number of archived clauses that match each input feature vector in the 

extracted subset. We then sum this tally and add one, and subtract each feature vector’s 

tally from this value. We normalize the resulting vector and select an input feature vector 

according to this probability distribution. 

We then randomly select j of the non-missing features in the selected feature 

vector to be present in the clause. For each selected feature i, we then randomly initialize 

the corresponding range or set ai as follows. If the feature is nominal, the set ai is 

initialized to contain only the value for feature i that occurs in the selected input feature 

vector. If the feature is ordinal or continuous, the range stored in ai is initialized such that 

both the lower and upper bounds of the range are assigned the value for feature i that 

occurs in the selected input feature vector, so that the range contains exactly this value. 

2.2.3.2 CC mutation 

When a CC is selected for mutation, we do the following. Each position in a copy 

of the binary feature array from the parent is selected with probability 1/L (if zero features 

were initially selected, we select one at random). For each feature i that was selected, if 

the value at position i in the binary feature array is 0 (feature not present in the clause), 

then it is set to 1 (feature is added to the clause); and ai is randomly initialized to a non-

empty set or range of allowable values that does not include the entire allowable subset 

or range of values. However, if the value at position i in the binary feature array is 1 (i.e., 

Fi was present in the clause), then with probability Pw, the bit is flipped to 0 (i.e., the 
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feature is removed from the clause). For this work, we selected a high Pw = 0.5 so that 

mutation favors order reduction and thus aids in evolving parsimonious clauses that 

contain as few features as possible. If the value at position i in the binary feature array 

remains a 1 (feature Fi is still present), then the corresponding ai is mutated as follows. 

If Fi is nominal, we randomly change, add, or delete a categorical value to ai, ensuring 

that the set remains non-empty and less than the allowable universal set of values. If Fi 

is ordinal or continuous, we randomly change the lower or upper bound of ai, ensuring 

that the range remains non-empty and less than the maximum allowable range. 

2.2.3.3 CC crossover 

When a CC is selected for crossover, we perform uniform crossover between 

copies of the CC and its mate (selected as described in Section 2.2.2). Specifically, we 

initially create two children, swapping values between random positions in the binary 

feature arrays of the copies of the two parents, as well as between the same positions in 

the corresponding arrays of sets/ranges. If the first child contains at least one feature, we 

discard the second child; otherwise, we discard the first child. 

2.2.4 Representation of Clauses in Disjunctive Normal Form (DNF’s) 

We represent possibly heterogeneous interactions, which are predictive of a target 

class k, with DNFs in the following form: 

                                       𝐷𝑁𝐹𝑘 ≔ 𝐶𝐶𝑖 ∨ 𝐶𝐶𝑗 …      ,                                          (2.3) 

where each CCi is of the form shown in Eq. (2.2) and ∨ represents disjuntion (i.e., logical 

OR). The meaning of such a clause is interpreted as “if DNFk is true for a given input 

feature vector, then the outcome class is predicted to be k.” Each DNF is represented by 
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a binary array of length NCC,k , where NCC,k is the number of CCs archived by the CCEA 

for outcome class k (see Section 2.2.2). The binary values encode presence (1) or absence 

(0) of a given CC in the DNF, so the sum of this array represents the order of the DNF. 

Each DNF is constrained to include at least 1 CC but may have up to NCC,k CCs. This 

binary array comprises the genome of an individual in the DNFEA. For implementation 

efficiency, prior to running the DFNEA, each CC in the archive is associated with a 

precomputed binary array of length N that encodes whether the CC matches (1) or doesn’t 

match (0) each of the N input feature vectors and its associated outcome class. In general, 

the implementation of the DNFEA operators is simpler than that of the CCEA operators, 

since we no longer need to worry about allowable sets/ranges or covering of input feature 

vectors. 

2.2.4.1 DNF initialization 

Novel DNFs are randomly created as uniformly distributed binary arrays with 

anywhere from one CC to the maximum DNF order that will be archived for a given 

problem. 

2.2.4.2 DNF mutation 

When a DNF is selected for mutation, it will undergo one of five types of 

mutation with equal probability. Type 1 mutation is simple bit flip where each position 

in a copy of the binary feature array from the parent is selected with probability 1/ NCC,k 

(if zero features were initially selected, we select one at random). We then perform bit-

flip mutation at each of these selected positions, subject to the constraint that the DNF 

must still contain at least one CC. 
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The other four types of mutation are designed to help expand the diversity of 

evolved clauses in terms of true positive rate and coverage, or are aimed at reducing the 

DNF order. Type 2 mutation selects the CC that covers the most input feature vectors 

with target class k that are not covered by the DNF. Type 3 mutation selects the CC that 

covers the most input feature vectors with target class k that are not already covered by 

the DNF, while avoiding covering input feature vectors that are not associated with target 

class k. Type 4 mutation removes the CC that covers the fewest number of input feature 

vectors with target class k that are not covered by other CCs in the DNF. Finally, Type 5 

mutation removes the CC that has the most input feature vectors that are not target class 

k and are not covered by other CCs in the DNF. All five types of mutation ensure that at 

least one CC will be present in the DNF. 

2.2.4.3 DNF crossover 

When a DNF is selected for crossover, we perform uniform crossover between 

copies of the DNF and its mate (selected as described in Section 2.2.2). Specifically, we 

initially create two children, swapping values between random positions in the binary 

feature arrays. If the first child contains at least one feature, we discard the second child; 

otherwise, we discard the first child. 

2.3 Test Problem Characteristics 

In this manuscript, we test our algorithm on three types of problems previously 

used to test LCS algorithms. Two of these are classic scalable Boolean benchmark 

problems (the majority-on and multiplexer problems) and the third is a more realistic 
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synthetic genome association problem. Each of these problems are challenging and 

interesting in different ways (Table 2.1). 

Table 2.1: Challenging aspects of test problem used in this work; Majority-On (MO), Multiplexer 

(MP), 4 variants of MP, and the Synthetic Genome problem. 

Problem 

Heter. 

Rules 

Epistatic 

Rules 

Overlap. 

Rules 

Extran. 

Features 

Imbal. 

Classes 

Noisy 

Classes 

Missing 

Data 

MO X  X     

MP X X      

MP V1 X X  X    

MP V2 X X  X X   

MP V3 X X  X  X  

MP V4 X X  X   X 

Genome X X X X  X  

 

Below, we describe the rule sets used to generate the data for each of these 

problems, and show how each generative rule set for a particular outcome class can be 

represented in DNF, where each CC in the disjunction is one of the heterogeneous causes 

for the outcome class. Our goal is not only to evolve a set of classifiers that can accurately 

predict the outcome classes from input feature vectors, but to identify each of the true 

generative CCs as well as the single true generative DNF for each outcome class. 

2.3.1 The Majority-On Problem 

The majority-on problem, and the related count-ones problem (which is 

equivalent to majority-on but with extraneous features added) are scalable Boolean 

benchmark problems still used in the LCS community (Butz et al., 2003; Iqbal et al., 

2013a; b; c; 2014), despite known limitations (McDermott et al., 2012). 

In the majority-on problem, the number of input features L is always odd and the 

outcome class is specified by which of the Boolean values (0 or 1) is in the majority in a 

particular input feature vector. The generative model is the set of all classifiers with order 
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(L + 1)/2 such that all fixed bits and the action bit have the same value. For example, in 

the 3-bit majority on problem, the optimal predictive rule set for outcome class 0 is the 

following disjunction: (00#) ∨ (0#0) ∨ (#00), and the optimal predictive rule set for 

outcome class 1 is the following disjunction: (11#) ∨ (1#1) ∨ (#11). Since each condition 

can be considered a conjunctive clause (CC) (see Section 2.1), these optimal rule sets 

may be considered to be in disjunctive normal form (DNF). Note: These optimal rule sets 

are heterogeneous (since each is the disjunction of 3 classifiers). The classifiers are 

overlapping (e.g., (11#) and (1#1) both match the input vector 111 with observed 

outcome class 1), but are not epistatic (i.e., all features have additive main effects). 

Despite the presence of overlap, each of the 6 optimal condition/action classifiers are 

needed since there are input vectors that are only matched by one classifier (e.g., for 

outcome class 1, the input vector 110 is only matched by classifier 11#). 

We note that, for noiseless 2-class benchmarks problems like this, it is not 

actually necessary to evolve explicit rules for class 0, since one could simply assume the 

implicit rule of “if class 1 is not predicted, then predict class 0.” However, to demonstrate 

the generality of a given method’s ability to evolve explicit sets of classifiers for 

problems that are potentially noisy and may have an arbitrary number of outcome classes, 

it is the norm in the LCS community to explicitly evolve classifiers for both outcome 

classes, and we follow that convention here. 

2.3.2 The Multiplexer Problem 

The multiplexer problem, designed to predict the output of a electronic 

multiplexer circuit, is another scalable Boolean benchmark problem. The multiplexer 
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problem was first introduced to the machine learning community by Barto (1985), and 

has been a standard benchmark problem for testing LCS approaches for decades (Booker, 

1989; De Jong and Spears, 1991; Goldberg, 1989;Wilson, 1987a; b; Butz et al., 2003; 

2004; 2005; Butz and Pelikan, 2006; Ioannides et al., 2011; Iqbal et al., 2012; 2013a; b; 

c; 2014; 2015; Llorà et al., 2005; Urbanowicz and Moore, 2015). 

The generative model is the disjunction of 2b+1 classifiers, each with order b + 1, 

where b is the total number of address bits used to identify a location in a vector of 2b 

data bits that contains the outcome class. An example of the 6-bit multiplexer architecture 

is presented in Table 2.2. When using the multiplexer as a benchmark classifier problem, 

the input feature vectors comprise both the address bits and the data bits, so are b + 2b 

bits long; the outcome classes associated with particular input feature vectors are thus 

only discovered as the address bits of the classifiers evolve. The optimal predictive rule 

set for outcome class 0 in the 6-bit multiplexer can thus be considered as the following 

DNF: {(000###) ∨ (01#0##) ∨ (10##0#) ∨ (11###0), and the optimal predictive rule set 

for outcome class 1 is the following DNF: (001###) ∨ (01#1##) ∨ (10##1#) ∨ (11###1)}. 

This benchmark problem is purely epistatic (the address features do not have main effects 

and all optimal classifiers are of order > 1) and heterogeneous (different classifiers match 

different different subsets of the possible input vectors). 
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Table 2.2: Example of the generative rule set for a 6-bit multiplexer problem. Each feature vector 

X is 6 bits long, with the first b = 2 bits representing the address bits A, which are interpreted as a 

2-digit binary number (equivalent to decimal 0, 1, 2, or 3) that is used as an index into the the next 

2b data bits D. The data bit at this index represents the class outcome, whereas all other data bits 

are irrelevant to the classifier (wild cards). 

Address Bits Data Bits 

X1 X2 X3 X4 X5 X6 

A1 A2 D0 D1 D2 D3 

0 0 0 # # # 

0 1 # 0 # # 

1 0 # # 0 # 

1 1 # # # 0 

0 0 1 # # # 

0 1 # 1 # # 

1 0 # # 1 # 

1 1 # # # 1 

   

As with the majority-on problem, one could simply preclude the need for 

explicitly evolving classifiers for class 0 by assuming the implicit rule of “if class 1 is 

not predicted, then predict class 0.” However, to demonstrate generality, it is the norm in 

the LCS community to explicitly evolve classifiers for both outcome classes, and we 

follow that convention here. 

2.3.3 Synthetic Genome Problem 

Urbanowicz and Moore (2010) designed a noisy dataset to represent a synthetic 

genome association study for a complex disease that incorporates both genetic epistasis 

and heterogeneity. For the remainder of this manuscript we refer to this as the synthetic 

genome problem. The dataset contains 1,600 input feature vectors, and is perfectly 

balanced in that 800 input feature vectors are associated with class 1 (disease) and 800 

are associated with class 0 (no disease). Each input feature vector contains 20 ternary 

features, each representing whether a particular locus in the genome is homozygous for 

the major (most common) allele, heterozygous, or homozygous for the minor allele. 
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The dataset was designed with the intent that only four of these features would 

have a statisically meaningful association with the disease. Specifically, there were four 

heterogeneous causes for the simulated disease, in two pairs of purely epistatic 

interactions (i.e., no main effects) between two different pairs of loci (Table 2.3). Since 

the association between each of these 4 optimal rules and class 1 (disease) was designed 

to be noisy, we also indicate their true positive rate, coverage, and fitness by Eq. (2.1) 

(Table 2.3). 

Table 2.3: The four generative rules that are designed to have a statistically meaningful association 

with class 1 (disease) in the synthetic genome problem. In each of the 4 rules, only two loci ∈
{𝑭𝟏, 𝑭𝟐, 𝑭𝟑, 𝑭𝟒} out of 20 are not wild cards. True positive rate, coverage, and fitness (by Eq. (2.1)) 

of each of these true generative rules for class 1 (disease) are also shown. 

F1 F2 F3 F4 F5 … F20 

True 

Positive Coverage Fitness 

0 1 # # # … # 72% 27% 1.1×10−17 
1 0 # # # … # 74% 23% 5.7×10−17 
# # 0 1 # … # 66% 28% 4.2×10−12 

# # 1 0 # … # 71% 21% 8.7×10−13 

 

Due to noise, the true generative DNF for class 1 (i.e., the disjunction of the 4 

true generative rules shown in Table 2.3) has an overall positive prediction rate for class 

1 of only 64% (see Table 2.4), coverage of 76%, and fitness by Eq. (2.1) of 3.2×10−44. 

Note that there are no explicit rules that predict class 0, so if one assumes the default rule 

that “if class 1 is not predicted, then predict class 0,” then the overall positive prediction 

rate for both classes is 67%. 
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Table 2.4: Confusion matrix that results when predicting class 1 (disease) from the 1,600 sample 

noisy synthetic genome dataset, using the optimal generative rule set for class 1. Samples that are 

not predicted to be class 1 are predicted to be class 0 (no disease). 

 Predicted: Class 1 Predicted: Class 0 

Actual: Class 1 607 193 

Actual: Class 0 336 464 

 

Unlike in the majority-on and multiplexer problems, the synthetic genome 

problem was not designed to have any classifiers that are explicitly associated with class 

0 (no disease). Thus, it is most appropriate to only evolve rules for class 1 and then 

assume the implicit rule of “if class 1 is not predicted, then predict class 0,” and we take 

that approach here. 

2.3.4 Experimental Design 

Control parameters for the different types of problems and problem sizes tested 

are shown in Table 2.5. We note that, while preliminary experimentation showed that 

these parameters were sufficient for identifying the true generative clauses, it is likely 

they could be further optimized to improve performance. Each problem was run for 30 

random repetitions. For the Boolean benchmark problems we ran the CCEA and DNFEA 

separately for each of class 0 and class 1, so actually performed a total of 60 runs for 

each problem size. On the synthetic genome problem we only ran the CCEA and DNFEA 

for class 1 (since there was no true generative rule for class 0), so performed a total of 30 

runs on this problem. For all test problems, the runs were terminated when all of the true 

generative clauses had been archived and we recorded the total number of fitness 

evaluations performed per run. We used the same set of parameters for all 4 variants of 

the 6-bit multiplexer problem with 14 extraneous features added, including (a) a base 
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case (with balanced classes, no noise in the output classes, and no missing data), (b) 

imbalanced classes (15% class 0 and 85% class 1), (c) 20% noise added to the class 

outcomes (i.e., we flipped the outcome bit in 20% of random input data samples), and 

(d) 20% missing data (i.e., we randomly removed 20% of feature values from the input 

data samples). 

Table 2.5: Control parameters on the CCEA and DNFEA for the test problems. TIT stands for 

Ternary Digit, and EF stands for Extraneous Features. Genome refers to the Synthetic Genome 

Problem. 

Control 

Params. Majority-on Multiplexer Genome 

Problem 

Size 3-bit 5-bit 7-bit 9-bit 11-bit 6-bit 11-bit 20-bit 37-bit 

6-bit+ 

14EF 

4-TIT 

+16EF 

Dataset 

Size 

1,000 2,000 3,000 4,000 5,000 500 1,000 2,000 4,000 2,000 1,600 

CCEA Parameters 

Bin Size 

Order 1 
3 5 7 9 11 6 11 20 37 20 20 

Bin Size 

Order ≥2 
3 10 35 350 3,500 25 50 100 200 100 100 

Max Bin 

Order 
3 5 6 6 7 6 6 6 7 6 6 

Max 

Archive 
33 85 232 1,809 21,071 181 311 570 1,297 570 570 

Max 

Popsize 
48 110 267 1,824 21,126 211 366 670 1,482 670 670 

DNFEA Parameters 

Max Bin 

Order 
5 12    6 10 18 34 6 6 

Max 

Archive 
150 360    180 300 540 1,020 180 180 

Max 

Popsize 
250 460    280 400 640 1,120 280 280 

 

2.4 Results 

On all repetitions of all problems tested, the CCEA was successful in archiving 

all true generative CCs and the DNFEA was successful in archiving the true generative 

DNF (see Tables 2.6-2.7). 
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Table 2.6: CCEA and LCS results on the test problems. TIT stands for Ternary Digit, and EF 

stands for Extraneous Features. Genome refers to the Synthetic Genome Problem. For the CCEA 

results, we report the median number of evaluations out of 30 repetitions. For the LCS results, # 

instances refers to the number of instances used before the system achieved 100% accuracy. For 

the 6-bit multiplexer problem with 14 EF we report the median # evaluations for the base case, but 

we note that the runs with imbalanced classes, noise in the class data, and missing data had very 

similar median values. 

Control 

Params. Majority-on Multiplexer Genome 

Problem 

Size 3-bit 5-bit 7-bit 9-bit 11-bit 6-bit 11-bit 20-bit 37-bit 

6-bit+ 

14EF 

4-TIT 

+16EF 

Search 
Space 

52 484 4,372 39,364 354,292 1,456 354,292 7e9 9e17 7e9 1e12 

CCEA Results 

# Evals 105 749 4,432 30,418 295,369 2,201 19,891 193,929 2,811,841 16,214 8,316 

Iqbal et al. (2013c) results using actions e 

# 

Classifiers 
  3,000   500 1,000 2,000 6,000   

# 
Instances 

  20,000   3,333 9,698 59,549 1,367,925   

Iqbal et al. (2014) results 

# 

Classifiers 
500 1,000 2,000    1,000 2,000 6,000   

# 

Instances 
16,738 63,862 250,000    31,098 41,921 109,123   

Urbanowicz and Moore a(2015), b(2010) results 

# 

Classifiers 
     500a 1,000a 2,000a 5,000a  1,600b 

# 

Instances 
     12,203a 17,966a 43,729a 75,932a  1e6b 

 

Table 2.7: DNFEA results on the test problems. TIT stands for ternary digit, and EF stands for 

Extraneous Features. Genome refers to the Synthetic Genome Problem. We report the median 

number of DNFs in the search space and the median number of evaluations out of 30 repetitions. 

For the 6-bit multiplexer problem with 14 EF we report the # of evaluations for the base case; but 

we note that the runs with imbalanced classes, noise in the class data, or missing data had very 

similar median values. 

DNFEA Majority-on Multiplexer Genome 

Problem 

Size 3-bit 5-bit 6-bit 11-bit 20-bit 37-bit 

6-bit+ 

14EF 

4-TIT+ 

16EF 

Search 

Space 
739 1e12 6e9 1e18 3e33 1e66 5e13 9,933 

# Evals 491 4,789,542 3,724 16,377 67,758 393,857 3,578 2,089 

 

2.4.1 Results on Binary Benchmark Problems 

For problems with relatively small search spaces and a large number of true 

generative CCs (e.g., the majority-on problems), the CCEA was no more efficient than 

exhaustive search (Table 2.6, Fig. 2.2a). Although total evaluations are not commonly 
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reported in the LCS community, we note that the fewest reported number of required 

data instances reported for majority-on (Iqbal et al., 2013c; 2014) (which is a strong 

lower bound on the total number of evaluations required) are actually orders of 

magnitude higher than exhaustive search would require (Table 2.6, Fig. 2.2a). However, 

for the multiplexer problems (which have relatively few true generative CCs) the CCEA 

proved increasingly efficient relative to exhaustive search as the problem size increased 

(Table 2.6, Fig. 2.2c). In the multiplexer problem, the fewest number of required 

instances reported by the LCS community (Iqbal et al., 2013b; 2014; Urbanowicz and 

Moore, 2015) appears to be scaling slightly better than the number of evaluations 

required by the CCEA (Table 2.6, Fig. 2.2c). However it is not clear whether the CCEA 

is inherently less computationally efficient on the multiplexer problem than LCS because 

(a) different LCS methods gave the best results on different problem sizes (Fig. 2.2c), (b) 

the number of required instances is only a lower bound on the number of evaluations 

required by the LCS approaches, and (c) there may be further efficiencies to be gained 

by additional optimization of the CCEA parameters. 
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Figure 2.2: Efficiency of the algorithm on the binary benchmark problems. (a) Majority-on: Box 

plots of the number of CCEA fitness evaluations as a function of the size of the search space, 

compared to the published results for the number of instances evaluated (a lower bound on the 

number of fitness evaluations), and exhaustive search (the 1:1 line); (b) Majority-on: Box plots of 

the number of fitness evaluations of the DNFEA as a function of the median size of the search 

space over 30 repetitions, (c) Multiplexer: Box plots of the number of CCEA fitness evaluations as 

a function of the size of the search space, compared to the published results for the number of 

instances evaluated (a lower bound on the number of fitness evaluations), and exhaustive search 

(the 1:1 line); (c) Multiplexer: Box plots of the number of fitness evaluations of the DNFEA as a 

function of the median size of the search space over 30 repetitions. 
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Regardless of whether the CCEA is more or less efficient than LCS, it is 

important to note that the number of CCs archived by the CCEA is much smaller than 

the population of classifiers returned by the LCS methods (Tables 2.5, 2.6), and the 

CCEA archives (unlike LCS classifiers) always included the true generative CCs (i.e., 

also had 100% coverage of the complete search space, not just 100% true positive 

predictions on recent instances sampled). 

On both the majority-on and multiplexer problems, the DNFEA was always able 

to archive the true generative DNF and scaled much better than exhaustive search (Table 

2.7, Fig. 2.2b,d). 

A closer examination of the archived CC and DNF clauses illustrates the power 

of using Eq. (2.1) (rather than classification accuracy) as a measure of fitness. For 

example, in Fig. 2.3a we show results from a typical 6-bit multiplexer run with 14 

extraneous features. In this figure, archived CCs are shown with green squares, where 

darker shading indicates higher-order conjunctions. Similarly, archived DNFs are shown 

with blue circles, where darker blue indicates higher-order disjunctions. For clarity, the 

8 true archived 3rd order generative CCs are shown in orange hexagrams and the single 

true archived 4th order generative DNF for class 0 is shown with the red pentagram. In 

this noise-free problem, even though the 2,000 instances in the dataset represent a tiny 

fraction of the CC and DNF search spaces (Table 2.5), the true DNF is clearly identifiable 

as the single solution that has 100% true positive rate (a.k.a. accuracy) and 100% 

coverage and has the highest fitness according to Eq. (2.1). Note: There are many 
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suboptimal CCs and DNFs with 100% true positive rate, which highlights why true 

positive rate (accuracy) alone is an insufficient fitness metric. 

  

Figure 2.3: Archived results in typical results (arbitrarily selected as the first of 30 repetitions) for 

target class 0 on the 6-bit multiplexer problem with 14 extraneous features added and 2,000 

random instances in the dataset for (a) balanced classes with no noise and no missing data, (b) 

imbalanced class outcomes (class 0 at 15%, class 1 at 85%) with no noise and no missing data, (c) 

20% random errors in class outcome in the dataset, balanced classes and no missing data, and (d) 

20% randomly missing feature data, balanced classes and no noise. The legend on panel (b) applies 

to all panels. We illustrate the true positive prediction rate on the training instances, class coverage 

of the training instances, and fitness by Eq. (2.1); the true generative CCs are shown in orange 

hexagrams and all other CCs archived by the CCEA with green squares, and the true generative 

DNF is shown by the red pentagram and all other DNFs archived by the DNFEA with blue circles. 

Darker shades of green or blue represent higher order clauses and the contour lines indicate 

evenly-spaced fitness values. 

Even with highly imbalanced classes (15%/85%), the tandem algorithm is able to 

reliably find the exact generative DNF for the minor class (e.g., Fig. 2.3b). When 20% 

noise is added to the outcome classes, the true positive rate and coverage are necessarily 

reduced, but the true generative DNF still consistently stands out as the archived DNF 

with the highest fitness according to Eq. (2.1) (e.g., Fig. 2.3c). Finally, we observed that 
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even with 20% missing data in the input dataset, the true generative DNF always had 

orders of magnitude better fitness than any other 4th-order DNF; and in 77% of trials, this 

was also the clause with the best fitness. However, in 12%, 10%, and 2% of the trials we 

found, 1, 2, or 3 higher-order clause(s), respectively, with a slightly better fitness (e.g., 

see one example in Fig. 2.3d). In these cases, the true generative DNF could still be 

identified as the most parsimonious (i.e., lowest order) of the most fit DNFs. 

2.4.2 Results on Synthetic Genome Problem 

The synthetic genome problem includes extraneous features and noise in class 

outcomes, so it is not possible to achieve 100% true positive prediction or coverage. 

However, we still observed that the 4 true generative 2nd-order CCs were consistently 

archived in 30 out of 30 trials, and required 2 orders of magnitude fewer evaluations than 

reported instances required by XCS (Table 2.6), even though the latter did not report 

finding the true generative CCs. 

The true generative 4th-order DNF was also archived in all 30 trials. While no 4th 

-order DNF had higher coverage than the true generative DNF, we found numerous 

DNFs that had higher true positive rate than the true generative DNF and still had 

relatively high (> 70%) coverage (Fig. 2.4). In general, in real problems one does not 

know how many, or which, features are part of the true CCs and which are potentially 

extraneous. However, in post-processing of the CC archive, we observed that the 4 true 

features occurred in archived CCs (across all 30 repetitions) twice as often as any of the 

extraneous features. Thus, to reduce the size of the DNF search space, we then presented 

the DNFEA with those archived CCs that contained only the most prevalent features. 
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The true generative 4th-order DNF is consistently identifiable as a highly-fit DNF with 

the greatest coverage (e.g., see Fig. 2.4). 

  

Figure 2.4: Archived results on the Synthetic Genome Problemtrained on 1,600 instances, where 

the CC archive was reduced by post-processing to include only those features that were most 

prevalent prior to running the DNFEA. We illustrate the true positive prediction rate on the 

training instances, class coverage, and fitness by Eq. (2.1) of the CCs archived by the CCEA (green 

squares) and the DNFs archived by the DNFEA (blue circles), where darker shades represent 

higher-order clauses and the contour lines indicate evenly-spaced fitness values. For clarity, the 

true generative CCs are shown in orange hexagrams and the true generative DNF is shown by the 

red pentagram. 

2.5  Discussion 

There is a growing availability of Big Data and an increasing recognition that 

many (probably most) systems of interest are complex. These observations highlight the 

need for new data analysis tools that are capable of discovering interesting (potentially 

causal) complex rule sets (that may contain non-linearities, overlap, and heterogeneity) 

from potentially messy datasets (that itself contain heterogeneous features, missing data, 
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imbalanced outcome classes, and imperfect relationships between features and 

outcomes). 

2.5.1 Binary Benchmark Problems 

 Unfortunately, there are relatively few benchmark datasets with tunable 

heterogeneity and/or epistasis. Two classic benchmark problems that have been widely 

used in the EA community include the majority-on problem, which includes 

heterogeneous and overlapping conditions, but not epistasis (Iqbal et al., 2013c; 2014; 

McDermott et al., 2012) and the multiplexer problem, which includes both heterogeneity 

and epistasis (Booker, 1989; De Jong and Spears, 1991; Goldberg, 1989; Wilson, 1987a; 

b; Butz et al., 2003; 2004; 2005; Butz and Pelikan, 2006; Ioannides et al., 2011; Iqbal et 

al., 2012; 2013a; b; c, 2014; 2015; Llorà et al., 2005; McDermott et al., 2012; 

Urbanowicz and Moore, 2015). However, both are noise-free, balanced, binary, 

classification problems with no missing data and; as we show later, both have other 

characteristics not representative of real-world problems. We note that the genetic 

programming community has acknowledged that better methods exist for solving these 

Boolean problems (White et al., 2013) and many of the test problems that have been 

reported on have so few features that exhaustive search is more efficient than using an 

EA search strategy. To compare to published results from the LCS community, we have 

tested our proposed approach on these two classic benchmark problems. However, our 

work underscores the need for better benchmarks with tunable epistasis and 

heterogeneity, which are more representative of real-world applications. 
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The presence of overlapping CCs is the primary reason that the majority-on 

problem has been used as a benchmark in the LCS community (Iqbal et al., 2013b; c; 

2014). One of the most reliable Michigan-style LCSs, referred to as XCS, struggles with 

this overlap. Kovacs (2002) noted that the XCS algorithm penalizes against overlapping 

CCs; and Ioannides et al. (2011) showed that even when XCS is initialized with a 

population containing the overlapping true signals, they are selected out of the CC 

population. When Iqbal et al. (2013c) used XCS to tackle the 7-bit majority-on problem, 

the evolved CCs were an order or two below that of the true generative CCs. On the other 

hand, when a variant of XCS was used that evolves a logical representation of the action 

set, the CCs found were usually (23 out of 30 times) at least one order greater than the 

true generative CCs (Iqbal et al., 2013c). Therefore, even when 100% classification 

accuracy was reported for small majority-on problems (3-, 5-, and 7-bit) (Iqbal et al., 

2013b; c; 2014), the true generative CCs were not identified. It is likely that significant 

overfitting is occurring in these large populations of overly-specific classifiers. 

One additional limitation of the majority-on problem is that, as the problem 

increases from 3-bit to 11-bit, the number of true generative CCs increases from 6 to 924, 

while the expected coverage of each true CC decreases from 25% to only 1.6% (Table 

2.8). In real-world association problems, if one reported identifying a 924-order 

disjunction of order-6 conjunctions, each with only 1.6% coverage of the dataset, this 

would be dismissed as extreme overfitting. Despite these limitations, the proposed CCEA 

was consistently able to archive all of the true generative CCs in up to 11-bit majority-

on problems, and the proposed DNFEA was able to archive the single true generative 
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DNF in up to 5-bit majority-on problems, and this optimal DNF was easily identifiable 

as the archived clause with the best fitness by Eq. (2.1).  

Table 2.8: Characteristics for Majority-On (MO) and Multiplexer (MP) benchmark problems. 

Problem # Possible CCs 

Order of True 

CCs 

# of True CCs 

in Generative 

Rule Set 

Expected 

Coverage of 

Each True CC 

3-bit MO 52 2 6 25.0% 

5-bit MO 484 3 20 12.5% 

7-bit MO 4,372 4 70 6.3% 

9-bit MO 39,364 5 252 3.1% 

11-bit MO 354,292 6 924 1.6% 

6-bit MP 1,456 3 8 12.5% 

11-bit MP 354,292 4 16 6.3% 

20-bit MP 7×109 5 32 3.2% 

37-bit MP 9×1017 6 64 1.6% 

 

The presence of tunable degrees of heterogeneity and epistasis is the primary 

reason why the multiplexer problem continues to be a standard benchmark problem in 

both the LCS and genetic programming (GP) communities. White et al. (2013) noted that 

between 2009-2012, approximately 10% of GP papers submitted to EuroGP and GECCO 

used the multiplexer problem, despite acknowledgment that these problems are trivial to 

solve using non-GP techniques (White et al., 2013). In the LCS community, some 

(Kovacs, 1998; Butz et al., 2003) have noted (1) the existence of many non-optimal CCs 

that have the same true positive rate and expected coverage as the true generative CCs, 

and (2) LCS typically returns populations of classifiers (e.g., see Table 2.6) that are much 

larger than the number of CCs in the true generative DNF (Table 2.8), and sometimes 

even larger than the maximum possible number of CCs in the search space (Table 2.6). 

Additionally, as the size of the multiplexer problem increases, the number of true CCs in 

the true generative DNF increases (albeit not as rapidly as in the majority-on problem) 
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and the individual coverage rapidly decreases (Table 2.8). Despite these issues, our 

proposed approach consistently evolved and identified the single true generative DNF in 

all multiplexer problems tested (up to 37-bit). 

Furthermore, even when we introduced extraneous features, imbalanced classes, 

noise in the class associations, and missing data into a 6-bit multiplexer problem, our 

proposed method was able to reliably evolve and identify the single true generative 8th-

order DNF of 3rd-order CCs (Fig. 2.3). It is encouraging that the CCEA and DNFEA 

continued to perform so strongly even in the face of significant amounts of class 

imbalance, noise in class associations, and missing data, since these are often 

characteristics of real-world datasets. Of particular importance is the ability to handle 

missing data gracefully, without the need for imputation with potentially misleading fake 

data. 

2.5.2 Synthetic Genome Problem 

The synthetic genome problem introduced in Urbanowicz and Moore (2010) was 

defined to be a more realistic dataset representing a heterogeneous, purely epistatic 

problem, in which the true generative DNF is a 4th-order disjunction of four 2nd-order 

CCs. This dataset includes 16 extraneous features and an imperfect association between 

the true features and balanced binary outcome classes. Our approach consistently 

archived all 4 true generative CCs and also archived the single true generative DNF, 

which was readily identifiable as the very fit clause with the highest coverage in the 

resulting DNF archive. 
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Although there was no true generative DNF for class 0 in the synthetic genome 

problem, Urbanowicz and Moore (2010) used XCS to evolve rules for predicting both 

class 0 and class 1 and reported an average classification accuracy of over 88% using 10-

fold cross validation with 1,600 classifiers trained on 1,440 unique training instances 

(repeatedly sampled for a total of 1,000,000 instances shown to XCS), and up to 72% on 

the testing data. However, recall that the positive prediction rate on the actual dataset 

using the true generative DNF for class 1, and assuming class 0 otherwise, is only 67%. 

These results highlight the danger of overfitting that is inherent in LCS approaches. 

2.5.3 Fitness Landscape Analysis 

It is common in the LCS community to use “classification accuracy” (more 

appropriately described as the true positive rate of class predictions on some number – 

typically 100 or 1,000 – of the most recent instances tested) as the primary metric of 

success. We contend that, more often than not, using this metric as a proxy for fitness 

results in overfitting. LCS algorithms have been touted for achieving 100% classification 

accuracy on the 3-, 5-, and 7-bits majority-on problems (Iqbal et al., 2013b; c; 2014) and 

the 6-, 11-, 20- and 37-bits multiplexer problems (Iqbal et al., 2013c; 2014; Urbanowicz 

and Moore, 2015). However, when Iqbal et al. (2013b; c; 2014) solved the 3-bit and 5-

bit majority-on problems, the classifier population sizes were larger than the number of 

possible CCs and for the 7-bit majority-on problem the population size was ~46 – 69% 

of the number of possible CCs (Table 2.6). 

As illustrated in Figs. 2.3-2.4, there are many sub-optimal clauses that have 100% 

true positive prediction rate (a.k.a. accuracy). It is even more informative to analyze the 
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entire search space for the 3 types of test problems used here. In Fig. 2.5 we show the 

true positive prediction rate and coverage of all possible CCs in the search space (up to 

6th-order CCs) for an example 11-bit majority-on problem evaluated on 5,000 random 

instances (Fig. 2.5a), an 11-bit multiplexer problem evaluated on 1,000 random instances 

(Fig. 2.5b), and the synthetic genome problem evaluated on the 1,600 instances (Fig. 

2.5c). In all 3 panels, the true generative CCs are shown with orange hexagrams. 
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Figure 2.5: Results of using exhaustive search to examine the CC search spaces for (a) a randomly 

created 11-bit majority-on dataset containing 5,000 input feature vectors, (b) a randomly 

generated 11-bit multiplexer dataset containing 1,000 input feature vectors, and (c) the simulated 

SNP disease problem containing 1,600 input feature vectors. We illustrate the true positive 

prediction rate, class coverage, and fitness by Eq. (2.1) of all possible CCs, where the order of the 

CCs is indicated by color and the contour lines indicate evenly-spaced fitness values. Note that the 

lower bounds on the y-axes are 50%. 
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As seen previously, there are many sub-optimal CCs with 100% true positive 

prediction rate in the two noise-free Boolean benchmark problems, and many lower order 

CCs that still have relatively high true positive prediction rate and much higher coverage 

than the true generative CCs (Figs. 2.5a,b). In the majority-on problem, there are also 

many sub-optimal CCs that have not only 100% true positive prediction rate, but also 

have higher coverage than the true generative CCs (Fig. 2.5a). In the synthetic genome 

problem, which includes noise in the class association, there are many CCs that actually 

have much higher true positive prediction rate than the 4 true generative CCs (Figs. 2.5c). 

These observations underscore the danger of using accuracy as a surrogate for fitness. 

Also, note how the structure of the fitness landscapes differs between that of the 

Boolean benchmark problems and the synthetic genome problem. In the former, there 

are distinct clusters of CCs of different orders, and these are roughly orthogonal to the 

fitness contours per Eq. (2.1); specifically, in Fig. 2.5a,b, note how the most fit CCs in 

each order have lower coverage but higher true positive predictive rate, as the order 

increases (from purple to green). In contrast, in the more realistic synthetic genome 

problem (Fig. 2.5c), there is significant overlap in the clusters for different orders of CCs, 

and these are roughly parallel to the fitness contours per Eq. (2.1). These observations 

illustrate how the majority-on and multiplexer problems exhibit quirky fitness landscape 

characteristics that are not likely representative of real-world problems. 

2.5.4 Hypergeometric PMF as a Fitness Metric 

In this work, we propose the use of a hypergeometric probability mass function 

as a principled statistic for assessing relative fitness for clauses of a given order. 
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Specifically, Eq. (2.1) quantifies the likelihood that the observed association between a 

given clause and a given target class is due to chance, taking into account the size of the 

dataset, the amount of missing data, and the distribution of outcome categories. We use 

dynamically-adjusted, order-specific, probability thresholds to determine which CC and 

DNF clauses to archive, much like the original intention of the p-values in traditional 

statistical analysis. That is, any CCs or DNFs below a probability threshold is worth 

further examination; but while these clauses are potentially causal, a low value of Eq. 

(2.1) alone does not imply causation (Nuzzo, 2014). Unlike relying on accuracy or other 

ad hoc measures as a fitness proxy, using Eq. (2.1) enables our algorithm to archive 

clauses with different combinations of true positive prediction rate and coverage while 

gracefully handling imbalanced classes, missing data, and noisy class associations. 

However, one of the drawbacks is that the rounding error becomes problematic at values 

below 10-300 on a 64-bit computer. Although real-world datasets will likely contain too 

much noise for this to happen, further research is needed to explore an estimate for very 

small values of the hypergeometric PMFs. 

In Fig. 2.5, note how the true generative CCs (orange hexagrams) have better 

fitness (per the fitness contours from Eq. (2.1)) than any other CCs of the same order, but 

how the maximum fitness of a given order of CC varies (sometimes nonlinearly) by CC 

order. In particular, while the 4 true generative CCs in the synthetic genome problem 

(Fig. 2.5c) have higher fitness than any other 2nd-order CCs in this landscape, there are 

other higher-order CCs that have better fitnesses than some of the true CCs. This 

illustrates the importance of maintaining order-specific thresholds for the 
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hypergeometric PMFbased fitnesses that determine which clauses are retained in the 

CCEA and DNFEA archives. 

2.5.5 CCEA and DNFEA 

LCSs were designed to learn collectively predictive rules from dynamically 

changing datasets; they were not designed to find optimal parsimonious (potentially 

causal) rule sets, or for working efficiently on datasets available in batch. Since LCSs 

learn one instance at a time, LCSs cannot explicitly learn the coverage of classifiers; so 

it is not clear how well the resulting classifiers cover the dataset. Furthermore, they 

typically rely on classification accuracy as a major component of the fitness function, 

which we have shown to be unable to discriminate between optimal and sub-optimal 

classifiers and can lead to overfitting, especially when there is noise in the dataset. 

However, even though Urbanowicz and Moore (2010) used cross-validation when 

applying XCS to the noisy synthetic genome problem, there is still evidence of overfitting 

since the average training accuracy was 20% higher than the accuracy of the true 

generative rule set. 

To tackle the challenge of analyzing complex real-world datasets that include 

missing data as well as imbalanced and noisy class associations, we have proposed a new 

approach using tandem age-layered EAs on batch data. The CCEA creates an archive of 

CCs that are likely to have a probabilistically significant association with a given 

outcome class. The DNFEA subsequently creates an archive of probabilistically 

significant disjunctions of the archived CCs. As in Hornby (2006), we found the age-

layering to be very important in maintaining diversity, which facilitated continual 
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improvement over the course of the evolutionary process. By maintaining separate 

archive bins for clauses of different orders, the tandem algorithm is able to evolve 

parsimonious rule sets without making a priori assumptions on the maximum order of 

interactions. 

It is important to note that the CCEA and DNFEA algorithms do not necessarily 

need to be run in tandem, and can each be used independently. For example, in (Chapter 

3), the CCEA was used to mine data from large socioeconomic surveys aimed at 

identifying the drivers of household infestation with an insect that transmits Chagas 

disease, which if untreated is life-threatening. We discuss this real-world application 

below, in Section 2.5.6. Similarly, the DNFEA can also be used independently of the 

CCEA. For example, one could apply the DNFEA to identify heterogeneous rule sets 

comprised of CCs that were identified by means other than the CCEA, such as through 

LCS, GP, Random Chemistry, or exhaustive search (if the size of the CC search space is 

small enough). 

While both the CCEA and the DNFEA do some implicit feature reduction by 

archiving only very fit clauses, in high-dimensional problems one could employ feature 

reduction methods to first reduce the size of the search space to the more promising 

features, before applying these methods. 

2.5.6 Real-World Application 

In the past 5 years, a collaborative effort between the University of Vermont, 

Loyola University New Orleans, and La Universidad de San Carlos Guatemala have 

performed detailed socioeconomic and entomological surveys on over 20 towns in 
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Guatemala, El Salvador, and Honduras to study the risk of Chaagas disease. Mining these 

complex Chagas survey datasets for useful information has proven to be a major 

challenge, due to a variety of factors including missing data, imbalanced class outcomes, 

heterogeneity of drivers of infestation, non-independence of some features, and the 

expectation of complex high-order nonlinear and overlapping interactions between many 

of the potential predictive features. Initial attempts to apply the ExSTraCS 1.0 LCS to 

this data were unsuccessful, which is what motivated the development of the CCEA. 

The surveys contain 64 risk factors that experts believe are associated with 

infestation of households with Triatoma dimidiata, a vector of Chagas disease. Fourteen 

of the risk factors are ordinal/continuous and the remaining 50 are nominal, with 26% 

missing data and imbalanced class outcomes (32% infested households). In analyzing 

this real-world dataset, we did not seek a single “optimal” DNF, but rather used the 

CCEA to find a variety of very fit CCs that could be more closely examined by domain 

experts to assess (a) whether new insights could be achieved regarding combinations of 

risk factors associated with T. dimidiata infestation, and (b) whether very fit CCs might 

inform the design of new ecohealth intervention strategies that could prove to be feasible, 

effective, and cost-effective ways to slow the spread of Chagas disease. The CCEA 

discovered several interesting heterogeneous and overlapping CCs (ranging from main 

effects through 7th-order epistatic CCs). Some of the feature interactions evolved by the 

CCEA had already been previously identified as potential drivers of infestation, which 

increases our confidence in the CCEA results. However, the CCEA analysis also 

provided ranges of co-evolved values of interacting features that were most strongly 
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associated with infestation as well as new feature interactions previously not recognized 

to be associated with infestation. These new findings will be useful for informing the 

design of eco-interventions aimed at slowing the spread of Chagas disease. While a full 

discussion of this application is beyond the scope of this paper, we refer the interested 

reader to (Chapter 3) for more details. 

2.5.7 Summary 

In summary, we developed a new approach for discovering parsimonious 

predictive rule sets that contain potentially heterogeneous, epistatic, and overlapping 

rules. The method was designed to work on complex batch datasets that may include 

features of different data types, extraneous features, imbalanced classes, noisy 

associations between rules and class outcomes, and missing data. Key aspects of our 

proposed method include (a) the use of a hypergeometric probability mass function as a 

principled statistic for assessing fitness, which properly accounts for class imbalance and 

missing data, (b) tandem age-layered evolutionary algorithms for evolving archives of 

probabilistically significant conjunctive clauses, and disjunctions of these archived 

conjunctions that are optimally predictive of outcome classes, and (c) separate archive 

bins for clauses of different orders, with dynamically-adjusted order-specific fitness 

thresholds. The method was validated on standard binary majority-on and multiplexer 

benchmark classification problems, including several variants of the multiplexer problem 

with extraneous features that included class imbalance, noise, extraneous features, or 

missing data. The method was also applied to a more realistic synthetic genome problem 

with heterogeneous, purely epistatic, and noisy association rules. In all problems tested, 
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we were consistently able to evolve the true generative rule sets in the form of a single 

clause in disjunctive normal form. An in-depth examination of the search space of all 

possible conjunctive clauses exposed unusual characteristics of the majority-on and 

multiplexer problems that are not likely representative of real-world problems. This 

highlights the need for more realistic benchmark classification problems with tunable 

epistasis, heterogeneity, and overlap in the generative rule sets. Finally, we briefly 

discussed the application of the method to the complex real-world survey dataset that 

actually motivated us to develop the CCEA. The results of this analysis provided 

important practical insights that will inform eco-intervention strategies aimed at slowing 

the spread of the deadly Chagas disease.   
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CHAPTER 3: AN EVOLUTIONARY ALGORITHM APPROACH TO 

IDENTIFYING COMPLEX INTERACTIONS ASSOCIATED WITH 

THE INFESTATION OF TRIATOMA DIMIDIATA, A VECTOR OF 

CHAGAS DISEASE 

3.1 Introduction and Significance 

This work was motivated by a desire to mine data from large socioeconomic 

surveys with an aim toward identifying the drivers of house infestation by an insect that 

transmits Chagas disease. The disease is transmitted by insects in the subfamily 

Triatominae (Lent and Wygodzinsk, 1979) and, if left untreated, is life-threatening in 

about 30% of cases. To decrease risk of transmission, mitigation strategies (known as 

Ecohealth interventions) have been implemented to remove known hiding locations and 

lessen the chance of house infestation of the Triatomine vectors (Monroy et al., 2009; 

Lucero et al., 2013; Pellecer et al., 2013). Because many areas where the disease is 

endemic have limited resources for these preventative house improvements, it is useful 

to conduct detailed entomologic and socioeconomic surveys (Bustamante et al., 2014; 

Bustamante Zamora et al., 2015) to help (1) identify the drivers of infestation and (2) 

monitor, improve and assess cost-effective mitigation strategies. Mining these complex 

survey datasets for useful information is challenging due to a variety of factors including 

imbalanced categorical outcomes, heterogeneity, missing data, and complex, possibly 

high-order, nonlinear interactions between many of the potential predictive features. As 

a result, we developed an evolutionary algorithm to find additive feature interactions 
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(features with main affects) as well as heterogeneous feature interactions for complex 

real-world datasets. 

The scientific community is just beginning to understand some of the profound 

affects that these nonlinear (i.e., epistatic) feature interactions have on natural systems. 

Feature interaction is a phenomenon that arises when features combine to produce an 

effect, which neither alone controls (i.e., feature X does one thing; feature Y does 

another; and when combined, X and Y do a third thing that has no single controlling 

element). These feature interactions have been observed in cascading power failures 

(Eppstein and Hines, 2012), breast cancer (Ritchie et al., 2001), blood pressure in rats 

(Rapp et al., 1998), and are believed to be ubiquitous in human diseases (Moore, 2003). 

In addition to feature interactions, heterogeneity is when multiple features independently 

predict of the same output. Evidence of heterogeneity has been observed in bladder 

cancer (Urbanowicz et al., 2013), autism (Buxbaum et al., 2001), and American political 

parties (Poole and Rosenthal, 1984). Studies of systems that consider both heterogeneity 

and feature interactions are just beginning to appear in the literature. In the context of 

this work, examples of heterogeneous two–way feature interactions (habitat and food 

source) that are associated with houses infested with triatomine vectors might be (1) 

cracks in adobe walls and chicken coops in the house or (2) firewood stacked adjacent to 

the house and dogs sleeping in the home. Each two-way feature interaction set may be 

equally important drivers of infestation; our algorithm development was motivated by a 

desire to preserve main effects as well as higher-order heterogeneous, feature 

interactions. 
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Despite the belief that heterogeneity and feature interactions exist across 

numerous real-world systems (e.g., from the development of personalized drug therapies 

(Wilson, 2009) to the market prediction of consumer behaviors (Young Kim and Kim, 

2004)), the development of tools for analyzing these systems and accommodating these 

complex feature interactions have not kept pace. We hypothesize that a large source of 

error in “Big Data” science is a result of feature interactions and heterogeneity. Feature 

interaction error is not random; it is complicated, but predictable. If we are to develop 

tools to assist in unraveling these complex datasets, feature interactions and 

heterogeneity must be considered (Thornton-Wells et al., 2004).  

Traditional statistical methods such as analysis of variance (Yousefi et al. 2016; 

Wilson et al. 2017), logistic regression (Heller et al. 2011; de Campos Franci et al. 2016; 

Ding et al. 2016; Jarlenski et al. 2016; Larouche et al. 2016; Li et al. 2016; Nesheli et al. 

2016; Nicholls et al. 2016), and decision trees (Markellos et al. 2016; Nesheli et al. 2016) 

are well suited for univariate analysis or additive models. Some studies perform feature 

selection using univariate logistic regression models, and then test higher-order 

interactions between the selected features (De Andrade et al. 1995; Enger et al. 2004; 

Rassi et al. 2006; King et al. 2011; Weeks et al. 2013; Sperandio da Silva 2014; Kaplinski 

et al. 2015; Molina et al. 2015; Olivera et al. 2015). For systems with significant feature 

interactions, traditional statistics, designed for additive multivariate relationships, are not 

well-suited. 

Another well-documented issue is that p-values decrease inversely with the size 

of the dataset, making them an unreliable statistic for Big Data applications (Lin et al., 
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2013). Our algorithm development leverages the hypergeometric probability mass 

function (PMF) as a probabilistic threshold (Hanley et al., In Review). The 

hypergeometric PMF is derived from Pearson’s (1899) hypergeometrical series and may 

be thought of as a pseudo-Bayesian equation. One benefit of the hypergeometric PMF-

derived probability is that it accounts for both the size of the dataset and the distribution 

of the output categories; and using it as a threshold allows the user to readily compare 

the probabilities (and thus the likelihood) of individual models. 

In this work, we present an evolutionary algorithm (EA) that was specifically 

designed as a non-parametric method for identifying feature interactions in “Big 

Datasets” that contain missing values, heterogeneity, and additive probabilistic models 

associated with a desired categorical outcome (e.g., disease or infestation). Our EA 

searches for combinations of feature sets using the logical AND operator; these feature 

combinations (e.g., cracks in adobe walls and chicken coops in the house) are referred to 

as conjunctive clauses throughout this work. To demonstrate the EA effectiveness, we 

first test the algorithm on the benchmark dataset of Urbanowicz and Moore (2010); the 

latter was specifically designed to include heterogeneity and feature interactions 

associated with a complex disease. Next, we use the EA to identify complex multivariate 

interactions (i.e., risk factors) in real-world datasets associated with house infestation of 

the Chagas disease vector Triatoma dimidiata. Finally, we show the EA’s ability to 

efficiently search for potential drivers of T. dimidiata infestation and discuss how these 

models might be implemented by domain experts familiar with stakeholder needs. 



65 

 

3.2 Background 

3.2.1 Background on Chagas Disease 

Chagas disease is caused by the protozoan parasite, Trypanosoma cruzi, and is 

primarily spread via blood feeding insects in the order Hemiptera, family Reduviidae, 

and subfamily Triatominae (Lent and Wygodzinsky, 1979). While vector food sources 

include all vertebrates, T. cruzi only infects mammals (Rassi et al., 2010). Human 

impacts, such as deforestation for agrarian land use, have caused triatomines to adapt 

(Coura, 2015); and one of the main vectors of Chagas disease, Triatoma dimidiata, has 

adapted to human domestic and peridomestic environments (Waleckx et al., 2015a). This 

vector is endemic from Mexico through Central America, all the way south to parts of 

Peru, Ecuador, Colombia (Lent and Wygodzinsky, 1979). People with Chagas disease 

often live in remote areas with poor sanitation, low socioeconomic status, and work 

manual labor jobs (Prata, 2001; Briceño-León et al., 2007). Approximately 70 million 

people in Latin America are at risk of infection with T. cruzi and ~5.7 million people are 

already infected (Chagas, 2015). In Central America, Guatemala, the most populous 

country, was estimated to have the largest number of new vector transmitted cases 

(~1,275) in 2010 (Chagas, 2015). However, rates of new infections are also high in El 

Salvador and Honduras. 

The insect vectors deposit parasite laden feces and humans can become infected 

by transmission of T. cruzi into the bite or other open wound, or through the mucosa of 

the eye, nose, or mouth (Prata, 2001; Teixeira et al., 2006; Rassi et al., 2010). Another 

possible source is via consumption of the infected feces in food items such as vegetables, 
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juice, and possibly wild meat (Rueda et al., 2014). Oral transmission is believed to be the 

primary source of infection for wild animals (Coura, 2015); and the odoriferous glands 

of a marsupial infected with T. cruzi can directly transmit the parasite to humans (Coura, 

2015). 

Chagas disease is broken into three phases. The first is the acute phase, which 

may last 1–4 months after infection with T. cruzi (Prata, 2001, Stanaway and Roth, 2015). 

This phase is asymptomatic in 95% of cases (Teixeira et al., 2006; Stanaway and Roth, 

2015); however, for the remaining 5%, symptoms may include malaise, fever, jaundice, 

skin hemorrhages, enlargement of the liver, and muscle and joint pain (Prata, 2001; 

Teixeira et al., 2006; Rassi et al., 2010; Stanaway and Roth, 2015). The indeterminate 

phase is asymptomatic and can last 10–30 years or throughout a lifetime (Prata, 2001; 

Stanaway and Roth, 2015). Finally, the chronic phase of Chagas disease has symptoms 

that include heart disease, megaesophagus, megacolon, nervous system lesions, and 

sudden death (Prata, 2001; Teixeira et al., 2006; Rassi et al., 2010; Stanaway and Roth, 

2015). Currently, there is no preventive medicine for Chagas disease. Nonetheless, there 

are two anti-trypanosome drugs, nifurtimox and benznidazole for treating T. cruzi 

infections (Teixeira et al., 2006; Jannin and Villa, 2007; Rassi et al., 2010; González-

Ramos et al., 2016). Both drugs have common adverse reactions that have prevented 13-

31% ID infected people from completing treatment (Hasslocher-Moreno et al., 2012; 

Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 2015); (Hasslocher-

Moreno et al., 2012; Sperandio da Silva et al., 2014; Molina et al., 2015; Olivera et al., 

2015). 
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Thus, given the lack of preventative medicine coupled with low efficacy of drug 

treatment, the preferred method of combating Chagas disease is to minimize human 

contact with the vector. One of the most common tactics for controlling T. dimidiata 

infestation at the house level is the use of pyrethroid insecticide (Tabaru et al., 1998; 

Acevedo et al., 2000; Nakagawa et al., 2003a; 2003b; Dumonteil et al., 2004; Hashimoto 

et al., 2006; Manne et al., 2012; Yoshioka et al., 2015; Quinde-Calderón et al., 2016). 

However, the residual effects appear to last only four months before adult T. dimidiata 

re-infest a house and nine months before nymphs are found in the house (Dumonteil et 

al., 2004). The rebound to original infestation levels were observed almost three years 

after a single spraying in Jutiapa, Guatemala (Hashimoto et al., 2006). Thus, short of 

extirpation of T. dimidiata, the vector will always pose a risk for infestation where it is 

endemic. 

The only proven long-term control of T. dimidiata infestation is the 

implementation of home improvements often accompanied by educational outreach on 

Chagas disease and the vector (Monroy et al., 2009; Ferral et al., 2010; De Urioste-Stone 

et al., 2015). Home improvements that minimize the risk of T. dimidiata infestation run 

the gamut of cleaning and organizing the peridomestic ecotope (Zeledón and Rojas, 

2006; Zeledón et al., 2008; Ferral et al., 2010), plastering walls (Monroy et al., 1998; 

Monroy et al., 2009; Lucero et al., 2013; Pellecer et al., 2013), replacing dirt floors with 

cement (Lucero, et al. 2013; Pellecer et al., 2013), installing window screens (Ferral et 

al., 2010; Waleckx et al., 2015b), impregnating curtains with insecticide (Ferral et al., 

2010), and domestic rodent control (De Urioste-Stone et al., 2015). While these home 
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improvements have led to reductions in infestation that often last longer than spraying, 

none have completely eliminated infestation. Some of the aforementioned interventions 

are considered Ecohealth interventions because they use sustainable methods, locally 

sourced materials, and often include house level surveys of hypothesized risk factors 

(Monroy et al., 2009; Lucero et al., 2013; Pellecer et al., 2013). Risk analyses capable of 

identifying complex multivariate interactions in these ever-evolving, real-world datasets 

would be invaluable for guiding EcoHealth interventions.   

3.2.2 Challenges Associated with Modeling/Analyzing Chagas Disease 

A number of studies have used univariate statistical analysis as a feature selection 

tool; and features below a designated p-value (e.g., p < 0.05) are often selected for a 

follow-on multivariate analysis (Rassi et al., 2006; King et al., 2011; Weeks et al., 2013; 

Sperandio da Silva et al., 2014; Kaplinski et al., 2015; Molina et al., 2015; Olivera et al., 

2015). Bustamante Zamora et al. (2015) held a workshop to pre-select features for 

multivariate modeling of T. dimidiata. As an initial starting point, features were selected 

based on previous studies indicating they increased the odds of infestation. Given the 

large number of potential features associated with the risk of triatomine infestation, it is 

natural inclination to first reduce the number of model features because their inclusion 

makes exhaustive search of all possible models (feature combinations) prohibitively 

expensive and/or impossible. However, when viewed in light of ecological niche 

modeling or developing risk maps, this is of particular concern because a priori use of 

univariate statistical analysis will do exactly what it is designed to do - select for main 

effects, and therefore, prematurely eliminate features interactions (i.e., feature 
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combinations with no main effects) that could be identified in an exhaustive search 

multivariate analysis.  

House infestation with triatomine vectors is an inherently complex, nonlinear 

system with the potential for a large number of feature interactions. At a minimum, the 

vectors require a source of shelter and a readily available food source to survive and 

infest a house; and when viewed as a complex system, other features may be important 

(e.g., initial vector entry and/or passive modes of transportation into the house).  

Another challenge is that many statistical methods cannot include missing data, 

resulting in removal of data that may contain drivers of infestation. Lastly, not all 

statistical models allow for the inclusion of multiple data types (e.g., continuous, ordinal, 

nominal, and binary); and as a result, the features, especially continuous features 

associated with survey questions may get binned into a limited number of categories. 

Such binning benefits from and relies on expert knowledge to reduce the input data (types 

and number); and while the future success of Big Data analysis requires that the tools be 

used in tandem with expert knowledge, the posterior tinkering of features runs the risk 

of biasing and/or reinforcing of preconceived conditions. 

3.3 Methods and Study Sites 

3.3.1 Study Sites of Triatoma dimidiata Infestation 

Our study sites are the small rural towns of El Chaperno and El Carrizal located 

in the dry highlands of in Jutiapa, Guatemala (red and yellow dots of Figure 3.1). Jutiapa, 

Guatemala (highlighted in red, Panel A) borders El Salvador with the study site locations 

shown as a yellow star. El Carrizal (Panel B) has spur roads radiating from the main road 
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making the town less linear in shape. While El Chaperno (Panel C) is more linear in 

shape since most of the houses are adjacent to the principal road running through the 

town. Also, El Chaperno is more heavily forested than El Carrizal due to forest 

conservation efforts.    
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Figure 3.1: Satellite image of the study sites with the houses in El Chaperno and El Carrizal 

represented as red and yellow dots, respectively. Panel A is a map of the departments of 

Guatemala with the department of Jutiapa highlighted in red and the location of the study sites 

represented as a yellow star. Panels B and C show the locations of the houses and roads in El 

Carrizal and El Chaperno, respectively. 
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The El Chaperno and El Carrizal house surveys contained 64 features thought to 

be potential risk factors for infestation with T. dimidiata (Table 3.S1). The dataset of 

each community was analyzed separately, and then combined and re-analyzed to test for 

larger-scale regional patterns. Given the challenges of finding live T. dimidiata (Monroy 

et al., 1998) and because we are interested in identifying features associated with the risk 

of house infestation that help further the development of intervention strategies, we 

define infestation as any sign of T. dimidiata presence in the house (i.e., live or dead 

vectors, eggs, exuviae, or feces) as we believe  these signs of T. dimidiata are indicative 

that the house is either currently infested or has been infested in the recent past.   

3.3.2 Combinatorial Datasets 

While the number of houses in a given dataset (i.e., 129 – 311) may be small, the 

total number of features and all possible multivariate combination of features make 

exhaustive search infeasible even on today’s computers. For example, let’s take the 

following simplified example. Assume that all features, L, in the dataset have the same 

number of values, v. If we take a hypothetical dataset with L = 50 nominal features, each 

with 𝑣 = 5 categorical values, and limit each model to one category per feature, then the 

number of Oth-order models is  𝑣𝑂 (
𝐿
𝑂

) = 3.06 x 104, 2.45 x 106, and 1.44 x 108, for 2nd-, 

3rd-, and 4th-order models, respectively. It should be noted that models that do not allow 

the range of ordinal features values to evolve as part of the model solutions, can bias 

models against ordinal features. Therefore, when testing models with ranges of ordinal 

and nominal feature values, the number of two-way interactions (i.e., bivariate models) 
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is on the order of hundreds of thousands (Table 3.1). For five-way interactions, there are 

over one trillion possible models for two of the three datasets. 

Table 3.1: Possible number of models comprised of 2nd- to 5th-order feature interactions for the El 

Chaperno, El Carrizal, and the combined datasets. 

Dataset 

Number of Combinations per Order of Feature Interaction 

2nd 3rd  4th 5th 

El Chaperno 𝟑. 𝟗𝟏×𝟏𝟎𝟓 𝟖. 𝟕𝟓×𝟏𝟎𝟕 𝟏. 𝟐𝟓×𝟏𝟎𝟏𝟎 𝟏. 𝟐𝟓×𝟏𝟎𝟏𝟐 

El Carrizal 𝟑. 𝟒𝟏×𝟏𝟎𝟓 𝟕. 𝟎𝟕×𝟏𝟎𝟕 𝟗. 𝟒𝟓×𝟏𝟎𝟗 𝟖. 𝟗𝟎×𝟏𝟎𝟏𝟏 

Combined 𝟔. 𝟎𝟎×𝟏𝟎𝟓 𝟏. 𝟔𝟎×𝟏𝟎𝟖 𝟐. 𝟕𝟎×𝟏𝟎𝟏𝟎 𝟑. 𝟏𝟑×𝟏𝟎𝟏𝟐 

 

3.3.3 Simulated SNP Disease Dataset 

To test our ability to identify significant features and interactions with our novel 

algorithm, we first tested the algorithm on a set of benchmark problems used in the CS 

community (Hanley et al., In Review); and in this work, further test the algorithm on a 

simulated single nucleotide polymorphism (SNP) dataset. The simulated dataset was 

designed based on a need for better tools for analyzing complex diseases (Thornton-

Wells et al., 2004), where, in general, benchmark datasets are lacking (specifically those 

that contain gene interactions, heterogeneity, and missing data). Urbanowicz and Moore 

(2010) present one of the few synthetic datasets designed with both heterogeneity and 

feature interactions. The dataset was designed to represent a single nucleotide 

polymorphism (SNP) gene association for a complex disease. It is a balanced dataset 

(half of the observations are associated with the “disease” and half are not) with 1,600 

observations, each with 20 features or SNPS. Each SNP is a ternary representation of 

homozygous major, heterozygous, or homozygous minor. The dataset was designed such 

that no individual feature had a significant main effect, and there are four, two-way 

interactions that comprise the four true signals (i.e., the known mapping between the 
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input features and the associated outcome disease class) (Table 3.2). While each true 

signal covers 21-28% of the diseased individuals, the four signals combined cover 76% 

of the diseased individuals. Thus, multiple true signals cover the same individual, which 

one might expect in a real-world dataset.  

Table 3.2: Accuracy, coverage, and hypergeometric PMF fitness (last 3 columns) associated with 

the four true signals of the Urbanowicz and Moore (2010) benchmark SNP disease dataset. The 

dataset is balanced – half of 1,600 input feature vectors are associated with disease; half are not. 

True 

Signals X0 X1 X2 X3 Accuracy 

Class 

Coverage Fitness 

1 0 1 – – 72% 27% 1.1x10-17  

2 1 0 – – 74% 23% 5.7x10-17  

3 – – 0 1 66% 28% 4.2x10-12  

4 – – 1 0 71% 21% 8.7x10-13  

 

3.3.4 Conjunctive Clause Evolutionary Algorithm (CCEA) 

We designed a conjunctive clause evolutionary algorithm (CCEA) to efficiently 

search for multivariate interactions across multiple data types (i.e., binary, nominal, 

ordinal, continuous) in survey datasets with k = 1, 2,…K outcomes. The details of the 

algorithm have been presented in Hanley et al. (2016; In Review). Briefly, the CCEA is 

a non-parametric statistical tool that searches across the entire range of multivariate 

feature interactions. Each feature represents a survey response that varies in data type 

and range of values. The CCEA evolves feature sets as well as the range of feature values 

using conjunctive clauses in the following form: 

                                       𝐹𝑖 ∈ 𝑎𝑖 ˄𝐹𝑗 ∈ 𝑎𝑗 …  ˄ 𝐹𝐿 ∈ 𝑎𝐿 ,                               (3.1) 

where each Fi represents a feature, i, that may be nominal, ordinal, or continuous, 

and whose value lies in ai, a specified range or set of values. The number of features in a 

conjunctive clause can vary between one and the total number of features, L, in the 
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dataset. The only inherent model assumption is that ordinal and continuous features can 

only evolve monotonic or unimodal ranges. The conjunctive clauses are stored in 

different populations following an age-layered population structure (ALPS) similar to 

that created by (Hornby, 2006). The age-layer population structure helps bias or protect 

newer (more recently evolved) conjunctive clauses compared to older conjunctive 

clauses. Unlike ALPS, the CCEA version of ALPS has an archived age layer that consists 

of probabilistically significant conjunctive clauses (Hanley et al., 2016). To help the 

CCEA detect the possibility of multiple optima and thus find a global optimum, 

underrepresented observations in the population of conjunctive clauses are preserved by 

biasing their selection in subsequent generations. Preserving diversity ensures the CCEA 

explores a larger decision space and safeguards against being trapped in local optima.  

To determine whether a conjunctive clause is probabilistically significant, the 

CCEA estimates the “fitness” of a conjunctive clause using the hypergeometric 

probability mass function (PMF) (Kendall, 1952). Eq. (3.2) quantifies the likelihood that 

the observed association between the conjunctive clause and the target class is due to 

chance; thus, lower values of this fitness function (i.e., lower p-values) are indicative of 

potential association. If the hypergeometric PMF of a conjunctive clause is less than or 

equal to a user-defined threshold, it is considered probabilistically significant and worthy 

of being archived. For conjunctive clauses evolved in the CCEA, the hypergeometric 

PMF is defined as follows:  

                𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑃𝑀𝐹 =
(

𝑋𝑡𝑜𝑡
𝑥𝑚𝑎𝑡𝑐ℎ

)(
𝑁𝑡𝑜𝑡−𝑋𝑡𝑜𝑡

𝑛𝑚𝑎𝑡𝑐ℎ−𝑥𝑚𝑎𝑡𝑐ℎ
)

(
𝑁𝑡𝑜𝑡

𝑛𝑚𝑎𝑡𝑐ℎ
)

           ,               (3.2) 

where,  
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Ntot = the total number of observations in the dataset, 

Xtot = the total number of observations associated with a desired target class, k, 

nmatch = the total number of sampled observations whose features match a given 

conjunctive clause, and  

xmatch = the number of sampled observations that match the conjunctive clause and are in 

target class k.  

It should be noted that a novel feature of the EA is the implementation of the 

hypergeometric PMF and ability to handle missing data. More detailed definitions for 

Ntot and Xtot as the number of observations with non-missing values for features present 

in the conjunctive clause are provided in Hanley et al., (In Review). Traditionally, 

features with lots of missing data are less likely to form probabilistically significant 

multivariate conjunctive clauses; however, for a dataset where this is not true, significant 

features with a lot of missing data can be detected.  

The CCEA can have a static threshold (i.e., the threshold will not heuristically 

decrease), or the threshold can deterministically evolve based on the number of archived 

conjunctive clauses for a given conjunctive clause order. In this work, we use a static 

threshold: we archive conjunctive clauses that cover at least 10% or more of the houses 

infested with T. dimidiata by setting the hypergeometric fitness threshold to the fitness 

of a conjunctive clause that has 100% accuracy and 10% coverage of infested houses. 

Accuracy is defined as 
𝑥𝑚𝑎𝑡𝑐ℎ

𝑛𝑚𝑎𝑡𝑐ℎ
 and is analogous to the true positive rate of the conjunctive 

clause. Infested house coverage is the number of times a sampled conjunctive clause is 

associated with a target outcome over the total number of target outcomes in the dataset, 
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𝑥𝑚𝑎𝑡𝑐ℎ

𝑋𝑡𝑜𝑡
. If only a few conjunctive clauses are archived, we risk that the archived signals 

contain large amounts of noise and are subject to overfitting. As mentioned above, the 

CCEA used a static threshold to maintain a large population of archived conjunctive 

clauses. This is consistent with the concept in “Big Data” that more data can be used to 

find patterns of correlations with a desired output (true signal) (Mayer-Schönberger and 

Cukier, 2014).  

In addition to setting a fitness threshold, there are a number of other input 

parameters (see Table 3.3) that typically need to be initialized when using an EA. The 

only parameter that is not typical is the number of archived offspring (Off
A
); the latter 

keeps the number of archived and non-archived offspring balanced; Off
A
 caps the number 

of offspring evolved from the archived population every generation. For the portion of 

the population that is not archived, each conjunctive clause undergoes either crossover 

or mutation each generation.  
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Table 3.3: Conjunctive Clause Evolutionary Algorithm (CCEA) parameter settings. 

CCEA Parameters Value 

Total # of Features (L) Dataset dependent 

Threshold (T) Dataset dependent 

# Non-Archived Age Layers (AL
NA

) 5 

Novel Population (Pop
N
) 2 x L 

Non-Archive Pop. (Pop
NA

) Pop
N
 

# Archive Offspring (Off
A
) AL

NA
 x Pop

N
 

Generations (Gen) 200 

Generations Until Novel Pop (Gen
N
) 5 

Crossover Function (F
X
) Uniform 

Probability of Crossover (Pr
X
) 0.50 

Probability of Wild Card (Pr
WC

) 0.75 

Mutation Function (F
M

) {uniform, pm = 1/L} 

Crossover Mate Selection  {tournament, size = 3} 

 

The CCEA was run on four test cases (i.e., the benchmark SNP disease dataset of 

Urbanowicz and Moore, (2010), the dataset of El Chaperno, El Carrizal, and the two 

towns combined). Each test case of 200 generations had 5 randomly seeded repetitions 

to decrease the likelihood of the algorithm becoming trapped in a population of local 

optima. For each dataset, we calculated the accuracy and infested house coverage for 

every archived conjunctive clause.  

3.3.5 Feature and Feature Pair Importance (FI and FPI) 

The feature importance (FI) and feature pair importance (FPI) are calculated 

using only those observed conjunctive clauses that match the target outcome (e.g., 

diseased individual, infested house). For each observation matching the target output, the 

FI is sum total of features in matching conjunctive clause; and the summed FIs are 

normalized across all features associated with a given target outcome. The latter ensures 

that the smallest feature sum total is 0 and the largest is 1 (Table 3.S2.A). The FPI is 
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similar to the FI except it is the normalized number of times a pair of features are present 

in conjunctive clauses that match the target observation. For a given observation, any 

features with missing values, the FI and FPIs are designated as null values (i.e., a lack 

of a value). 

The FI and FPI values may be viewed as networks or as heat maps similar to the 

way Urbanowicz et al. (2012a; 2013) displayed feature interaction metrics. Each node of 

the network represents a feature, and each edge represents a feature pair with the size of 

the nodes and thickness of the edges proportional to the FI and FPI. We sort the FI and 

FPI values independently by individual features as well as all paired features, 

respectively. Because we are most interested in FI and FPI values that represent at least 

10% (user-defined threshold) of the target outcome (e.g., diseased individuals or infested 

houses), we selected the 90th percentile FI and FPI values across each individual feature 

vector and feature-pair vector (Table 3.S2.B). We use the 90th percentile as a conservative 

user-defined threshold to account for unbalanced heterogeneity; however, this threshold 

is problem dependent. The Gephi 0.9.1 software (Bastian et al., 2009) is used to visualize 

the feature network. 

3.3.6 Feature Sensitivity 

For every archived conjunctive clause, we remove each feature one by one to 

determine feature sensitivity. Feature sensitivity was designed to be the difference 

between the log10 of the new fitness value (hypergeometric PMF associated with the new 

conjunctive clause, i.e., one with a feature removed) and the log10 of the original 

hypergeometric PMF: 
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 𝐹𝑒𝑎𝑡. 𝑆𝑒𝑛𝑠. = 𝑙𝑜𝑔(𝑁𝑒𝑤 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜 𝑃𝑀𝐹) − 𝑙𝑜𝑔(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜 𝑃𝑀𝐹) ,    (3.3) 

Because the hypergeometric PMF ∈ [0,1], taking the log10 will result in values 

that are ≤ 0. Therefore, positive feature sensitivities of Eq. (3.3) will be associated with 

features that are important to the conjunctive clause to which they belong; and negative 

feature sensitivities will be associated with features that add noise. We should note that 

each unit of feature sensitivity represents an order of magnitude change in the 

hypergeometric PMF (fitness of the conjunctive clause) and that the scale of the feature 

sensitivity is relative to the size of the dataset. Thus, direct comparison across datasets is 

not possible (e.g., feature sensitivity will likely be smaller for El Carrizal compared to El 

Chaperno; and both towns individually will be smaller than when the data are combined). 

To help with comparison, we plot the median values of the feature sensitivity for each 

dataset.  

 3.4 Conjunctive Clause Evolutionary Algorithm (CCEA) Results 

3.4.1 Results of the Simulated SNP Disease Dataset containing all 20 Features 

Each single nucleotide polymorphism (SNP) is regarded as a feature, defined X0 

– X19. When Hanley et al. (2016) performed exhaustive search on the benchmark dataset 

of Urbanowicz and Moore (2010), the best fitness was four orders of magnitude less fit 

than that of a conjunctive clause with 100% accuracy and 10% coverage. As a result, we 

lowered the criteria of the hypergeometric PMF for a conjunctive clause with 100% 

accuracy and 1% coverage of the diseased individuals. The accuracy, class coverage, and 

hypergeometric PMF (contour lines spaced at 10-4 intervals) for the conjunctive clauses 

archived by the CCEA (Figure 3.2) show that most of the conjunctive clauses have low 
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coverage of the diseased individuals. Solutions (2nd- through higher-order conjunctive 

clauses) along hypergeometric contours closer to the upper right-hand corner of Figure 

3.2 have lower fitness and therefore, are considered more optimal. The CCEA was 

successful in archiving all four of the true (two-way) signals of Table 3.2 (boxed red 

circles). These 2nd-order CCs have 20-30% coverage of the diseased individuals and 65-

75% accuracy. The algorithm evaluated ~3.74x105 of the ~1.10x1012 possible 

conjunctive clauses in the dataset. It should also be noted that the four main effects 

archived by the CCEA (black circles) have lower fitness; and only one of which (feature 

X1: accuracy = 54%, diseased individual coverage = 36%) belongs to two of the four 

true (two-way) signals. 

      

Figure 3.2: Accuracy, class coverage, and hypergeometric PMF (contour lines spaced at 10-4 

intervals) for the conjunctive clauses identified using the CCEA for the simulated SNP disease 

dataset. Each color-coded circle represents the order of a conjunctive clause. The green box shows 

the location of the four true signals (i.e., 2nd-order CCs in red). 
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Without filtering for feature pairs (2-way interactions), the network 

representation of Figure 3.3 (panel A) shows the first four features (X0 – X3) and X13 

to have the highest FI values. Once the filter (FPI ≥ 0.95) is applied the network (panel 

B) identifies the four true signals (two-way, feature pairs X0 & X1 and X2 & X3 of Table 

3.3) to be the most important. 
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Figure 3.3: Feature importance (FI) and feature-pair importance (FPI) are represented as a 

network. The nodes and edges are proportional to the FI and FPI values, respectively. Panel A) 

Contains all feature-pair connections and B) is filtered so that only FPI ≥ 0.95 are visible. 

The median feature sensitivities are represented in the bar chart of Figure 3.4. 

Only features X0 – X3 have positive median values indicating that removal of these 
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features from conjunctive clauses would change the probability of the hypergeometric 

PMF by at least two-orders of magnitude. Taken together, the feature importance (Figure 

3.3) and feature sensitivity (Figure 3.4) indicate that the four features (X0 – X3) that 

comprise the true signals are the most important features in the simulated SNP disease 

dataset. As a result, the dataset could be reduced to these four features (X0 – X3). 

       

Figure 3.4: Bar graph showing median feature sensitivity for each of the 20 features. Positive bars 

indicate that the removal of a feature from an archived conjunctive clause decreases the fitness 

(i.e., the hypergeometric PMF increases and the conjunctive clause becomes more likely due to 

chance). 

Finally, the feature sensitivity for each diseased individual may be viewed as a 

heat map (Figure 3.5), where the median sensitivity of features is either positive (red), 

neutral (black), or negative (blue). White indicates that the feature was not present in any 

conjunctive clause that matched the outcome of interest. The results are re-ordered for 

visualization purposes and help show the heterogeneity embedded in the dataset (no 
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individual feature has positive median feature sensitivity across all 800 diseased 

individuals). Figure 3.5 also shows that the median sensitivity associated with the four 

features that comprise the true signals is positive for nearly all of the 800 diseased 

individuals. Similarly, the sensitivity for features X0 & X1 is positive for ~500 of the 

diseased individuals and the sensitivity of features X2 & X3 is positive for ~500 of the 

diseased individuals.  

       

Figure 3.5: Median feature sensitivity associated with an outcome of interest (e.g. diseased 

individuals) are re-ordered for visualization purposes. The median feature sensitivity across all 

conjunctive clauses may be positive (red), zero (black), and negative (blue), respectively. White 

indicates when a feature was not present in any conjunctive clause that matched the outcome of 

interest. 

3.4.1.1 Results of the Simulated SNP Disease Dataset Using Only the Reduced 4-

Features 

When the simulated SNP disease dataset is reduced to four features, an exhaustive 

search of the reduced dataset would be trivial. However, because our interest is in 

exploring how well our feature reduction strategy might work on real-world datasets, we 
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analyzed all of the CCEA conjunctive clauses that contained features X0 – X3 and had a 

hypergeometric PMF below the user-defined threshold (n=26). Note: All 26 conjunctive 

clauses were archived by the CCEA. 

Feature importance performed on the reduced (four-feature) dataset was nearly 

identical to the network of Figure 3.3 (using all 20 features) and as result, the network is 

not presented here. The median feature sensitivity of the reduced features set is now 

greater than five indicating there is a five-order magnitude change in the hypergeometric 

PMF when each of the four features are individually removed (Figure 3.6). The heat map 

of Figure 3.7 shows the median feature sensitivity and the overlap between the four 

features that comprise the true signals. The heat map also helps visualize both the 

heterogeneity and feature interactions embedded in the dataset. Heterogeneous features 

X0 & X1 are positive for ~400 of the diseased individuals; and features X2 & X3 are 

positive for ~400 diseased individuals. There are ~200 diseased individuals that are not 

associated with features that comprise the true signals, showing the noise present in this 

dataset. These results suggest that without noise, it’s even easier to ID important features 

using the FI, FPI, and feature sensitivity. 
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Figure 3.6: Bar graph showing median feature sensitivity for each of the four features that 

comprise the true signals. Positive bars indicate that removal of the feature from an archived 

conjunctive clause decreases the fitness (i.e., the hypergeometric PMF increases and the 

conjunctive clause becomes more likely due to chance).       
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Figure 3.7: Bar graph showing median feature sensitivity for each of the four features that 

comprise the true signals. Positive bars indicate that removal of the feature from an archived 

conjunctive clause decreases the fitness (i.e., the hypergeometric PMF increases and the 

conjunctive clause becomes more likely due to chance). 

3.4.2 Results on El Chaperno, El Carrizal, and the Combined Datasets Using all 64 

Features 

The summary statistics for El Carrizal and El Chaperno (Table 3.4) show that El 

Carrizal has a higher percentage of infested houses than El Chaperno; and that both 

datasets have imbalanced outputs with the percentage of infested houses being in the 

minority (Table 3.4, column 3). 
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Table 3.4: Summary characteristics for El Chaperno, El Carrizal, and the two towns combined. 

Dataset 

# 

Houses 

# Infested 

Houses 

# 

Ordinal, 

Nominal, 

Binary 

Features 

% 

Missing 

Data  

Median 

% 

Missing 

Data 

per 

Feature 

[Min, 

Max] % 

Missing 

Data per 

Feature 

El 

Chaperno 
182 49 (26.9%) [12, 8, 44] 28.9 15.7 [0.5, 86.8] 

El 

Carrizal 
129 51 (39.5%) [14, 8, 42] 22.3 3.9 [0.8, 77.5] 

Combined 311 100 (32.2%) [14, 8, 42] 26.1 10.3 [1.2, 78.5] 

 

The conjunctive clauses identified by the CCEA show higher class coverage in 

the real Chagas survey dataset (Figure 3.8) compared to the simulated SNP disease 

dataset of Figure 3.2. Given the imbalanced nature of the real datasets, there are 

conjunctive clauses with accuracy <50%. The CCEA results in a plethora of archived 

conjunctive clauses that may contain the true drivers of T. dimidiata infestation. Again, 

solutions closer to the upper right-hand corner of the graphs in panels A-C of Figure 3.8 

have lower fitness (higher association with infestation). In addition, interesting patterns 

emerge when comparing the distribution of conjunctive clauses across the three Chagas 

datasets. The higher percentage of infested houses in El Carrizal (panel B) helps push the 

distribution of archived conjunctive clauses toward higher accuracy compared to El 

Chaperno or the combined dataset (panels A and C, respectively).  
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Figure 3.8: The accuracy and infested house coverage of the conjunctive clauses identified using 

the CCEA for the A) El Chaperno, B) El Carrizal, and C) combined datasets. Each color-coded 

circle represents the order of a conjunctive clause. 
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Following the feature reduction strategy used with the simulated SNP disease 

dataset, we analyzed the FI and FPI as well as the feature sensitivity for the El Chaperno, 

El Carrizal, and combined datasets, respectively. Figure 3.9 provides a network 

representation of the FI and FPI for each dataset separately; features 9, 10, and 29 appear 

in all three networks. Features 9 and 10 are the age of the house and the years lived in 

the house, respectively; while feature 29 provides information on whether there is an 

accumulation of objects (potential hiding places for bugs) in the house. While features 9 

and 10 may appear similar, the survey responses are not always correlated; thus, both 

features merit future exploration in a reduced dataset. Features 53 and 55 (house wall 

material and house wall condition) are present in the networks for El Chaperno and El 

Carrizal (Figure 3.9A & 3.9B), but are not present in the network of the combined dataset 

(Figure 3.9C). If the user is willing to relax the filter on the importance threshold to FPI 

≥ 0.85, then feature 54 (condition of the bedroom walls) would have been common to all 

three networks, stressing the importance of using feature identification tools in concert 

with domain experts. 
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Figure 3.9: The feature and feature pair importance are represented as a network. The nodes and 

edges are sized based on the FI and FPI, respectively. The networks are filtered so that only FPI ≥ 

0.95 are visible for the A) El Chaperno, B) El Carrizal, and C) combined datasets. 
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The median feature sensitivities for the El Chaperno, El Carrizal, and combined 

datasets vary considerably (Figure 3.10). However, features 9, 10, and 34 have feature 

sensitivity values greater than zero for all three datasets. Again, features 9 and 10 are the 

age of the house and the years lived in the house, respectively; while feature 34 is the 

hygienic condition of the beds. Interestingly, both the minimum and maximum feature 

sensitivity (Feature 16: Type of house improvement is other has a feature sensitivity = -

5.0; Feature 17: How often are the walls plastered? (feature sensitivity = 2.4)) are found 

in the combined dataset (Figure 3.10C). The latter is likely a result of the inverse 

relationship that exists between probabilities (decreasing p-values) and increasing dataset 

size and highlights the danger of relying on p-value criteria for datasets with large n 

values. See Lin et al., (2013) for more detail. 
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Figure 3.10: Bar graphs showing median feature sensitivities for each of the 64 features for the A) 

El Chaperno, B) El Carrizal, and C) combined datasets. Positive values indicate that removal of a 

feature from an archived conjunctive clause decreases the fitness (i.e., the hypergeometric PMF 

increases and the conjunctive clause becomes more likely due to chance). 
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The union of all features (i.e., binary, nominal, and ordinal) meeting the selection 

criteria of the previous SNP disease dataset (i.e., filtered network feature-pair importance 

and median feature sensitivities > 0) resulted in reducing the 64-feature dataset to the 22 

in Table 3.5.   
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Table 3.5: Features selected using feature-pair importance and feature sensitivity for the El 

Chaperno, El Carrizal, and combined datasets. 

I

D Survey Question 

FPI  ≥ 0.95 Median Feature Sensitivity > 0 

Chaperno Carrizal Combined Chaperno Carrizal Combined 

2 
Source of income is 

day laborer 
 X   X  

4 
Source of income is 

business 
   X   

6 
Source of income is 

other 
X      

9 Age of the house X X X X X X 

10 
Years lived in the 

house 
X X X X X X 

17 
How often are the 

walls plastered? 
     X 

18 Number of dogs     X  

26 
Presence/signs of 

animals in the house 
 X X  X X 

27 

Presence/signs of 

bird nests in the 

house 
 X   X  

29 
Accumulation of 

objects in the house 
X X X  X X 

34 
Hygienic condition 

of the beds 
 X X X X X 

36 
Hygienic condition 

of the house 
 X     

37 
Are grains stored in 

the main room? 
 X   X  

38 
Accumulation of 

firewood 
 X   X  

41 

Type of accumulated 

construction material 

is adobe 
   X  X 

46 

Location of 

construction 

materials 
   X   

53 
Primary house wall 

material  
X X   X  

54 
Condition of the 

bedroom walls  
X   X  X 

55 
Condition of walls in 

rest of house 
X X   X  

57 
Primary house floor 

material 
X  X X  X 

58 
Is the main room 

dark? 
   X   

60 
Does the main room 

have windows? 
   X   
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3.4.2.1 CCEA Results for the Chagas Datasets Using the Reduced 22 Features 

The simulated SNP disease results suggests that feature reduction helps shrink 

the search space and elucidates drivers of a system. As a result, we perform similar 

analysis on the three house infestation datasets. The accuracies and infested house 

coverages for the archived CCEA conjunctive clauses are shown (Figure 3.11) for El 

Chaperno, El Carrizal, and the combined dataset in panels A, B and C, respectively. 

Interestingly, the range of accuracies and coverages that evolve when using all 64 

features (Figure 3.8) is nearly the same for the reduced set of 22 features (Figure 3.11). 

However, these 22 feature datasets contain less 2nd- and 3rd-order conjunctive clauses 

with accuracy greater than 70%. 
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Figure 3.11: The accuracy and infested house coverage of the conjunctive clauses identified using 

the CCEA on the reduced 22 features for the A) El Chaperno, B) El Carrizal, and C) combined 

datasets. Each color-coded circle represents the order of a conjunctive clause. 
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The network representation of features (FPI ≥ 0.95) in the El Chaperno and El 

Carrizal (Figure 3.12A & 3.12B) are a subset of feature pairs identified when all 64 

features are used (Figure 3.9A & 3.9B). Figure 3.12C has three interconnected features 

(9 = age of the house, 53 = primary wall material, and 57 = the primary floor material) 

with 68% coverage and 56% accuracy implying that this 3rd-order conjunctive clause is 

important.  
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Figure 3.12: The network representation of FI and filtered FPI ≥ 0.95 for the reduced 22-features 

(Table 3.5) for the A) El Chaperno, B) El Carrizal, and C) combined datasets. Nodes and edges are 

proportional to the FI and FPI, respectively. 
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The range of maximum and minimum median feature sensitivity is smaller for 

the reduced 22-features compared to the 64-feature sensitivity (Figure 3.13). For each 

Chagas dataset, only a minority of the features have positive median feature sensitivity. 

Features 17, 18, 29, 36, 58, and 60 never have positive median feature sensitivity (Figure 

3.13) and are not present in any of the filtered networks of Figure 3.12. Therefore, if 

further feature reduction was desired, the reduced 22 feature set could be further reduced 

to 16 features. 
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Figure 3.13: Bar graphs showing median feature sensitivities for each of the reduced 22 features 

for the A) El Chaperno, B) El Carrizal, and C) combined datasets. Positive values indicate that 

removal of the feature from an archived conjunctive clause decreases the fitness (i.e., the 

hypergeometric PMF increases and the conjunctive clause becomes more likely due to chance). 
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3.4.3 Example of Conjunctive Clauses Archived by the CCEA 

To better analyze how the feature sensitivities associated with the archived 

conjunctive clauses might be used in practice, we selected three conjunctive clauses 

along the Pareto front (Figure 3.14) for the combined (two-town, 64 feature) Chagas. 

      

Figure 3.14: The accuracy and infested house coverage of the conjunctive clauses identified using 

the CCEA and all 64 features for the combined datasets. Three CCs selected along the Pareto front 

are circled; the circle color of the CC represents the order of a conjunctive clause. 

The features associated with the 7th-order conjunctive clause of Figure 3.14 are 

presented in Figure 3.15A and include binary, nominal, and discrete data types. This 

conjunctive clause has the highest infested house coverage for clauses with 100% 

accuracy. We select a 100% accurate conjunctive clause to critically examine the 

possibility of overfitting. The arrows of Figure 3.15 point to the accuracy, coverage, and 

hypergeometric PMF of the conjunctive clause when that particular feature is removed. 



104 

 

Because two of the seven features (one identifying that household source of income is 

not salary and the other indicating that the house is owned) show no change in accuracy 

or coverage (and negligible change in the hypergeometric PMF) when those features are 

removed, we reduce the 7th-order conjunctive clause to produce the 5th-order conjunctive 

clause of panel B. 
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Figure 3.15: The archived conjunctive clause resulting from the 64-feature, combined (two-town) 

Chagas dataset with 100% accuracy and highest coverage. The arrows point to the resulting 

accuracy, coverage, and hypergeometric PMF when the feature associated with the line is removed 

from the conjunctive clause Panel A) shows the 7th-order conjunctive clause. Because there was no 

change in accuracy or coverage for removal of two of the features, panel B shows the resulting 5th-

order conjunctive clause. The arrows in panel B again point to accuracy, coverage and fitness 

when the associated feature is removed. 
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The two additional archived CCs selected along the Pareto front of Figure 3.14 

include a 4th-order and 2nd-order CC.  The 4th-order was selected because it is near the 

knee of the Pareto front and is depicted in Figure 3.16A. This CC has high accuracy 

(71%) and high infested house coverage (53%). Removing any one of these four features 

results in less-fit 3rd-order CCs. Figure 3.15B shows a 2nd-order CC with the highest 

infested house coverage for all archived CCs. The feature (house is owned or rented) 

covers 96% (300/311) of the observations in the combined dataset. Note that when the 

feature associated with the condition of the walls in the remainder of the house is 

removed, the resulting main effect is many orders of magnitude less-fit. 
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Figure 3.16: Description of two additional archived conjunctive clauses from the Pareto front of 

the 64-feature, combined (two-town) Chagas dataset. Panel A) describes the 4th-order conjunctive 

clause near the knee of the Pareto front. Panel B) shows 2nd-order conjunctive clause with the 

highest coverage for the archived CCs. Arrows point to the resulting accuracy, coverage, and 

hypergeometric PMF when the feature associated with the line is removed from the conjunctive 

clause. 
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3.5 Discussion 

We develop a novel evolutionary algorithm (CCEA) to efficiently explore 

complex feature interactions associated with disease datasets. The algorithm is capable 

of dealing with survey data that contain missing data, varied data types (i.e., binary, 

nominal, and ordinal), and additive features. We demonstrate, using a benchmark SNP 

disease dataset specifically designed for feature interactions and heterogeneity by 

Urbanowicz and Moore, (2010), that the CCEA is capable of identifying the four (two-

way) signals embedded in a benchmark SNP dataset. The algorithm successfully archives 

the conjunctive clauses that are then mined for the most important features using FI and 

FPI network models and feature sensitivity. When feature-reduction methods were 

applied to the Chagas datasets, the coverage and accuracy for the archived conjunctive 

clauses associated with infested houses did not increase; and the number of highly 

accurate 2nd- and 3rd-order conjunctive clauses decreased. This is likely because the risk 

factors (features) associated with the 2- and 3-way feature interactions were subsequently 

removed during feature reduction showing the dangers of performing feature reduction 

when datasets contain feature interactions and heterogeneity.  

Feature sensitivity shows that while some of the archived conjunctive clauses 

contain noise, we can obtain equally-fit, lower-order conjunctive clauses. We identify a 

5th-order conjunctive clause that contains three features (earth floors, adobe walls, and 

tile roofs) previously identified (King et al., 2011; Weeks et al., 2013; Bustamante et al., 

2014; Bustamante Zamora et al., 2015) as individually associated with infestation. 

However, what is unique to this 5th-order conjunctive clause is that the CCEA is capable 
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of evolving both the feature set and the range of feature values. For example, the range 

of values that evolved for the number of poultry lies between 7 – 35. Given the 

computational limitations imposed by the large combinatorial constraints associated with 

real multivariate interactions comprised of multiple data types, previous studies have no 

choice but to bin survey data responses (e.g., bin the number of poultry into ranges 0, 1-

9 10-19, and ≥19) prior to statistical analysis (Bustamante Zamora et al., 2015). The 

CCEA is able to relax this constraint and mine the entire set of feature combinations and 

simultaneously evolve ranges for the number of poultry using statistical signals. The 5th-

order conjunctive clause described above paints a picture of a home that many Chagas 

experts would suspect as being at high risk for T. dimidiata infestation (e.g., numerous 

hiding places for the vector and readily available food sources such as large numbers of 

poultry and animals inside the home). With that being said, we caution against making 

any generalizations regarding this (100% accurate) 5th-order conjunctive clause for other 

nearby towns. The lack of false positives is likely due to the towns being small rural 

towns with only 311 houses. However, given that this clause covers nearly a quarter of 

the infested houses across the two towns, this conjunctive clause may represent a driver 

of T. dimidiata infestation. In addition, this conjunctive clause contains many of the 

features already targeted by existing Ecohealth interventions, such as replacing dirt floors 

with cement floors, plastering walls, and moving chickens outside of the home and into 

coops constructed with wire (Monroy et al., 2009; Lucero et al., 2013; Pellecer et al., 

2013). These interventions, especially when taken together, are some of the most efficient 

(i.e., lowest number of false positives) interventions.  
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There is evidence of heterogeneity in identifying models of infestation with 

triatomine vectors of Chagas disease. Both Bustamante et al. (2014) and Bustamante 

Zamora et al. (2015) found no statistical support for a single-best model of infestation. 

Our results show there are conjunctive clauses that cover nearly every infested house 

(Figure 3.8); however, these conjunctive clauses tend to have low accuracy and thus a 

large number of false positives. Alternatively, stakeholders may want a compromise 

between high infested house coverage and accuracy; and thus, they may be willing to 

accept some false positives in favor of a simpler more general conjunctive clause such as 

the 4th-order CC depicted in Figure 3.16A. Alternatively, multiple CCs with high 

coverage and accuracy may be combined to cover all or nearly all infested houses, while 

limiting false positives so that stakeholders can efficiently direct limited resources (e.g., 

it may be more cost effective to perform a preliminary screening of houses at risk of 

infestation using information such as the age of the house than to acquire information on 

the household source of income or number of animals). The range of conjunctive clauses 

allows stakeholders to select the best combination that maximizes their desired coverage, 

accuracy, model complexity, and the presence of features that have interventions that can 

be easily and affordably applied. 
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3.6 Supplementary Tables 

Table 3.S1: The first column is the feature number for the 64 features that are input into the 

CCEA. The second column is the survey question associated with each feature. 

Feature Survey Question 

1 Total people in the house 

2 Binary Source of Income: Day Laborer (1 = yes, 0 = no) 

3 Binary Source of Income: Agriculture (1 = yes, 0 = no) 

4 Binary Source of Income: Business (1 = yes, 0 = no) 

5 Binary Source of Income: Salary (1 = yes, 0 = no) 

6 Binary Source of Income: Other (1 = yes, 0 = no) 

7 Highest household level of education 

8 Is the house owned, rented, or borrowed? 

9 Age of the house 

10 Years lived in the house 

11 Have you improved the house? 

12 Binary Type of House Improvement: Plastered the Walls (1 = yes, 0 = no) 

13 Binary Type of House Improvement: Improved the roof (1 = yes, 0 = no) 

14 Binary Type of House Improvement: Improved the floor (1 = yes, 0 = no) 

15 Binary Type of House Improvement: Addition to the house (1 = yes, 0 = no) 

16 Binary Type of House Improvement: Other (1 = yes, 0 = no) 

17 How often do you plaster the walls 

18 Number of dogs 

19 Where do the dogs sleep? 

20 Number of poultry 

21 Where do poultry birds sleep? 

22 Number of cats 

23 Where do cats sleep? 

24 Number of pigs 

25 Number of beasts (i.e., horses, cows, mules) 

26 Presence or signs of animals in the house 

27 Presence or signs of bird nests in the house 

28 Presence or signs of mouse in the house 

29 Accumulation of objects in the house 

30 Binary Types of Objects Accumulated: Boxes (1 = yes, 0 = no) 

31 Binary Types of Objects Accumulated: Sacks (1 = yes, 0 = no) 

32 Binary Types of Objects Accumulated: Clothes (1 = yes, 0 = no) 

33 Binary Types of Objects Accumulated: Other (1 = yes, 0 = no) 

34 Hygienic condition of the beds 

35 Are beds separated from the wall 

36 Hygienic condition of the house 
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37 Are grains stored in the main room 

38 Accumulation of firewood 

39 Where is the firewood 

40 Accumulation of construction materials 

41 Binary Type of Accumulated Construction Material: Adobe (1 = yes, 0 = no) 

42 Binary Type of Accumulated Construction Material: Tiles (1 = yes, 0 = no) 

43 Binary Type of Accumulated Construction Material: Wood (1 = yes, 0 = no) 

44 

Binary Type of Accumulated Construction Material: Cinder Blocks (1 = yes, 0 
= no) 

45 Binary Type of Accumulated Construction Material: Other (1 = yes, 0 = no) 

46 Where are the construction materials 

47 Presence of chicken coop 

48 Where is the chicken coop located 

49 Primary material of the chicken coop walls 

50 Primary material of the chicken coop roof 

51 Hygienic condition of the chicken coop 

52 Presence of another animal corral 

53 Primary material of the house walls 

54 Condition of the walls in the bedroom 

55 Condition of the walls in the rest of the house 

56 Primary material of the house roof 

57 Primary material of the house floor 

58 Is the main room dark? 

59 Does the main room have a skylight? 

60 Does the main room have windows? 

61 Location of the kitchen 

62 Does the house have running water? 

63 Does the house have electricity? 

64 How long ago was the electricity installed? 
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Table 3.S2: Table A contains the feature importance (FI) values for a dataset with eight features 

and 10 observations with a target outcome (e.g., infested house). Table B contains the same FI 

values that are present in Table A, however, each feature’s FI is independently sorted. The 90th 

percentile FI values are highlighted in red. 

A         

Obs. FI1 FI2 FI3 FI4 FI5 FI6 FI7 FI8 

1. 0.44 0.80 0.26 0.25 0.07 0.00 0.04 0.00 

2. 0.99 1.00 0.06 0.10 0.00 0.29 0.07 0.04 

3. 0.94 1.00 0.00 0.26 0.19 0.27 0.08 0.41 

4. 1.00 0.98 0.51 0.64 0.00 0.05 0.21 0.38 

5. 0.00 0.26 0.15 0.11 0.19 0.27 0.94 1.00 

6. 0.35 0.34 0.23 0.00 0.26 0.17 0.95 1.00 

7. 0.24 0.14 0.14 0.27 0.00 0.38 1.00 0.98 

8. 0.28 0.58 0.09 0.00 0.16 0.28 0.99 1.00 

9. 0.39 0.80 0.26 0.25 0.07 0.00 0.04 1.00 

10. 0.99 1.00 0.06 0.10 0.00 0.29 0.07 0.04 

         

B         

Sort FI1 FI2 FI3 FI4 FI5 FI6 FI7 FI8 

1. 0.00 0.14 0.00 0.00 0.00 0.00 0.04 0.00 

2. 0.24 0.26 0.06 0.00 0.00 0.00 0.04 0.04 

3. 0.28 0.34 0.06 0.10 0.00 0.05 0.07 0.04 

4. 0.35 0.58 0.09 0.10 0.00 0.17 0.07 0.38 

5. 0.39 0.80 0.14 0.11 0.07 0.27 0.08 0.41 

6. 0.44 0.80 0.15 0.25 0.07 0.27 0.21 0.98 

7. 0.94 0.98 0.23 0.25 0.16 0.28 0.94 1.00 

8. 0.99 1.00 0.26 0.26 0.19 0.29 0.95 1.00 

9. 0.99 1.00 0.26 0.27 0.19 0.29 0.99 1.00 

10. 1.00 1.00 0.51 0.64 0.26 0.38 1.00 1.00 
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CHAPTER 4: USING NEXT GENERATION SEQUENCING TO 

DETERMINE THE RANGE OF SPATIAL AUTOCORRELATION OF 

TRIATOMA DIMIDIATA 

4.1 Introduction 

4.1.1 Chagas Disease Background 

Chagas disease is a lethal, neglected, tropical disease that is endemic to every 

Central American country (Chagas, 2015). Historically Rhodnius prolixus, and to a lesser 

extent Triatoma dimidiata, were the principle vectors of Chagas disease in Central 

America (WHO, 2002; Schofield and Dujardin, 1997). R. prolixus was accidentally 

introduced to Central America (Zeledón, 2004) but, through an intensive insecticide 

campaign in August 2011, transmission of Chagas disease via R. prolixus was 

successfully eliminated from Central America (Hashimoto and Schofield, 2012). T. 

dimidiata on the other hand is endemic to Central America and is found in domestic, 

peridomestic, and sylvatic ecotopes from Mexico to northern South America (De León, 

1959; Arzube Rodríguez, 1966; Zeledón et al., 1970; Petana, 1971;  Zeledón et al., 1973; 

Whitlaw and Chaniotis, 1978; Tabaru et al., 1999; Zeledón et al., 2001a; Zeledón et al., 

2001b; Dumonteil et al., 2002; Monroy et al., 2003a; Monroy et al., 2003b; Sasaki et al., 

2003; Ramírez et al., 2005;  Zeledón et al., 2005; Hernández et al., 2006; Zeledón and 

Rojas, 2006; Bustamante et al., 2007; Dorn et al., 2007). Efforts to eliminate T. dimidiata 

through intensive insecticide spraying have proven generally unsuccessful (Tabaru et al., 

1998; Nakagawa et al., 2003a; Nakagawa et al., 2003b; Dumonteil et al., 2004; 

Hashimoto et al., 2006; Manne et al., 2012; Yoshioka et al., 2015). Approximately 70 
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million people in Latin America are at risk of infection with T. cruzi and ~5.7 million 

people are already infected (Chagas, 2015). In Central America, Guatemala has the 

largest number of vector transmitted cases (~1,275) in 2010 (Chagas, 2015).  Since 

insecticides have proven to be ineffective at eliminating T. dimidiata in Guatemala 

(Tabaru et al., 1998; Nakagawa et al., 2003a; Nakagawa et al., 2003b; Hashimoto et al., 

2006; Manne et al., 2012), recent interventions help reduce contact between people and 

T. dimidiata using Ecohealth interventions (Monroy et al., 2009; Lucero et al., 2013; 

Pellecer et al., 2013). In Guatemala, these interventions aim to remove domestic shelters 

and food sources of T. dimidiata by plastering walls (Monroy et al., 2009; Lucero et al., 

2013; Pellecer et al., 2013), replacing dirt floors with cement floors (Lucero et al., 2013; 

Pellecer et al., 2013), and distancing the chicken coops from the house while also 

replacing the more common construction materials (i.e., wood and adobe) with metal 

fencing (Lucero et al., 2013; Pellecer et al., 2013). Unfortunately, the initial costs of these 

Ecohealth interventions are relatively high for many communities; and thus, resources 

should be prioritized toward houses most at risk of T. dimidiata infestation. While 

extensive evidence suggests that T. dimidiata move between the domestic, peridomestic, 

and sylvatic ecotopes (Arzube Rodríguez, 1966; Zeledón et al., 1973; Monroy et al., 

2003b; Sasaki et al., 2003; Ramírez et al., 2005; Zeledón et al., 2005), the distance 

traveled is currently unknown, thus complicating estimates of disease transmission. A 

number of studies have modeled the movement of T. dimidiata from the sylvatic ecotope 

to domestic ecotope in the Yucatan, Mexico (Barbu et al., 2010; Ramirez-Sierra et al., 

2010; Barbu et al., 2011), but the vector is associated with seasonal infestation in the 
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Yucatan, which is not the case in Guatemala. In Guatemala, Lucero et al. (2013) used 

geostatistics and hot spot analysis to identify areas within a village most at risk for 

infestation. Their analysis identified a range of spatial autocorrelation for bugs per house 

found using man-hour collection methodology. However, Monroy et al. (1998) have 

demonstrated that this collection method has a high variance and most likely results in 

finding only 0.7 – 10.8% of the true population (Monroy et al., 1998; Valenҫa-Barbosa 

et al., 2014). In addition, the method is biased toward houses with high numbers of bugs 

(Abad-Franch et al., 2014). All of the above challenges help motivate the need for 

alternative models for estimating the range of spatial autocorrelation associated with T. 

dimidiata. 

4.1.2 Background on a Genetic Geostatistical Method for Spatial Autocorrelation 

Smouse and Peakall (1999) developed a methodology to characterize the range 

of spatial autocorrelation that uses multiple genetic markers to create a correlogram. 

Their methodology has subsequently been used on a variety of species such as emmer 

wheat (T. turgidum L. ssp. dicoccoides) (Volis et al., 2014), beech trees (Fagus sylvatica 

L.) (Piottti et al., 2013), bottlenose dolphins (Tursiops truncatus) (Richards et al., 2013), 

Canada geese (Branta canadensis) (Finnegan et al., 2013), and the American black bear 

(Ursus americanus) (Coster and Kovach, 2012). Foley et al. (2004) used the correlogram 

to find the range of spatial autocorrelation for the mosquito vector (Ochlerotatus 

notosciptus) of dog heartworm (Dirofilaria immitis) to be ~55 km. While Rašić et al. 

(2015), found a range of 3-6 km for the mosquito Aedes aegypti, which is a vector of 

dengue. Finally, Pérez de Rosas et al. (2013) investigated the range of spatial 
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autocorrelation for Triatoma infestans, the principle vector of Chagas disease in South 

America, and found a range of ~400 m. They also investigated sex-biased dispersal 

finding that females had a relatively larger range of spatial autocorrelation than males 

(400 m versus 330 m), and used the range to guide the radius of insecticide applied 

around an infested house or peridomestic structure. 

4.1.3 Background on Spatial Autocorrelation in Human SNP Data 

Spatial autocorrelation in the single nucleotide polymorphisms (SNPs) of humans 

has been observed at various scales. Elhaik et al. (2013) found spatial autocorrelation at 

the global scale and was relatively successful at leveraging georeferenced SNP data to 

predict a person’s country of origin. On a finer scale, Lao et al. (2013) used Smouse and 

Peakall’s (1999) correlogram to determine the range of spatial autocorrelation in people 

in the Netherlands, which they attributed to historic settlement patterns, using to 

georeferenced SNP data. 

4.1.4 Genetics of Triatoma dimidiata 

Spatial autocorrelation in the genetics of T. dimidiata have been observed at 

various scales. Bargues et al. (2008) analyzed 31 haplotypes at 64 locations that spanned 

a range from Mexico to northern South America. While they did not explicitly 

characterize spatial autocorrelation, they did show geographic grouping of phenotype 

trees. More recently, Stevens et al. (2015) investigated spatial autocorrelation using 7 

highly polymorphic microsatellite loci from 178 T. dimidiata spread across 6 villages in 

the department of Jutiapa, Guatemala. Using the relatedness function of Lynch and 

Ritland (1999), Stevens et al. (2015) found some migration of T. dimidiata between 
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houses in a village as well as some spatial autocorrelation, despite the signal being weak. 

These findings are contrary to earlier works that did not find spatial autocorrelation 

among T. dimidiata in nearby villages in Guatemala (Dorn et al., 2003; Calderón et al., 

2004). Given that Melgar et al. (2007) found 41 families of T. dimidiata in a single house 

in Guatemala, using tens of genetic markers is unlikely to provide sufficient genetic 

information to sufficiently capture (characterize) within-town, spatial autocorrelation. As 

a result, using the thousands of T. dimidiata SNPs from the Orantes (personal 

communication, January 2017) database may provide a unique opportunity to explore 

spatial autocorrelation at the finer village scale. 

4.1.5 Summary of Work 

In this work, we use the SNP database of Orantes (personal communication, 

January 2017) and the genetic distance of Smouse and Peakall (1999) and relatedness of 

Lynch and Ritland (1999) to explore spatial autocorrelation at the finer village scale. For 

two towns in Jutiapa, Guatemala, Orantes (personal communication, January 2017) 

extracted the DNA of 216 T. dimidiata, and through Rad-seq was able to create a database 

of single nucleotide polymorphisms (SNPs). We use these T. dimidiata SNPs to (1) create 

semivariograms, (2) characterize the range of spatial autocorrelation of the vector in both 

villages, and (3) use these metrics as a surrogate for vector movement to produce maps 

of homesteads most at risk of infestation. 
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4.2 Study Sites and Methods 

4.2.1 Study Sites and Genetic Data 

Our study sites are the small rural towns of El Chaperno and El Carrizal located 

in the dry highlands of in Jutiapa, Guatemala (red and yellow dots of Figure 3.1). Jutiapa, 

Guatemala (highlighted in red, Panel A) borders El Salvador with the study site locations 

shown as a yellow star. El Carrizal (Panel B) has spur roads radiating from the main road 

making the town less linear in shape. While El Chaperno (Panel C) is more linear in 

shape since most of the houses are adjacent to the principal road running through the 

town. Also, El Chaperno is more heavily forested than El Carrizal due to forest 

conservation efforts.    
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Figure 4.1: Satellite image of the study sites with the houses in El Chaperno and El Carrizal 

represented as red and yellow dots, respectively. Panel A is a map of the departments of 

Guatemala with the department of Jutiapa highlighted in red and the location of the study sites 

represented as a yellow star. Panels B and C are show the locations of the houses and roads in El 

Carrizal and El Chaperno, respectively. 
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Teams comprised of personnel from the Escuela de Biología at La Universidad 

de San Carlos Guatemala, and the Guatemalan Ministry of Health Office of Vector-Borne 

Diseases conducted entomological surveys for the domestic and peridomestic ecotopes 

of 182 and 129 homesteads in El Chaperno and El Carrizal, respectively (Table 4.1). 

Informed consent was obtained from all adult participants and from parents or legal 

guardians of minors. This project received ethical clearance from the Ministry of Health 

in Guatemala, La Universidad de San Carlos bioethics committee, and the Panamerican 

Health Organization. 

Given the challenges with finding live T. dimidiata (Monroy et al., 1998), we 

believe that signs of T. dimidiata indicate the vector has likely infested a homestead. As 

a result, we categorized homesteads as infested if either their domestic or peridomestic 

ecotopes contain any sign of T. dimidiata (i.e., live, dead, eggs, exuviae, or feces). In El 

Chaperno and El Carrizal, Ministry of Health officials collected 276 and 222 live T. 

dimidiata from 35 and 31 homesteads, respectively. Due to the cost associated with next 

generation sequencing, only a proportion of the collected bugs were sequenced; all bugs 

from houses with three or fewer bugs were sequenced; and for houses with larger 

numbers (4-81 bugs), a select proportion were sequenced. For detail, see Table 4.1 & 

Figures 4.S1 and 4.S2; and for details of the experimental design, see Orantes (personal 

communication, January 2017).   
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Table 4.1: The characteristics of the El Chaperno and El Carrizal datasets collected during the 

periods of October 1-3, 2012 in El Chaperno and February 4-5, 2013 in El Carrizal.  

 El 

Chaperno 

El  

Carrizal 

Number of Homesteads Surveyed 182 129 

Number of Homesteads Infested 56 (31%) 52 (40%) 

Number of Homesteads with live T. dimidiata 35 (19%) 31 (24%) 

Number of live T. dimidiata collected 276 222 

Number of Homesteads with Sequenced T. dimidiata 34 (19%) 30 (23%) 

Number of T. dimidiata Sequenced 95 (34%) 121 (55%) 

 

Orantes (personal communication, January 2017) used next generation 

sequencing on a subset of the T. dimdiata collected in El Chaperno and El Carrizal (Table 

4.1) to determine the subsequent SNP loci for each population of bugs. Figures 4.2 and 

4.3 present the sex, instar level, and homestead location of specimens sequenced in El 

Chaperno and El Carrizal, respectively; the size of the pie charts are proportional to the 

number of bugs sequenced from the same homestead. 
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Figure 4.2: The pie charts are proportional to the number of T. dimidiata sequenced for a given 

homestead ranging from 1 to 10 sequenced per house. Colors represent the sex, instar level, and 

homestead location of collected insects in El Chaperno. 
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Figure 4.3: The pie charts are proportional to the number of T. dimidiata sequenced for a given 

homestead ranging from 1 to 23 sequenced per house. Colors represent the sex, instar level, and 

homestead location of collected insects in El Carrizal. 

For El Chaperno and El Carrizal, the number of SNPs is 1,870 and 2,265, 

respectively; and the percent missing data (i.e., specimens and associated SNPs with 

International Union of Pure and Applied Chemistry (IUPAC) nucleotide code N values) 

is 37% and 41%, respectively. To test the impact of missing data, we analyzed each 

dataset with and this filtering. We refer to these two datasets throughout the manuscript 

as the original and filtered datasets. Original refers to the dataset containing all 

sequenced specimens and all loci with a SNP. We then perform multiple levels of 

filtering on the original dataset. One level refers to retaining only pairs of specimens that 
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have some threshold of loci in common (referred to Level 1). Level 2 refers to refers to 

removing all specimens with >50% missing values, followed by removal of any loci with 

missing values. For Level 2 filtering, the El Chaperno was reduced to 73 specimens and 

287 loci across 34 homesteads; El Carrizal was reduced to 97 specimens and 250 loci 

across 30 homesteads. 

4.2.2 Geostatistical methodology 

While the correlograms of Smouse and Peakall (1999) were certainly ahead of 

their time in the field of genetics, semivariograms (the inverse of correlograms) were 

introduced in the mining industry as early as the 1930s and have been used extensively 

to leverage spatial autocorrelation in subsurface site investigations. Semivariograms 

express the range of autocorrelation (spatial or temporal) as a dissimilarity between 

measurement points rather than normalized similarity (i.e., correlograms). 

Semivariograms are generally the preferred method for measuring spatial autocorrelation 

because they (1) allow for empirical derivation of 95% confidence intervals, (2) plotting 

of raw semivariance (prior to binning), which allows for easier visualization of natural 

geographic breakpoints for binning, and (3) preserve the relative error variance between 

measured variables. 

The equation of the semivariance (Isaaks and Srivastava, 1989) is given as: 

                              𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑧(𝑢𝛼) − 𝑧(𝑢𝛼+|ℎ|)]

2𝑁(ℎ)
𝛼=1   ,                       (4.1) 

where, 𝑧(𝑢𝛼) is the measurement at a point in space or time, 𝑧(𝑢𝛼+|ℎ|) is the 

measurement of a point at a distance, h, from location 𝑢𝛼, and N is the total number of 

paired points separated by distance, h.  
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The correlogram of Smouse and Peakall (1999) calculates a genetic distance 𝑑2 

that is similar to the semivariance in equation (4.1). For example, the genetic distance 

using SNPs for the diploid T. dimidiata may be calculated as: 

          𝑑2(ℎ) = ∑
1

2
[

(𝐴(𝑢𝛼) − 𝐴(𝑢𝛼+|ℎ|))
2

+ (𝐶(𝑢𝛼) − 𝐶(𝑢𝛼+|ℎ|))
2

+ (𝐺(𝑢𝛼) − 𝐺(𝑢𝛼+|ℎ|))
2

+ (𝑇(𝑢𝛼) − 𝑇(𝑢𝛼+|ℎ|))
2] 𝐾

𝑘=1 ,             (4.2) 

where, A, C, G, and T represent the total number of purine adenine, pyrimidine cytosine, 

purine guanine, and pyrimidine thymine, respectively, 𝐾 is the total number of loci, 

𝐴(𝑢𝛼) is the total number of purine adenine (A) (i.e., 0, 1, or 2) at the kth locus for the 

specimen at location 𝑢𝛼,  and 𝐴(𝑢𝛼+|ℎ|) is the total number of purine adenine associated 

with a specimen that is distance h from 𝑢𝛼. Both equations 4.1 and 4.2 represent half the 

squared difference between two points, with the exception that equation 4.2 is designed 

for nominal genetic data, and equation 4.1 is designed for continuous data. We, therefore, 

refer to the Smouse and Peakall (1999) genetic distance as a genetic semivariance in the 

remainder of this manuscript. 

A common geostatistical practice is to bin semivariances based on geographic 

distance in order to more easily visualize the pattern of spatial autocorrelation. Since 

there were no natural break points and to maintain consistency between the two towns 

the semivariances were binned using the same fixed distance bins for both towns. The 

first bin consists of all semivariances in the same house. The median nearest neighbors 

for El Chaperno and El Carrizal are 35 and 62 meters, respectively, so an approximate 

midpoint of 50 meters was selected for the second bin. The third bin was all pairs of bugs 

between 50-100 meters. The fourth through twelfth bins increased at 100 meter intervals 
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and the final bin contained all bugs >1,000 meters apart. Each binned semivariance is 

centered on the median of the distances for that bin. 

Semivariance is often represented by a model that is best fit to the average 

semivariance (i.e., all paired data within select bin (or range of distances, h) are 

averaged); and a 95% confidence interval that may be placed around the binned averages. 

The latter assumes the population follows a normal distribution. Lucero et al. (2013) 

assumed a normal distribution when creating a semivariogram model for the number of 

T. dimidiata collected at homesteads. However, given that most of the homesteads had 

zero values (i.e., no insects were found), the majority of the raw semivariance values 

were zero, which violates the assumption of a normal distribution. Therefore, we propose 

representing the binned (mean) semivariance as Tukey box plots (Tukey, 1977) and use 

the box plot median as a surrogate for the mean. When the binned semivariances do not 

follow a normal distribution, the median, midspread (i.e., interquartile range), and 

outliers of the box plots, help visualize the distribution of binned semivariances. When 

the binned semivariances are normally distributed, then the mean and median should be 

equivalent. Once the semivariances are binned and plotted as box plots, a domain expert 

can select the parameters (i.e., the nugget, range, and sill) needed to characterize/model 

spatial (or temporal) autocorrelation of the data. The nugget represents measurement 

error or the general variability within the measured parameter that is not spatially 

dependent. Range (also referred to as the range of decorrelation) defines the distance 

beyond which the variable (in our case, genetic distance and relatedness) is no longer 

correlated. The sill represents the median variance in vector genetic distance or 
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relatedness for homesteads separated by distances greater than the range of decorrelation 

(Isaaks and Srivastava, 1989). Summary statistics (e.g., mean, median) are used to 

describe the nugget, range, and sill of spatial autocorrelation in order to fit a model a 

model to the semivariance. The model is then used to map a variable such as genetic 

distance. The model will produce two spatial maps using kriging; one map will plot the 

estimated variable value and the other will plot the error variance associated with the 

estimate. 

In addition to using the genetic distance of Smouse and Peakall (1999), we used 

the relatedness of Lynch and Ritland (1999) as an alternative (genetic semivariance) 

equation, because it is a frequency-based, pairwise equation. Since higher values of 

relatedness are associated with more similar individuals, we simply invert the vertical 

axis such that paired individuals who are more related plot below the x-axis and those 

less-related plot above the x-axis. We used GenAlEx 6.503 (Peakall and Smouse, 2006; 

2012) to calculate both genetic distance and relatedness for all pairs of insects collected 

in El Chaperno and El Carrizal. However, GenAlEx 6.503 has two options for handling 

missing data; one treats missing data as a base pair; and the other interpolates the missing 

data. Smouse and Peakall (2006) do not recommend interpolating missing data for 

individual statistics; whereas, filtering data often results in the loss of large amounts of 

data. As a result, we tested the impact of filtering in two ways. First, we encoded the 

genetic distance formula of Smouse and Peakall (1999) using Matlab® 2016a 

(MathWorks, Natick, MA) and used the Level 1 filtering. We normalize each pair-wise 
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genetic distance by the maximum genetic distance for the given pair, given the number 

of loci that have data. 

To test the impact of data reduction (pairs of individuals that do not have loci in 

common) when filtering, we created semivariograms using three thresholds for Level 1 

filtering: (1) all data having at least one locus in common, (2) all data having 287 or 250 

loci in common for El Chaperno and El Carrizal, respectively (i.e., the same number of 

loci as Level 2 filtering), and (3) all data having at least 1,000 loci in common. We also 

compare the Smouse and Peakall (1999) genetic distance semivariograms to the Lynch 

and Ritland (1999) relatedness semivariograms for the Level 2 filtering of the El 

Chaperno and El Carrizal datasets. 

The semivariograms were each fit with a spherical model (Marsily, 1993) using 

the nugget, range, and sill to help characterize the change in semivariance with distance. 

Finally, a buffer sized by the range of spatial autocorrelation was placed around each 

infested homestead for both villages; and the resulting overlap is plotted as increased risk 

of infestation for homesteads that lie within multiple buffers. This risk assumes that 

infestation comes from within the system (only infested homesteads are sources of risk) 

and that spatial genetic structure is indicative of vector movement. 

4.3 Results 

4.3.1 Results Level 1 Filtering 

For both towns, the genetic distance of equation (4.2) was modified to use only 

the base pairs that were common between individuals. Figures 4.4 and 4.5 show the 

binned semivariances for El Chaperno and El Carrizal, respectively. The nugget for each 
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panel was set to the median of the semivariance bin corresponding to a distance of zero. 

Panels A, B, and C represent increasing thresholds of minimum common loci, 

respectively; and a spherical model (red dashed line) was fit to the box plot medians. For 

El Chaperno (Figure 4.4), the best fit spherical model has the same median range (28 

meters; minimum and maximum bin distance are 9 and 48 meters, respectively) and sill 

(0.08) for all three levels of filtering (minimum common loci thresholds of 1, 287, and 

1,000, respectively). There is little difference between the three semivariograms, with the 

exception that panel A, which uses all 4,465 pairs of T. dimidiata in the dataset, has larger 

inter-whisker semivariance distances for each bin and more outliers than panels B or C. 

That being said, the median range of spatial autocorrelation is 28 meters ([9, 48] meters) 

regardless of the threshold, which is most likely due to the fact that the majority of our 

data have over 1,000 loci in common. 
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Figure 4.4: Box plot semivariograms of genetic distance for El Chaperno generated using Level 1 

filtering. Semivariogram using A) all paired individuals with at least 1 loci in common, B) all pairs 

with at least 287 loci in common, and C) all pairs with 1,000 common loci. Best fit spherical models 

(red dashed line) have the same range (28m) and sills (0.08) across all three panels. 
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A spherical model was also fit to the genetic distance data of El Carrizal (Figure 

4.5). Again, all three datasets (panels A, B, and C using minimum common loci 

thresholds of 1, 250, and 1,000, respectively) have the same median range (88 meters; 

minimum and maximum bin distance are 59 and 97 meters, respectively) and sill (0.07). 

Again, there is little difference between the three semivariograms, and panel A 

(semivariogram generated with the largest amount of paired (7,260) T. dimidiata) has a 

larger inter-whisker distances and more outliers than panels B and C. With that being 

said, the median range of spatial autocorrelation is constant 88 meters  ([59, 97] meters) 

regardless of the amount of data used to generate the semivariogram. Interestingly, the 

midspread of binned genetic distances appears to be similar for both El Chaperno (Figure 

4.4) and El Carrizal (Figure 4.5).  
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Figure 4.5: Box plot semivariograms of genetic distance for El Carrizal generated using Level 1 

filtering. Semivariogram using A) all paired individuals with at least 1 loci in common, B) all pairs 

with at least 250 loci in common, and C) all pairs with 1,000 common loci. Best fit spherical models 

(red dashed line) have the same range (88m) and sills (0.07) across all three panels. 
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We also generated semivariograms for El Chaperno and El Carrizal using only 

the nymphs to characterize the spatial autocorrelation of T. dimidiata of T. dimidiata that 

are not capable of flight. However, these results are not shown because the 

semivariograms and range of spatial autocorrelation were nearly identical to the 

semivariograms plotted in Figure 4.3 and 4.4, respectively.  

To test for sex-biased dispersal, we created separate semivariograms for male and 

female T. dimidiata. Again, there was little difference between sex in terms of the range 

of spatial autocorrelation; however, the sex-based semivariograms were noisier, most 

likely due to the smaller sample sizes. 

4.3.2 Results Level 2 Filtering 

The Level 2 filtering enabled us to use GenAlEx 6.503 to calculate the relatedness 

of Lynch and Ritland (1999) and compare the results to the genetic distance of Smouse 

and Peakall’s (1999). The semivariograms for El Chaperno (Figure 4.6) characterize 

relatedness (panel A) and genetic distance (panel B) for the Level 2 dataset comprised of 

73 specimens and 287 SNPs. The best-fit spherical model (red dashed line) shows a 

median range of spatial autocorrelation of 28 meters ([9, 48] meters) for both relatedness 

and genetic distance. This is the same range identified in the spherical models of Figure 

4.4. The midspread for within-homestead semivariance (first box plot of Figure 4.6A) is 

much larger than any other bins of relatedness. This midspread pattern was not observed 

in Figure 4.6B for the within-homestead genetic distance. 
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Figure 4.6: Box plot semivariograms for El Chaperno characterize the A) relatedness of Lynch and 

Ritland (1999) and B) genetic distance of Smouse and Peakall (1999) using a SNP dataset with 73 

specimens and 287 loci. The best-fit spherical models (red dashed line) have the same range (28m); 

and the sills are -0.01 and 0.05, respectively. The vertical-axis of panel A was flipped so that more 

similar bugs (high relatedness) have positive values and those with low relatedness have negative 

values. 

Figure 4.7 displays the semivariograms for genetic distance (panel A) and 

relatedness (B) generated using 97 specimens and 250 SNPs of El Carrizal. The best-fit 
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spherical model (dashed line) shows a median range of spatial autocorrelation of 160 

meters ([104, 200] meters), which is nearly twice the median range (88m) of using the 

Level 1 data (Figure 4.5). Similar to the town of El Chaperno (Figure 4.6A), the 

midspread of semivariance for within-homestead relatedness is much larger than other 

bins (Figure 4.7A). 
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Figure 4.7: Box plot semivariograms for El Carrizal characterize the A) relatedness of Lynch and 

Ritland (1999) and B) genetic distance of Smouse and Peakall (1999) using SNP data with 97 

specimens and 250 loci. The best fit spherical models (red dashed line) have the same range 

(160m); and the sills are -0.01 and 0.05, respectively. The vertical-axis of panel A was flipped such 

that more similar bugs (high relatedness) have positive values and those with low relatedness have 

negative values. 
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4.3.3 Results – Risk Maps for El Chaperno and El Carrizal 

If one assumes that every infested homestead is a potential source of T. dimidiata, 

then a risk map can be created to highlight the parts of town that have higher risk of 

infestation due to proximity to an infested neighbor. For El Chaperno, the T. dimidiata 

median range of spatial autocorrelation was consistently 28 meters regardless of the (1) 

level of filtering, and (2) metric used for genetic semivariance (relatedness or genetic 

distance). The range of spatial autocorrelation was plotted as a red circle around every 

infested homestead in El Chaperno, with overlap represented in deeper shades of red 

(Figure 4.8); the deepest shade of red (i.e., maximum overlap) corresponds to 5 

overlapping ranges. Infested homesteads are plotted with an x, and non-infested 

homesteads with a +. Given the relatively small median range of spatial autocorrelation 

(28 meters) in El Chaperno, we see that 68% (86/126) of non-infested homesteads fall 

outside the range of risk of infestation; and only 6% (8/126) of the non-infested 

homesteads lie within in the range of multiple infested homesteads.  
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Figure 4.8: Risk map for infestation of T. dimidiata in El Chaperno. Red circles show the range of 

spatial autocorrelation for each homestead. Overlap is represented in darker shades of red using 

the range of 28 meters. The deepest shade of red (i.e., maximum overlap) corresponds to 5 

overlapping ranges. Infested homesteads are plotted as an x and non-infested homesteads as a +. 

Every infested homestead is treated as a possible source of T. dimidiata. 
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For El Carrizal, the Level 1 filtered dataset had a median range of spatial 

autocorrelation of 88 meters while the Level 2 filtered dataset had a median range of 160 

meters. We use these two ranges of autocorrelation to create the risk maps of Figure 4.9 

for El Carrizal. Figure 4.9A uses a range of 88 meters and shows that 23% (18/77) of the 

non-infested homesteads lie outside the range of an infested homestead. The maximum 

number of overlapping ranges is equal to 10; Figure 4.9B has a maximum overlap of 18, 

and uses a range of 160 meters. Only 8% (6/77) of the non-infested homesteads lie 

outside the range of an infested homestead; and all but one of these homesteads is located 

in the northwest part of the village. Note: If one uses the less conservative estimate of 

spatial autocorrelation (i.e., 88 meters), then 70% (54/77) of the non-infested homesteads 

fall within the range of multiple infested homesteads; this increases to 92% (71/77) when 

the range increases to 160 meters. Both risk maps show an area located between the two 

eastern spur roads of El Carrizal to be high risk (darker overlapping areas of red in 

Figures 4.9A and 4.9B). 
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Figure 4.9: Risk maps for infestation of T. dimidiata in El Carrizal. Red circles show the range of 

spatial autocorrelation for each homestead. Overlap is represented in darker shades of red using 

the range of A) 88 meters and B) 160 meters. The deepest shade of red (i.e., maximum overlap) 

corresponds to A) 10 and B) 18 overlapping ranges. Infested homesteads are plotted as an x and 

non-infested homesteads as a +. Every infested homestead is treated as a possible source of T. 

dimidiata. 
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4.4 Discussion 

In this work, we first used the genetic distance of Smouse and Peakall (1999) to 

determine the range of spatial autocorrelation as a surrogate for the movement of the 

Chagas vector T. dimidiata in two towns in Guatemala. For each town, the original 

datasets had ~100 collected specimens and around 2,000 SNPs. Given the time and 

money that goes into collecting the T. dimidiata, extracting their DNA, and then 

sequencing each bug’s genome, we thought it prudent to explore how filtering the data 

might impact the semivariograms. We modified genetic distance of Smouse and Peakall 

(1999) to use only the loci that are common to both specimens and then standardized the 

genetic distance between each pair. Next, we performed a semivariogram analysis on this 

modified genetic distance using several thresholds for the number of loci common to 

both specimens. For both El Chaperno and El Carrizal, the semivariograms identify the 

same median range of spatial autocorrelation, regardless of whether all paired specimens 

were included in the analysis or whether only specimens with at least 1,000 loci in 

common were used. This resiliency to filtering may result from the majority of our 

specimen pairs having at least 1,000 loci in common. Also, the resiliency is due in part 

to our decision to use box plots to represent binned genetic semivariance. 

Next we performed Level 2 filtering for both the datasets for both towns reducing 

the dataset size. We reanalyzed these Level 2 filtered datasets using semivariograms 

analysis and the normalized Smouse and Peakall (1999) genetic distance and Lynch and 

Ritland (1999) relatedness, a frequency based method. The ranges of spatial 

autocorrelation were independent of both measures of genetic similarity. 
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For El Chaperno, the median range of spatial autocorrelation remained at 28 

meters for the reduced dataset regardless of which measure of similarity is selected for 

the genetic semivariance analysis. El Carrizal, on the other hand, saw an increase in the 

median range of autocorrelation from 88 meters in the original dataset and Level 1 

filtering to 160 meters when using the Level 2 filtering. This difference in range is 

concerning since it leaves us uncertain as to which dataset is better for measuring the 

range of spatial autocorrelation. The Level 2 filtering of the El Carrizal dataset has 80% 

(97/121) of the pre-filtered specimens and only 11% (250/2,265) of the pre-filtered SNPs. 

We would like to err toward not filtering the data, or at most using low thresholds for 

Level 1 filtering, due to the big data concept that more data are better and perfect data 

are not necessary (Mayer-Schönberger and Cukier, 2014). Also, when we performed 

Level 1 filtering, we did not observe a change in the range of spatial autocorrelation.  

Finally, we used the ranges of spatial autocorrelation derived from the 

semivariogram analyses to create risk maps of T. dimidiata infestation. Given that we 

cannot find any empirical study demonstrating the distances that T. dimidiata move in a 

natural environment, we used the range of genetic structure as a surrogate for vector 

movement at the village scale. In El Chaperno, the median range of spatial 

autocorrelation was only 28 meters; and thus, most of the non-infested homesteads fell 

outside the range of an infested homestead and would be less likely to be infested by an 

infested homestead. However, the El Chaperno semivariograms show that T. dimidiata 

within the same homestead are more similar (i.e., closely related) than T. dimidiata 

outside the homestead. This relationship could be explained by nymphs having the same 
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parent(s). Therefore, it is possible that the El Chaperno population is panmictic. Thus, 

the distance of a non-infested homestead from an infested homestead will not affect the 

risk of infestation. For El Carrizal, the majority of non-infested homesteads lie within the 

range of multiple infested homesteads, regardless of whether the median range of spatial 

autocorrelation is 88 meters or 160 meters. Therefore, the T. dimidiata population of El 

Carrizal are not panmictic and the non-infested homesteads within the range of an 

infested homestead have a higher risk of infestation from nearby homesteads. That being 

said, the reported median ranges of spatial autocorrelation are summary statistics and 

thus the true range of spatial autocorrelation can lie anywhere between the reported 

minimum and maximum bin range. This difference in spatial autocorrelation between the 

two towns may be attributed to their land use/cover. El Chaperno is less open and has 

more forest due to conservation efforts than El Carrizal. Therefore, T. dimidiata may 

need to travel further in El Carrizal to find suitable shelter. Also, if T. dimidiata is sylvatic 

in Jutiapa, Guatemala as postulated by Hernández et al. (2006), then the nearby forests 

in El Chaperno may serve as a source of T. dimidiata infestation; whereas, for El Carrizal, 

particularly in the part of town most at risk (Figure 4.9), the primary sources of infestation 

may be other homesteads. 

When using the relatedness of Lynch and Ritland (1999) as a metric of similarity, 

both El Chaperno (Figure 4.5A) and El Carrizal (Figure 4.6A) exhibited a within-

homestead midspread that was larger than the midspreads corresponding to greater 

spatial ranges. This may be indicative of having a large number of T. dimidiata families 

with individual households similar to that documented by Melgar et al. (2007) in 
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neighboring Santa Rosa, Guatemala. It is interesting that despite the large within-

homestead diversity for El Chaperno and El Carrizal, both towns still exhibited within 

village spatial autocorrelation using SNPs.  

While using semivariogram analysis on genetic markers has not been offered as 

an alternative to the correlograms of Smouse and Peakall (1999), semivariograms are not 

a foreign concept in genetics. Elhaik et al. (2013) plot what is essentially a semivariogram 

and determine a range of spatial autocorrelation for humans using loess distribution 

fitting and SNPs; and Bradburd et al. (2013) do something similar for the ancestors of 

corn Teosinte zea mays mexicana and Teosinte zea mays parviglumis. In addition, the 

methodology of Smouse and Peakall has been used to study the range of spatial 

autocorrelation of mosquito disease vectors (Foley et al., 2004; Rašić et al., 2015) and 

the principal Chagas disease vector Triatoma infestans (Pérez de Rosas et al., 2013). 

However, one advantage of fitting the semivariogram data with a monotonic model is 

that it enables the use of estimation methods that can minimize the error variance in an 

unbiased way (Isaaks and Srivastava, 1989). The nugget, range, sill, and spherical model 

can enable one to estimate/interpolate parameter fields (e.g., map genetic 

distance/relatedness) using multiple data and the estimates of error variance may be used 

to improve risk maps. For example, the semivariogram model of genetic distance could 

be paired with another variable such homestead attractiveness (e.g., house risk level, 

sources of light) to perform co-kriging that can be leverage two variables to create 

potentially better risk maps. 
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To our knowledge this is the first study that uses the range of spatial 

autocorrelation to plot the risk of homestead infestation. Our risk maps enable 

stakeholders to assess the parts of town that are in most need of intervention and provide 

clues as to whether the source of infestation is sylvatic or domestic/peridomestic. 

4.5 Conclusion 

In this study, we demonstrate that Level 2 filtering of data may not be necessary 

when using SNPs to identify the range of spatial autocorrelation. In addition, we observed 

spatial autocorrelation among T. dimidiata at relatively small distances within towns 

implying that they are likely moving between neighboring homesteads, at least in El 

Carrizal. Finally, we were able map the risk to non-infested homesteads using the range 

of spatial autocorrelation derived from semivariogram analysis. Since there is little 

empirical evidence for how far T. dimidiata might travel in the field, we feel that 

semivariogram analysis using metrics of genetic similarity may provide a sufficient 

model for vector movement or disease transmission. 



147 

 

4.6 Supplementary Figures 

     

Figure 4.S1: The black squares represent homesteads where no T. dimidiata were found during the 

entomologic search in El Chaperno. The red circles are proportional to the number of T. dimidiata 

collected for a given homestead ranging from 1 to 81. 
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Figure 4.S2: The black squares represent homesteads where no T. dimidiata were found during the 

entomologic search in El Chaperno. The red circles are proportional to the number of T. dimidiata 

collected for a given homestead ranging from 1 to 45.   
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CHAPTER 5: GEOSPATIAL AND TEMPORAL ANALYSIS OF THYROID 

CANCER INCIDENCE IN A RURAL POPULATION 

5.1 Introduction 

Thyroid cancer incidence is increasing at an annual rate of 3–5%, resulting in the 

rate tripling over the past 30 years in the United States as well as in other countries 

(Curado et al., 2007; Kilfoy et al., 2009; Jemal et al., 2011; Morris et al., 2013; Pellegriti 

et al., 2013).  In the United States, the number of cases has risen from 4.3 cases per 

100,000 in 1980 to 12.9 cases per 100,000 individuals in 2008. Mortality rates have 

slightly increased (+0.8% annual percent change [APC]) (Enewold et al., 2009; Cramer 

et al., 2010; NCI, 2012). A recent study noted a disproportional increase in women 

(Edwards et al., 2006). The basis for the increase in thyroid cancer incidence is not 

known. Some studies suggest enhanced diagnostic scrutiny and better detection of 

subclinical cancers result in widespread over diagnosis and thus not a true increase in 

incidence (Davies and Welch, 2006; Ross, 2006; Grodski et al., 2008; Enewold et al., 

2009; Hall et al., 2009; Yu et al., 2010; Morris et al., 2013; Reitzel et al., 2014). Other 

studies note that an increase in both large tumors and microcarcinomas as well as a 

change in relative frequencies of histological types implicate other contributing factors 

(Chen et al.; 2005; Kilfoy et al., 2009; Pazaitou-Panayiotou et al., 2013; Ward et al., 

2010; Aschebrook-Kilfoy et al., 2013). Of note, recent reports of aggressive, metastatic 

microcarcinomas of the thyroid that correlate with the risk of second cancers (Kim et al., 

2013) suggest that microcarcinomas once considered subclinical might emerge as 
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important new healthcare concerns and reflect an important dimension of the increase in 

thyroid cancer incidence.  

Environmental and demographic factors may be critical determinants in the 

increase in thyroid cancer incidence (Leux and Guénel, 2010; Morris and Myssiorek, 

2010; Li et al., 2013; Pellegriti et al., 2013). A recognized risk factor for thyroid cancer 

is ionizing radiation exposure through medical procedures, including x-rays, as well as 

radioactive fallout (Richardson, 2009; Wartofsky, 2010; NCI, 2013). A study of the 

overall geographic distribution of thyroid cancer in the United States revealed a higher 

incidence in areas proximate to nuclear power reactors (Mangano, 2009). High levels of 

nitrate in public drinking water supplies have been linked to increased thyroid cancer 

incidence (Ward et al., 2010), and environmental endocrine disruptors including 

polyhalogenated aromatic hydrocarbons (PHAHs), notably polybrominated diphenyl 

ethers (PBDEs) and organochlorine insecticides, are postulated factors (Grimalt et al., 

1994; Zhang et al., 2008; Zhu et al., 2009; Leux and Guénel, 2010). Leux and Guénel 

(2010) noted that many environmental chemicals interfere with thyroid function and 

increase the risk of goiters, nodules, and possibly neoplasia. Additional known risk 

factors include family history, sex, and age (Pellegriti et al., 2013). Socioeconomic 

factors (SES) may also indicate that access to healthcare affects incidence (Sprague et 

al., 2008; Morris et al., 2013). Thus, novel analyses are needed to elucidate both 

incidence and contributing factors.  

With the capability to visualize, analyze, interpret, and map geo-located data, the 

field of geostatistics, notably the geographic information system (GIS) tool, has emerged 
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as a powerful geospatial technology that is gaining prominence in healthcare applications 

(Musa et al., 2013). GIS-based cancer mortality maps produced by the National Cancer 

Institute and Centers for Disease Control and Prevention (CDC) are widely used by 

public health officials to guide disease surveillance and control activities throughout the 

United States (Shaw, 2012). Beyond traditional GIS mapping capabilities, more 

sophisticated spatial statistical analyses have been utilized to identify spatial disease 

clusters (i.e., nonrandom spatial distributions of disease cases, incidence, or prevalence), 

map and monitor disease patterns and trends over time and space, and assess the impact 

of ecological and SES on the spatial distribution of diseases. Although there are still 

many technical (e.g., knowledgeable users, data quality control) and organizational (e.g., 

access and sharing) barriers to the wide-scale adoption of geospatial technologies in the 

healthcare sector (Boulos et al., 2011), recent advances in the understanding of disease 

dynamics, healthcare management has demonstrated the power of geospatial 

technologies to identify new drivers of public health concerns and advance the field of 

public health research. The present objective was to examine the characteristics of 

thyroid cancer incidence and determine the geospatial distribution in the state of 

Vermont, United States. 

This study postulated that geospatial analyses would reveal important risk factors 

of thyroid cancer incidence in a rural population that would provide the framework for 

investigation of potential drivers of disease patterns. It was determined that the 

characteristics of thyroid cancer incidence, including significant nonrandom clusters, are 

most likely due to environmental and lifestyle factors. Spatial statistical analyses 
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revealed that the overall distribution of thyroid cancer incidence and higher APC in these 

rural regions provide the framework for evaluating demographic and environmental 

drivers that may contribute to thyroid cancer incidence. 

5.2 Methods 

5.2.1 Data Sources 

Data on thyroid cancer (1994–2007) were obtained from the Vermont 

Department of Health, and U.S. data on thyroid cancer were obtained from the National 

Cancer Institute at the United States National Institutes of Health Surveillance, 

Epidemiology, and End Results (SEER) Program. State mandated data collection began 

in 1994 and included year of initial diagnosis, age at diagnosis, sex, primary site of 

disease at diagnosis, histology code, histological grade, behavior code, size of tumor, 

postal code at diagnosis, year last contacted, vital status, and death place code. Data 

exchange agreements between neighboring states minimize underreporting in border 

counties. Data pertaining to residents of neighboring states were not included in this 

study. Thyroid cancers were grouped based on histology codes, including papillary 

(8050, 8052, 8130, 8260, 8340–8344, 8450, 8452), follicular (8290, 8330–8332, 8335), 

medullary (8345, 8346), anaplastic (8021), and other/indeterminate/not specified (8012, 

8032, 8046, 8070, 8140, 8190, 8335, 8337, 8347, 8350) (Fritz et al., 2000).  

Population data, used to calculate incidence, were obtained from the Vermont 

Department of Health’s intercensal population estimates (VPE, 2013). The Vermont 

population in 1994, 2000, and 2007 was 585,544, 608,827, and 623,481, respectively. 

Incidence and mortality rates were age adjusted to the U.S. 2000 Standard Population (as 
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per SEER practice (SPAA, 2013)) and normalized per 100,000 person-years (Breslow 

and Day, 1987). For the geospatial analyses, zip code boundaries were downloaded from 

the U.S. Census Bureau, and all map layers projected to the Vermont State Plane 

Coordinate System North American Datum 1983. Information regarding SES was 

obtained from the 2000 U.S. Census variables, which included percent of the population 

by age, length of household occupancy, median household income, and post–high school 

education. The percent of the population with health insurance was obtained from 

Vermont Household Health Insurance Survey, Department of Financial Regulation, State 

of Vermont (VDB, 2010).  

The study was approved by the Institutional Review Board of the University of 

Vermont Committee on Human Research and the Vermont Cancer Center. 

5.2.2 Statistical Analyses 

Age-adjusted incidence (also known as age-standardized rate) was calculated as 

described by Boyle and Parkin (1991). This method adjusts each age group’s contribution 

to the overall population incidence so that incidence is based on the same age structure. 

Proportional age-adjusted incidence was also calculated that quantified the contribution 

of various age strata (e.g., 30–39 year olds) to the age-adjusted incidence. The 

proportional age-adjusted incidence for each age group of interest was calculated by 

summing the product of the crude incidence and the respective frequency of the standard 

population for each single year of age within the age group of interest (e.g., for age group 

30–39, sum product for ages 30, 31,.,39). The standard errors of the overall age-adjusted 
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incidence and proportional age-adjusted incidence were calculated using the Poisson 

approximation method (Boyle and Parkin, 1991). 

The estimated APC is a summary statistic used to measure trends over time by 

taking the average rate of change in incidence over several years (Breslow and Day, 

1987). The values were calculated by fitting a regression line to the natural logarithm of 

the incidence using the calendar year as the independent variable (Ries et al., 2000). The 

estimated APC is equal to 100×(𝑒𝑠𝑙𝑜𝑝𝑒 − 1). The statistical significance (p < 0.05) of 

the linear slope was GEOSPATIAL ANALYSIS OF THYROID CANCER INCIDENCE 

813 compared to zero, and confidence intervals (CI) were calculated from the standard 

error of the slope. The time period was split into 1994–2000 and 2001–2007 in order to 

compare trends from the first half of the study period to the second half of the study 

period, and the estimated APC was calculated for incidence for time periods 1994–2007, 

1994–2000, and 2001–2007 for males, females, and both sexes combined, respectively. 

The age-adjusted incidence for each county was compared to the overall age-

adjusted incidence of Vermont by creating a standardized rate ratio (SRR) (Boyle and 

Parkin, 1991). To determine whether national incidence was significantly different from 

the incidence in Vermont, the confidence interval of each SRR was approximated as 

described by Smith (1987). There was a significant difference between incidences if the 

confidence interval did not include SRR 1.0, indicating equal incidence. All statistical 

analysis, including estimation of the APC and age-adjusted incidence, were performed 

using Excel 2013 (Microsoft Corp., Redmond, WA), JMP® Pro v10.0.0 (SAS Institute, 

Cary, NC), ArcGIS® v10.2 (esri®, Redlands, CA), and MATLAB® 2014a (MathWorks, 
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Natick, MA). All incidence data were age adjusted to the U.S. 2000 Standard Population 

baseline. 

5.2.3 Trend Analyses 

Significant (p < 0.05) annual trends in the age-adjusted incidence for Vermont 

females, males, and the total population of Vermont were performed using the Ljung-

Box Q analysis in JMP® Pro. The same analysis was used to test for significant annual 

trends for sex-specific proportional age-adjusted incidence for three age groups (<30 

years old, 30–59 years old, and >59 years old). In addition, the study tested for significant 

proportional annual trends in thyroid cancer tumors ≤1.0 cm, 1.1–2.0 cm, and >2.0 cm 

in size. 

5.2.4 Socioeconomic Analyses 

Socioeconomic data from the 2000 U.S. census was analyzed at both the zip code 

and county scale. As a result, the study used both logistic and linear regression analysis 

to test for significance between the annual age-adjusted incidence of thyroid cancer and 

with socioeconomic variables related to income, education, length of residency, and 

access to healthcare at both the zip code and county scales. 

5.2.5 Geospatial Analyses 

ArcGIS® v10.2 software was used to perform geospatial analyses and map 

visualization. The number of thyroid cancer cases in each zip code was mapped to show 

their spatial locations in Vermont. The cases were normalized per 100,000 to the 

population for each zip code based on the Vermont Department of Health’s intercensal 

population estimates. Due to the nature of zip code data and inconsistencies between the 
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2010 census zip code boundaries and zip code census data, some zip codes were 

combined. For two zip codes with recorded thyroid cancer cases and no zip code 

associated with those zip codes, the cases were added to the zip code that shared the 

greatest area of the zip code. Calculated normalized incidence was mapped to illustrate 

the effect of population on incidence distribution. The cases and incidence distributions 

for each image were classified based on Jenks Natural Breaks. This method of 

classification partitions data into the specified number of classes based on natural groups 

or clusters of data values. 

Spatial statistics use inferential statistics to test a null hypothesis that the features 

are randomly distributed in space. In this case, the feature tested is the average annual 

age-adjusted incidence of thyroid cancer for each zip code. A p-value and z-score are 

computed to determine the statistical significance of observed spatial patterns. A p-value 

calculates the probability that the observed patterns were due to random chance; 

statistically significant clustering is evident at a p-value of < 0.05. The z-score is the 

standard deviation of the result, which is calculated using the logistic regression model. 

Very high (>1.96) and very low (<-1.96) z-scores correspond to low p-values (0.05) and 

indicate the spatial distribution of age-adjusted incidence is not random. 

The Getis-Ord Gi* statistic was calculated for each age-adjusted incidence in a 

weighted set of zip codes using the Hot Spot Analyses tool. Although a particular zip 

code may have high incidence, Hot Spot Analysis identifies those zip codes with 

statistically higher incidence of cancer cases, that is, those zip codes that have 

significantly higher values than can be expected by chance. The Gi* local statistic 
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identifies individual members (zip codes) of local clusters by looking at each target zip 

code compared to neighboring zip codes within a specified ‘‘Zone of Indifference.’’ This 

distance metric calculation enables each age-adjusted incidence within the critical 

distance to be equally weighted and the age-adjusted incidence of each zip code outside 

the specified distance with diminishing weights as distance increases. A significant Hot 

Spot (p < 0.05) is identified if the sum of a zip code’s value and the values of all its 

neighboring zip codes is proportionally higher than expected when compared to the sum 

of all zip codes in the state. Likewise, a zip code is a significant Cold Spot (p < 0.05) if 

the sum of its value and the values of its neighboring zip codes is proportionally lower 

than expected. 

The Hot Spot Analysis tool requires the input of a specified distance, which 

determines the scale of the analysis. This value was calculated using the ‘‘Calculate 

Distance Band from Neighbor Count’’ geoprocessing tool to determine the distance 

between every zip code and, in this work, its eight nearest neighbors, and returns the 

minimum, maximum, and average distance. The minimum value is the distance (in 

meters) one would travel away from a zip code to ensure that at least one zip code has 

eight neighbors, the maximum value is the distance one would travel away from a zip 

code to ensure that each zip code has at least eight neighbors, and the average value is 

the average distance between each zip code and its eight nearest neighbors. Maximum 

and average distances were chosen to test for clustering at multiple scales across the state 

(Supplementary Figure 5.S1; Supplementary Data are available online at 

www.liebertpub.com/thy). 
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5.3 Results 

5.3.1 Incidence Trends 

The age-adjusted thyroid cancer incidence in Vermont rose significantly 2.4-fold 

from 5.3 in 1994 to 12.6 in 2007 with a significant estimated APC of 8.3% [CI 5.7–11.0] 

compared to the national estimated APC of 5.7% [CI 5.2–6.3] (Table 5.1 and 

Supplementary Figure 5.S2). Although the overall average annual aged-adjusted 

incidence for females in Vermont was similar to that in the United States (11.8 and 12.3, 

respectively), the estimated APC was higher at 9.9 for Vermont and 5.9 for the United 

States. For males, both the average annual age-adjusted incidence and the estimated APC 

were similar to national trends, with both significantly increased over time (Table 5.1 

and Supplementary Figure 5.S1). The thyroid cancer age-adjusted incidence in Vermont 

(8.0 per 100,000) was comparable to the national incidence (8.4 per 100,000). Also, the 

overall mortality rate was 0.5 per 100,000 for males and females, which is similar to the 

national rate (NCI, 2012). 

Table 5.1: Age-adjusted incidence of thyroid cancer per 100,000 people for the United States (U.S.) 

and Vermont (VT), 1994-2007. Annual percent changes were significant at p < 0.001 (df = 12) or p 

< 0.05 (df = 12) as indicated. 

 Age-adjusted 

incidence 

1994-2007 

Annual 

percent 

change 

Confidence 

interval t-Test 

VT 8.0 8.3 [5.7-11.0] p < 0.001 

U.S. 8.4 5.7 [5.2-6.1] p < 0.001 

VT females 11.8 9.9 [5.9-14.0] p < 0.001 

U.S. females 12.3 5.9 [5.4-6.3] p < 0.001 

VT males 4.1 4.9 [0.2-9.9] p < 0.05 

U.S. males 4.4 5.1 [4.4-5.7] p < 0.001 
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5.3.2 Trends by Sex and Age 

Using the Ljung-Box Q analysis, increasing trends for annual age-adjusted 

thyroid cancer incidence in Vermont were significant between 1994 and 2000 and 2002 

and 2007 for the total population, and between 1994 and 1999 and 2002 and 2007 for 

females, reflecting changes within the overall increase (Figure 5.1). While the overall 

ratio of age-adjusted incidence for females to males is 3.1 to 1, the rate of change differed 

during the time frame. The estimated APC among females was a little more than double 

that of males: 9.9 versus 4.9, respectively. The estimated APC for both females and males 

was higher for more recent years (2001–2007) at 13.2% for females [CI 7.3-19.1] and 

11% for males [CI 0.7-21.2]. The proportional age-adjusted incidence was higher among 

females than males for all ages except those younger than 10 years of age (Figure 5.2). 

From 1994–2000, the peak age of diagnosis was between 30 and 49 years for females 

and between 40 and 49 years for males. However, from 2001 to 2007, the peak age of 

diagnosis was between 40 and 49 years for females and between 30 and 69 years for 

males. Overall, 29.8% of the cases were diagnosed below the age of 40 years, and 57.7% 

of the cases below the age of 50 years. The overall increase in incidence for females was 

in the 30–59 year age group for females, while no overall change in incidence by age was 

noted for males (Figure 5.3). There is no significant difference in the statewide 

distribution of the population by age or sex. 
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Figure 5.1: Annual age-adjusted thyroid cancer incidence significantly increased in Vermont, 

1994-2007. Significant annual trends are noted for Vermont (1994-2000, 2002-2007) and Vermont 

females (1994-1999, 2002-2007). Significance is p < 0.05, n = 14, using Ljung-Box Q analysis in 

JMP® Pro v10.0.0.  
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Figure 5.2: Average annual proportional age-adjusted incidence (1994-2007) for Vermont overall, 

Vermont females, and Vermont males. For Vermont females, the age groups with the three highest 

annual average age-adjusted incidence are ages 30-39 years, 40-49 years, and 50-59 years. 
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Figure 5.3: Proportional age-adjusted incidence of thyroid cancer differed by age and sex in 

Vermont, 1994-2007. Significant trends were identified for females (A) younger than 30 years of 

age (1994-1996), females aged 30-59 years old (1994-2007), females older than 59 years old (2006-

2007), and males (B) younger than 30 years of age (1997-2007) by Ljung-Box Q analysis in JMP® 

Pro v10.0.0 (p < 0.05, n = 14). 
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5.3.3 Incidence by Tumor Size and Type 

In Vermont, during 1994–2007, 86% of thyroid cancer cases were papillary, 9% 

follicular, 2% medullary, and <2% anaplastic comparable to national data. Of particular 

note, the findings reveal that sex is a factor in the distribution of cases by histological 

type (Figure 5.4). In females, papillary thyroid cancer (PTC) incidence was 89%, 

follicular (FTC) 8%, medullary (MTC) 2%, and anaplastic (ATC) 0.6%, while in males, 

PTC was 77%, FTC 15%, MTC 1%, and ATC 3%, respectively. The increase in females 

encompasses primarily PTCs with a small increase in follicular cancer types, but in males 

the increase is primarily in differentiated follicular cancers (Table 5.2). National data 

(Aschebrook-Kilfoy et al., 2013) indicate that PTC and FTC increased for both males 

and females, whereas data from the present study indicate an increase in PTC for females 

and FTC and ATC for males. 
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Figure 5.4: The percent of thyroid cancer types between females and males in VT differ 

significantly. Females (A) have proportionally more cases of papillary cancer and fewer cases of 

follicular and anaplastic cancer than males (B). (Pearson chi square test; p < 0.001, n = 702, df = 4). 
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Table 5.2: Thyroid cancer histological type varies by age and sex. 

   Age group 

 <30 

years, n 

<30 

years, % 

30-59 

years, n 

30-59 

years, % 

>59 

years, n 

>59 

years, % 

Both sexes:       

Papillary 60 92.3 415 88.7 127 75.1 

Follicular 2 3.1 41 8.8 26 15.4 

Medullary 3 4.6 6 1.3 3 1.8 

Anaplastic 0 0 1 0.2 7 4.1 

Indeterminate 0 0 5 1.1 6 3.6 

Total 65 100 468 100 169 100 

Males:       

Papillary 10 90.9 87 83.7 36 63.2 

Follicular 1 9.1 14 13.5 11 19.3 

Medullary 0 0 1 1 1 1.8 

Anaplastic 0 0 1 1 4 7 

Indeterminate 0 0 1 1 5 8.8 

Total 11 100 104 100 57 100 

Females:       

Papillary 50 92.6 328 90.1 91 81.3 

Follicular 1 1.9 27 7.4 15 13.4 

Medullary 3 5.6 5 1.4 2 1.8 

Anaplastic 0 0 0 0 3 2.7 

Indeterminate 0 0 4 1.1 1 0.9 

Total 54 100 364 100 112 100 

 

Although some studies have indicated that the increase in thyroid cancer could 

be attributed to an increase in detection of small tumors and microcarcinomas, using the 

Ljung-Box Q analysis, the present data for Vermont indicate no significant difference in 

tumor size over time (Figure 5.5). For both females and males, the distribution of tumors 

by size did not vary over time; ≤1.0 cm, 1.1–2.0 cm, and >2.0 cm represented 38%, 22%, 

and 40%, respectively. While the distribution of tumors ≤1.0 cm, 1.1–2.0 cm, and >2.0 

cm varies from year to year, the increase in thyroid cancer incidence is not due to a 
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significant increase in small tumors but to an overall increase in cases diagnosed with 

tumors. 

       

Figure 5.5: Thyroid cancer incidence classified by tumor size in Vermont, 1994-2007. The minimum 
number of tumors measured in any given year was 14 (1995); the maximum was 79 (2006). Using 

Ljung-Box Q analysis, the only significant trend occurred for tumors 1.1-2.0 cm in size in 2001-2004. 
When the 1.1-2.0 cm category was combined with either of the other two categories, there were no 

significant trends. 

5.3.4 Geospatial Distribution of Thyroid Cancer Incidence 

Between 1994 and 2007, thyroid cancer age-adjusted incidence varied widely 

throughout Vermont, ranging from no incidence to >30 per 100,000. The wide variability 

in incidence is striking as noted across adjacent zip codes (Figure 5.6). This was further 

supported by no spatial autocorrelation being detected between the annual age-adjusted 

thyroid cancer incidence at the zip code scale, indicating the high spatial heterogeneity 

of incidence across the state. Even with the high spatial variability of incidence, nine zip 

code Hot Spots were identified, highlighting specific focus areas that could provide 
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insight into future research regarding SES and environmental drivers of thyroid cancer. 

No other significant relationships between thyroid cancer incidence and other U.S. 

census variables were found. 
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Figure 5.6: Geospatial distribution of thyroid cancer incidence. Average annual age-adjusted 

incidence for Vermont (1994-2007) mapped to the U.S. 2010 Census zip code tabulation areas (zip 

codes). Jenks Natural Breaks was used to create the four classification categories of cancer 

incidence. 
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At the county scale, Vermont health data showed a significant (df = 13, F = 12.82, 

p = 0.004, R2
adj = 0.48) negative linear relationship between thyroid cancer incidence and 

the number of medical practices per 100,000 people. In addition, no significant linear 

relationship was found between thyroid cancer incidence and the percent insured or the 

number of primary care physicians per 100,000 people at the county scale. Several 

nonrandom clusters of high thyroid cancer incidence were revealed by Getis-Ord Gi* 

analyses. These clusters are located in 8 of 14 counties, and include northern and central 

regions of the state. The geographic distribution of the clusters occurred predominantly 

in the regions of highest elevation along the north–south axis of the state, which 

encompasses the Green Mountain Range. 

When SES and demographic factors and measures of health care access were 

analyzed, thyroid cancer incidence was not correlated with mean family income, 

education at more than high school level, mean travel time to work, and long-term 

residents (in residence prior to 1979). At the county scale, the high thyroid cancer 

incidence was negatively correlated with access to healthcare, as measured by location 

and concentration of primary care physicians compared to the population (HISA-VT 

2008). No Hot Spots were identified in the highest income counties whether by per capita 

or median household income. According to Vermont Health Insurance Survey, >92% of 

the population has health insurance coverage (reference BISHCA) since 1990 when the 

surveys were initiated. 
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5.4 Discussion 

Between 1994 and 2007, the incidence of thyroid cancer more than doubled in 

Vermont. The present findings suggest that during 1994–2007, the thyroid cancer 

incidence in Vermont (8.0%) was comparable to the national trend (8.4%). However, the 

estimated APC for women was higher in Vermont (9.9%) compared with the national 

APC (5.9%) as also reflected in the total estimated APC in Vermont and the United States 

(8.3% and 5.7%, respectively). Strikingly, the estimated APC for females in Vermont 

was double that for males (9.9% and 4.9%, respectively). When categorized by age 

groups, the thyroid cancer incidence more than doubled for females aged between 30 and 

59 years over the study period, while all other categories increased but less dramatically. 

The total incidence increased for males, but there was no significant difference among 

age groups. Various studies have indicated a relation between reproductive factors and 

hormone use that may partially explain the increasing thyroid cancer incidence in 

younger women (Negri et al., 1999). Although the overall health insurance rate in 

Vermont (>92%) is near complete, it is unclear in this study whether female access to 

healthcare is greater than for males, which might contribute to the sex difference in 

estimated APC. 

Overall, PTC accounts for more than 85% and FTC 10% of the tumors detected, 

as anticipated. However, the distribution varies by age (Table 5.2); PTC represents >92% 

of the tumors in those younger than 30 years of age, but only 75% in patients older than 

59 years of age. The incidence of FTC and ATC increases for those older than 59 years 

of ages for both men and women. For men, PTC is most common in those younger than 
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59 years of age (>90%), but in those older than 59 years of age, PTC drops to <63%, and 

FTC and ATC increase to 19% and 7%, respectively. For females, the change in 

distribution of thyroid cancer type is less pronounced such that in those aged 59 years 

and older, PTC accounts for >81% of cases, while FTC and ATC increase to 13.4% and 

2.7%, respectively. Aschebrook–Kilfoy et al. (2013) recently reported an increase in age-

adjusted FTC in women and men, with an increase in aggressive tumors as well as small 

tumors particularly in women. Unfortunately, the grade of tumor and metastatic lesions 

were not reported in the Vermont registry in >80% of cases, so a comparison of 

aggressive tumors is not possible. 

While previous studies have reported a significant increase in small (≤1.0 cm) 

tumors (Davies and Welch, 2006; Davies et al., 2010; Morris and Myssiorek, 2010; 

Morris et al., 2013), the present findings did not reveal a significant selective increase in 

these tumors. An increase in small tumors and a decrease in larger tumors (>2.0 cm) 

would be predicted if increased diagnostic scrutiny accounted for the increase in thyroid 

cancer incidence. An incidence of ≤1.0 cm tumor size that does not significantly increase 

over time would argue against an increased detection due to improved diagnosis. 

The present findings for the entire state do not show concordance with higher 

SES and increase in thyroid cancer incidence as has been previously shown (Sprague et 

al., 2008; Li et al., 2013; Morris et al., 2013). Unexpectedly, the higher thyroid cancer 

incidence by county was not located in the counties with the highest per capita income, 

family income, and education as would have been predicted from previous studies. No 

correlation was observed between zip codes with high incidence of thyroid cancers and 
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SES or access to enhanced medical diagnostics. Data on tumor characteristics by zip code 

would be necessary to determine a potential correlation between SES and tumor size and 

stage at diagnosis. Nevertheless, the distribution of higher incidence of thyroid cancer 

incidence is not consonant with higher diagnostic scrutiny that would be expected with 

higher SES and access to healthcare. Aside from healthcare access, variation in 

healthcare provider culture and practices could contribute to the geospatial and temporal 

patterns that were observed in thyroid cancer incidence, but this could not be addressed 

in this study. Future studies could examine variation across healthcare provider networks. 

This study was unable to determine causal relations between healthcare access, 

diagnostic approaches, environmental factors, and thyroid cancer incidence based on the 

geospatial analyses, but regions were identified where an assessment of possible 

environmental and demographic drivers may be focused. Although the geostatistical 

analysis did not identify a spatial autocorrelation at the zip code scale, the possibility of 

autocorrelation cannot be ruled out. As with any geo-referenced data set, there is always 

the possibility that the scale or range of autocorrelation will be missed if the spacing 

between observations is too large (Goovaerts, 1998). As a result, it is suggested that a 

database geo-referenced at the household scale is needed to identify spatial correlations 

better between environmental factors and risk of thyroid cancer. Future studies are 

necessary to evaluate the role of diagnostic evaluation, environmental factors directly in 

thyroid cancer incidence trends. 

This study may also be limited by the usual concerns of population-based studies, 

including nonreview of histopathological diagnoses, incomplete data collection, and 
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variations in tumor classifications related to analyses of registry data. The 1994–2007 

data collection time frame is subsequent to the World Health Organization recommended 

change in thyroid tumor classification that occurred in 1988 (Hedinger et al., 1988). 

Further, the population of Vermont is generally racially homogenous (>95% white 

Caucasian), and thus caution must be taken in generalizing the results to other 

populations with greater representation of racial groups. The finding that variation in 

access to healthcare does not fully explain temporal and spatial trends in thyroid cancer 

incidence in Vermont warrants further investigation in other study populations, 

particularly those with increased racial diversity. Healthcare insurance coverage is high 

(>92%) in Vermont and should be taken into consideration when generalizing to other 

states or population groups. 

In summary, in rural Vermont with nearly complete healthcare coverage and a 

relatively stable population, the incidence of thyroid cancer is increasing among both 

women and men. The increase is most profound for women between the ages of 30 and 

59 years. The increase in thyroid cancer is reflected in both small and large tumors; there 

is no significant difference in tumor size detected over the time period studied. 

Furthermore, geospatial analysis revealed a distribution of thyroid cancer incidence 

across the state that did not correlate with proximity to tertiary healthcare centers or SES. 

Similarly, the data did not support the often-reported hypothesis of increased incidence 

over time due to improved diagnostic scrutiny. These findings strongly suggest that other 

SES and environmental factors may likely contribute to the increase in thyroid cancer 
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incidence. Investigation into naturally occurring and man-made environmental factors as 

well as lifestyle impact on thyroid cancer development is clearly warranted. 

5.5 Supplementary Figures 

     

Figure 5.S1: Clusters of thyroid cancer incidence in Vermont, United States, 1994–2007. For the 

Getis-Ord Gi* statistic, two zones of indifference of 18,000m and 42,000m were used. Clusters were 

significant (p < 0.05) if there was a higher (red) or lower (blue) proportion of thyroid cancer 

incidence (normalized per 100,000) than expected within the specified distance. 
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Figure 5.S2: Age-adjusted incidence of thyroid cancer per 100,000 people for the United States and 

Vermont, 1994–2007. (A) The average annual age-adjusted incidence was 8.0 (VT) and 8.4 (U.S.). 

The annual percent change (EAPC) at 8.3 [CI 5.7–11.0] for Vermont and 5.7 [CI 5.2–6.3] for the 

United States were significant (p < 0.001). (B) The average annual age-adjusted incidence for 

females was 11.8 (VT) and 12.3 (U.S.). The EAPC was 9.9 [CI 5.9–4.0] for Vermont and 5.9 [CI 

5.4–6.3] for the United States were significant (p < 0.001). (C) The average annual age-adjusted for 

males was 4.1 (VT) and 4.4 (U.S.). The EAPC was 4.9 [CI 0.2–9.9] for Vermont and 5.1 [CI 4.4–5.7] 

for the United States were significant at p < 0.05 (VT) and p < 0.001 (U.S.).  



176 

 

CHAPTER 6: CONCLUSION 

In this dissertation, I initially develop the conjunctive clause evolutionary 

algorithm (CCEA) and the disjunction of the conjunctive clauses evolutionary algorithm 

(DNFEA) a set of evolutionary algorithms (EAs), with the intent that they be used in 

tandem to mine real-world datasets that include epistatic and heterogeneous associations. 

The EAs were developed to efficiently explore real-world datasets that contain missing 

data, varied data types (i.e., nominal, discrete, and ordinal), inherent feature interactions, 

numerous combinations of risk factors, and implicit heterogeneity. To demonstrate 

effectiveness of this set of EAs, I first tested my algorithms on three benchmark 

problems. These three classifier test cases (the majority-on, the multiplexer and a 

simulated SNP dataset developed by Urbanowicz and Moore (2010)) exhibit some 

combination of feature interaction (epistasis), heterogeneity, and noise. The CCEA in 

tandem with the DNFEA was able to successfully solve all three benchmark problems 

by repeatedly evolving the optimal solution set for each problem. Next, using inspiration 

from Big Data analysis in Mayer-Schönberger and Cukier (2014), the solution sets 

archived by the CCEA were mined to perform feature selection. These feature selection 

techniques were successfully applied to the simulated SNP dataset and consistently 

selected the features that comprise the true signals. Finally, the CCEA was applied to the 

T. dimidiata infestation datasets for two towns in Jutiapa, Guatemala. The CCEA was 

able to efficiently search these large, noisy datasets with multiple datatypes to find strong 

probabilistic signals for complex multivariate interactions associated with infestation. 

These probabilistically significant interactions could then be utilized by domain experts 



177 

 

and town managers to improve mitigation strategies and make efficient use of limited 

resources to reduce the risk of T. dimidiata infestation. In addition, I developed a proof-

of-concept for mapping risk that leverages the SNPs from next generation sequencing of 

T. dimidiata, and the genetic distance equation of Smouse and Peakall (1999) to 

determine the range of spatial autocorrelation of the vector’s genetic structure. This range 

of spatial autocorrelation was then used as a surrogate to the movement of T. dimidiata 

and plotted to visualize the risk of infestation. The risk maps for the two Guatemalan 

villages seemed to suggest that the source of infestation for one town was sylvatic, and 

the other was domestic/peridomestic. These novel and modified statistical tools were 

successful in characterizing the risk of infestation across the two villages.  

Finally, the risk of thyroid cancer over a 14-year period in Vermont was assessed 

on the zip code scale, which is larger than the individual household scale used for the 

Chagas disease datasets. This aggregated US census data did not show spatial 

autocorrelation and limited my ability to determine individual risk factors associated with 

thyroid cancer on an individual scale. That being said, traditional risk factors such as age 

and gender were associated with higher rates of thyroid cancer. Also, geospatial analyses 

of incidence of thyroid cancer at the zip code scale did reveal Hot Spots associated with 

thyroid cancer. However, whether these Hot Spots are signals or noise could not be 

determined given the available aggregated data. 

This research was an initial venture into assessing disease risk in the age of Big 

Data. The methods developed in this dissertation were designed specifically for the 

dataset available (data-driven). With that being said, these methodologies are not so 
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specific that they cannot be applied to other datasets and applications. For instance, the 

CCEA is a general, non-parametric classification tool that can be applied to a wide range 

of problems without violating assumptions inherent to the CCEA. This is not the case 

with many traditional statistical methods such as analysis of variance and linear 

regression that are limited to specific data types, assume normality, non-correlation 

between data and are challenged by missing data. The CCEA is not limited to assessing 

multivariate interactions associated with disease; it can be applied to variety of fields and 

topics including but not limited to analysis of political party association, marketing, and 

ecological niche modeling. As for the modifications made to the genetic distance 

correlograms of the Smouse and Peakall (1999), switching to a semivariogram allows for 

the use of the most appropriate pairwise distance or relatedness metric to measure genetic 

spatial autocorrelation. In addition, using box plots for the semivariograms relaxes the 

assumption of normality, helps visualize the distribution of the semivariance data, and is 

not limited to genetic data. 

The hope is that the methodology developed in this dissertation will continually 

be improved by myself and others. I view this as one of many initial explorations in 

analyzing Big Data and will hopefully inspire new algorithms as this field continues to 

grow.  
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CHAPTER 8: APPENDIX 

8.1 Matlab® Code 

8.1.1 Convert Data to Ones and Zeros (Data2Binary) 

function [DataBin, DataType, FeatVals, FeatInd, NaNMask, DataSum]=... 

                Data2Binary(Data,Output,ContData,CatData,UniqCatData) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Created by John Hanley 

%  

% October 14, 2016 

% Last updated: October 14, 2016 

% 

% Data2Binary converts input data to binary and supplies some summary 

% information for each of the features. 

% 

% Inputs: 

% Data = A matrix of ones and zeros where each row represents an 

%          observation and each column represents a feature.  

% Output = The output class for each observation. 

% ContData = The feature index for all continuous or discrete input 

%            features. 

% CatData = The feature index for all nominal features that have more than 

%           two categories and/or the user desires an or statement between. 
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% UniqCatData = The feature index of any feature that the user desires to 

%               not have a range or an or statement between categories 

%               and/or there are only 2 unique values for the feature. 

% 

% Outputs: 

% DataBin = The data in logical binary matrix form where each row 

%           represents an observation and each column represents a value 

%           for a feature. 

% DataType = A categorical reference to the type of data for each feature. 

%            1 = ContData, 2 = CatData, 3 = UniqCatData 

% FeatVals = The unique values for each of the features. 

% FeatInd = The column index in the DataBin for each feature where each 

%           column indexed for a given feature is represented by the 

%           FeatVals. 

% NaNMask = A NaN mask for the original dataset.  This represents which 

%           features for a given observation have a NaN. 

% DataSum = Is a structure array with an overall summary of the data for 

%           each feature. Each row represents a unique output class and 

%           each column represents a feature. 

%           DataSum.NaNs = counts the number of NaNs for each output class 

%                          for each feature. 

%           DataSum.Tabs = is a tabulation for the number of times values 
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%                          are present for each output class. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine the number of features 

NumFeat=size(Data,2); 

% Create a vector for dataype where 1 = continuous data, 2 = categorical 

% data, 3 = unique categorical data. 

DataType=NaN(1,NumFeat); 

% Now set the DataTypes 

DataType(ContData)=1; 

DataType(CatData)=2; 

DataType(UniqCatData)=3; 

% Now for each feature convert the features to binary data 

% Determine the output classes 

OutClasses=unique(Output); 

% Determine the number of output classes 

NumOut=length(OutClasses); 

% For efficiency 

DataSum.NaNs=NaN(NumOut,NumFeat); % # NaNs per feature class 

DataSum.Tabs=cell(NumOut,NumFeat); % Tabulate of feature vals 

FeatVals=cell(1,NumFeat); 

NumUniVals=NaN(1,NumFeat); 
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FeatInd=cell(1,NumFeat); 

% Determine the NaNMask 

NaNMask=isnan(Data); 

% Create a counter 

count=1; 

% First go through for each feature and determine the number of categories 

% Note if the number of unique values is 2 then convert the datatype to 3 

for i=1:NumFeat 

    % First determine the unique values for the feature 

    FeatVals(i)={unique(Data(~NaNMask(:,i),i))};  

    % Determine the number of unique values 

    NumUniVals(i)=length(FeatVals{i}); 

    % Determine the current feature index 

    FeatInd(i)={count:sum(NumUniVals(1:i))}; 

    % update the counter 

    count=sum(NumUniVals(1:i))+1; 

    if NumUniVals==2 

        % Ensure that the current DataType is set to 3 

        DataType(i)=3; 

    elseif NumUniVals<2 

        % Then end the algorithm and display the warning that the ith 

        % feature has less then 2 unique values and is not useful 
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        disp(['Warning Feature # ' num2str(i) ... 

                                ' Has < 2 Unique Values. Please Remove.']) 

        break 

    end         

    % For each feature determine the number of NaNs for each class  

    for j=1:NumOut 

        % Create a TempMask for the current class 

        TempMask=Output==OutClasses(j); 

        % Count the number of NaNs for the current class 

        DataSum.NaNs(j,i)=sum(NaNMask(TempMask,i)); 

        % Tabulate the values for each class 

        DataSum.Tabs(j,i)={tabulate(Data(TempMask,i))}; 

        clear TempMask 

    end 

end 

clear count 

clear NumOut 

clear OutClasses 

clear j 

clear i 

% Now convert the Data to a binary logical matrix 

DataBin=false(size(Data,1),sum(NumUniVals)); 
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% Now run a for loop to set the values of each input 

for i=1:NumFeat 

    % Extract the ith features Values 

    CurVals=FeatVals{i}; 

    % Extract the Current Index 

    CurInd=FeatInd{i}; 

    % Now for each value place a true in the new binary input data 

    for j=1:NumUniVals(i) 

        % Create a Mask for the data with the jth value for the ith feature 

        TempMask=Data(:,i)==CurVals(j); 

        % Set the current values to true 

        DataBin(TempMask,CurInd(j))=true(); 

        clear TempMask 

    end 

    clear CurVals 

    clear CurInd 

end 

clear NumFeat 

clear i 

clear j 

clear NumUniVals 
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8.1.2 Conjunctive Clause Evolutionary Algorithm (CCEA) 

function [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,... 

           ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,... 

           NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,... 

           NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=... 

            CCEA(Param,DataBin,NaNMask,TargetClass) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Created by John Hanley 

% 

% October 19, 2016 

% Last Updated: October 19, 2016 

% 

% CCEA is the evolutionary algorithm for the conjunctive clauses. 

% 

% Inputs: 

% Param = General parameters for the evolutionary algorithm. The general 

%           parameters are set up as a structure and the following 

%           paramaters are necessary to run the algorithm. 

%           .NumNewPop = The number of offspring created every time a new 

%                        randomly created population of offspring is 

%                        created. 

%           .TotGens = The total number of generations to run the 
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%                      algorithm. 

%           .DataType = The DataType of each feature. This is a vector 

%                       where each value represents the feature data type 

%                       (1 = a continuous or discrete feature, 2 = a 

%                       categorical feature where more than one category 

%                       can be present in the conjunctive clause, 3 = a 

%                       feature where only one value or category can be 

%                       present (e.g., binary feature)). 

%           .Thresh = A matrix with the initial threshold settings. The 

%                     matrix has 4 columns with the first column containing 

%                     all of the orders of the conjunctive clause that the 

%                     user is interested in. For instance if the user wants 

%                     to explore conjunctive clauses of orders 1 - 6, then 

%                     each row represents the order with the exception of 

%                     the last row where the order is the order listed and 

%                     any order greater than 6. This way the algorithm does 

%                     not assume an order. The second column is the initial 

%                     probability threshold [0, 1]. The third column is the 

%                     minimum number of conjunctive clauses the user wants 

%                     to save for each order.  The fourth and final column 

%                     is the maximum number of conjunctive clauses the 

%                     user wants to archive for the given order. If the 



206 

 

%                     maximum is exceeded then the threshold for the given 

%                     order is replaced. 

%           .MaxNumFeat = The maximum number of features allowed during 

%                         crossover. No offspring that is the product of  

%                         crossover will have more features than this  

%                         number. 

%           .FeatInd = The index for each feature. Each cell represents a 

%                      feature and the numbers in the cell represent the 

%                      columns in the binary data where the feature is 

%                      represented. 

%           .ALna = The number of non-archived age layers                

%           .GENn = The number of generations until a novel population is 

%                   introduced. 

%           .NonArchLMax = The maximum population for each non-archived 

%                          layer. 

%           .ArchOff = The maximum number of archived offsrping that will 

%                      undergo mutation or crossover. 

%           .Px = The probability of crossover. 

%           .Pwc = The probability that a feature will be turned into a 

%                  wild card during mutation. 

%           .Pm = the probability that an individual feature will undergo 

%                 mutation. 
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%           .TournSize = The size of the tournament with relacement of 

%                        selecting the mate for crossover. 

%           .BestFit = Set to true if the user wants to record the best 

%                      fitness of each order each generation. Otherwise set 

%                      to false. 

% DataBin = The data as a binary logical matrix. 

% NaNMask = A logical mask of the location of the NaN values in the 

%                      dataset. 

% TargetClass = A logical vector of the observations that have the output 

%               class. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

% Outputs: 

% ArchCCs = The archived conjunctive clauses. 

% ArchCCFeats = The features present in the archived conjunctive clauses. 

% ArchCCFit = The fitness of the archived conjunctive clauses. 

% ArchCCFitComp = The raw inputs used to calculate the archived fitness. 

% ArchCCOrder = The order of the archived conjunctive clause. 

% ArchCCMatchLocs = A logical matrix that shows which observations the 

%                   archived conjunctive clauses match. 

% ArchCCAge = The age of the archived conjunctive clause. 

% NonArchCCs = The non-archived conjunctive clauses. 
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% NonArchCCFeats = The features present in the non-archived conjunctive 

%                                  clauses. 

% NonArchCCFit = The fitness of the non-archived conjunctive clauses. 

% NonArchCCFitComp = The raw inputs used to calculate the non-archived  

%                    fitness. 

% NonArchCCOrder = The order of the non-archived conjunctive clause. 

% NonArchCCMatchLocs = A logical matrix that shows which observations the 

%                      non-archived conjunctive clauses match. 

% NonArchCCAge = The age of the non-archived conjunctive clause. 

% Param = A structure array with many of the parameters for the algorithm. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% For efficiency 

CCstats.EvalsAll=zeros(Param.TotGens,Param.MaxNumFeat); 

CCstats.EvalsArchive=zeros(Param.TotGens,Param.MaxNumFeat); 

CCstats.EvalsNonArchive=zeros(Param.TotGens,Param.MaxNumFeat); 

if Param.BestFit 

    % Then the best fitness for each order for each generation will be 

    % recorded 

    CCstats.BestFit=NaN(Param.TotGens,Param.MaxNumFeat); 

end 



209 

 

% Determine the number of observation and features in the dataset 

[Param.NumObs, Param.NumFeat]=size(NaNMask); 

% Determine the number of binary columns in the data 

Param.NumBinCols=size(DataBin,2); 

% Determine the number of Target Class observations 

Param.TotTargetClass=sum(TargetClass); 

% Determine the number of features that are not NaN for the target class 

Param.TargetNotNaNMask=~NaNMask(TargetClass,:); 

Param.TargetNumNotNaN=sum(Param.TargetNotNaNMask,2); 

% Extract the target observations  

Param.TargetObs=DataBin(TargetClass,:); 

% Set the current generation parameter 

Param.CurGen=1; 

% Create a roulette wheel probability distribution for selecting each 

% observation to serve as the basis for the conjunctive clauses 

Param.PrObsSel=ones(Param.TotTargetClass,1)*1/Param.TotTargetClass; 

% Create an initial population of conjunctive clauses 

[NewCCs, NewCCFeats, NewCCFit, NewCCFitComp, NewCCOrder, ... 

                NewCCMatchLocs, ArchiveMask, CCstats]=... 

                    CCPopInit(Param,DataBin,NaNMask,TargetClass,CCstats); 

% Seperate the CCs into Archive and Non-archive 

ArchCCs=NewCCs(ArchiveMask,:); 
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ArchCCFeats=NewCCFeats(ArchiveMask,:); 

ArchCCFit=NewCCFit(ArchiveMask); 

ArchCCFitComp.TotObs=NewCCFitComp.TotObs(ArchiveMask); 

ArchCCFitComp.TotObsT=NewCCFitComp.TotObsT(ArchiveMask); 

ArchCCFitComp.TotCCObs=NewCCFitComp.TotCCObs(ArchiveMask); 

ArchCCFitComp.TotCCObsT=NewCCFitComp.TotCCObsT(ArchiveMask); 

ArchCCOrder=NewCCOrder(ArchiveMask); 

ArchCCMatchLocs=NewCCMatchLocs(:,ArchiveMask); 

% Set the age of the CCs to 1 

ArchCCAge=ones(size(ArchCCFit)); 

% Now seperate the NonarchiveCCs 

NonArchCCs=NewCCs(~ArchiveMask,:); 

NonArchCCFeats=NewCCFeats(~ArchiveMask,:); 

NonArchCCFit=NewCCFit(~ArchiveMask); 

NonArchCCFitComp.TotObs=NewCCFitComp.TotObs(~ArchiveMask); 

NonArchCCFitComp.TotObsT=NewCCFitComp.TotObsT(~ArchiveMask); 

NonArchCCFitComp.TotCCObs=NewCCFitComp.TotCCObs(~ArchiveMask); 

NonArchCCFitComp.TotCCObsT=NewCCFitComp.TotCCObsT(~ArchiveMask); 

NonArchCCOrder=NewCCOrder(~ArchiveMask); 

NonArchCCMatchLocs=NewCCMatchLocs(:,~ArchiveMask); 

% Set the age of the CCs to 1 

NonArchCCAge=ones(size(NonArchCCFit)); 



211 

 

clear NewCCs 

clear NewCCFeats 

clear NewCCFit 

clear NewCCFitComp 

clear NewCCOrder 

clear NewCCMatchLocs 

clear ArchiveMask 

% Run the population reduction algorithm 

[ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,... 

            ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,... 

            NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,... 

            NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=... 

              CCreducepop(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,... 

                ArchCCOrder,ArchCCMatchLocs,ArchCCAge,NonArchCCs,... 

                NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,... 

                NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,Param,... 

                CCstats);  

% Now work on the for loop for the ALPS like evolution 

for gen=2:Param.TotGens 

    % Set the current current gen parameter 

    Param.CurGen=gen; 

    % Increase the age of the non-archived population 
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    NonArchCCAge=NonArchCCAge+1;     

    % Now determine if a new population should be added  

    if mod(gen,Param.GENn)~=0 

        % Then just perform crossover or mutation on population 

        [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,... 

           ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,... 

           NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,... 

           NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=... 

            CCEvolution(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,... 

               ArchCCOrder,ArchCCMatchLocs,ArchCCAge,... 

               NonArchCCs,NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,... 

               NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,... 

               DataBin,NaNMask,TargetClass,Param,CCstats);         

        % Clean conjunctive clauses 

        [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,... 

            ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,... 

            NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,... 

            NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=... 

              CCreducepop(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,... 

                ArchCCOrder,ArchCCMatchLocs,ArchCCAge,NonArchCCs,... 

                NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,... 

                NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,Param,... 
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                CCstats);         

    else 

        % Then add a new population and perform  crossover or mutation on  

        % population         

        % first perform mutation or crossover 

        [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,... 

           ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,... 

           NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,... 

           NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=... 

            CCEvolution(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,... 

               ArchCCOrder,ArchCCMatchLocs,ArchCCAge,... 

               NonArchCCs,NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,... 

               NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,... 

               DataBin,NaNMask,TargetClass,Param,CCstats);                 

        if ~isempty(ArchCCFit) 

            % Calculate a new probability of selecting an observation for  

            % the template of a new conjunctive clause. Increase the odds  

            % of selecting a target observation that is underrepresented in  

            % the archive 

            % First sum the total number of times that a target observation  

            % is covered in the archive population. 

            TotObsArchive=sum(ArchCCMatchLocs(TargetClass,:),2); 



214 

 

            % Determine the maximum sum 

            MaxSum=max(TotObsArchive); 

            % Now subtract TotObsArchive from MaxSum-1 

            DiffSum=(MaxSum+1)-TotObsArchive; 

            clear TotObsArchive 

            clear MaxSum 

            % Now normalize to get a total probability of 1 

            Param.PrObsSel=DiffSum/sum(DiffSum); 

            clear DiffSum 

        end 

        % Now create a new population of CCs 

        [NewCCs, NewCCFeats, NewCCFit, NewCCFitComp, NewCCOrder, ... 

                NewCCMatchLocs, ArchiveMask, CCstats]=... 

                    CCPopInit(Param,DataBin,NaNMask,TargetClass,CCstats); 

        % First set the age of the NewCCs to one 

        NewCCAge=ones(size(NewCCFit));         

        % Now combine the new CCs with the population of CCs 

        ArchCCs=[ArchCCs; NewCCs(ArchiveMask,:)]; 

        ArchCCFeats=[ArchCCFeats; NewCCFeats(ArchiveMask,:)]; 

        ArchCCFit=[ArchCCFit; NewCCFit(ArchiveMask)]; 

        ArchCCFitComp.TotObs=[ArchCCFitComp.TotObs;... 

                                    NewCCFitComp.TotObs(ArchiveMask)]; 
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        ArchCCFitComp.TotObsT=[ArchCCFitComp.TotObsT;... 

                                    NewCCFitComp.TotObsT(ArchiveMask)]; 

        ArchCCFitComp.TotCCObs=[ArchCCFitComp.TotCCObs;... 

                                    NewCCFitComp.TotCCObs(ArchiveMask)]; 

        ArchCCFitComp.TotCCObsT=[ArchCCFitComp.TotCCObsT;... 

                                    NewCCFitComp.TotCCObsT(ArchiveMask)]; 

        ArchCCOrder=[ArchCCOrder; NewCCOrder(ArchiveMask)]; 

        ArchCCMatchLocs=[ArchCCMatchLocs NewCCMatchLocs(:,ArchiveMask)]; 

        ArchCCAge=[ArchCCAge; NewCCAge(ArchiveMask)];         

        NonArchCCs=[NonArchCCs; NewCCs(~ArchiveMask,:)]; 

        NonArchCCFeats=[NonArchCCFeats; NewCCFeats(~ArchiveMask,:)]; 

        NonArchCCFit=[NonArchCCFit; NewCCFit(~ArchiveMask)]; 

        NonArchCCFitComp.TotObs=[NonArchCCFitComp.TotObs;... 

                                    NewCCFitComp.TotObs(~ArchiveMask)]; 

        NonArchCCFitComp.TotObsT=[NonArchCCFitComp.TotObsT;... 

                                    NewCCFitComp.TotObsT(~ArchiveMask)]; 

        NonArchCCFitComp.TotCCObs=[NonArchCCFitComp.TotCCObs;... 

                                    NewCCFitComp.TotCCObs(~ArchiveMask)]; 

        NonArchCCFitComp.TotCCObsT=[NonArchCCFitComp.TotCCObsT;... 

                                    NewCCFitComp.TotCCObsT(~ArchiveMask)]; 

        NonArchCCOrder=[NonArchCCOrder; NewCCOrder(~ArchiveMask)]; 

        NonArchCCMatchLocs=[NonArchCCMatchLocs ... 
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                                          NewCCMatchLocs(:,~ArchiveMask)]; 

        NonArchCCAge=[NonArchCCAge; NewCCAge(~ArchiveMask)];         

        clear NewCCs 

        clear NewCCFeats 

        clear NewCCFit 

        clear NewCCFitComp 

        clear NewCCOrder 

        clear NewCCMatchLocs 

        clear NewCCAge 

        clear ArchiveMask         

        % Clean conjunctive clauses 

        [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,... 

            ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,... 

            NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,... 

            NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=... 

              CCreducepop(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,... 

                ArchCCOrder,ArchCCMatchLocs,ArchCCAge,NonArchCCs,... 

                NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,... 

                NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,Param,... 

                CCstats);         

    end 

end 
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8.1.2.1 Conjunctive Clause Population Initialization (CCPopInit) 

function [NewCCs, NewCCFeats, NewCCFit, NewCCFitComp, NewCCOrder, ... 

                NewCCMatchLocs, ArchiveMask, CCstats]=... 

                    CCPopInit(Param,DataBin,NaNMask,TargetClass,CCstats) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Created by John Hanley 

% 

% October 14, 2016 

% Last updated: October 14, 2016 

% 

% CCPopInit is a population initialization algorithm for the conjunctive 

% clauses. It randomly creates conjunctive clauses of various sizes using 

% observations from the dataset that has an output equal to the current 

% target class. 

% 

% Inputs: 

% Param = A structure array with many of the parameters for the algorithm. 

% DataBin = The data as a binary logical matrix. 

% NaNMask = A logical mask of the location of the NaN values in the 

%           dataset. 

% TargetClass = A logical vector of the observations that have the output 

%               class. 
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% CCstats = Structure array statistics on the conjunctive clauses. 

% 

% Outputs: 

% NewCCs = The newly created conjunctive clauses. 

% NewCCFeats = The active features of the new conjunctive clauses. 

% NewCCFit = The fitness of the new conjunctive clauses measured using the 

%            hypergeometric PMF. 

% NewCCFitComp = The inputs for the calculation of NewCCFit. 

% NewCCOrder = The order of the conjunctive clause. 

% NewCCMatchLocs = A logical matrix of the observations the conjunctive 

%                  clause matches. Each row represents an observation and 

%                  each column represents a conjunctive clause. 

% ArchiveMask = Is a logical vector of the new conjunctive clauses that are 

%               to be archived. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% For efficiency  

NewCCs=false(Param.NumNewPop,Param.NumBinCols); 

NewCCFeats=false(Param.NumNewPop,Param.NumFeat); 

NewCCFit=NaN(Param.NumNewPop,1); 

NewCCFitComp.TotObs=NaN(Param.NumNewPop,1); 
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NewCCFitComp.TotObsT=NaN(Param.NumNewPop,1); 

NewCCFitComp.TotCCObs=NaN(Param.NumNewPop,1); 

NewCCFitComp.TotCCObsT=NaN(Param.NumNewPop,1); 

NewCCOrder=NaN(Param.NumNewPop,1); 

NewCCMatchLocs=false(Param.NumObs,Param.NumNewPop); 

KeepMask=false(Param.NumNewPop,1); 

ArchiveMask=false(Param.NumNewPop,1); 

% Create a vector of the feature indices 

PosFeats=1:Param.NumFeat; 

% Create the conjunctive clauses for each new offspring 

for i=1:Param.NumNewPop 

    % Create a logical Index of the observation that will be selected 

    SelObs=false(Param.TotTargetClass,1); 

    % Randomly determine the number of features present in the conjunctive 

    % clause 

    CurFeatNum=randi(Param.MaxNumFeat); 

    % Now determine which observations have the requisite number of current 

    % features 

    CurObsMask=Param.TargetNumNotNaN>=CurFeatNum;     

    % Now recalculate the Param.PrObsSel based on the observations that 

    % were eliminated 

    CurPrObsSel=Param.PrObsSel(CurObsMask)*1/... 
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                                      (1-sum(Param.PrObsSel(~CurObsMask))); 

    % Turn CurPrObsSel into lower bound and upper bound 

    UBCurPrObsSel=cumsum(CurPrObsSel); 

    LBCurPrObsSel=[0; UBCurPrObsSel(1:end-1)]; 

    clear CurPrObsSel 

    % Select a random number (0,1) 

    CurRand=rand(); 

    % Now determine which observation is between the LB and UB 

    CurObsSel=CurRand>LBCurPrObsSel&CurRand<=UBCurPrObsSel; 

    clear CurRand 

    clear LBCurPrObsSel 

    clear UBCurPrObsSel 

    % Update the selected observation 

    SelObs(CurObsMask)=CurObsSel; 

    clear CurObsMask 

    clear CurObsSel 

    % Now Extract the Current Observation Data 

    CurObsData=Param.TargetObs(SelObs,:); 

    % Now randomly select the features for the rule 

    CurPosFeats=PosFeats(Param.TargetNotNaNMask(SelObs,:)); 

    clear SelObs 

    CurSelFeatInd=randperm(length(CurPosFeats),CurFeatNum); 
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    CurSelFeats=CurPosFeats(CurSelFeatInd);     

    clear CurPosFeats 

    clear CurSelFeatInd 

    % Now Extract the feature indices for the current selected features 

    CurFeatInds=[Param.FeatInd{CurSelFeats}];     

    % Insert the data into the New CC 

    NewCCs(i,CurFeatInds)=CurObsData(1,CurFeatInds); 

    NewCCFeats(i,CurSelFeats)=true(); 

    clear CurObsData     

    % Now Determine the fitness of the new rule 

    % First Determine the Total Observations that have data for the 

    % selected features 

    TotObs=sum(sum(~NaNMask(:,CurSelFeats),2)==CurFeatNum); 

    TotObsT=sum(sum(~NaNMask(TargetClass,CurSelFeats),2)==CurFeatNum);     

    % Now determine which observations the current Conjunctive clause 

    % Matches 

    % First add the conjunctive clause to the data 

    TwosSum=bsxfun(@plus,NewCCs(i,CurFeatInds),DataBin(:,CurFeatInds)); 

    % Now create a twos mask 

    TwosMask=TwosSum==2; 

    clear TwosSum 

    % Now determine the total number of twos 
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    TotTwos=sum(TwosMask,2); 

    clear TwosMask 

    % Now create an observation match mask 

    NewCCMatchLocs(:,i)=TotTwos==CurFeatNum; 

    clear TotTwos 

    % Determine the total number of observations that match and are target 

    % class 

    TotCCObs=sum(NewCCMatchLocs(:,i)); 

    TotCCObsT=sum(NewCCMatchLocs(TargetClass,i)); 

    % If TotCCObsT/TotCCObs > TotObsT/TotObs then evaluate the fitness of 

    % the Conjunctive clause using hypergeometric PMF 

    if TotCCObsT/TotCCObs>TotObsT/TotObs 

        % Calculate the fitness 

        NewCCFit(i)=hygepdf(TotCCObsT,TotObs,TotObsT,TotCCObs); 

        % Update the keep mask 

        KeepMask(i)=true(); 

        % Determine if the CC is archivable 

        % First extract the order mask 

        OrderMask=Param.Thresh(:,1)==CurFeatNum; 

        if sum(OrderMask)==0 

            % Then set the last OrderMask to true 

            OrderMask(end)=true(); 
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        end 

        ArchiveMask(i)=NewCCFit(i)<=Param.Thresh(OrderMask,2); 

        if ArchiveMask(i) 

            % Then record an archived evaluation 

            CCstats.EvalsArchive(Param.CurGen,CurFeatNum)=... 

                           CCstats.EvalsArchive(Param.CurGen,CurFeatNum)+1; 

        else 

            % Record a non-archived evaluation 

            CCstats.EvalsNonArchive(Param.CurGen,CurFeatNum)=... 

                        CCstats.EvalsNonArchive(Param.CurGen,CurFeatNum)+1; 

        end 

        clear OrderMask 

    else 

        NewCCFit(i)=1; 

    end 

    % Record the total number of evaluations for the current order 

    CCstats.EvalsAll(Param.CurGen,CurFeatNum)=... 

                               CCstats.EvalsAll(Param.CurGen,CurFeatNum)+1; 

    % Save the fitness component values 

    NewCCFitComp.TotObs(i)=TotObs; 

    NewCCFitComp.TotObsT(i)=TotObsT; 

    NewCCFitComp.TotCCObs(i)=TotCCObs; 
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    NewCCFitComp.TotCCObsT(i)=TotCCObsT; 

    NewCCOrder(i)=CurFeatNum;     

    clear TotObs 

    clear TotObsT 

    clear TotCCObs 

    clear TotCCObsT 

    clear CurFeatNum 

    clear CurSelFeats 

    clear CurFeatInds 

end 

clear PosFeats 

clear i 

% Only keep the values in the keep mask 

NewCCs=NewCCs(KeepMask,:); 

NewCCFeats=NewCCFeats(KeepMask,:); 

NewCCFit=NewCCFit(KeepMask,1); 

NewCCFitComp.TotObs=NewCCFitComp.TotObs(KeepMask,1); 

NewCCFitComp.TotObsT=NewCCFitComp.TotObsT(KeepMask,1); 

NewCCFitComp.TotCCObs=NewCCFitComp.TotCCObs(KeepMask,1); 

NewCCFitComp.TotCCObsT=NewCCFitComp.TotCCObsT(KeepMask,1); 

NewCCOrder=NewCCOrder(KeepMask,1); 

NewCCMatchLocs=NewCCMatchLocs(:,KeepMask); 
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ArchiveMask=ArchiveMask(KeepMask,1); 

clear KeepMask      

8.1.2.2 Remove Repeat CCs (CCreducepop) 

function [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,... 

            ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,... 

            NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,... 

            NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=... 

              CCreducepop(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,... 

                ArchCCOrder,ArchCCMatchLocs,ArchCCAge,NonArchCCs,... 

                NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,... 

                NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,Param,... 

                CCstats) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Created by John Hanley 

%  

% October 18, 2016 

% Last updated: October 18, 2016 

% 

% CCreducepop will remove any repeat conjunctive clauses and will reduce 

% the conjunctive clause populations if they exceed their thresholds 

% 

% Inputs: 
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% ArchCCs = The archived conjunctive clauses. 

% ArchCCFeats = The features present in the archived conjunctive clauses. 

% ArchCCFit = The fitness of the archived conjunctive clauses. 

% ArchCCFitComp = The raw inputs used to calculate the archived fitness. 

% ArchCCOrder = The order of the archived conjunctive clause. 

% ArchCCMatchLocs = A logical matrix that shows which observations the 

%                   archived conjunctive clauses match. 

% ArchCCAge = The age of the archived conjunctive clause. 

% NonArchCCs = The non-archived conjunctive clauses. 

% NonArchCCFeats = The features present in the non-archived conjunctive 

%                  clauses. 

% NonArchCCFit = The fitness of the non-archived conjunctive clauses. 

% NonArchCCFitComp = The raw inputs used to calculate the non-archived  

%                    fitness. 

% NonArchCCOrder = The order of the non-archived conjunctive clause. 

% NonArchCCMatchLocs = A logical matrix that shows which observations the 

%                      non-archived conjunctive clauses match. 

% NonArchCCAge = The age of the non-archived conjunctive clause. 

% Param = A structure array with many of the parameters for the algorithm. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

% Outputs: 
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% ArchCCs = The archived conjunctive clauses. 

% ArchCCFeats = The features present in the archived conjunctive clauses. 

% ArchCCFit = The fitness of the archived conjunctive clauses. 

% ArchCCFitComp = The raw inputs used to calculate the archived fitness. 

% ArchCCOrder = The order of the archived conjunctive clause. 

% ArchCCMatchLocs = A logical matrix that shows which observations the 

%                   archived conjunctive clauses match. 

% NonArchCCAge = The age of the non-archived conjunctive clause. 

% NonArchCCs = The non-archived conjunctive clauses. 

% NonArchCCFeats = The features present in the non-archived conjunctive 

%                  clauses. 

% NonArchCCFit = The fitness of the non-archived conjunctive clauses. 

% NonArchCCFitComp = The raw inputs used to calculate the non-archived  

%                    fitness. 

% NonArchCCOrder = The order of the non-archived conjunctive clause. 

% NonArchCCMatchLocs = A logical matrix that shows which observations the 

%                      non-archived conjunctive clauses match. 

% NonArchCCAge = The age of the non-archived conjunctive clause. 

% Param = A structure array with many of the parameters for the algorithm. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Start by reducing the any repeated conjunctive clauses in the Archive 

% population 

if length(ArchCCAge)>1 

    % Then check to see if there are any repeat conjunctive clause 

    [ArchCCs, ID]=unique(ArchCCs,'rows'); 

    % Now save the unique conjunctive clauses 

    ArchCCFeats=ArchCCFeats(ID,:); 

    ArchCCFit=ArchCCFit(ID); 

    ArchCCFitComp.TotObs=ArchCCFitComp.TotObs(ID); 

    ArchCCFitComp.TotObsT=ArchCCFitComp.TotObsT(ID); 

    ArchCCFitComp.TotCCObs=ArchCCFitComp.TotCCObs(ID); 

    ArchCCFitComp.TotCCObsT=ArchCCFitComp.TotCCObsT(ID);      

    ArchCCOrder=ArchCCOrder(ID); 

    ArchCCMatchLocs=ArchCCMatchLocs(:,ID); 

    ArchCCAge=ArchCCAge(ID); 

    clear ID 

end 

if length(ArchCCAge)>1 

    % Determine if any of the archive bins are over their limit 

    % First create a temporary order so that all Conjunctive clauses  

    % greater than the max bin are set to max bin 

    TempOrder=ArchCCOrder; 
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    TempMask=TempOrder>max(Param.Thresh(:,1)); 

    TempOrder(TempMask)=max(Param.Thresh(:,1)); 

    clear TempMask 

    % Now tabulate the temporary order 

    TabTempOrder=tabulate(TempOrder); 

    % Remove any rows that do not have a value 

    TabTempOrder=TabTempOrder(TabTempOrder(:,2)>0,:); 

    % Compare the tabulated TempOrder to the associated maximum allowable 

    % populations 

    % Test to see if TabTempOrder are the same 

    if size(TabTempOrder,1)==size(Param.Thresh,1) 

        % Then all orders a present 

        % Determine how many if any bins are over the limit 

        LimitMask=TabTempOrder(:,2)>Param.Thresh(:,4); 

    else 

        % Then not all orders are present so need to determine which orders 

        %  are present 

        % First set up a logical vector for efficiency 

        LimitMask=false(size(Param.Thresh,1),1); 

        % for each of the orders present, determine if the limit is  

        % surpassed 

        for i=1:size(TabTempOrder,1) 
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            % Grab the ith order 

            CurOrder=TabTempOrder(i,1); 

            % Create a mask of the Order 

            TempMask=CurOrder==Param.Thresh(:,1); 

            clear CurOrder 

            % Now check to see if the limit is surpassed 

            LimitMask(TempMask)=TabTempOrder(i,2)>Param.Thresh(TempMask,4); 

            clear TempMask 

        end 

        clear i 

    end 

    % If the sum of limit mask is greater than 0 then at least one bin is  

    % over the limit so reduce the population of the bin 

    if sum(LimitMask)>0 

        % Then for each bin over the limit reduce the bin population 

        % Fist determine the orders of conjunctive clauses that are over  

        % the mask 

        OrderOver=Param.Thresh(LimitMask,1); 

        % Create a keep mask for efficiency 

        KeepMask=true(size(ArchCCAge)); 

        for i=1:length(OrderOver) 

            % Create a mask of the current OrderOver 
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            OrderMask=OrderOver(i)==TempOrder; 

            % sort the fitness of the current order fitness 

            CurSortFit=sort(ArchCCFit(OrderMask)); 

            % Create a mask for Param.Thresh Table 

            ThreshMask=OrderOver(i)==Param.Thresh(:,1); 

            % Find the minimum number for this bin 

            CurMin=Param.Thresh(ThreshMask,3); 

            % Now use the CurMin to find the fitness of sorted fitness and  

            % use this to set the new threshold 

            Param.Thresh(ThreshMask,2)=CurSortFit(CurMin); 

            clear CurMin 

            clear CurSortFit 

            % Now create a mask of all the archived conjunctive clauses  

            % with a fitness greater than the new threshold 

            AboveThreshMask=ArchCCFit>Param.Thresh(ThreshMask,2); 

            clear ThreshMask  

            % Now create a mask for Removal  

            RemoveMask=AboveThreshMask&OrderMask; 

            clear AboveThreshMask 

            clear OrderMask 

            % Now set the RemoveMask locations to false 

            KeepMask(RemoveMask)=false(); 
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            clear RemoveMask 

        end 

        % Determine if any of the removed Archived conjunctive clauses have  

        % an age that can be moved to the non-archive population 

        % Create a mask of the archive population that is young enough to  

        % fit in the non-archive population 

        YoungPop=ArchCCAge<=(Param.GENn*Param.ALna); 

        % Now determine if there are any young popvalues that will be  

        % removed 

        Move2NonArch=YoungPop&~KeepMask; 

        clear YoungPop 

        if sum(Move2NonArch)>0 

            % Then move the selected features to the non-archive population 

            NonArchCCs=[NonArchCCs; ArchCCs(Move2NonArch,:)]; 

            NonArchCCFit=[NonArchCCFit; ArchCCFit(Move2NonArch)]; 

            NonArchCCFeats=[NonArchCCFeats; ArchCCFeats(Move2NonArch,:)]; 

            NonArchCCFitComp.TotObs=[NonArchCCFitComp.TotObs;... 

                                       ArchCCFitComp.TotObs(Move2NonArch)]; 

            NonArchCCFitComp.TotObsT=[NonArchCCFitComp.TotObsT;... 

                                      ArchCCFitComp.TotObsT(Move2NonArch)]; 

            NonArchCCFitComp.TotCCObs=[NonArchCCFitComp.TotCCObs;... 

                                     ArchCCFitComp.TotCCObs(Move2NonArch)]; 



233 

 

            NonArchCCFitComp.TotCCObsT=[NonArchCCFitComp.TotCCObsT;... 

                                    ArchCCFitComp.TotCCObsT(Move2NonArch)];      

            NonArchCCOrder=[NonArchCCOrder; ArchCCOrder(Move2NonArch)]; 

            NonArchCCMatchLocs=[NonArchCCMatchLocs ... 

                                          ArchCCMatchLocs(:,Move2NonArch)]; 

            NonArchCCAge=[NonArchCCAge; ArchCCAge(Move2NonArch)]; 

            clear Move2NonArch 

        end 

        % Keep only those conjunctive clauses that are in the KeepMask 

        ArchCCs=ArchCCs(KeepMask,:); 

        ArchCCFit=ArchCCFit(KeepMask); 

        ArchCCFeats=ArchCCFeats(KeepMask,:); 

        ArchCCFitComp.TotObs=ArchCCFitComp.TotObs(KeepMask); 

        ArchCCFitComp.TotObsT=ArchCCFitComp.TotObsT(KeepMask); 

        ArchCCFitComp.TotCCObs=ArchCCFitComp.TotCCObs(KeepMask); 

        ArchCCFitComp.TotCCObsT=ArchCCFitComp.TotCCObsT(KeepMask);      

        ArchCCOrder=ArchCCOrder(KeepMask); 

        ArchCCMatchLocs=ArchCCMatchLocs(:,KeepMask); 

        ArchCCAge=ArchCCAge(KeepMask); 

        clear KeepMask 

    end 

    clear LimitMask 



234 

 

    clear TabTempOrder 

end 

% Remove Any NonArchAge that is now aged out 

YoungMask=NonArchCCAge<(Param.GENn*Param.ALna); 

% If there are any NonArchCCs to remove then remove them 

if sum(~YoungMask)>0 

    NonArchCCs=NonArchCCs(YoungMask,:); 

    NonArchCCFeats=NonArchCCFeats(YoungMask,:); 

    NonArchCCFit=NonArchCCFit(YoungMask); 

    NonArchCCFitComp.TotObs=NonArchCCFitComp.TotObs(YoungMask); 

    NonArchCCFitComp.TotObsT=NonArchCCFitComp.TotObsT(YoungMask); 

    NonArchCCFitComp.TotCCObs=NonArchCCFitComp.TotCCObs(YoungMask); 

    NonArchCCFitComp.TotCCObsT=NonArchCCFitComp.TotCCObsT(YoungMask); 

    NonArchCCOrder=NonArchCCOrder(YoungMask); 

    NonArchCCMatchLocs=NonArchCCMatchLocs(:,YoungMask); 

    NonArchCCAge=NonArchCCAge(YoungMask);             

end 

clear YoungMask 

% Now check to see if the Non-archived population is exceeded for each 

% layer 

if ~isempty(NonArchCCAge) 

    % First determine the non-archive age layers for each conjunctive  
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    % clause 

    NonArchCCAgeLayer=ceil(NonArchCCAge/Param.GENn); 

    % Now tabulate the NonArchCCAgeLayers 

    TabNonArchLayer=tabulate(NonArchCCAgeLayer); 

    % Remove any TabNonArchLayer that does not have a value 

    TabNonArchLayer=TabNonArchLayer(TabNonArchLayer(:,2)>0,:); 

    % Determine if any of the TabNonArchLayer is greater than the maximum 

    % allowed 

    LimitMask=TabNonArchLayer(:,2)>Param.NonArchLMax; 

else 

    % Set the limit mask to false 

    LimitMask=false(); 

end 

% If any layer is greater then need to remove individuals from the 

% non-archive layer 

if sum(LimitMask)>0 

    % Then determine which layers need to be reduced in size 

    Layers=TabNonArchLayer(LimitMask,1); 

    % Determine the number of features that should be present per feature 

    NumPerFeat=floor(Param.NonArchLMax/Param.NumFeat); 

    % for efficiency create a keep mask 

    KeepMask=true(size(NonArchCCFit));     
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    for i=1:length(Layers) 

        % Create vector index of the current layer 

        LayerInd=find(Layers(i)==NonArchCCAgeLayer); 

        % Sort the fitness of the current layer 

        [~, ID]=sort(NonArchCCFit(LayerInd)); 

        % Create a vector that has the maximum number of features capped at 

        % NumPerFeat 

        % First sum the features present 

        CurFeatMax=sum(NonArchCCFeats(LayerInd,:)); 

        % Now replace any sum greater than NumPerFeat with NumPerFeat 

        CurFeatMax(CurFeatMax>NumPerFeat)=NumPerFeat; 

        % Check to see if the most fit in the layer meet the CurFeatMax 

        % First Sum the most fit individuals in the layer 

        MostFitSum=... 

                 sum(NonArchCCFeats(LayerInd(ID(1:Param.NonArchLMax)),:)); 

        % Now compare to CurFeatMax 

        if sum(MostFitSum>=CurFeatMax)==Param.NumFeat 

            % Then the most fit individuals in the current layer should be 

            % saved 

            % So set the others to false in the keep mask 

            KeepMask(LayerInd(ID(Param.NonArchLMax+1:end)))=false(); 

        else 
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            % Then need to try an alternative method 

            % First determine the Problem features and the number of 

            % conjunctive clauses needed for each feature 

            ProbFeats=find(MostFitSum<CurFeatMax); 

            % Create a RandFeatOrder  

            RandFeatOrder=randperm(length(ProbFeats),length(ProbFeats)); 

            % Now go through and grab the most fit CCs for each of the 

            % problem features 

            % For Efficiency 

            ProbFeatKeep=false(length(ID),1); 

            for ii=1:length(ProbFeats) 

                % Create a mask for the current feature 

                CurFeatMask=NonArchCCFeats(LayerInd(ID),... 

                                            ProbFeats(RandFeatOrder(ii))); 

                % Now Create a cumsum for the number of times the feature 

                % is present 

                CumSumFeat=cumsum(CurFeatMask); 

                % Create a cumsum mask 

                CumSumMask=CumSumFeat<=CurFeatMax(ProbFeats(ii)); 

                % Find where cumsum Mask and feature mask overlap 

                SaveMask=CumSumMask&CurFeatMask; 

                % Set the SaveMask locations to true 
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                ProbFeatKeep(SaveMask)=true(); 

            end             

            % Now determine how many of the Problem FeatKeep are saved 

            TotProbFeat=sum(ProbFeatKeep); 

            % Determine the difference with Param.NonArchLMax 

            CurDiff=Param.NonArchLMax-TotProbFeat; 

            % Determine the ID of the Problem Keep Feat 

            IDnum=ID(ProbFeatKeep); 

            % Determine if new total meets the requirements 

            NewFeatTot=sum(NonArchCCFeats(LayerInd([ID(1:CurDiff);... 

                                                              IDnum]),:)); 

            if sum(NewFeatTot>=CurFeatMax)==Param.NumFeat 

                % Then the current population of CCs are to be saved 

                % Write the KeepIDnums 

                KeepIDnums=[ID(1:CurDiff); IDnum]; 

                % Determine the difference 

                RemoveIDnums=setdiff(ID,KeepIDnums); 

                % Now set the remove values to false 

                KeepMask(LayerInd(RemoveIDnums))=false();                 

            else 

                % Need to more thoroughly search CCs 

                % Determine the features that can be kept 
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                PosKeepFeat=find(CurFeatMax>0); 

                % First randomly determine a feature order 

                RandFeatOrd=randperm(length(PosKeepFeat),... 

                                                    length(PosKeepFeat)); 

                % Set a vector for conjunctive clauses that are available 

                AvailCCs=true(length(ID),1); 

                % set a list to keep 

                KeepFeat=false(length(ID),1); 

                for ii=1:length(PosKeepFeat) 

                    % Create a mask for the current feature 

                    CurFeatMask=NonArchCCFeats(LayerInd(ID), ... 

                                             PosKeepFeat(RandFeatOrd(ii))); 

                    % Remove any features that are not available 

                    CurFeatMask=CurFeatMask&AvailCCs; 

                    % Now Create a cumsum for the number of times the  

                    % feature is present 

                    CumSumFeat=cumsum(CurFeatMask); 

                    % Create a cumsum mask 

                    CumSumMask=CumSumFeat<=CurFeatMax(PosKeepFeat(ii)); 

                    % Find where cumsum Mask and feature mask overlap 

                    SaveMask=CumSumMask&CurFeatMask; 

                    % Set the SaveMask locations to true 



240 

 

                    KeepFeat(SaveMask)=true(); 

                    % Update the available CCs 

                    AvailCCs(SaveMask)=false(); 

                end 

                % Write the KeepIDnums 

                KeepIDnums=ID(KeepFeat); 

                % Determine the difference 

                RemoveIDnums=setdiff(ID,KeepIDnums); 

                % Now set the remove values to false 

                KeepMask(LayerInd(RemoveIDnums))=false();                   

            end             

        end 

    end 

    % Now keep all the information in the keep mask 

    NonArchCCs=NonArchCCs(KeepMask,:); 

    NonArchCCFit=NonArchCCFit(KeepMask); 

    NonArchCCFeats=NonArchCCFeats(KeepMask,:); 

    NonArchCCFitComp.TotObs=NonArchCCFitComp.TotObs(KeepMask); 

    NonArchCCFitComp.TotObsT=NonArchCCFitComp.TotObsT(KeepMask); 

    NonArchCCFitComp.TotCCObs=NonArchCCFitComp.TotCCObs(KeepMask); 

    NonArchCCFitComp.TotCCObsT=NonArchCCFitComp.TotCCObsT(KeepMask);      

    NonArchCCOrder=NonArchCCOrder(KeepMask); 
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    NonArchCCMatchLocs=NonArchCCMatchLocs(:,KeepMask); 

    NonArchCCAge=NonArchCCAge(KeepMask); 

    clear KeepMask 

end 

clear NonArchCCAgeLayer 

clear LimitMask 

clear TabNonArchLayer 

% If the user wants to record the best fitness of each order then record 

if Param.BestFit 

    % Determine the best fitness for each order 

    TempFit=[ArchCCFit; NonArchCCFit]; 

    for i=1:Param.MaxNumFeat 

        if i~=Param.MaxNumFeat 

            % Then mask by current order 

            CurOrderMask=[ArchCCOrder; NonArchCCOrder]==i; 

            if sum(CurOrderMask)>0 

                % Then record the best fitness 

                CCstats.BestFit(Param.CurGen,i)=min(TempFit(CurOrderMask)); 

            end 

        else 

            % The mask by the current order and any larger order 

            CurOrderMask=[ArchCCOrder; NonArchCCOrder]>=i; 
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            if sum(CurOrderMask)>0 

                % Then record the best fitness 

                CCstats.BestFit(Param.CurGen,i)=min(TempFit(CurOrderMask)); 

            end 

        end 

        clear CurOrderMask 

    end 

    clear i 

    clear TempFit 

end 

8.1.2.3 Conjunctive Clause Evolution (CCEvolution) 

function [ArchCCs, ArchCCFeats, ArchCCFit, ArchCCFitComp, ArchCCOrder,... 

           ArchCCMatchLocs, ArchCCAge, NonArchCCs, NonArchCCFeats,... 

           NonArchCCFit, NonArchCCFitComp, NonArchCCOrder,... 

           NonArchCCMatchLocs, NonArchCCAge, Param, CCstats]=... 

            CCEvolution(ArchCCs,ArchCCFeats,ArchCCFit,ArchCCFitComp,... 

               ArchCCOrder,ArchCCMatchLocs,ArchCCAge,... 

               NonArchCCs,NonArchCCFeats,NonArchCCFit,NonArchCCFitComp,... 

               NonArchCCOrder,NonArchCCMatchLocs,NonArchCCAge,... 

               DataBin,NaNMask,TargetClass,Param,CCstats) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Created by John Hanley 
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% 

% October 18, 2016 

% Last Updated: October 18, 2016 

% 

% CCEvolution evolves the population of conjunctive clauses. 

%  

% Inputs: 

% ArchCCs = The archived conjunctive clauses. 

% ArchCCFeats = The features present in the archived conjunctive clauses. 

% ArchCCFit = The fitness of the archived conjunctive clauses. 

% ArchCCFitComp = The raw inputs used to calculate the archived fitness. 

% ArchCCOrder = The order of the archived conjunctive clause. 

% ArchCCMatchLocs = A logical matrix that shows which observations the 

%                   archived conjunctive clauses match. 

% ArchCCAge = The age of the archived conjunctive clause. 

% NonArchCCs = The non-archived conjunctive clauses. 

% NonArchCCFeats = The features present in the non-archived conjunctive 

%                  clauses. 

% NonArchCCFit = The fitness of the non-archived conjunctive clauses. 

% NonArchCCFitComp = The raw inputs used to calculate the non-archived  

%                    fitness. 

% NonArchCCOrder = The order of the non-archived conjunctive clause. 
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% NonArchCCMatchLocs = A logical matrix that shows which observations the 

%                      non-archived conjunctive clauses match. 

% NonArchCCAge = The age of the non-archived conjunctive clause. 

% DataBin = The data as a binary logical matrix. 

% NaNMask = A logical mask of the location of the NaN values in the 

%           dataset. 

% TargetClass = A logical vector of the observations that have the output 

%               class. 

% Param = A structure array with many of the parameters for the algorithm. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

% Outputs: 

% ArchCCs = The archived conjunctive clauses. 

% ArchCCFeats = The features present in the archived conjunctive clauses. 

% ArchCCFit = The fitness of the archived conjunctive clauses. 

% ArchCCFitComp = The raw inputs used to calculate the archived fitness. 

% ArchCCOrder = The order of the archived conjunctive clause. 

% ArchCCMatchLocs = A logical matrix that shows which observations the 

%                   archived conjunctive clauses match. 

% ArchCCAge = The age of the archived conjunctive clause. 

% NonArchCCs = The non-archived conjunctive clauses. 

% NonArchCCFeats = The features present in the non-archived conjunctive 
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%                  clauses. 

% NonArchCCFit = The fitness of the non-archived conjunctive clauses. 

% NonArchCCFitComp = The raw inputs used to calculate the non-archived  

%                    fitness. 

% NonArchCCOrder = The order of the non-archived conjunctive clause. 

% NonArchCCMatchLocs = A logical matrix that shows which observations the 

%                      non-archived conjunctive clauses match. 

% NonArchCCAge = The age of the non-archived conjunctive clause. 

% Param = A structure array with many of the parameters for the algorithm. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculate the age layer of the non-archived population 

NonArchCCAgeLayer=ceil(NonArchCCAge/Param.GENn); 

% If there is arhive layer, then add an archive age layer that is one more 

% than the max age-layer in non-archived population 

if ~isempty(ArchCCAge) 

    % Check to make sure there is an non-archive population 

    if ~isempty(NonArchCCAge) 

        ArchCCAgeLayer=ones(size(ArchCCAge))+max(NonArchCCAgeLayer); 

    else 

        ArchCCAgeLayer=ones(size(ArchCCAge)); 
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    end 

end 

% First determine if there is an archive population and how big the  

% archive population is 

if length(ArchCCFit)>Param.ArchOff 

    % Then need to select offspring to undergo mutation 

    % Sort the Archived CCs by ArchCCAge 

    [~, ID]=sort(ArchCCAge); 

    % Determine the number of offspring per feature 

    NumOffPerFeat=floor(Param.ArchOff/Param.NumFeat); 

    % Determine the number of times the features are present in the archive 

    PosFeatTots=sum(ArchCCFeats); 

    % Now set any of the feat Totals greater than NumOffPerFeat to 

    % NumOffPerFeat 

    PosFeatTots(PosFeatTots>NumOffPerFeat)=NumOffPerFeat; 

    % Now sum the sorted offsrping for number of times feature is 

    % present 

    CurFeatTotals=sum(ArchCCFeats(ID(1:Param.ArchOff),:)); 

    % Determine if the features are present the requisite number of 

    % times 

    if sum(CurFeatTotals>=PosFeatTots)==Param.NumFeat 

        % Create a selected CC vector 
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        SelCCVec=false(size(ArchCCFit)); 

        % Now set 1:Param.ArchOff to true 

        SelCCVec(1:Param.ArchOff)=true(); 

        % set the number of archived offspring 

        NumArchOff=sum(SelCCVec); 

        % Then the selected CCs have enough diversity 

        MateCC=[ArchCCs(ID(SelCCVec),:);... 

                ArchCCs(ID(~SelCCVec),:);... 

                NonArchCCs]; 

        MateCCFeats=[ArchCCFeats(ID(SelCCVec),:);... 

                     ArchCCFeats(ID(~SelCCVec),:);... 

                     NonArchCCFeats]; 

        MateCCFit=[ArchCCFit(ID(SelCCVec));... 

                   ArchCCFit(ID(~SelCCVec));... 

                   NonArchCCFit]; 

        MateCCAge=[ArchCCAge(ID(SelCCVec));... 

                   ArchCCAge(ID(~SelCCVec));... 

                   NonArchCCAge]; 

        MateCCAgeLayer=[ArchCCAgeLayer(ID(SelCCVec));... 

                        ArchCCAgeLayer(ID(~SelCCVec));... 

                        NonArchCCAgeLayer]; 

    else 
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        % Need to smartly select the features to help with 

        % diversity 

        % Find the features that did not meet the requirements 

        % in the first pop 

        ProbFeatLocs=find(CurFeatTotals<PosFeatTots); 

        % For efficiency 

        ProbFeatLogVec=false(size(ArchCCFit)); 

        % For each problem feature find the least evolved CCs 

        for i=1:length(ProbFeatLocs) 

            % find the CCs with the current feature 

            CurFeatCCs=ArchCCFeats(ID,ProbFeatLocs(i)); 

            % Select the NumOffPerFeat first CCs 

            TempMask=CurFeatCCs&cumsum(CurFeatCCs)<= ... 

                                            PosFeatTots(ProbFeatLocs(i)); 

            % Now set the TempMask locations ot true 

            ProbFeatLogVec(TempMask)=true(); 

            clear CurFeatCCs 

            clear TempMask 

        end 

        % Now determine if there is any overlap between the 

        % offspring origingall selected and the ProbFeatLocs 

        NumOverlap=sum(ProbFeatLogVec(1:Param.ArchOff)); 
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        % Determine the number selected   

        NumSel=sum(ProbFeatLogVec); 

        % Now subtract NumOverlap from NumSel  

        DiffSelOver=NumSel-NumOverlap; 

        clear NumOverlap 

        clear NumSel 

        % Create a new vector for the selected features 

        SelCCVec=false(size(ArchCCFit)); 

        SelCCVec(1:Param.ArchOff-DiffSelOver)=true(); 

        SelCCVec(ProbFeatLogVec)=true(); 

        %  Determine if all of the features are now represented 

        NewFeatTots=sum(ArchCCFeats(ID(SelCCVec),:)); 

        % Determine if there are any NewFeatTots that now have 

        % features that are not included in the first group. 

        if sum(NewFeatTots<PosFeatTots)>0 

            % Then some of the features that were not problematic 

            % before are now problematic so go through based on the 

            % most problematic to least to select the CCs 

            [~,SortTotID]=sort(NewFeatTots); 

            % Remove features that were already selected 

            SortTotID=setdiff(SortTotID,ProbFeatLocs); 

            for ii=1:length(SortTotID) 



250 

 

                % find the CCs with the current feature 

                CurFeatCCs=ArchCCFeats(ID,SortTotID(ii)); 

                % Select the NumOffPerFeat first CCs 

                TempMask=CurFeatCCs&cumsum(CurFeatCCs)<= ... 

                                                PosFeatTots(SortTotID(ii)); 

                % Now set the TempMask locations to true 

                ProbFeatLogVec(TempMask)=true(); 

                clear CurFeatCCs 

                clear TempMask 

                % Determine if the minimum has been found for each 

                % feature remaining in SortTotID 

                NewTots=sum(ArchCCFeats(ID(ProbFeatLogVec),SortTotID)); 

                if sum(NewTots>=PosFeatTots(SortTotID))==length(SortTotID) 

                    % Then break 

                    break 

                end                         

            end 

            % Determine the total ProbFeatLogVec 

            if sum(ProbFeatLogVec)==Param.ArchOff 

                % Then set ProbFeatLogVec to the logical index 

                % vector 

                SelCCVec=false(size(ArchCCFit)); 
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                SelCCVec(ProbFeatLogVec)=true(); 

            else 

                % Add CCs to get to the total 

                % Determine the number of CCs to add 

                Num2Add=Param.ArchOff-sum(ProbFeatLogVec); 

                % Determine the cumsum of ~ProbFeatLogVec 

                CumsumProb=cumsum(~ProbFeatLogVec); 

                % Now create a mask of  

                TempMask=CumsumProb<=Num2Add; 

                SelCCVec=false(size(ArchCCFit)); 

                SelCCVec(ProbFeatLogVec)=true(); 

                SelCCVec(TempMask)=true(); 

            end 

        end 

        % set the number of archived offspring 

        NumArchOff=sum(SelCCVec); 

        % Create the MatingPop 

        MateCC=[ArchCCs(ID(SelCCVec),:);... 

                ArchCCs(ID(~SelCCVec),:);... 

                NonArchCCs]; 

        MateCCFeats=[ArchCCFeats(ID(SelCCVec),:);... 

                     ArchCCFeats(ID(~SelCCVec),:);... 
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                     NonArchCCFeats]; 

        MateCCFit=[ArchCCFit(ID(SelCCVec));... 

                   ArchCCFit(ID(~SelCCVec));... 

                   NonArchCCFit]; 

        MateCCAge=[ArchCCAge(ID(SelCCVec));... 

                   ArchCCAge(ID(~SelCCVec));... 

                   NonArchCCAge]; 

        MateCCAgeLayer=[ArchCCAgeLayer(ID(SelCCVec));... 

                        ArchCCAgeLayer(ID(~SelCCVec));... 

                        NonArchCCAgeLayer]; 

    end     

 

elseif ~isempty(ArchCCFit) 

    % Then all archived offspring will be selected 

    MateCC=[ArchCCs; NonArchCCs]; 

    MateCCFeats=[ArchCCFeats; NonArchCCFeats]; 

    MateCCFit=[ArchCCFit; NonArchCCFit]; 

    MateCCAge=[ArchCCAge; NonArchCCAge]; 

    MateCCAgeLayer=[ArchCCAgeLayer; NonArchCCAgeLayer]; 

    % Set the SelCCVec to the length of ArchCCFit and to True 

    SelCCVec=true(size(ArchCCFit)); 

    % Set the number of offspring 
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    NumArchOff=sum(SelCCVec);     

    % set ID 

    ID=1:length(ArchCCAge); 

else 

    % set the number of ArchOffsping to zero 

    NumArchOff=0; 

    % Then there is no archive population 

    % Then the Mating population is simply the non-archive 

    % population 

    MateCC=NonArchCCs; 

    MateCCFeats=NonArchCCFeats; 

    MateCCFit=NonArchCCFit; 

    MateCCAge=NonArchCCAge; 

    MateCCAgeLayer=NonArchCCAgeLayer; 

end 

% For Effificiency 

EvoCC=false(NumArchOff+length(NonArchCCFit),Param.NumBinCols); 

EvoCCFeats=false(NumArchOff+length(NonArchCCFit),Param.NumFeat); 

EvoCCFit=NaN(NumArchOff+length(NonArchCCFit),1); 

EvoCCFitComp.TotObs=NaN(NumArchOff+length(NonArchCCFit),1); 

EvoCCFitComp.TotObsT=NaN(NumArchOff+length(NonArchCCFit),1); 

EvoCCFitComp.TotCCObs=NaN(NumArchOff+length(NonArchCCFit),1); 
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EvoCCFitComp.TotCCObsT=NaN(NumArchOff+length(NonArchCCFit),1); 

EvoCCOrder=NaN(NumArchOff+length(NonArchCCFit),1); 

EvoCCMatchLocs=false(Param.NumObs,NumArchOff+length(NonArchCCFit)); 

EvoCCAge=NaN(NumArchOff+length(NonArchCCFit),1); 

EvoArchiveMask=false(NumArchOff+length(NonArchCCFit),1); 

% If there is an ArchPop then perform one task otherwise another 

if NumArchOff>0 

    % Then an archive age layer is present 

    % Determine the number of age layers 

    UniqueLayers=unique(MateCCAgeLayer); 

    NumLayers=length(UniqueLayers); 

    % Initialize start 

    start=1; 

    % Run a for loop so that each age layer can undergo either 

    % mutation or crossover 

    for i=1:NumLayers 

        % perform crossover or mutation on the current layer 

        CurLayer=UniqueLayers(NumLayers-i+1); 

        % Create a mask for the CCs that will evolve 

        CurMask=MateCCAgeLayer==CurLayer; 

        % Now select the necessary data for mutation or crossover 

        CurMateCC=MateCC(CurMask,:); 
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        CurCCFeats=MateCCFeats(CurMask,:); 

        CurCCFit=MateCCFit(CurMask); 

        CurCCAge=MateCCAge(CurMask); 

        % If this is the 1st loop then CurNumOff=ArchNumOff 

        if i~=1 

            CurNumOff=sum(CurMask); 

        else 

            CurNumOff=NumArchOff; 

            % Also add 1 to the age of the selected archived offspring 

            CurCCAge(1:NumArchOff)=CurCCAge(1:NumArchOff)+1; 

        end 

        clear CurMask 

        % If the current layer isn't one then add the younger layer 

        % to mate with 

        if CurLayer~=1 

            % Add a layer to the current layer for mating 

            CurMask=MateCCAgeLayer==CurLayer-1; 

            CurMateCC=[CurMateCC; MateCC(CurMask,:)]; 

            CurCCFeats=[CurCCFeats; MateCCFeats(CurMask,:)]; 

            CurCCFit=[CurCCFit; MateCCFit(CurMask)]; 

            CurCCAge=[CurCCAge; MateCCAge(CurMask)]; 

            clear CurMask 
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        end 

        % Now perform crossover and or mutation 

        [OffCC, OffCCFeats, OffCCFit, OffCCFitComp, OffCCOrder,... 

            OffCCMatchLocs, OffCCAge, ArchiveMask, CCstats]=... 

              CCMutCross(CurMateCC,CurCCFeats,CurCCFit,CurCCAge,... 

                CurNumOff,Param,DataBin,NaNMask,TargetClass,CCstats); 

        clear CurLayer 

        clear CurMateCC 

        clear CurCCFeats 

        clear CurCCAge 

        clear CurNumOff         

        % Now save the offspring 

        % Determine the number of offspring 

        NumOff=length(ArchiveMask); 

        EvoCC(start:start+NumOff-1,:)=OffCC; 

        EvoCCFeats(start:start+NumOff-1,:)=OffCCFeats; 

        EvoCCFit(start:start+NumOff-1)=OffCCFit; 

        EvoCCFitComp.TotObs(start:start+NumOff-1)=OffCCFitComp.TotObs; 

        EvoCCFitComp.TotObsT(start:start+NumOff-1)=OffCCFitComp.TotObsT; 

        EvoCCFitComp.TotCCObs(start:start+NumOff-1)=OffCCFitComp.TotCCObs; 

        EvoCCFitComp.TotCCObsT(start:start+NumOff-1)= ... 

                                                   OffCCFitComp.TotCCObsT; 
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        EvoCCOrder(start:start+NumOff-1)=OffCCOrder; 

        EvoCCMatchLocs(:,start:start+NumOff-1)=OffCCMatchLocs; 

        EvoCCAge(start:start+NumOff-1)=OffCCAge; 

        EvoArchiveMask(start:start+NumOff-1)=ArchiveMask;                 

        % update the start 

        start=start+NumOff; 

        clear NumOff 

    end     

    % Increase only the age of the archive population that underwent either 

    % mutation or crossover 

    ArchCCAge(ID(SelCCVec))=ArchCCAge(ID(SelCCVec))+1; 

else 

    % then age layers do not have an archive layer 

    % Determine the number of age layers 

    UniqueLayers=unique(MateCCAgeLayer); 

    NumLayers=length(UniqueLayers); 

    % set a start counter 

    start=1; 

    % Run a for loop so that each age layer can undergo either 

    % mutation or crossover 

    for i=1:NumLayers 

        % perform crossover or mutation on the current layer 
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        CurLayer=UniqueLayers(NumLayers-i+1); 

        % Create a mask for the CCs that will evolve 

        CurMask=MateCCAgeLayer==CurLayer; 

        % Now select the necessary data for mutation or crossover 

        CurMateCC=MateCC(CurMask,:); 

        CurCCFeats=MateCCFeats(CurMask,:); 

        CurCCFit=MateCCFit(CurMask); 

        CurCCAge=MateCCAge(CurMask); 

        CurNumOff=sum(CurMask); 

        clear CurMask 

        % If the current layer isn't one then add the younger layer 

        % to mate with 

        if CurLayer~=1 

            % Add a layer to the current layer for mating 

            CurMask=MateCCAgeLayer==CurLayer-1; 

            CurMateCC=[CurMateCC; MateCC(CurMask,:)]; 

            CurCCFeats=[CurCCFeats; MateCCFeats(CurMask,:)]; 

            CurCCFit=[CurCCFit; MateCCFit(CurMask)]; 

            CurCCAge=[CurCCAge; MateCCAge(CurMask)]; 

            clear CurMask 

        end 

        % Now perform crossover and or mutation 
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        [OffCC, OffCCFeats, OffCCFit, OffCCFitComp, OffCCOrder,... 

            OffCCMatchLocs, OffCCAge, ArchiveMask, CCstats]=... 

              CCMutCross(CurMateCC,CurCCFeats,CurCCFit,CurCCAge,... 

                 CurNumOff,Param,DataBin,NaNMask,TargetClass,CCstats); 

        clear CurLayer 

        clear CurMateCC 

        clear CurCCFeats 

        clear CurCCAge 

        clear CurNumOff         

        % Now save the offspring 

        % Determine the number of offspring 

        NumOff=length(ArchiveMask); 

        EvoCC(start:start+NumOff-1,:)=OffCC; 

        EvoCCFeats(start:start+NumOff-1,:)=OffCCFeats; 

        EvoCCFit(start:start+NumOff-1)=OffCCFit; 

        EvoCCFitComp.TotObs(start:start+NumOff-1)=OffCCFitComp.TotObs; 

        EvoCCFitComp.TotObsT(start:start+NumOff-1)=OffCCFitComp.TotObsT; 

        EvoCCFitComp.TotCCObs(start:start+NumOff-1)=OffCCFitComp.TotCCObs; 

        EvoCCFitComp.TotCCObsT(start:start+NumOff-1)=... 

                                                    OffCCFitComp.TotCCObsT; 

        EvoCCOrder(start:start+NumOff-1)=OffCCOrder; 

        EvoCCMatchLocs(:,start:start+NumOff-1)=OffCCMatchLocs; 
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        EvoCCAge(start:start+NumOff-1)=OffCCAge; 

        EvoArchiveMask(start:start+NumOff-1)=ArchiveMask;         

        % update the start 

        start=start+NumOff; 

        clear NumOff 

    end 

end 

% Reduce offspring to only those that were actually kept 

EvoCC=EvoCC(1:start-1,:); 

EvoCCFeats=EvoCCFeats(1:start-1,:); 

EvoCCFit=EvoCCFit(1:start-1); 

EvoCCFitComp.TotObs=EvoCCFitComp.TotObs(1:start-1); 

EvoCCFitComp.TotObsT=EvoCCFitComp.TotObsT(1:start-1); 

EvoCCFitComp.TotCCObs=EvoCCFitComp.TotCCObs(1:start-1); 

EvoCCFitComp.TotCCObsT=EvoCCFitComp.TotCCObsT(1:start-1); 

EvoCCOrder=EvoCCOrder(1:start-1); 

EvoCCMatchLocs=EvoCCMatchLocs(:,1:start-1); 

EvoCCAge=EvoCCAge(1:start-1); 

EvoArchiveMask=EvoArchiveMask(1:start-1); 

clear start 

% Now extract the archived population 

ArchCCs=[ArchCCs; EvoCC(EvoArchiveMask,:)]; 
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ArchCCFeats=[ArchCCFeats; EvoCCFeats(EvoArchiveMask,:)]; 

ArchCCFit=[ArchCCFit; EvoCCFit(EvoArchiveMask)]; 

ArchCCFitComp.TotObs=[ArchCCFitComp.TotObs; ... 

                                      EvoCCFitComp.TotObs(EvoArchiveMask)]; 

ArchCCFitComp.TotObsT=[ArchCCFitComp.TotObsT; ...    

                                     EvoCCFitComp.TotObsT(EvoArchiveMask)]; 

ArchCCFitComp.TotCCObs=[ArchCCFitComp.TotCCObs; ... 

                                    EvoCCFitComp.TotCCObs(EvoArchiveMask)]; 

ArchCCFitComp.TotCCObsT=[ArchCCFitComp.TotCCObsT; ... 

                                   EvoCCFitComp.TotCCObsT(EvoArchiveMask)]; 

ArchCCOrder=[ArchCCOrder; EvoCCOrder(EvoArchiveMask)]; 

ArchCCMatchLocs=[ArchCCMatchLocs EvoCCMatchLocs(:,EvoArchiveMask)]; 

ArchCCAge=[ArchCCAge; EvoCCAge(EvoArchiveMask)]; 

% Now extract the non-archived population 

NonArchCCs=[NonArchCCs; EvoCC(~EvoArchiveMask,:)]; 

NonArchCCFeats=[NonArchCCFeats; EvoCCFeats(~EvoArchiveMask,:)]; 

NonArchCCFit=[NonArchCCFit; EvoCCFit(~EvoArchiveMask)]; 

NonArchCCFitComp.TotObs=[NonArchCCFitComp.TotObs; ... 

                                     EvoCCFitComp.TotObs(~EvoArchiveMask)]; 

NonArchCCFitComp.TotObsT=[NonArchCCFitComp.TotObsT; ... 

                                    EvoCCFitComp.TotObsT(~EvoArchiveMask)]; 

NonArchCCFitComp.TotCCObs=[NonArchCCFitComp.TotCCObs; ... 
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                                   EvoCCFitComp.TotCCObs(~EvoArchiveMask)]; 

NonArchCCFitComp.TotCCObsT=[NonArchCCFitComp.TotCCObsT; ... 

                                  EvoCCFitComp.TotCCObsT(~EvoArchiveMask)]; 

NonArchCCOrder=[NonArchCCOrder; EvoCCOrder(~EvoArchiveMask)]; 

NonArchCCMatchLocs=[NonArchCCMatchLocs 

EvoCCMatchLocs(:,~EvoArchiveMask)]; 

NonArchCCAge=[NonArchCCAge; EvoCCAge(~EvoArchiveMask)];         

clear EvoArchiveMask 

8.1.2.4 Conjunctive Clause Mutation/Crossover (CCMutCross) 

function [OffCC, OffCCFeats, OffCCFit, OffCCFitComp, OffCCOrder,... 

            OffCCMatchLocs, OffCCAge, ArchiveMask, CCstats]=... 

              

CCMutCross(MateCC,MateCCFeats,MateCCFit,MateCCAge,NumOff,Param,... 

                         DataBin,NaNMask,TargetClass,CCstats) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Created by John Hanley 

% 

% October 17, 2016 

% Last updated: October 18, 2016 

% 

% CCMutCross performs mutation or crossover for my evolutionary algoirthm. 

% The crossover is a little different than typical crossover since the 
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% tournament selection selects the potential mate with the most features in 

% common. Also, the crossover will take active features from both parents. 

% 

% Inputs: 

% MateCC = The mating population of conjunctive clauses.  Only conjunctive 

%          clauses 1:NumOff will undergo crossover or mutation 

% MateCCFeats = The features present for each of the conjunctive clauses in 

%               the mating population. 

% MateCCFit = The fitness of the mates. 

% MateCCAge = The age of the conjunctive clauses in the mating population. 

% NumOff = The number of conjunctive clauses that will undergo either 

%          crossover or mutation and produce one offspring each. 

% Param = general parameters for the evolutionary algorithm. 

% DataBin = The data as a binary logical matrix. 

% NaNMask = A logical mask of the location of the NaN values in the 

%           dataset. 

% TargetClass = A logical vector of the observations that have the output 

%               class. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

% Outputs: 

% OffCC = The conjunctive clauses of the offspring of either crossover or 
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%         mutation. 

% OffCCFeats = The features that are present in the OffCC. 

% OffCCFit = The fitness of the OffCC using the hypergeometric PMF. 

% OffCCFitComp = The raw values that are fed into the fitness function. 

% OffCCOrder = The order of the conjunctive clauses. 

% OffCCMatchLocs = A logical matrix indicating which observations the OffCC 

%                  matches. 

% OffCCAge = The age of the OffCC, calculated as the maximum age of the 

%            parents. 

% ArchiveMask = A logical mask indicating teh offspring that should be 

%               archived. 

% CCstats = Structure array statistics on the conjunctive clauses. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% First determine the number of CCs in the mating Pop 

NumCCs=size(MateCC,1); 

% First randomly determine which inidividuals will undergo mutation and 

% which will undergo crossover 

if NumCCs~=1 

    % Then randomly select crossover or mutation 

    CrossOver=rand(NumOff,1)<Param.Px; 

else 
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    CrossOver=false(1); 

end 

% For efficiency 

OffCC=false(NumOff,Param.NumBinCols); 

OffCCFeats=false(NumOff,Param.NumFeat); 

OffCCFit=NaN(NumOff,1); 

OffCCFitComp.TotObs=NaN(NumOff,1); 

OffCCFitComp.TotObsT=NaN(NumOff,1); 

OffCCFitComp.TotCCObs=NaN(NumOff,1); 

OffCCFitComp.TotCCObsT=NaN(NumOff,1); 

OffCCOrder=NaN(NumOff,1); 

OffCCMatchLocs=false(Param.NumObs,NumOff); 

OffCCAge=NaN(NumOff,1); 

ArchiveMask=false(NumOff,1); 

KeepMask=false(NumOff,1); 

% Now run a for loop where each selected individual will either undergo 

% mutation or crossover 

for i=1:NumOff 

    if CrossOver(i) 

        % Then the current MateCC will undergo crossover 

        % Set up random mate population 

        PotMatePop=setdiff(1:NumCCs,i); 
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        % Now randomly select the potential mates 

        PotMateInd=randi(NumCCs-1,[Param.TournSize,1]); 

        PotMates=PotMatePop(PotMateInd); 

        clear PotMatePop 

        clear PotMateInd         

        % Determine the best feat 

        BestMask=MateCCFit(PotMates)==min(MateCCFit(PotMates));         

        % If there is more than one mate selected then randomly pick mate 

        if sum(BestMask)==1 

            % Then rthe the mate ID is easy 

            MateID=PotMates(BestMask); 

        else 

            % Randomly choose a Mate 

            PotMates=PotMates(BestMask); 

            RandPick=randi(sum(BestMask),1); 

            MateID=PotMates(RandPick); 

            clear RandPick 

        end 

        clear PotMates         

        % Set the offspring age 

        % The age of the offspring is the age of the oldest parent 

        OffCCAge(i)=max([MateCCAge(i) MateCCAge(MateID)]);         
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        % Now randomly determine the features from the 1st parent 

        P1FeatInd=rand(1,Param.NumFeat)<0.5; 

        % Now Determine the parent 1 and 2 CC columns 

        P1CCcols=[Param.FeatInd{P1FeatInd}]; 

        P2CCcols=[Param.FeatInd{~P1FeatInd}];         

        % Insert the data for the offspring 

        OffCC(i,P1CCcols)=MateCC(i,P1CCcols); 

        OffCC(i,P2CCcols)=MateCC(MateID,P2CCcols); 

        % Create the feature matrix 

        OffCCFeats(i,P1FeatInd)=MateCCFeats(i,P1FeatInd); 

        OffCCFeats(i,~P1FeatInd)=MateCCFeats(MateID,~P1FeatInd);         

        % check to see if the offsrping is the same as either parent or 

        % there are no features selected 

        if isequal(OffCC(i,:),MateCC(i,:))||... 

                    isequal(OffCC(i,:),MateCC(MateID,:))||... 

                    sum(OffCCFeats(i,:))==0 

            % Then switch the offspring 

            OffCC(i,P2CCcols)=MateCC(i,P2CCcols); 

            OffCC(i,P1CCcols)=MateCC(MateID,P1CCcols); 

            OffCCFeats(i,~P1FeatInd)=MateCCFeats(i,~P1FeatInd); 

            OffCCFeats(i,P1FeatInd)=MateCCFeats(MateID,P1FeatInd); 

        end 
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        clear P1CCcols 

        clear P2CCcols 

        clear P1FeatInd 

        clear MateID         

    else 

        % Then the current MateCC will undergo mutation 

        % First randomly choose which features will undergo mutation 

        MutLocs=rand(1,Param.NumFeat)<Param.Pm; 

        % If no location was selected then randomly change one feature 

        if sum(MutLocs)==0; 

            MutLocs(randi(Param.NumFeat))=true(); 

        end 

        % Set the offspring equal to the parent 

        OffCC(i,:)=MateCC(i,:); 

        OffCCFeats(i,:)=MateCCFeats(i,:); 

        OffCCAge(i)=MateCCAge(i); 

        % Extract the mutation feature indeces 

        MutInd=find(MutLocs); 

        clear MutLocs 

        % Determine if any of the mutation locations should be made 

        % inactive 

        InActFeat=rand(1,length(MutInd))<Param.Pwc; 
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        % Check to see that at least one feature will be left active in the 

        % offspring 

        if sum(InActFeat)==length(MutInd)&&sum(OffCCFeats(i,MutInd))== ... 

                                                       sum(OffCCFeats(i,:)) 

            % Then randomly change one location to false for wildcard 

            InActFeat(randi(length(MutInd)))=false(); 

        end         

        % Run a for loop to change the features at each location 

        for j=1:length(MutInd) 

            % Grab the jth MutInd and determine if the feature is active  

            % and if it is active and InActFeat is true then make it 

            % inactive 

            if OffCCFeats(i,MutInd(j))&&InActFeat(j) 

                % Then make the feature inactive 

                % First find the index of feature values 

                CurInd=[Param.FeatInd{MutInd(j)}]; 

                % Now set the conjunctive clause here to false 

                OffCC(i,CurInd)=false(); 

                clear CurInd 

                % Now set the feature to false 

                OffCCFeats(i,MutInd(j))=false(); 

            elseif ~OffCCFeats(i,MutInd(j)) 



270 

 

                % Then activate the feature and randomly fill in values 

                OffCCFeats(i,MutInd(j))=true(); 

                % Now determine the datatype of the feature 

                if Param.DataType(MutInd(j))==1 

                    % Then the data is continuous or discrete 

                    % Determine the CurIndex in the CCs 

                    CurInd=[Param.FeatInd{MutInd(j)}]; 

                    % Determine the range of the data 

                    CurRange=length(CurInd); 

                    % Now randomly select a range that will be covered 

                    RandSelRange=randi(CurRange-1,1); 

                    % Now randomly select a lower bound 

                    LB=randi(CurRange-RandSelRange+1,1); 

                    % Now calculate the upperbound 

                    UB=LB+RandSelRange-1; 

                    clear RandSelRange 

                    % Create a logical vector the same size as the CurInd 

                    NewVals=false(1,CurRange); 

                    clear CurRange 

                    % Set the new values LB:UB range as true 

                    NewVals(LB:UB)=true(); 

                    % Insert the new values 
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                    OffCC(i,CurInd)=NewVals; 

                    clear CurInd 

                    clear LB 

                    clear UB 

                    clear NewVals 

                elseif Param.DataType(MutInd(j))==2 

                    % Then the data is categorical 

                    % Determine the CurIndex in the CCs 

                    CurInd=[Param.FeatInd{MutInd(j)}]; 

                    % Determine the number of categories of the feature 

                    CurNumCats=length(CurInd); 

                    % Determine how many categories will be in the CC 

                    SelNumCats=randi(CurNumCats-1,1); 

                    % Randomly select the categories 

                    SelCats=randperm(CurNumCats,SelNumCats); 

                    clear SelNumCats 

                    % Create a logical vector the same size as the CurInd 

                    NewVals=false(1,CurNumCats); 

                    clear CurNumCats 

                    % Now set the selected categories to true 

                    NewVals(SelCats)=true(); 

                    % Insert the new values 
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                    OffCC(i,CurInd)=NewVals; 

                    clear CurInd 

                    clear SelCats 

                    clear NewVals 

                elseif Param.DataType(MutInd(j))==3 

                    % Then the data is unique categorical or binary 

                    % Determine the CurIndex in the CCs 

                    CurInd=[Param.FeatInd{MutInd(j)}]; 

                    % Determine the number of categories of the feature 

                    CurNumCats=length(CurInd); 

                    % Randomly select a category to put into the CC 

                    SelCat=randi(CurNumCats,1); 

                    % Create a logical vector the same size as the CurInd 

                    NewVals=false(1,CurNumCats); 

                    clear CurNumCats 

                    % Now set the selected categories to true 

                    NewVals(SelCat)=true(); 

                    % Insert the new values 

                    OffCC(i,CurInd)=NewVals; 

                    clear CurInd 

                    clear SelCat 

                    clear NewVals                     
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                end 

            else 

                % Then the feature is active and should have the values 

                % changed 

                if Param.DataType(MutInd(j))==1 

                    % Then the data is continuous or discrete 

                    % Determine the CurIndex in the CCs 

                    CurInd=[Param.FeatInd{MutInd(j)}]; 

                    % Determine the number of values for the feature 

                    CurNumVals=length(CurInd); 

                    % Determine the values that are currently active 

                    CurVals=find(OffCC(i,CurInd)); 

                    % Determine the current lower and upper bounds 

                    LB=min(CurVals); 

                    UB=max(CurVals); 

                    % Determine if the lower bound is at the min and if the 

                    % upper bound is at the max 

                    if LB==1 

                        % Then ensure that the upper bound is not changed 

                        % to the max 

                        % Randomly choose to change the upper or lower 

                        % bound unless LB==UB then the UB will be changed 
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                        if LB==UB 

                            % Then the upperbound will be changed 

                            % Randomly pick a new upper bound 

                            UB=randi(CurNumVals-2,1)+1; 

                        elseif randi(2,1)==1 

                            % then the lower bound will be increased 

                            % Randomly pick a new lower bound 

                            LB=randi(UB-1,1)+1; 

                        else 

                            % then the upper bound will be changed 

                            % Determine the values that the upperbound can 

                            % take 

                            PosUB=1:CurNumVals-1; 

                            % Remove the current upper bound from the set 

                            % of values 

                            PosUB=setdiff(PosUB,UB); 

                            % Randomly pick a new upper bound index 

                            UBInd=randi(length(PosUB),1); 

                            % Now extract the new upper bound 

                            UB=PosUB(UBInd); 

                            clear PosUB 

                            clear UBInd 



275 

 

                        end 

                    elseif UB==CurNumVals 

                        % Then ensure that the lower bound is not changed 

                        % to the min 

                        if LB==UB 

                            % Then the lower bound will be decreased 

                            % Randomly pick a new lower bound 

                            LB=randi(CurNumVals-2,1)+1; 

                        elseif randi(2,1)==1 

                            % Then the lower bound will be changed 

                            % Determine the values the lower bound can take 

                            PosLB=2:CurNumVals; 

                            % Remove thecurrent lower bound from the set of 

                            % values 

                            PosLB=setdiff(PosLB,LB); 

                            % Randomly pick a new lower bound index 

                            LBInd=randi(length(PosLB),1); 

                            % Now extract the new lower bound 

                            LB=PosLB(LBInd); 

                            clear PosLB 

                            clear LBInd 

                        else 
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                            % Then the upper bound will be decreased 

                            % Determine the values the upper bound can take 

                            PosUB=LB:UB-1; 

                            % Now randomly pick a new UB index 

                            UBInd=randi(length(PosUB),1); 

                            % Now extract the new upper bound 

                            UB=PosUB(UBInd); 

                            clear PosUB 

                            clear UBInd 

                        end 

                    else 

                        % Then no need to worry about the LB being the min 

                        % nor the UB being the max 

                        % randomly choose if the lower or upper bound will 

                        % change 

                        if randi(2,1)==1 

                            % Then the lower bound will change 

                            % Determine the possible lower bound values 

                            PosLB=1:UB; 

                            % Remove the current lower bound from the set 

                            % of values 

                            PosLB=setdiff(PosLB,LB); 
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                            % Randomly pick a new LB index 

                            LBInd=randi(length(PosLB),1); 

                            % Now extract the new lower bound 

                            LB=PosLB(LBInd); 

                            clear PosLB 

                            clear LBInd 

                        else 

                            % Then the upper bound will change 

                            % Determine the possible upper bound values 

                            PosUB=LB:CurNumVals; 

                            % Remove the current upper bound from the set 

                            % of values 

                            PosUB=setdiff(PosUB,UB); 

                            % Randomly pick a new upper bound index 

                            UBInd=randi(length(PosUB),1); 

                            % Now extract the new upper bound 

                            UB=PosUB(UBInd); 

                            clear PosUB 

                            clear UBInd 

                        end 

                    end 

                    % Now with the new upper or lower bounds create the new 
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                    % values 

                    % Create a logical vector the same size as the CurInd 

                    NewVals=false(1,CurNumVals); 

                    % Insert true between LB and UB 

                    NewVals(LB:UB)=true(); 

                    % Insert the new values 

                    OffCC(i,CurInd)=NewVals; 

                    clear LB 

                    clear UB 

                    clear CurInd 

                    clear NewVals 

                    clear CurNumVals 

                    clear CurVals 

                elseif Param.DataType(MutInd(j))==2 

                    % Then the data is categorical 

                    % Determine the CurIndex in the CCs 

                    CurInd=[Param.FeatInd{MutInd(j)}]; 

                    % Determine the number of categories of the feature 

                    CurNumCats=length(CurInd); 

                    % Determine CurLogic vector of values 

                    NewVals=OffCC(i,CurInd); 

                    % Determine the categories that are currently active 



279 

 

                    CurCats=find(NewVals); 

                    if length(CurCats)==1 

                        % Then the category can either be changed or 

                        % another category can be addded 

                        % Randomly choose which one will be selected 

                        RandChoice=randi(2,1); 

                        if RandChoice==1 

                            % Then a category will be randomly changed 

                            % Determine the categories to choose from 

                            PosCats=setdiff(1:CurNumCats,CurCats); 

                            % Randomly choose a category to add 

                            AddInd=randi(length(PosCats),1); 

                            % Randomly choose a category to remove 

                            RemoveInd=randi(length(CurCats),1); 

                            % Now add the category that is meant to be 

                            % added and remove the category that is meant 

                            % to be removed 

                            NewVals(PosCats(AddInd))=true(); 

                            NewVals(CurCats(RemoveInd))=false(); 

                            clear PosCats 

                            clear AddInd 

                            clear RemoveInd 
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                            % Insert the new values 

                            OffCC(i,CurInd)=NewVals; 

                        else 

                            % Then a category will be randomly added 

                            % Determine the categories to choose from 

                            PosCats=setdiff(1:CurNumCats,CurCats); 

                            % Randomly choose a category to add 

                            AddInd=randi(length(PosCats),1); 

                            % Now add the category that is meant to be 

                            % added and remove the category that is meant 

                            % to be removed 

                            NewVals(PosCats(AddInd))=true(); 

                            clear AddInd 

                            clear PosCats 

                            % Insert the new values 

                            OffCC(i,CurInd)=NewVals; 

                        end 

                    elseif length(CurCats)==CurNumCats-1 

                        % Then a category can either be changed or a 

                        % category can be removed 

                        % Randomly choose which one will be selected 

                        RandChoice=randi(2,1); 
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                        if RandChoice==1 

                            % Then a category will be randomly changed 

                            % Determine the categories to choose from 

                            PosCats=setdiff(1:CurNumCats,CurCats); 

                            % Randomly choose a category to add 

                            AddInd=randi(length(PosCats),1); 

                            % Randomly choose a category to remove 

                            RemoveInd=randi(length(CurCats),1); 

                            % Now add the category that is meant to be 

                            % added and remove the category that is meant 

                            % to be removed 

                            NewVals(PosCats(AddInd))=true(); 

                            NewVals(CurCats(RemoveInd))=false(); 

                            clear PosCats 

                            clear AddInd 

                            clear RemoveInd 

                            % Insert the new values 

                            OffCC(i,CurInd)=NewVals; 

                        else 

                            % Then a category will be randomly removed 

                            % Randomly choose a category to remove 

                            RemoveInd=randi(length(CurCats),1); 
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                            % Now add the category that is meant to be 

                            % added and remove the category that is meant 

                            % to be removed 

                            NewVals(CurCats(RemoveInd))=false(); 

                            clear RemoveInd 

                            % Insert the new values 

                            OffCC(i,CurInd)=NewVals; 

                        end 

                    else 

                        % Then either a category can be chaged a category 

                        % can be added or a category can be deleted 

                        % Randomly choose which one will be selected 

                        RandChoice=randi(3,1); 

                        if RandChoice==1 

                            % Then a category will be randomly changed 

                            % Determine the categories to choose from 

                            PosCats=setdiff(1:CurNumCats,CurCats); 

                            % Randomly choose a category to add 

                            AddInd=randi(length(PosCats),1); 

                            % Randomly choose a category to remove 

                            RemoveInd=randi(length(CurCats),1); 

                            % Now add the category that is meant to be 
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                            % added and remove the category that is meant 

                            % to be removed 

                            NewVals(PosCats(AddInd))=true(); 

                            NewVals(CurCats(RemoveInd))=false(); 

                            clear PosCats 

                            clear AddInd 

                            clear RemoveInd 

                            % Insert the new values 

                            OffCC(i,CurInd)=NewVals; 

                        elseif RandChoice==2 

                            % Then a category will be randomly added 

                            % Determine the categories to choose from 

                            PosCats=setdiff(1:CurNumCats,CurCats); 

                            % Randomly choose a category to add 

                            AddInd=randi(length(PosCats),1); 

                            % Now add the category that is meant to be 

                            % added and remove the category that is meant 

                            % to be removed 

                            NewVals(PosCats(AddInd))=true(); 

                            clear AddInd 

                            clear PosCats 

                            % Insert the new values 
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                            OffCC(i,CurInd)=NewVals; 

                        else 

                            % Then a category will be randomly removed 

                            % Randomly choose a category to remove 

                            RemoveInd=randi(length(CurCats),1); 

                            % Now add the category that is meant to be 

                            % added and remove the category that is meant 

                            % to be removed 

                            NewVals(CurCats(RemoveInd))=false(); 

                            clear RemoveInd 

                            % Insert the new values 

                            OffCC(i,CurInd)=NewVals; 

                        end 

                    end 

                    clear CurNumCats 

                    clear CurCats 

                    clear RandChoice 

                    clear CurInd 

                    clear NewVals 

                elseif Param.DataType(MutInd(j))==3 

                    % Then the data is unique categorical or binary 

                    % Determine the CurIndex in the CCs 
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                    CurInd=[Param.FeatInd{MutInd(j)}]; 

                    % Determine the number of categories of the feature 

                    CurNumCats=length(CurInd); 

                    % Determine the category that is currently active 

                    CurCat=find(OffCC(i,CurInd)); 

                    % Create a list of possible categories that can be 

                    % activated 

                    PosCats=setdiff(1:CurNumCats,CurCat); 

                    clear CurCat 

                    % Now randomly select a category index 

                    SelCatInd=randi(CurNumCats-1,1); 

                    % Grab the selected category 

                    SelCat=PosCats(SelCatInd); 

                    clear PosCats 

                    clear SelCatInd 

                    % Create a logical vector the same size as the CurInd 

                    NewVals=false(1,CurNumCats); 

                    clear CurNumCats 

                    % Now set the selected categories to true 

                    NewVals(SelCat)=true(); 

                    % Insert the new values 

                    OffCC(i,CurInd)=NewVals; 
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                    clear CurInd 

                    clear SelCat 

                    clear NewVals        

                end 

            end 

        end 

    end 

    % Calculate the fitness of the newly created offspring 

    % First calculate the order of the offspring 

    OffCCOrder(i)=sum(OffCCFeats(i,:),2); 

    % Create a temporary Order to handle CCs with too many features 

    if OffCCOrder(i)<=Param.Thresh(end,1) 

        % Then the order is unchanged 

        TempOrder=OffCCOrder(i); 

    else 

        TempOrder=Param.Thresh(end,1); 

    end  

    % Now Determine the fitness of the new rule 

    % First Determine the Total Observations that have data for the 

    % selected features 

    TotObs=sum(sum(~NaNMask(:,OffCCFeats(i,:)),2)==OffCCOrder(i)); 

    TotObsT=sum(sum(~NaNMask(TargetClass,OffCCFeats(i,:)),2)== ... 
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                                                            OffCCOrder(i));     

    % Now determine which observations the current Conjunctive clause 

    % Matches 

    % Need to index the columns of the features that are selected 

    CurInd=[Param.FeatInd{OffCCFeats(i,:)}]; 

    % First add the conjunctive clause to the data 

    TwosSum=bsxfun(@plus,OffCC(i,CurInd),DataBin(:,CurInd)); 

    clear CurInd 

    % Now create a twos mask 

    TwosMask=TwosSum==2; 

    clear TwosSum 

    % Now determine the total number of twos 

    TotTwos=sum(TwosMask,2); 

    clear TwosMask 

    % Now create an observation match mask 

    OffCCMatchLocs(:,i)=TotTwos==OffCCOrder(i); 

    clear TotTwos 

    % Determine the total number of observations that match and are target 

    % class 

    TotCCObs=sum(OffCCMatchLocs(:,i)); 

    TotCCObsT=sum(OffCCMatchLocs(TargetClass,i)); 

    % If TotCCObsT/TotCCObs > TotObsT/TotObs then evaluate the fitness of 
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    % the Conjunctive clause using hypergeometric PMF 

    if TotCCObsT/TotCCObs>TotObsT/TotObs 

        % Calculate the fitness 

        OffCCFit(i)=hygepdf(TotCCObsT,TotObs,TotObsT,TotCCObs); 

        % Update the keep mask 

        KeepMask(i)=true(); 

        % Determine if the CC is archivable 

        % First extract the order mask 

        OrderMask=Param.Thresh(:,1)==TempOrder; 

        if sum(OrderMask)==0 

            % Then set the last OrderMask to true 

            OrderMask(end)=true(); 

        end 

        ArchiveMask(i)=OffCCFit(i)<=Param.Thresh(OrderMask,2); 

        if ArchiveMask(i) 

            % Then record an archived evaluation 

            CCstats.EvalsArchive(Param.CurGen,TempOrder)=... 

                           CCstats.EvalsArchive(Param.CurGen,TempOrder)+1; 

        else 

            % Record a non-archived evaluation 

            CCstats.EvalsNonArchive(Param.CurGen,TempOrder)=... 

                        CCstats.EvalsNonArchive(Param.CurGen,TempOrder)+1; 



289 

 

        end 

        clear OrderMask 

    else 

        OffCCFit(i)=1; 

    end 

    % Record the total number of evaluations for the current order 

    CCstats.EvalsAll(Param.CurGen,TempOrder)=... 

                               CCstats.EvalsAll(Param.CurGen,TempOrder)+1; 

    % Save the fitness component values 

    OffCCFitComp.TotObs(i)=TotObs; 

    OffCCFitComp.TotObsT(i)=TotObsT; 

    OffCCFitComp.TotCCObs(i)=TotCCObs; 

    OffCCFitComp.TotCCObsT(i)=TotCCObsT;     

    clear TotObs 

    clear TotObsT 

    clear TotCCObs 

    clear TotCCObsT     

    clear TempOrder 

end 

% Only keep the values in the keep mask 

OffCC=OffCC(KeepMask,:); 

OffCCFeats=OffCCFeats(KeepMask,:); 
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OffCCFit=OffCCFit(KeepMask,1); 

OffCCFitComp.TotObs=OffCCFitComp.TotObs(KeepMask,1); 

OffCCFitComp.TotObsT=OffCCFitComp.TotObsT(KeepMask,1); 

OffCCFitComp.TotCCObs=OffCCFitComp.TotCCObs(KeepMask,1); 

OffCCFitComp.TotCCObsT=OffCCFitComp.TotCCObsT(KeepMask,1); 

OffCCOrder=OffCCOrder(KeepMask,1); 

OffCCMatchLocs=OffCCMatchLocs(:,KeepMask); 

OffCCAge=OffCCAge(KeepMask); 

ArchiveMask=ArchiveMask(KeepMask,1); 

clear KeepMask 

8.1.3 Disjunctive Normal Form EA (DNFEA) 

 function [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc,... 

            ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,... 

            NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ... 

            NonArchDNFage, ParamDNF, DNFstats]=... 

            DNFEA(CCMatchLocs,TargetClass,ParamDNF) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Created by John Hanley 

% 

% October 24, 2016 

% Last Updated: October 25, 2016 

% 
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% DNFEA is the evolutionary algorithm designed to find the disjunctive 

% normal form (DNF) of the conjunctive clauses found using  

% the CCEA function. 

% 

% Inputs: 

% CCMatchLocs = A logical matrix where each row represents an observation 

%               and each column represents a conjunctive clause (CC). 

% TargetClass = A logical vector indicating the observations that are part 

%               of the target class. 

% ParamDNF = A structure array with the parameters needed to run the 

%            algorithm. 

%            .ALna = Number of non-archived age-layers. 

%            .GENn = The number of generations until a novel population is 

%                    introduced. 

%            .POPn = Number of DNFs created in novel population. 

%            .MAXcc = The maximum number of CCs allowed in novel population 

%            .TotGens = Total number of generations to run the algorithm. 

%            .Prx = The probability of crossover. 

%            .Pm = The probability of loci mutation. 

%            .Pbf = The probability that mutation is standard bit flip vs  

%                   targeted mutation. 

%            .Pxf = The Probability that mate is selected based on best  
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%                   fitness vs other metrics. 

%            .PxAlt = The cumulative sum for alternative mate selection. 

%            .PmAlt = The probabilities for targeted mutation (must sum to  

%                     one). 

%            .TournSize = The size of the tournament for mate selection 

%                         with replacement. 

%            .NonArchLMax = The maximum number of non-archived DNFs  

%                           allowed in each non-archive layer. 

%            .ArchOff = The maximum number of archived offsrping that will 

%                       undergo mutation or crossover. 

%            .Thresh = A matrix with the initial threshold settings. The 

%                      matrix has 4 columns with the first column  

%                      containing all of the orders of the DNFs that the 

%                      user is interested in. For instance if the user  

%                      wants to explore DNFs of orders 1 - 6, then each 

%                      row represents the order. The second column is the  

%                      initial probability threshold [0, 1]. The third  

%                      column is the minimum number of DNFs the user wants 

%                      to save for each order. The fourth and final column 

%                      is the maximum number of DNFs the user wants to  

%                      archive for the given order. If the maximum is   

%                      exceeded then the threshold for the given order is 
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%                      replaced. 

%            .BestFit = A logical indicator if the user wants to record the 

%                       the best fit each generation for each order. 

% 

% Outputs: 

% ArchDNF = The archived disjunctive normal form (DNF). Each 

%            column represents a DNF and each row represents a conjunctive  

%            clause. 

% ArchDNFMatchLocs = A logical matrix where each row represents an 

%                    observation and each column represents an ArchDNF. 

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF. 

% ArchDNFacc = The accuracy of the ArchDNF. 

% ArchDNFcov = The coverage of the ArchDNF. 

% ArchDNFage = The age of the ArchDNF. 

% NonArchDNF = The non-archived disjunctive normal form (DNF).  

%               Each column represents a DNF and each row represents a 

%               conjunctive clause. 

% NonArchDNFMatchLocs = A logical matrix where each row represents an 

%                       observation and each column represents an  

%                       NonArchDNF. 

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the  

%                 NonArchDNF. 
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% NonArchDNFacc = The accuracy of the NonArchDNF. 

% NonArchDNFcov = The coverage of the NonArchDNF. 

% NonArchDNFage = The age of the NonArchDNF. 

% ParamDNF = A structure array with the parameters needed to run the 

%            algorithm. 

% DNFstats = A struture array with various statistics on the DNF for each 

%            generation and each order. The main statistics are the number 

%            of fitness evaluations and the best fitness each generation 

%            for each order DNF. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% For efficiency 

DNFstats.EvalsAll=zeros(ParamDNF.TotGens, ParamDNF.MAXcc); 

DNFstats.EvalsArchive=zeros(ParamDNF.TotGens, ParamDNF.MAXcc); 

DNFstats.EvalsNonArchive=zeros(ParamDNF.TotGens, ParamDNF.MAXcc); 

if ParamDNF.BestFit 

    % Then the best fitness for each order for each generation will be 

    % recorded 

    DNFstats.BestFit=NaN(ParamDNF.TotGens, ParamDNF.MAXcc); 

end 

% Determine the current number of observations and number of target 

% observations 
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ParamDNF.NumObs=length(TargetClass); 

ParamDNF.TotTarC=sum(TargetClass); 

% Determine the number of conjunctive clauses 

ParamDNF.NumCCs=size(CCMatchLocs,2); 

% Set the current generation 

ParamDNF.CurGen=1; 

% first randomly create DNFs 

% Maybe create a probability that will pick conjunctive clauses that cover 

% target observations that are not well covered in the archiveDNF 

[NewDNF, NewDNFMatchLocs, NewDNFfit, NewDNFacc, NewDNFcov,... 

        ArchiveMask, DNFstats]=DNFPopInit(CCMatchLocs,TargetClass,... 

        ParamDNF,DNFstats);          

% Separate into archive and non-archive conjunctive clauses 

ArchDNF=NewDNF(ArchiveMask,:); 

ArchDNFMatchLocs=NewDNFMatchLocs(:,ArchiveMask); 

ArchDNFfit=NewDNFfit(ArchiveMask); 

ArchDNFacc=NewDNFacc(ArchiveMask); 

ArchDNFcov=NewDNFcov(ArchiveMask); 

ArchDNFage=ones(size(ArchDNFfit)); 

NonArchDNF=NewDNF(~ArchiveMask,:); 

NonArchDNFMatchLocs=NewDNFMatchLocs(:,~ArchiveMask); 

NonArchDNFfit=NewDNFfit(~ArchiveMask); 
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NonArchDNFacc=NewDNFacc(~ArchiveMask); 

NonArchDNFcov=NewDNFcov(~ArchiveMask); 

NonArchDNFage=ones(size(NonArchDNFfit)); 

clear NewDNF 

clear NewDNFMatchLocs 

clear NewDNFfit 

clear NewDNFacc 

clear NewDNFcov 

clear NewDNFage 

clear ArchiveMask 

% Clean the DNFs 

[ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ArchDNFcov,... 

    ArchDNFage, NonArchDNF, NonArchDNFMatchLocs, NonArchDNFfit,... 

    NonArchDNFacc, NonArchDNFcov, NonArchDNFage, ParamDNF, ... 

    DNFstats]=... 

    DNFreducepop(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,ArchDNFacc,... 

    ArchDNFcov,ArchDNFage,NonArchDNF,NonArchDNFMatchLocs,... 

    NonArchDNFfit,NonArchDNFacc,NonArchDNFcov,NonArchDNFage,... 

    ParamDNF,DNFstats); 

for gen=2:ParamDNF.TotGens 

    % set the current generation 

    ParamDNF.CurGen=gen; 
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    % Increase the age of the non-archived population 

    NonArchDNFage=NonArchDNFage+1;     

    % Determine if a new population should be added 

    if mod(gen,ParamDNF.GENn)~=0 

        % Then just perform crossover or mutation on population 

        [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ... 

            ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,... 

            NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ... 

            NonArchDNFage, DNFstats]=... 

            DNFEvolution(ArchDNF,ArchDNFMatchLocs,ArchDNFfit, ... 

            ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF, ... 

            NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc, ... 

            NonArchDNFcov,NonArchDNFage,CCMatchLocs,TargetClass,... 

            ParamDNF,DNFstats);         

        % Clean the DNFs 

        [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ... 

            ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,... 

            NonArchDNFfit,NonArchDNFacc, NonArchDNFcov, ... 

            NonArchDNFage, ParamDNF, DNFstats]=... 

            DNFreducepop(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,... 

            ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,... 

            NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,... 



298 

 

            NonArchDNFcov,NonArchDNFage,ParamDNF,DNFstats); 

    else 

        % Then add a new population and perform  crossover or mutation on  

        % population 

        % first perform mutation or crossover 

        % Then just perform crossover or mutation on population 

        [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ... 

            ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,... 

            NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ... 

            NonArchDNFage, DNFstats]=... 

            DNFEvolution(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,... 

            ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,... 

            NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,... 

            NonArchDNFcov,NonArchDNFage,CCMatchLocs,TargetClass,... 

            ParamDNF,DNFstats);         

        % Now create a new population of DNFs 

        [NewDNF, NewDNFMatchLocs, NewDNFfit, NewDNFacc, NewDNFcov,... 

            ArchiveMask, DNFstats]=DNFPopInit(CCMatchLocs,TargetClass,... 

            ParamDNF,DNFstats); 

        % First set the age of the NewDNF 

        NewDNFage=ones(size(NewDNFfit));         

        % Now combine the new DNFs with the existing population 
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        ArchDNF=[ArchDNF; NewDNF(ArchiveMask,:)]; 

        ArchDNFMatchLocs=[ArchDNFMatchLocs ... 

                                          NewDNFMatchLocs(:,ArchiveMask)]; 

        ArchDNFfit=[ArchDNFfit; NewDNFfit(ArchiveMask)]; 

        ArchDNFacc=[ArchDNFacc; NewDNFacc(ArchiveMask)]; 

        ArchDNFcov=[ArchDNFcov; NewDNFcov(ArchiveMask)]; 

        ArchDNFage=[ArchDNFage; NewDNFage(ArchiveMask)];         

        NonArchDNF=[NonArchDNF; NewDNF(~ArchiveMask,:)]; 

        NonArchDNFMatchLocs=[NonArchDNFMatchLocs... 

                                         NewDNFMatchLocs(:,~ArchiveMask)]; 

        NonArchDNFfit=[NonArchDNFfit; NewDNFfit(~ArchiveMask)]; 

        NonArchDNFacc=[NonArchDNFacc; NewDNFacc(~ArchiveMask)]; 

        NonArchDNFcov=[NonArchDNFcov; NewDNFcov(~ArchiveMask)]; 

        NonArchDNFage=[NonArchDNFage; NewDNFage(~ArchiveMask)];         

        clear NewDNF 

        clear NewDNFMatchLocs 

        clear NewDNFfit 

        clear NewDNFacc 

        clear NewDNFcov 

        clear NewDNFage 

        clear ArchiveMask         

        % Clean the DNFs 
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        [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ... 

            ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,... 

            NonArchDNFfit,NonArchDNFacc, NonArchDNFcov, ... 

            NonArchDNFage, ParamDNF, DNFstats]=... 

            DNFreducepop(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,... 

            ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,... 

            NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,... 

            NonArchDNFcov,NonArchDNFage,ParamDNF,DNFstats); 

    end 

end 

8.1.3.1 Disjunction of CC Population Initialization (DNFPopInit) 

function [NewDNF, NewDNFMatchLocs, NewDNFfit, NewDNFacc, NewDNFcov,... 

             ArchiveMask, DNFstats]=... 

             DNFPopInit(CCMatchLocs,TargetClass,ParamDNF,DNFstats) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Created by John Hanley 

%  

% October 20, 2016 

% Last Updated: October 20, 2016 

% 

% DNFPopInit is the population initialization algorithm for the DNF EA. 

% 
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% Inputs: 

% CCMatchLocs = A logical matrix with each column representing a 

%               conjunctive clause and each row representing an 

%               observation. 

% TargetClass = A logical vector indicating the observations that are in 

%               the target class. 

% ParamDNF = A structure array with the parameters needed to run DNFEA. 

% DNFstats = Statistics on the DNF evolution. 

% 

% Outputs: 

% NewDNF = The disjunctive normal form index. Each row  

%           represents a DNF and each column indexes a conjunctive clause. 

% NewDNFMatchLocs = Each column represents a DNF and each row represents  

%                    anobservation. NewDNFMatchLocs indexes the  

%                    observations the DNF matches. 

% NewDNFfit = The fitness of the DNF using the hypergeometric PMF 

% NewDNFacc = The accuracy (% True Positives) of the DNF. 

% NewDNFcov = The coverage of the DNF (i.e., % coverage of target 

%             observations). 

% ArchiveMask = A mask indicating the DNFs that should be archived. 

% DNFstats = Statistics on the DNF evolution. 

% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% first randomly create DNFs 

% Maybe create a probability that will pick conjunctive clauses that cover 

% target observations that are not well covered in the archiveDNF 

NewDNF=false(ParamDNF.POPn,ParamDNF.NumCCs); 

NewDNFMatchLocs=false(ParamDNF.NumObs,ParamDNF.POPn); 

NewDNFfit=NaN(ParamDNF.POPn,1); 

NewDNFacc=NaN(ParamDNF.POPn,1); 

NewDNFcov=NaN(ParamDNF.POPn,1); 

KeepMask=false(ParamDNF.POPn,1); 

ArchiveMask=false(ParamDNF.POPn,1); 

for i=1:ParamDNF.POPn 

    % First randomly determine the number of conjunctive clauses 

    NumCCs=randi(ParamDNF.MAXcc,1); 

    % Now randomly determine the conjunctive clauses that will be in DNF 

    CCind=randperm(ParamDNF.NumCCs,NumCCs); 

    % Set the new DNF 

    NewDNF(i,CCind)=true(); 

    % Extract the CCs to create the DNF 

    CurCCs=CCMatchLocs(:,CCind); 

    clear CCind 

    % Now determine the DNFMatchLocs 
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    CurCCsSum=sum(CurCCs,2); 

    clear CurCCs 

    % DNFMatchLocs is simply a mask of CurCCsSum>0 

    NewDNFMatchLocs(:,i)=CurCCsSum>0; 

    clear CurCCsSum 

    % Now determine the fitness 

    ntot=sum(NewDNFMatchLocs(:,i)); 

    xmatch=sum(NewDNFMatchLocs(TargetClass,i)); 

    % Ensure the order will be recorded 

    if NumCCs>ParamDNF.Thresh(end,1) 

        NumCCs=ParamDNF.Thresh(end,1); 

    end 

    % Determine if the DNF is a target class DNF 

    if xmatch/ntot>ParamDNF.TotTarC/ParamDNF.NumObs 

        % calculate the fitness function 

        NewDNFfit(i)=hygepdf(xmatch,ParamDNF.NumObs,ParamDNF.TotTarC,... 

                                                                     ntot); 

        % Calculate the accuracy and coverage 

        NewDNFacc(i)=xmatch/ntot*100; 

        NewDNFcov(i)=xmatch/ParamDNF.TotTarC*100; 

        % Set the KeepMask to true 

        KeepMask(i)=true(); 
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        % Determine if the new DNF should be archived 

        Tmask=ParamDNF.Thresh(:,1)==NumCCs; 

        if NewDNFfit(i)<=ParamDNF.Thresh(Tmask,2) 

            % Then it is archiveable 

            ArchiveMask(i)=true(); 

            DNFstats.EvalsArchive(ParamDNF.CurGen,NumCCs)=... 

                         DNFstats.EvalsArchive(ParamDNF.CurGen,NumCCs)+1; 

        else 

            % then it is non-archiveable 

            DNFstats.EvalsNonArchive(ParamDNF.CurGen,NumCCs)=... 

                      DNFstats.EvalsNonArchive(ParamDNF.CurGen,NumCCs)+1;             

        end 

        clear Tmask 

    end 

    % Record the an evaluation for the current order 

    DNFstats.EvalsAll(ParamDNF.CurGen,NumCCs)=... 

                             DNFstats.EvalsAll(ParamDNF.CurGen,NumCCs)+1; 

    clear NumCCs 

    clear ntot 

    clear xmatch 

end 

% Keep only the DNFs in the DNF mask 
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NewDNF=NewDNF(KeepMask,:); 

NewDNFMatchLocs=NewDNFMatchLocs(:,KeepMask); 

NewDNFfit=NewDNFfit(KeepMask,1); 

NewDNFacc=NewDNFacc(KeepMask,1); 

NewDNFcov=NewDNFcov(KeepMask,1); 

ArchiveMask=ArchiveMask(KeepMask,1); 

clear KeepMask 

8.1.3.2 Remove Repeat DNFs (DNFreducepop) 

function [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ... 

            ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,... 

            NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ... 

            NonArchDNFage, ParamDNF, DNFstats]=... 

            DNFreducepop(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,... 

            ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,... 

            NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,... 

            NonArchDNFcov,NonArchDNFage,ParamDNF,DNFstats) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Created by John Hanley 

% 

% October 24, 2016 

% Last Updated: October 24, 2016 

% 
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% DNFreducepop will remove any repeat disjunctive normal forms 

% (DNFS) and will reduce the DNFs populations if they exceed their  

% thresholds. 

% 

% Inputs: 

% ArchDNF = The archived disjunctive normal form (DNF). Each  

%            column represents a DNF and each row represents a conjunctive 

%            clause. 

% ArchDNFMatchLocs = A logical matrix where each row represents an 

%                    observation and each column represents an ArchDNF. 

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF. 

% ArchDNFacc = The accuracy of the ArchDNF. 

% ArchDNFcov = The coverage of the ArchDNF. 

% ArchDNFage = The age of the ArchDNF. 

% NonArchDNF = The non-archived disjunctive normal form (DNF). 

%               Each column represents a DNF and each row represents a  

%               conjunctive clause. 

% NonArchDNFMatchLocs = A logical matrix where each row represents an 

%                       observation and each column represents an  

%                       NonArchDNF. 

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the  

%                 NonArchDNF. 
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% NonArchDNFacc = The accuracy of the NonArchDNF. 

% NonArchDNFcov = The coverage of the NonArchDNF. 

% NonArchDNFage = The age of the NonArchDNF. 

% ParamDNF = A structure array with the parameters needed to run the 

%            algorithm. 

% DNFstats = Statistics on the DNF evolution. 

% 

% Outputs: 

% ArchDNF = The archived disjunctive normal form (DNF). Each  

%            column represents a DNF and each row represents a conjunctive 

%            clause. 

% ArchDNFMatchLocs = A logical matrix where each row represents an 

%                    observation and each column represents an ArchDNF. 

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF. 

% ArchDNFacc = The accuracy of the ArchDNF. 

% ArchDNFcov = The coverage of the ArchDNF. 

% ArchDNFage = The age of the ArchDNF. 

% NonArchDNF = The non-archived disjunctive normal form (DNF).  

%               Each column represents a DNF and each row represents a  

%               conjunctive clause. 

% NonArchDNFMatchLocs = A logical matrix where each row represents an 

%                       observation and each column represents an  
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%                       NonArchDNF. 

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the  

%                 NonArchDNF. 

% NonArchDNFacc = The accuracy of the NonArchDNF. 

% NonArchDNFcov = The coverage of the NonArchDNF. 

% NonArchDNFage = The age of the NonArchDNF. 

% ParamDNF = A structure array with the parameters needed to run the 

%            algorithm. 

% DNFstats = Statistics on the DNF evolution. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Start by reducing the any repeated DNFs in the Archive population 

if length(ArchDNFage)>1 

    % Then check to see if there are any repeat DNFs 

    [ArchDNF, ID]=unique(ArchDNF,'rows'); 

    % Now save the unique conjunctive clauses 

    ArchDNFMatchLocs=ArchDNFMatchLocs(:,ID); 

    ArchDNFfit=ArchDNFfit(ID); 

    ArchDNFacc=ArchDNFacc(ID); 

    ArchDNFcov=ArchDNFcov(ID); 

    ArchDNFage=ArchDNFage(ID); 

    clear ID 
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end 

if length(ArchDNFage)>1 

    % Determine if any of the archive bins are over their limit 

    % First create a temporary order so that all conjunctive clauses  

    % greater than the max bin are set to max bin 

    TempOrder=sum(ArchDNF,2);     

    % Now tabulate the temporary order 

    TabTempOrder=tabulate(TempOrder); 

    % Remove any rows that do not have a value 

    TabTempOrder=TabTempOrder(TabTempOrder(:,2)>0,:); 

    % Compare the tabulated TempOrder to the associated maximum allowable 

    % populations 

    % Test to see if TabTempOrder are the same 

    if size(TabTempOrder,1)==size(ParamDNF.Thresh,1) 

        % Then all orders are present 

        % Determine how many if any bins are over the limit 

        LimitMask=TabTempOrder(:,2)>ParamDNF.Thresh(:,4); 

    else 

        % Then not all orders are present so need to determine which orders  

        % are present 

        % First set up a logical vector for efficiency 

        LimitMask=false(size(ParamDNF.Thresh,1),1); 
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        % for each of the orders present, determine if the limit is  

        % surpassed 

        for i=1:size(TabTempOrder,1) 

            % Grab the ith order 

            CurOrder=TabTempOrder(i,1); 

            % Create a mask of the Order 

            TempMask=CurOrder==ParamDNF.Thresh(:,1); 

            clear CurOrder 

            % Now check to see if the limit is surpassed 

            LimitMask(TempMask)=TabTempOrder(i,2)> ... 

                                              ParamDNF.Thresh(TempMask,4); 

            clear TempMask 

        end 

        clear i 

    end 

    % If the sum of limit mask is greater than 0 then at least one bin is  

    % over the limit so reduce the population of the bin 

    if sum(LimitMask)>0 

        % Then for each bin over the limit reduce the bin population 

        % Fist determine the orders of conjunctive clauses that are over  

        % the mask 

        OrderOver=ParamDNF.Thresh(LimitMask,1); 
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        % Create a keep mask for efficiency 

        KeepMask=true(size(ArchDNFage)); 

        for i=1:length(OrderOver) 

            % Create a mask of the current OrderOver 

            OrderMask=OrderOver(i)==TempOrder; 

            % Create a mask for ParamDNF.Thresh Table 

            ThreshMask=OrderOver(i)==ParamDNF.Thresh(:,1); 

            % Determine if the current threshold is 0 

            if OrderOver(i)==1 

                % Then randomly choose the order 1 DNFs to keep. This 

                % ensures that there is diversity in order 1 since we 

                % already know the order 1 population. 

                % First determine the number in the mask 

                TotOrd1=sum(OrderMask); 

                % Now find the minimum allowed 

                CurMin=ParamDNF.Thresh(ThreshMask,3); 

                % Now find the number to remove 

                Num2Remove=TotOrd1-CurMin; 

                clear TotOrd1 

                % Now find the locations of the Order 1 DNFs 

                Ord1Locs=find(OrderMask); 

                % Now randomly select the order 1 to remove 
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                Ord1ID=randperm(length(Ord1Locs),Num2Remove); 

                clear Num2Remove 

                % Create a remove mask 

                RemoveMask=false(size(KeepMask)); 

                % Set the randomly chosen locations to true 

                RemoveMask(Ord1Locs(Ord1ID))=true(); 

                clear Ord1Locs 

                clear Ord1ID 

                % Now set the RemoveMask locs to false in the KeepMask 

                KeepMask(RemoveMask)=false(); 

            elseif ParamDNF.Thresh(ThreshMask,2)~=0 

                % Then need to sort based on fitness 

                % sort the fitness of the current order fitness 

                CurSortFit=sort(ArchDNFfit(OrderMask)); 

                % Find the minimum number for this bin 

                CurMin=ParamDNF.Thresh(ThreshMask,3); 

                % Now use the CurMin to find the fitness of sorted fitness  

                % and use this to set the new threshold 

                ParamDNF.Thresh(ThreshMask,2)=CurSortFit(CurMin); 

                clear CurSortFit 

                % Create a Mask with all the DNFs that are below or equal 

                % to the threshold 
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                BelowThreshMask=ArchDNFfit<= ... 

                                            ParamDNF.Thresh(ThreshMask,2); 

                % Now determine if the number that will be saved is greater 

                % than the max 

                if sum(BelowThreshMask&OrderMask)<=... 

                                            ParamDNF.Thresh(ThreshMask,4) 

                    % Now create a mask of all the archived conjunctive   

                    % clauses with a fitness greater than the new threshold 

                    AboveThreshMask=ArchDNFfit> ... 

                                            ParamDNF.Thresh(ThreshMask,2); 

                    % Now create a mask for Removal  

                    RemoveMask=AboveThreshMask&OrderMask; 

                    clear AboveThreshMask 

                    % Now set the RemoveMask locations to false 

                    KeepMask(RemoveMask)=false(); 

                else 

                    % There are too many to save 

                    % First determine the number in the current order that 

                    % are equal to the current threshold 

                    EqualThreshMask=ArchDNFfit== ... 

                                            ParamDNF.Thresh(ThreshMask,2); 

                    NumEqual=sum(EqualThreshMask&OrderMask); 
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                    % Determine the number in the current order that are 

                    % below the current threshold 

                    BelowThreshMask=ArchDNFfit< ...  

                                            ParamDNF.Thresh(ThreshMask,2); 

                    NumBelow=sum(BelowThreshMask&OrderMask); 

                    % Determine locations of the ones that are equal 

                    EqualDNFs=find(EqualThreshMask&OrderMask); 

                    clear EqualThreshMask 

                    % Determine the number to remove from the above 

                    Num2Remove=(NumEqual+NumBelow)-CurMin; 

                    % Now randomly select the ones above to remove 

                    RandID=randperm(NumEqual,Num2Remove); 

                    clear Num2Remove 

                    clear NumBelow 

                    clear NumEqual 

                    % Then create a mask of all the archived DNFs with an  

                    % ArchDNFsum less than the SumThresh 

                    AboveThreshMask=ArchDNFfit> ... 

                                            ParamDNF.Thresh(ThreshMask,2); 

                    % Now create a mask for Removal  

                    RemoveMask=AboveThreshMask&OrderMask; 

                    clear AboveThreshMask         
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                    % Now set the BelowDNFs that were randomly selected to 

                    % true 

                    RemoveMask(EqualDNFs(RandID))=true(); 

                    clear EqualDNFs 

                    clear RandID 

                    % Now set the RemoveMask locations to false 

                    KeepMask(RemoveMask)=false(); 

                end 

                clear BelowThreshMask 

            else 

                % Then need to sort based on sum of acc + cov 

                % Determine the sum of acc and cov 

                ArchDNFsum=ArchDNFacc+ArchDNFcov; 

                % sort the sum of Acc and Cov of the current order 

                CurSortFit=sort(ArchDNFsum(OrderMask),'descend'); 

                % Find the minimum number for this bin 

                CurMin=ParamDNF.Thresh(ThreshMask,3); 

                % Now determine the sum Thresh 

                SumThresh=CurSortFit(CurMin); 

                clear CurSortFit                 

                % Now create a mask of all the archived DNFs with an  

                % ArchDNFsum greater than or equal to the SumThresh 
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                AboveThreshMask=ArchDNFsum>=SumThresh; 

                % Determine if the number that will be saved in the current 

                % order is greater than the maximum allowed to be saved 

                if sum(AboveThreshMask&OrderMask)<=... 

                                             ParamDNF.Thresh(ThreshMask,4) 

                    % Then create a mask of all the archived DNFs with an  

                    % ArchDNFsum less than the SumThresh 

                    BelowThreshMask=ArchDNFsum<SumThresh; 

                    % Now create a mask for Removal  

                    RemoveMask=BelowThreshMask&OrderMask; 

                    clear BelowThreshMask                 

                    % Now set the RemoveMask locations to false 

                    KeepMask(RemoveMask)=false(); 

                else 

                    % Then need to randomly choose from the DNFs above the 

                    % thresholdhold mask 

                    % First determine the number in the current orer that 

                    % are equal to the current threshold 

                    EqualThreshMask=ArchDNFsum==SumThresh; 

                    NumEqual=sum(EqualThreshMask&OrderMask); 

                    % Determine the number in the current order that 

                    % are abovel to the current threshold 
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                    AboveThreshMask=ArchDNFsum>SumThresh; 

                    NumAbove=sum(AboveThreshMask&OrderMask); 

                    % Determine locations of the ones above 

                    EqualDNFs=find(EqualThreshMask&OrderMask); 

                    clear EqualThreshMask 

                    % Determine the number to remove from the above 

                    Num2Remove=(NumAbove+NumEqual)-CurMin; 

                    % Now randomly select the ones above to remove 

                    RandID=randperm(NumEqual,Num2Remove); 

                    clear Num2Remove 

                    clear NumAbove 

                    clear NumEqual 

                    % Then create a mask of all the archived DNFs with an  

                    % ArchDNFsum less than the SumThresh 

                    BelowThreshMask=ArchDNFsum<SumThresh; 

                    % Now create a mask for Removal  

                    RemoveMask=BelowThreshMask&OrderMask; 

                    clear BelowThreshMask         

                    % Now set the AboveDNFs that were randomly selected to 

                    % true 

                    RemoveMask(EqualDNFs(RandID))=true(); 

                    clear EqualDNFs 
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                    clear RandID 

                    % Now set the RemoveMask locations to false 

                    KeepMask(RemoveMask)=false(); 

                end 

                clear AboveThreshMask 

                clear ArchDNFsum 

                clear SumThresh                                 

            end 

            clear CurMin 

            clear ThreshMask 

            clear OrderMask 

            clear RemoveMask 

        end 

        % Determine if any of the removed Archived conjunctive clauses have  

        % an age that can be moved to the non-archive population 

        % Create a mask of the archive population that is young enough to  

        % fit in the non-archive population 

        YoungPop=ArchDNFage<=(ParamDNF.GENn*ParamDNF.ALna); 

        % Now determine if there are any young popvalues that will be  

        % removed 

        Move2NonArch=YoungPop&~KeepMask; 

        clear YoungPop 
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        if sum(Move2NonArch)>0 

            % Then move the selected features to the non-archive population 

            NonArchDNF=[NonArchDNF; ArchDNF(Move2NonArch,:)]; 

            NonArchDNFMatchLocs=[NonArchDNFMatchLocs... 

                                        ArchDNFMatchLocs(:,Move2NonArch)];             

            NonArchDNFfit=[NonArchDNFfit; ArchDNFfit(Move2NonArch)]; 

            NonArchDNFacc=[NonArchDNFacc; ArchDNFacc(Move2NonArch)]; 

            NonArchDNFcov=[NonArchDNFcov; ArchDNFcov(Move2NonArch)]; 

            NonArchDNFage=[NonArchDNFage; ArchDNFage(Move2NonArch)]; 

            clear Move2NonArch 

        end 

        % Keep only those conjunctive clauses that are in the KeepMask 

        ArchDNF=ArchDNF(KeepMask,:); 

        ArchDNFMatchLocs=ArchDNFMatchLocs(:,KeepMask); 

        ArchDNFfit=ArchDNFfit(KeepMask); 

        ArchDNFacc=ArchDNFacc(KeepMask); 

        ArchDNFcov=ArchDNFcov(KeepMask); 

        ArchDNFage=ArchDNFage(KeepMask); 

        clear KeepMask 

    end 

    clear LimitMask 

    clear TabTempOrder 
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end 

% Remove Any NonArchAge that is now aged out 

YoungMask=NonArchDNFage<(ParamDNF.GENn*ParamDNF.ALna); 

% If there are any NonArchCCs to remove then remove them 

if sum(~YoungMask)>0 

    NonArchDNF=NonArchDNF(YoungMask,:); 

    NonArchDNFMatchLocs=NonArchDNFMatchLocs(:,YoungMask); 

    NonArchDNFfit=NonArchDNFfit(YoungMask); 

    NonArchDNFacc=NonArchDNFacc(YoungMask); 

    NonArchDNFcov=NonArchDNFcov(YoungMask); 

    NonArchDNFage=NonArchDNFage(YoungMask);           

end 

clear YoungMask 

% Now check to see if the Non-archived population is exceeded for each 

% layer 

if ~isempty(NonArchDNFage) 

    % First determine the non-archive age layers for each conjunctive  

    % clause 

    NonArchDNFageLayer=ceil(NonArchDNFage/ParamDNF.GENn); 

    % Now tabulate the NonArchCCAgeLayers 

    TabNonArchLayer=tabulate(NonArchDNFageLayer); 

    % Remove any TabNonArchLayer that does not have a value 
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    TabNonArchLayer=TabNonArchLayer(TabNonArchLayer(:,2)>0,:); 

    % Determine if any of the TabNonArchLayer is greater than the maximum 

    % allowed 

    LimitMask=TabNonArchLayer(:,2)>ParamDNF.NonArchLMax; 

else 

    % Set the limit mask to false 

    LimitMask=false(); 

end 

% If any layer is greater then need to remove individuals from the 

% non-archive layer 

if sum(LimitMask)>0 

    % Then determine which layers need to be reduced in size 

    Layers=TabNonArchLayer(LimitMask,1); 

    % for efficiency create a keep mask 

    KeepMask=true(size(NonArchDNFfit));     

    for i=1:length(Layers) 

        % for each age layer select the most fit 

        % First create a layer mask 

        LayerMask=NonArchDNFageLayer==Layers(i); 

        % Now sort by fitness 

        CurSortFit=sort(NonArchDNFfit(LayerMask)); 

        % set a temporary threshold based on the CurSortFit 
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        TempThresh=CurSortFit(ParamDNF.NonArchLMax); 

        clear CurSortFit 

        % Now create a mask baed on threshold 

        ThreshMask=NonArchDNFfit>TempThresh; 

        clear TempThresh 

        % Now create a remove mask 

        RemoveMask=ThreshMask&LayerMask; 

        clear LayerMask 

        clear ThreshMask 

        % Set all of the RemoveMask locations to false 

        KeepMask(RemoveMask)=false(); 

        clear RemoveMask 

    end 

    % Now keep all the information in the keep mask 

    NonArchDNF=NonArchDNF(KeepMask,:); 

    NonArchDNFMatchLocs=NonArchDNFMatchLocs(:,KeepMask); 

    NonArchDNFfit=NonArchDNFfit(KeepMask); 

    NonArchDNFacc=NonArchDNFacc(KeepMask); 

    NonArchDNFcov=NonArchDNFcov(KeepMask); 

    NonArchDNFage=NonArchDNFage(KeepMask); 

    clear KeepMask 

end 
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clear NonArchDNFageLayer 

clear LimitMask 

clear TabNonArchLayer 

% If the user wants to record the best fitness of each order then record 

if ParamDNF.BestFit 

    % Determine the best fitness for each order 

    TempFit=[ArchDNFfit; NonArchDNFfit]; 

    % Determine the  

    for i=1:ParamDNF.MAXcc 

        if i~=ParamDNF.MAXcc 

            % Then mask by current order 

            CurOrderMask=[ArchCCOrder; NonArchCCOrder]==i; 

            if sum(CurOrderMask)>0 

                % Then record the best fitness 

                DNFstats.BestFit(ParamDNF.CurGen,i)= ... 

                                                min(TempFit(CurOrderMask)); 

            end 

        else 

            % The mask by the current order and any larger order 

            CurOrderMask=[ArchCCOrder; NonArchCCOrder]>=i; 

            if sum(CurOrderMask)>0 

                % Then record the best fitness 
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                DNFstats.BestFit(ParamDNF.CurGen,i)= ... 

                                                min(TempFit(CurOrderMask)); 

            end 

        end 

        clear CurOrderMask 

    end 

    clear i 

    clear TempFit 

end 

8.1.3.3 Disjunctive Normal Form Evolution (DNFEvolution) 

function [ArchDNF, ArchDNFMatchLocs, ArchDNFfit, ArchDNFacc, ... 

            ArchDNFcov, ArchDNFage, NonArchDNF, NonArchDNFMatchLocs,... 

            NonArchDNFfit, NonArchDNFacc, NonArchDNFcov, ... 

            NonArchDNFage, DNFstats]=... 

            DNFEvolution(ArchDNF,ArchDNFMatchLocs,ArchDNFfit,... 

            ArchDNFacc,ArchDNFcov,ArchDNFage,NonArchDNF,... 

            NonArchDNFMatchLocs,NonArchDNFfit,NonArchDNFacc,... 

            NonArchDNFcov,NonArchDNFage,CCMatchLocs,TargetClass,... 

            ParamDNF,DNFstats) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Created by John Hanley 

% 
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% October 24, 2016 

% Last Updated: October 24, 2016 

% 

% DNFEvolution evolves the population of disjunction of conjunctive  

% clauses. 

% 

% Inputs:  

% ArchDNF = The archived disjunctive normal forms (DNFs). Each  

%            column represents a DNF and each row represents a conjunctive 

%            clause. 

% ArchDNFMatchLocs = A logical matrix where each row represents an 

%                     observation and each column represents an ArchDNF. 

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF. 

% ArchDNFacc = The accuracy of the ArchDNF. 

% ArchDNFcov = The coverage of the ArchDNF. 

% ArchDNFage = The age of the ArchDNF. 

% NonArchDNF = The non-archived disjunctive normal form  

%               (DNF). Each column represents a DNF and each row  

%               represents a conjunctive  clause. 

% NonArchDNFMatchLocs = A logical matrix where each row represents an 

%                       observation and each column represents an  

%                       NonArchDNF. 
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% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the  

%                 NonArchDNF. 

% NonArchDNFacc = The accuracy of the NonArchDNF. 

% NonArchDNFcov = The coverage of the NonArchDNF. 

% NonArchDNFage = The age of the NonArchDNF. 

% CCMatchLocs = A logical matrix where each row represents an observation 

%               and each column represents a conjunctive clause. 

% TargetClass = A logical vector indicating which observations are in the 

%               target class. 

% ParamDNF = A structure array with the parameters needed to run the 

%            algorithm. 

% DNFstats = Statistics on the DNF evolution. 

% 

% Outputs: 

% ArchDNF = The archived disjunctive normal form (DNF). Each  

%            column represents a DNF and each row represents a conjunctive  

%            clause. 

% ArchDNFMatchLocs = A logical matrix where each row represents an 

%                    observation and each column represents an ArchDNF. 

% ArchDNFfit = The fitness (using the hypergeometric PMF) of the ArchDNF. 

% ArchDNFacc = The accuracy of the ArchDNF. 

% ArchDNFcov = The coverage of the ArchDNF. 
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% ArchDNFage = The age of the ArchDNF. 

% NonArchDNF = The non-archived disjunctive normal form (DNF).  

%               Each column represents a DNF and each row represents a  

%               conjunctive clause. 

% NonArchDNFMatchLocs = A logical matrix where each row represents an 

%                       observation and each column represents an  

%                       NonArchDNF. 

% NonArchDNFfit = The fitness (using the hypergeometric PMF) of the  

%                 NonArchDNF. 

% NonArchDNFacc = The accuracy of the NonArchDNF. 

% NonArchDNFcov = The coverage of the NonArchDNF. 

% NonArchDNFage = The age of the NonArchDNF. 

% DNFstats = Statistics on the DNF evolution. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculate the age layer of the non-archived population 

NonArchDNFageLayer=ceil(NonArchDNFage/ParamDNF.GENn); 

% If there is arhive layer, then add an archive age layer that is one more 

% than the max age-layer in non-archived population 

if ~isempty(ArchDNFage) 

    % Check to make sure there is an non-archive population 

    if ~isempty(NonArchDNFage) 
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        ArchDNFageLayer=ones(size(ArchDNFage))+max(NonArchDNFageLayer); 

    else 

        ArchDNFageLayer=ones(size(ArchDNFage)); 

    end 

end 

% First determine if there is an archive population and how big the  

% archive population is 

if length(ArchDNFfit)>ParamDNF.ArchOff 

    % Then need to select offspring to undergo mutation 

    % Sort the Archived DNFs by ArchDNFage 

    [~, ID]=sort(ArchDNFage); 

    % Create a selected DNF vector 

    SelDNFVec=false(size(ArchDNFfit)); 

    % Now set 1:ParamDNF.ArchOff to true 

    SelDNFVec(1:ParamDNF.ArchOff)=true(); 

    % set the number of archived offspring 

    NumArchOff=sum(SelDNFVec); 

    % Then the selected DNFs have enough diversity 

    MateDNF=[ArchDNF(ID(SelDNFVec),:);... 

             ArchDNF(ID(~SelDNFVec),:);... 

             NonArchDNF]; 

    MateDNFfit=[ArchDNFfit(ID(SelDNFVec));... 
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                ArchDNFfit(ID(~SelDNFVec));... 

                NonArchDNFfit]; 

    MateDNFage=[ArchDNFage(ID(SelDNFVec));... 

                ArchDNFage(ID(~SelDNFVec));... 

                NonArchDNFage]; 

    MateDNFMatchLocs=[ArchDNFMatchLocs(:,ID(SelDNFVec))... 

                      ArchDNFMatchLocs(:,ID(~SelDNFVec))... 

                      NonArchDNFMatchLocs]; 

    MateDNFageLayer=[ArchDNFageLayer(ID(SelDNFVec));... 

                     ArchDNFageLayer(ID(~SelDNFVec));... 

                     NonArchDNFageLayer];     

elseif ~isempty(ArchDNFfit) 

    % Then all archived offspring will be selected 

    MateDNF=[ArchDNF; NonArchDNF]; 

    MateDNFfit=[ArchDNFfit; NonArchDNFfit]; 

    MateDNFage=[ArchDNFage; NonArchDNFage]; 

    MateDNFMatchLocs=[ArchDNFMatchLocs NonArchDNFMatchLocs]; 

    MateDNFageLayer=[ArchDNFageLayer; NonArchDNFageLayer]; 

    % Set the SelDNFVec to the lenght of ArchDNFfit and to True 

    SelDNFVec=true(size(ArchDNFfit)); 

    % Set the number of offspring 

    NumArchOff=sum(SelDNFVec); 
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    % set ID 

    ID=1:length(ArchDNFage); 

else 

    % set the number of ArchOffsping to zero 

    NumArchOff=0; 

    % Then there is no archive population 

    % Then the Mating population is simply the nonarchive 

    % population 

    MateDNF=NonArchDNF; 

    MateDNFfit=NonArchDNFfit; 

    MateDNFage=NonArchDNFage; 

    MateDNFMatchLocs=NonArchDNFMatchLocs; 

    MateDNFageLayer=NonArchDNFageLayer; 

end 

% For Effificiency 

EvoDNF=false(NumArchOff+length(NonArchDNFfit),ParamDNF.NumCCs); 

EvoDNFMatchLocs=false(ParamDNF.NumObs,NumArchOff+length(NonArchDNFfit

)); 

EvoDNFfit=NaN(NumArchOff+length(NonArchDNFfit),1); 

EvoDNFacc=NaN(NumArchOff+length(NonArchDNFfit),1); 

EvoDNFcov=NaN(NumArchOff+length(NonArchDNFfit),1); 

EvoDNFage=NaN(NumArchOff+length(NonArchDNFfit),1); 
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EvoArchiveMask=false(NumArchOff+length(NonArchDNFfit),1); 

% If there is an ArchPop then perform one task otherwise another 

if NumArchOff>0 

    % Then an archive age layer is present 

    % Determine the number of age layers 

    UniqueLayers=unique(MateDNFageLayer); 

    NumLayers=length(UniqueLayers); 

    % Initialize start 

    start=1; 

    % Run a for loop so that each age layer can undergo either 

    % mutation or crossover 

    for i=1:NumLayers 

        % perform crossover or mutation on the current layer 

        CurLayer=UniqueLayers(NumLayers-i+1); 

        % Create a mask for the DNFs that will evolve 

        CurMask=MateDNFageLayer==CurLayer; 

        % Now select the necessary data for mutation or crossover 

        CurMateDNF=MateDNF(CurMask,:); 

        CurMateDNFfit=MateDNFfit(CurMask); 

        CurMateDNFage=MateDNFage(CurMask); 

        CurDNFMatchLocs=MateDNFMatchLocs(:,CurMask);         

        % If this is the 1st loop then CurNumOff=ArchNumOff 
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        if i~=1 

            CurNumOff=sum(CurMask); 

        else 

            CurNumOff=NumArchOff; 

            % Also add 1 to the age of the selected archived offspring 

            CurMateDNFage(1:NumArchOff)=CurMateDNFage(1:NumArchOff)+1; 

        end 

        clear CurMask 

        % If the current layer isn't one then add the younger layer 

        % to mate with 

        if CurLayer~=1 

            % Add a layer to the current layer for mating 

            CurMask=MateDNFageLayer==CurLayer-1; 

            CurMateDNF=[CurMateDNF; MateDNF(CurMask,:)]; 

            CurMateDNFfit=[CurMateDNFfit; MateDNFfit(CurMask)]; 

            CurMateDNFage=[CurMateDNFage; MateDNFage(CurMask)]; 

            CurDNFMatchLocs=[CurDNFMatchLocs ... 

                                             MateDNFMatchLocs(:,CurMask)]; 

            clear CurMask 

        end 

        % Now perform crossover and or mutation 

        [OffDNF, OffDNFMatchLocs, OffDNFfit, OffDNFacc, OffDNFcov,... 
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            OffDNFage, ArchiveMask, DNFstats]=... 

            DNFMutCross(CurMateDNF,CurMateDNFfit,CurMateDNFage,... 

            CurDNFMatchLocs,CCMatchLocs,TargetClass,CurNumOff,... 

            ParamDNF,DNFstats); 

        clear CurLayer 

        clear CurMateDNF 

        clear CurMateDNFfit 

        clear CurMateDNFage 

        clear CurDNFMatchLocs 

        clear CurNumOff         

        % Now save the offspring 

        % Determine the number of offspring 

        NumOff=length(ArchiveMask); 

        EvoDNF(start:start+NumOff-1,:)=OffDNF; 

        EvoDNFMatchLocs(:,start:start+NumOff-1)=OffDNFMatchLocs; 

        EvoDNFfit(start:start+NumOff-1)=OffDNFfit; 

        EvoDNFacc(start:start+NumOff-1)=OffDNFacc; 

        EvoDNFcov(start:start+NumOff-1)=OffDNFcov; 

        EvoDNFage(start:start+NumOff-1)=OffDNFage;  

        EvoArchiveMask(start:start+NumOff-1)=ArchiveMask;                 

        % update the start 

        start=start+NumOff; 
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        clear NumOff 

    end     

    % Increase only the age of the archive population that underwent either 

    % mutation or crossover 

    ArchDNFage(ID(SelDNFVec))=ArchDNFage(ID(SelDNFVec))+1; 

else 

    % then age layers do not have an archive layer 

    % Determine the number of age layers 

    UniqueLayers=unique(MateDNFageLayer); 

    NumLayers=length(UniqueLayers); 

    % set a start counter 

    start=1; 

    % Run a for loop so that each age layer can undergo either 

    % mutation or crossover 

    for i=1:NumLayers 

        % perform crossover or mutation on the current layer 

        CurLayer=UniqueLayers(NumLayers-i+1); 

        % Create a mask for the DNFs that will evolve 

        CurMask=MateDNFageLayer==CurLayer; 

        % Now select the necessary data for mutation or crossover 

        CurMateDNF=MateDNF(CurMask,:); 

        CurMateDNFfit=MateDNFfit(CurMask); 
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        CurMateDNFage=MateDNFage(CurMask); 

        CurDNFMatchLocs=MateDNFMatchLocs(:,CurMask); 

        % Set the number of offspring 

        CurNumOff=sum(CurMask); 

        % If the current layer isn't one then add the younger layer 

        % to mate with 

        if CurLayer~=1 

            % Add a layer to the current layer for mating 

            CurMask=MateDNFageLayer==CurLayer-1; 

            CurMateDNF=[CurMateDNF; MateDNF(CurMask,:)]; 

            CurMateDNFfit=[CurMateDNFfit; MateDNFfit(CurMask)]; 

            CurMateDNFage=[CurMateDNFage; MateDNFage(CurMask)]; 

            CurDNFMatchLocs=[CurDNFMatchLocs ... 

                                             MateDNFMatchLocs(:,CurMask)]; 

            clear CurMask 

        end 

        % Now perform crossover and or mutation 

        [OffDNF, OffDNFMatchLocs, OffDNFfit, OffDNFacc, OffDNFcov,... 

            OffDNFage, ArchiveMask, DNFstats]=... 

            DNFMutCross(CurMateDNF,CurMateDNFfit,CurMateDNFage,... 

            CurDNFMatchLocs,CCMatchLocs,TargetClass,CurNumOff,... 

            ParamDNF,DNFstats); 
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        clear CurLayer 

        clear CurMateDNF 

        clear CurMateDNFfit 

        clear CurMateDNFage 

        clear CurDNFMatchLocs 

        clear CurNumOff         

        % Now save the offspring 

        % Determine the number of offspring 

        NumOff=length(ArchiveMask); 

        EvoDNF(start:start+NumOff-1,:)=OffDNF; 

        EvoDNFMatchLocs(:,start:start+NumOff-1)=OffDNFMatchLocs; 

        EvoDNFfit(start:start+NumOff-1)=OffDNFfit; 

        EvoDNFacc(start:start+NumOff-1)=OffDNFacc; 

        EvoDNFcov(start:start+NumOff-1)=OffDNFcov; 

        EvoDNFage(start:start+NumOff-1)=OffDNFage;  

        EvoArchiveMask(start:start+NumOff-1)=ArchiveMask;                 

        % update the start 

        start=start+NumOff; 

        clear NumOff 

    end 

end 

% Reduce offspring to only those that were actually kept 
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EvoDNF=EvoDNF(1:start-1,:); 

EvoDNFMatchLocs=EvoDNFMatchLocs(:,1:start-1); 

EvoDNFfit=EvoDNFfit(1:start-1); 

EvoDNFacc=EvoDNFacc(1:start-1); 

EvoDNFcov=EvoDNFcov(1:start-1); 

EvoDNFage=EvoDNFage(1:start-1); 

EvoArchiveMask=EvoArchiveMask(1:start-1); 

clear start 

% Now extract the archived population 

ArchDNF=[ArchDNF; EvoDNF(EvoArchiveMask,:)]; 

ArchDNFMatchLocs=[ArchDNFMatchLocs EvoDNFMatchLocs(:,EvoArchiveMask)]; 

ArchDNFfit=[ArchDNFfit; EvoDNFfit(EvoArchiveMask)]; 

ArchDNFacc=[ArchDNFacc; EvoDNFacc(EvoArchiveMask)]; 

ArchDNFcov=[ArchDNFcov; EvoDNFcov(EvoArchiveMask)]; 

ArchDNFage=[ArchDNFage; EvoDNFage(EvoArchiveMask)]; 

% Now extract the non-archived population 

NonArchDNF=[NonArchDNF; EvoDNF(~EvoArchiveMask,:)]; 

NonArchDNFMatchLocs=[NonArchDNFMatchLocs ... 

                                      EvoDNFMatchLocs(:,~EvoArchiveMask)]; 

NonArchDNFfit=[NonArchDNFfit; EvoDNFfit(~EvoArchiveMask)]; 

NonArchDNFacc=[NonArchDNFacc; EvoDNFacc(~EvoArchiveMask)]; 

NonArchDNFcov=[NonArchDNFcov; EvoDNFcov(~EvoArchiveMask)]; 
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NonArchDNFage=[NonArchDNFage; EvoDNFage(~EvoArchiveMask)];         

clear EvoArchiveMask 

8.1.3.4 DNF Mutation/Crossover (DNFMutCross) 

function [OffDNF, OffDNFMatchLocs, OffDNFfit, OffDNFacc, OffDNFcov,... 

            OffDNFage, ArchiveMask, DNFstats]=... 

            DNFMutCross(MateDNF,MateDNFfit,MateDNFage,... 

            MateDNFMatchLocs,CCMatchLocs,TargetClass,NumOff,ParamDNF,... 

            DNFstats) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Created by John Hanley 

%  

% October 21, 2016 

% Last updated: October 24, 2016 

% 

% DNFMutCross performs either mutation or crossover on the disjunction 

% of conjunctive clauses (DNF) of the classifiers. 

% 

% Inputs: 

% MateDNF = The population of DNFs that will be involved in mating. Each 

%           row represents a DNF and each column points to a conjunctive 

%           clause used in the DNF. Only the 1:NumOff will undergo either 

%           crossover or mutation. 
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% MateDNFfit = The fitness of the MateDNFs. 

% MateDNFage = The age of the MateDNFs. 

% MateDNFMatchLocs = A logical matrix where each from represents an 

%                    observation and each column represents a DNF. 

% CCMatchLocs = A logical matrix where each row represents an observation 

%               and each column represents a conjunctive clause. 

% TargetClass = A logical vector indicating the observations that are part 

%               of the target class. 

% NumOff = The number of offspring that will be produced through either 

%          crossover or mutation. 

% ParamDNF = A structure array with the usr defined parameters to run the 

%            algorithm. 

% DNFstats = Statistics on the DNF evolution. 

% 

% Ouputs: 

% OffDNF = The DNF of the offsrping that are classifiers for the current 

%          target class. 

% OffDNFMatchLocs = A logical matrix associated with the OffDNF. Each row 

%                   represents an observation and each column represents a  

%                   DNF. 

% OffDNFfit = The fitness of the OffDNF using the hypergeometric PMF 

%             distribution. 
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% OffDNFacc = The accuracy of the OffDNF. 

% OffDNFcov = The coverage of the OffDNF. 

% OffDNFage = The age of the OffDNF. 

% ArchiveMask = A logical vector indicating the OffDNF that belong in the 

%               archive. 

% DNFstats = Statistics on the DNF evolution. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine the number of DNFs in the mating population 

NumDNFs=size(MateDNF,1); 

% First randomly determine which inidividuals will undergo mutation and 

% which will undergo crossover 

if NumDNFs~=1 

    % Then randomly select crossover or mutation 

    CrossOver=rand(NumOff,1)<ParamDNF.Prx; 

else 

    CrossOver=false(1); 

end 

% For efficiency 

OffDNF=false(NumOff,ParamDNF.NumCCs); 

OffDNFMatchLocs=false(ParamDNF.NumObs,NumOff); 

OffDNFfit=NaN(NumOff,1); 
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OffDNFacc=NaN(NumOff,1); 

OffDNFcov=NaN(NumOff,1); 

OffDNFage=NaN(NumOff,1); 

KeepMask=false(NumOff,1); 

ArchiveMask=false(NumOff,1); 

for i=1:NumOff 

    if CrossOver(i) 

        % Then perform crossover 

        % Set up the random mating population 

        PotMatePop=setdiff(1:NumDNFs,i); 

        % Now randomly select the potential mates 

        PotMateInd=randi(NumDNFs-1,[ParamDNF.TournSize,1]); 

        PotMates=PotMatePop(PotMateInd); 

        clear PotMatePop 

        clear PotMateInd         

        % Determine whether the crossover should be based on fitness or 

        % based on other metrics 

        if rand(1)<=ParamDNF.Pxf 

            % then the mate is the most fit in the tournament 

            BestMask=MateDNFfit(PotMates)==min(MateDNFfit(PotMates));             

        else 

            % Run another metric to determine the mate 
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            % There are three ways to determine best mate for crossover: 

            % 1) The DNF that covers the most target observations not  

            % covered by the current DNF; 2) the DNF that covers the most  

            % target observations that are not covered by current DNF  

            % while minimizing the number of new non-target observations  

            % covered; 3) the DNF with the least number of non-target  

            % observations that are not covered by the current DNF 

            % First randomly select a number to determine how the mate will 

            % be selected 

            RandNum=rand(1); 

            if RandNum<=ParamDNF.PxAlt(1) 

                % Then mate based on the most target observations not  

                % covered by the current DNF 

                % Create a mask of the current target observations that are 

                % not covered by current mate 

                Tmask=TargetClass&~MateDNFMatchLocs(:,i); 

                % Now find the sum of the Tmask for the potential Mates 

                MateSum=sum(MateDNFMatchLocs(Tmask,PotMates)); 

                clear Tmask 

                % The BestMask is the max of the MateSum 

                BestMask=MateSum==max(MateSum); 

                clear MateSum 
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            elseif RandNum<=ParamDNF.PxAlt(2) 

                % Then the mate selection is based on the most target 

                % observation not covered by the current DNF and least 

                % non-target observations not covered by the current DNF 

                % not covered by current mate 

                Tmask=TargetClass&~MateDNFMatchLocs(:,i); 

                % Now find the sum of the Tmask for the potential Mates 

                MateTSum=sum(MateDNFMatchLocs(Tmask,PotMates)); 

                clear Tmask 

                % Now create a mask of the non-target observations that are 

                % not covered by the current mate 

                Tmask=~TargetClass&~MateDNFMatchLocs(:,i); 

                % Now sum the Tmask for potential mates 

                MateNTSum=sum(MateDNFMatchLocs(Tmask,PotMates)); 

                clear Tmask 

                % Now subtract MatNTSum from MateTSum 

                MateSum=MateTSum-MateNTSum; 

                clear MateTSum 

                clear MateNTSum 

                % The BestMask is the max of the MateSum 

                BestMask=MateSum==max(MateSum); 

                clear MateSum 
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            else 

                % Then the mate selection is based on the mate that has the 

                % least number of non-target observations not covered by 

                % the first parent 

                % Now create a mask of the non-target observations that are 

                % not covered by the current mate 

                Tmask=~TargetClass&~MateDNFMatchLocs(:,i); 

                % Now sum the Tmask for potential mates 

                MateSum=sum(MateDNFMatchLocs(Tmask,PotMates)); 

                clear Tmask 

                % The BestMask is the min of the MateSum 

                BestMask=MateSum==min(MateSum); 

                clear MateSum 

            end 

        end         

        % If there is more than one mate selected then randomly pick mate 

        if sum(BestMask)==1 

            % Then rthe the mate ID is easy 

            MateID=PotMates(BestMask); 

        else 

            % Randomly choose a Mate 

            PotMates=PotMates(BestMask); 
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            RandPick=randi(sum(BestMask),1); 

            MateID=PotMates(RandPick); 

            clear RandPick 

        end 

        clear PotMates         

        % Set the age of the OffDNF to the age of the oldest parent 

        OffDNFage(i)=max([MateDNFage(i) MateDNFage(MateID)]);         

        % Randomly determine the bits from the first parent 

        P1bits=rand(1,ParamDNF.NumCCs)<0.5; 

        % Now insert the bits into the current offspring 

        OffDNF(i,P1bits)=MateDNF(i,P1bits); 

        OffDNF(i,~P1bits)=MateDNF(MateID,~P1bits); 

        % Test to see if the Off spring DNF is the same as either parent, 

        % or if there are no DNFs selected; if so swap the bits 

        if isequal(OffDNF(i,:),MateDNF(i,:))||... 

                    isequal(OffDNF(i,:),MateDNF(MateID,:))||... 

                    sum(OffDNF(i,:))==0 

            % then switch the bits around 

            OffDNF(i,~P1bits)=MateDNF(i,~P1bits); 

            OffDNF(i,P1bits)=MateDNF(MateID,P1bits); 

        end  

    else 
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        % Perform mutation 

        % Set the offspring DNF equal to the current mate 

        OffDNF(i,:)=MateDNF(i,:); 

        OffDNFage(i)=MateDNFage(i); 

        % Determine if random bit flip mutation will occur or if a more  

        % targeted mutation will occur 

        if rand(1)<ParamDNF.Pbf 

            % Then perform standard bit flip mutation 

            % Randomly determine which bits will be flipped 

            FlipBitLocs=rand(1,ParamDNF.NumCCs)<ParamDNF.Pm; 

            % Ensure that at least one bit is flipped 

            if sum(FlipBitLocs)==0 

                FlipBitLocs(randi(1))=true(); 

            end 

            % Determine where the bits will be turned off 

            BitOff=FlipBitLocs&MateDNF(i,:); 

            % set all of the Flip Bit Locations to true 

            OffDNF(i,FlipBitLocs)=true(); 

            % Now set all of the Bit off locations to false 

            OffDNF(i,BitOff)=false(); 

            % if there are no bits on then randomly choose bits to keep 

            if sum(OffDNF(i,:))==0 
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                % Reset the offspring to the mate 

                OffDNF(i,:)=MateDNF(i,:); 

                % Determine the number of bits 

                if sum(MateDNF(i,:))<=2 

                    % Then add a bit 

                    PosBits=... 

                           setdiff(1:ParamDNF.NumCCs,find(MateDNF(i,:))); 

                    % Randomly choose a bit to add 

                    PosBitID=randi(length(PosBits),1); 

                    % Set the bit to true 

                    OffDNF(i,PosBits(PosBitID))=true(); 

                    clear PosBits 

                    clear PosBitID 

                else 

                    % Randomly delet a bit 

                    PosBits=find(MateDNF(i,:)); 

                    % Randomly choose bit to delete 

                    PosBitID=randi(length(PosBits),1); 

                    % Now delete the selected bit 

                    OffDNF(i,PosBits(PosBitID))=false(); 

                    clear PosBits 

                    clear PosBitID 
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                end 

            end  

        else 

            % Perform a more targeted mutation there are 4 types of 

            % targeted mutation: 1) select the CC that covers the 

            % most target observations not covered by the DNF; 2) select 

            % the CC that covers the most target observation while 

            % minimizing the number of new non target observations covered; 

            % 3) remove the CC that covers the least unique target 

            % observations; 4) remove the CC that has most non-target 

            % observations that are only covered by the CC             

            % First determine if the mate has 100% accuracy or 100% 

            % coverage, because if either of these is true then this will 

            % affect which types of targeted mutation are possible 

            CurAcc=sum(MateDNFMatchLocs(TargetClass,i))/... 

                                               sum(MateDNFMatchLocs(:,i)); 

            CurCov=sum(MateDNFMatchLocs(TargetClass,i))/sum(TargetClass); 

            % Extract the current probabilities 

            CurProbs=ParamDNF.PmAlt; 

            if CurAcc==1&&CurCov==1 

                % Then need to replace the first two probabilities with 0 

                CurProbs(1:2)=0; 
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                % Now renormalize 

                CurProbs=CurProbs/sum(CurProbs);                 

            elseif CurCov==1 

                % Then need to repalce the first probability with 0 

                CurProbs(1)=0; 

                % Now renormalize 

                CurProbs=CurProbs/sum(CurProbs); 

                if sum(OffDNF(i,:))==1 

                    % Remove the last two probabilities 

                    CurProbs(3:4)=0; 

                end 

                % Now renormalize 

                CurProbs=CurProbs/sum(CurProbs); 

            elseif sum(OffDNF(i,:))==1 

                % Remove the last two probabilites  

                CurProbs(3:4)=0; 

                % Now renormalize 

                CurProbs=CurProbs/sum(CurProbs);                 

            end 

            % Now perform a cumsum on the probabilities 

            ProbCumSum=cumsum(CurProbs); 

            clear CurProbs 
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            % given the new probabilities determine the type of target 

            % mutation 

            % Randomly select a number 

            RandNum=rand(1); 

            if RandNum<=ProbCumSum(1) 

                % Then select the CC that covers the most target 

                % observations not covered by the DNF 

                Tmask=TargetClass&~MateDNFMatchLocs(:,i); 

                % sum the CCMatchLocs of TMask 

                MutSum=sum(CCMatchLocs(Tmask,:)); 

                clear Tmask 

                % Create mask of the maximum MutSum 

                MaxMask=MutSum==max(MutSum); 

                clear MutSum 

                % If the MaxMask has more than one CC then randomly choose 

                % one 

                if sum(MaxMask)>1 

                    % Then randomly choose a max 

                    MaxOpts=find(MaxMask); 

                    % Now randomly draw a potential max 

                    MaxID=randi(length(MaxOpts),1); 

                    % Now set MaxMask to false 
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                    MaxMask=false(size(MaxMask)); 

                    % Insert the select location as true 

                    MaxMask(MaxOpts(MaxID))=true(); 

                    clear MaxOpts 

                    clear MaxID 

                end 

                % Now insert the selected CC into the DNF 

                OffDNF(i,MaxMask)=true(); 

                clear MaxMask 

            elseif RandNum<=ProbCumSum(2) 

                % Select the CC that covers the most target observations 

                % and least non-target observations 

                % target observations not covered by the DNF 

                Tmask=TargetClass&~MateDNFMatchLocs(:,i); 

                % sum the CCMatchLocs of TMask 

                MutSumT=sum(CCMatchLocs(Tmask,:)); 

                clear Tmask 

                % non-target observations not covered by the DNF 

                Tmask=~TargetClass&~MateDNFMatchLocs(:,i); 

                % sum the CCMatchLocs of the Tmask 

                MutSumNT=sum(CCMatchLocs(Tmask,:)); 

                clear Tmask 
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                % Subtract the MutSumNT from MutSumT 

                MutSum=MutSumT-MutSumNT; 

                clear MutSumT 

                clear MutSumNT 

                % Create mask of the maximum MutSum 

                MaxMask=MutSum==max(MutSum); 

                clear MutSum 

                % If the MaxMask has more than one CC then randomly choose 

                % one 

                if sum(MaxMask)>1 

                    % Then randomly choose a max 

                    MaxOpts=find(MaxMask); 

                    % Now randomly draw a potential max 

                    MaxID=randi(length(MaxOpts),1); 

                    % Now set MaxMask to false 

                    MaxMask=false(size(MaxMask)); 

                    % Insert the select location as true 

                    MaxMask(MaxOpts(MaxID))=true(); 

                    clear MaxOpts 

                    clear MaxID 

                end 

                % Now insert the selected CC into the DNF 
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                OffDNF(i,MaxMask)=true(); 

                clear MaxMask 

            elseif RandNum<=ProbCumSum(3) 

                % remove the CC that covers the least unique target 

                % observations 

                % First determine the total times each target observation 

                % is covered 

                ObsSums=sum(CCMatchLocs(:,OffDNF(i,:)),2); 

                % Now determine the observations that are covered by only 

                % one observation 

                OneTargetMask=TargetClass&ObsSums==1; 

                clear ObsSums 

                % Now determine the total times a CC is the only CC to 

                % cover a target observation 

                NumCCUniq=sum(CCMatchLocs(OneTargetMask,OffDNF(i,:))); 

                clear OneTargetMask 

                % Now determine the minimum CC to remove 

                MinMask=NumCCUniq==min(NumCCUniq); 

                clear NumCCUniq 

                % Determine if there is more than one minimum 

                if sum(MinMask)>1 

                    % Then need to randomly choose a CC 
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                    MinOpts=find(MinMask); 

                    % Now randomly draw a min 

                    MinID=randi(length(MinOpts),1); 

                    % Now set Min Mask to false 

                    MinMask=false(size(MinMask)); 

                    % Set the selected min mask to true 

                    MinMask(MinOpts(MinID))=true(); 

                    clear MinOpts 

                    clear MinID 

                end                 

                % Now find the OffDNF ccs 

                OffCCs=find(OffDNF(i,:)); 

                % Now set the current selected CC to mask 

                OffDNF(i,OffCCs(MinMask))=false(); 

                clear OffCCs 

                clear MinMask                 

            else 

                % Then remove the CC with the most unique non-target  

                % obesrvations 

                ObsSums=sum(CCMatchLocs(:,OffDNF(i,:)),2); 

                % Now determine the observations that are covered by only 

                % one observation 
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                OneTargetMask=~TargetClass&ObsSums==1; 

                clear ObsSums 

                % Now determine the total times a CC is the only CC to 

                % cover a target observation 

                NumCCUniq=sum(CCMatchLocs(OneTargetMask,OffDNF(i,:))); 

                clear OneTargetMask 

                % Now determine the maximum CC to remove 

                MaxMask=NumCCUniq==max(NumCCUniq); 

                clear NumCCUniq 

                % Determine if there is more than one minimum 

                if sum(MaxMask)>1 

                    % Then need to randomly choose a CC 

                    MaxOpts=find(MaxMask); 

                    % Now randomly draw a min 

                    MaxID=randi(length(MaxOpts),1); 

                    % Now set Max Mask to false 

                    MaxMask=false(size(MaxMask)); 

                    % Set the selected min mask to true 

                    MaxMask(MaxOpts(MaxID))=true(); 

                    clear MaxOpts 

                    clear MaxID 

                end                 



356 

 

                % Now find the OffDNF ccs 

                OffCCs=find(OffDNF(i,:)); 

                % Now set the current selected CC to mask 

                OffDNF(i,OffCCs(MaxMask))=false(); 

                clear OffCCs 

                clear MaxMask  

            end 

        end 

    end     

    % Now determine the fitness of the new DNF 

    % First extract teh current CC match locations 

    CurCCs=CCMatchLocs(:,OffDNF(i,:)); 

    % Now determine the DNFMatchLocs 

    CurCCsSum=sum(CurCCs,2); 

    clear CurCCs 

    % DNFMatchLocs is simply a mask of CurCCsSum>0 

    OffDNFMatchLocs(:,i)=CurCCsSum>0; 

    clear CurCCsSum 

    % Now determine the fitness 

    ntot=sum(OffDNFMatchLocs(:,i)); 

    xmatch=sum(OffDNFMatchLocs(TargetClass,i)); 

    % Determine the number of CCs 
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    NumCCs=sum(OffDNF(i,:)); 

    % Ensure the order will be recorded 

    if NumCCs>ParamDNF.Thresh(end,1) 

        NumCCs=ParamDNF.Thresh(end,1); 

    end 

    % Determine if the DNF is a target class DNF 

    if xmatch/ntot>ParamDNF.TotTarC/ParamDNF.NumObs 

        % calculate the fitness function 

        OffDNFfit(i)=... 

                   hygepdf(xmatch,ParamDNF.NumObs,ParamDNF.TotTarC,ntot); 

        % Calculate the accuracy and coverage 

        OffDNFacc(i)=xmatch/ntot*100; 

        OffDNFcov(i)=xmatch/ParamDNF.TotTarC*100; 

        % Set the KeepMask to true 

        KeepMask(i)=true(); 

        % Determine if the new DNF should be archived 

        Tmask=ParamDNF.Thresh(:,1)==sum(OffDNF(i,:)); 

        if OffDNFfit(i)<=ParamDNF.Thresh(Tmask,2) 

            % Then it is archiveable 

            ArchiveMask(i)=true(); 

            DNFstats.EvalsArchive(ParamDNF.CurGen,NumCCs)=... 

                         DNFstats.EvalsArchive(ParamDNF.CurGen,NumCCs)+1; 
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        else 

            % then it is non-archiveable 

            DNFstats.EvalsNonArchive(ParamDNF.CurGen,NumCCs)=... 

                      DNFstats.EvalsNonArchive(ParamDNF.CurGen,NumCCs)+1; 

        end 

        clear Tmask 

    end 

    % Record the an evaluation for the current order 

    DNFstats.EvalsAll(ParamDNF.CurGen,NumCCs)=... 

                             DNFstats.EvalsAll(ParamDNF.CurGen,NumCCs)+1; 

    clear NumCCs 

    clear ntot 

    clear xmatch 

end 

% Only keep the values in the KeepMask 

OffDNF=OffDNF(KeepMask,:); 

OffDNFMatchLocs=OffDNFMatchLocs(:,KeepMask); 

OffDNFfit=OffDNFfit(KeepMask); 

OffDNFacc=OffDNFacc(KeepMask); 

OffDNFcov=OffDNFcov(KeepMask); 

OffDNFage=OffDNFage(KeepMask); 

ArchiveMask=ArchiveMask(KeepMask); 
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clear KeepMask 

8.1.4 Smouse and Peakall (1999) Genetic Distance (GeneticDistance) 

function [RawDist, NormDist, TotNonNaNs, TotSame]=... 

                                    GeneticDistance(SNPsMat,Combos,GenDist) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Created by John Hanley 

% 

% January 31, 2017 

% Last Updated: January 31, 2017 

% 

% Calculates the genetic distance using the Smouse and Peakall (1999) 

% genetic distance equation or a hamming distance. The user needs to enter 

% the genetic distance for every combination of SNPs. 

% 

% Inputs: 

% SNPsMat = A matrix where every row is an observation (e.g., person, 

%           animal, plant) and each column is a SNP. The values in the  

%           matrix should be enetered as numbers (ideally enter the ascii  

%           number of the letter using the double() function; also set all 

%           Ns to NaN. 

% Combos = A two column matrix where each row is the numerical equivalent 

%          of one of the possible combinations of SNPs (e.g., row 1 could  
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%          be AC = [65 67]; row 45 could be WY = [87 89]). 

% GenDist = A vector of the genetic distance that corresponds to the 

%           Combos. 

% 

% Outputs: 

% RawDist = A vector of the raw genetic distance between every observation. 

% NormDist =  The normalized genetic distance based on the number of SNPs 

%             looked at (i.e., RawDist/TotNonNaNs). 

% TotNonNaNs = The total number of SNPs where both of the observations had 

%              a non-NaN value. 

% TotSame = A count of the total number of SNPs that are the same between 

%           two observations. 

% 

% Work Cited: 

% Smouse, Peter E, and Rod Peakall. 1999. “Spatial Autocorrelation Analysis 

%   of Individual Multiallele and Multilocus Genetic Structure.” Heredity  

%   82 (5): 561–73. doi:10.1038/sj.hdy.6885180. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Determine the number of observations and SNPs 

[NumObs, ~]=size(SNPsMat); 

% Determine the total number of Pairs 
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NumPairs=(NumObs*(NumObs-1))/2; 

TotNonNaNs=NaN(NumPairs,1); 

TotSame=NaN(NumPairs,1); 

RawDist=NaN(NumPairs,1); 

NormDist=NaN(NumPairs,1); 

count=0; 

for i=1:NumObs-1 

    % Grab the current observation SNPs 

    Obs1=SNPsMat(i,:); 

    % Determine the NaN locations 

    Obs1NaNs=isnan(Obs1);     

    for j=i+1:NumObs 

        count=count+1; 

        % Grab the current observation SNPs 

        Obs2=SNPsMat(j,:); 

        % Determine the NaN locations 

        Obs2NaNs=isnan(Obs2); 

                % Determine the SNPs that do not have NaN values 

        NonNaNs=~Obs1NaNs&~Obs2NaNs; 

        % Record the number of NonNans 

        TotNonNaNs(count)=sum(NonNaNs);         

        % Now Grab only the columns with NonNans 
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        CurObs1=Obs1(NonNaNs); 

        CurObs2=Obs2(NonNaNs);         

        % Now Create a mask for all of the columns that are the same 

        SameMask=CurObs1==CurObs2; 

        % Determine the number of obs that are the same 

        TotSame(count)=sum(SameMask);         

        % Now grab only the columns that are not the same 

        CurObs1=CurObs1(~SameMask); 

        CurObs2=CurObs2(~SameMask);         

        % Now Reorganize the SNPs into columns with the minimum in the 

        % first column  

        MinVals=min([CurObs1; CurObs2]); 

        MaxVals=max([CurObs1; CurObs2]);         

        % Combine the Mins and Maxs 

        CombObs=[MinVals' MaxVals'];         

        [UniRows, ~, IDs]=unique(CombObs,'rows');         

        % Tabulate the IDs 

        TabIDs=tabulate(IDs);         

        TotDist=0; 

        % For each of the unique rows determine the distance  

        for r=1:size(UniRows,1) 

            % Grab the Current unique row 
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            CurUniRow=UniRows(r,:); 

            % Repeat the Current unique row 

            RepCurUniRow=repmat(CurUniRow,[size(Combos,1),1]); 

            % now compare to combos 

            CmpComb=RepCurUniRow==Combos; 

            % Create a mask to get the current genetic distance 

            DistMask=sum(CmpComb,2)==2; 

            % Grab the current genetic distance 

            CurDist=GenDist(DistMask); 

            % Now multiply the current distance by the number of times it 

            % is present 

            CurTotDist=CurDist*TabIDs(r,2); 

            % Add the current total distance to the total Distance 

            TotDist=TotDist+CurTotDist;             

        end 

        % Insert the raw genetic distance 

        RawDist(count)=TotDist; 

        % Calculate the normalized distance 

        NormDist(count)=TotDist/TotNonNaNs(count); 

    end 

end 
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8.1.5 Box Plots (boxplotJH) 

function boxplotJH(X,Y,Param) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Created by John Hanley 

% 

% October 26, 2016 

% Last Updated: November 9, 2016 

% 

% boxplotJH is my version of boxplot that enables the user to change the 

% x-axis setting. 

% 

% Inputs: 

% X = The X-data entered either as a vector or matrix. If entered as a 

%     matrix, then set Param.DoubleBox to true. 

% Y = The Y-data entered as a matrix with each column representing a 

%     different group. 

% Param = A structure array with various parameters needed to run the 

%         function. 

%         .BoxColor = The color of the IQR for the boxplot. 

%         .MedColor = The color of the median for the boxplot. 

%         .WhiskColor = The color of the whiskers for the boxplot. 

%         .OutColor = The color of the outliers for the boxplot.  
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%         .LineWidth = The line width for the boxplot. 

%         .Axis = The type of plot the user wants. Enter either 

%                 'cartesian', 'semilogx', 'semilogy', or 'loglog' 

%         .BoxWidth = The desired width of the box in the boxplot. 

%         .WhWidth = The desired width of the whisker cap. 

%         .DoubleBox = Enter either true() or false(). True means that the 

%                      boxplot will be plotted in both x and y directions. 

% 

% Outputs: 

% A boxplot of the data. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine the number of boxes 

Param.NumBox=size(Y,2); 

% First determine the 25th percentile, median and IQR 

IQRY=iqr(Y); 

P25Y=prctile(Y,25); 

P50Y=prctile(Y,50); 

P75Y=prctile(Y,75); 

% For efficiency 

WhLBY=NaN(1,Param.NumBox); 

WhUBY=NaN(1,Param.NumBox); 
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% Now determine the whisker bounds 

for i=1:Param.NumBox 

    % For each column determine the possible and actual lower bound 

    % First calculate a possible lower bound 

    PosLB=P25Y(i)-1.5*IQRY(i); 

    % Now create a mask for all values that fall in this range 

    LBmask=Y(:,i)>=PosLB&Y(:,i)<P25Y(i); 

    clear PosLB 

    % If a value falls in this range set the WhLB to the minimum value in 

    % the range 

    if sum(LBmask)>0 

        WhLBY(i)=min(Y(LBmask,i)); 

    end 

    clear LBmask     

    % Now calculate a possible upper bound 

    PosUB=P75Y(i)+1.5*IQRY(i); 

    % Now create a mask for all values that fall in this range 

    UBmask=Y(:,i)<=PosUB&Y(:,i)>P75Y(i); 

    clear PosUB 

    % If a value falls in this range set the WhUB to the maximum value in 

    % the range 

    if sum(UBmask)>0 
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        WhUBY(i)=max(Y(UBmask,i)); 

    end 

    clear UBmask 

end 

% check to see if there is a doublebox 

if Param.DoubleBox 

    % Then need to calculate the X 25th percentile, median and IQR 

    IQRX=iqr(X); 

    P25X=prctile(X,25); 

    P50X=prctile(X,50); 

    P75X=prctile(X,75); 

    % For efficiency 

    WhLBX=NaN(1,Param.NumBox); 

    WhUBX=NaN(1,Param.NumBox); 

    % Now determine the whisker bounds 

    for i=1:Param.NumBox 

        % For each column determine the possible and actual lower bound 

        % First calculate a possible lower bound 

        PosLB=P25X(i)-1.5*IQRX(i); 

        % Now create a mask for all values that fall in this range 

        LBmask=X(:,i)>=PosLB&X(:,i)<P25X(i); 

        clear PosLB 
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        % If a value falls in this range set the WhLB to the minimum value 

        % in the range 

        if sum(LBmask)>0 

            WhLBX(i)=min(X(LBmask,i)); 

        end 

        clear LBmask 

        % Now calculate a possible upper bound 

        PosUB=P75X(i)+1.5*IQRX(i); 

        % Now create a mask for all values that fall in this range 

        UBmask=X(:,i)<=PosUB&X(:,i)>P75X(i); 

        clear PosUB 

        % If a value falls in this range set the WhUB to the maximum value  

        % in the range 

        if sum(UBmask)>0 

            WhUBX(i)=max(X(UBmask,i)); 

        end 

        clear UBmask 

    end 

    switch Param.Axis 

        case 'cartesian' 

            % The plot is cartesian 

            % First plot the whiskers 
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            plot(repmat(P50X,[2,1]),[P25Y; WhLBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            hold on 

            plot(repmat(P50X,[2,1]),[P75Y; WhUBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            plot([P25X; WhLBX],repmat(P50Y,[2,1]),'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            plot([P75X; WhUBX],repmat(P50Y,[2,1]),'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            % Set the whisker lower bounds and upper bounds in x direction 

            LBX=P50X-Param.WhWidth; 

            UBX=P50X+Param.WhWidth; 

            LBY=P50Y-Param.WhWidth; 

            UBY=P50Y+Param.WhWidth; 

            % Now plot the cap of the whisker 

            plot([LBX; UBX],repmat(WhLBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            plot([LBX; UBX],repmat(WhUBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            plot(repmat(WhLBX,[2,1]),[LBY; UBY],'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            plot(repmat(WhUBX,[2,1]),[LBY; UBY],'-',... 
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                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX 

            clear LBY 

            clear UBY             

            % Now plot the box 

            for i=1:Param.NumBox 

                % plot the IQR using rectangle 

                rectangle('Position',[P25X(i) P25Y(i) IQRX(i) IQRY(i)],... 

                          'EdgeColor',Param.BoxColor,'LineWidth',... 

                          Param.LineWidth) 

            end             

            % Now plot the median 

            plot([P25X; P75X],repmat(P50Y,[2,1]),'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth) 

            plot(repmat(P50X,[2,1]),[P25Y; P75Y],'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth)             

            % Now plot the outliers 

            for i=1:Param.NumBox 

                % Find Any Outliers 

                OutMaskY=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i); 

                OutMaskX=X(:,i)<WhLBX(i)|X(:,i)>WhUBX(i); 
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                % If there are outliers plot them 

                if sum(OutMaskY)>0 

                    plot(repmat(P50X(i),[sum(OutMaskY),1]),... 

                         Y(OutMaskY,i),'+','Color',Param.OutColor,... 

                         'LineWidth',Param.LineWidth) 

                end 

                if sum(OutMaskX)>0 

                    plot(X(OutMaskX,i),repmat(P50Y(i),... 

                           [sum(OutMaskX),1]),'+','Color',... 

                           Param.OutColor,'LineWidth',Param.LineWidth) 

                end 

            end 

        case 'semilogx' 

            % The plot is semilogx 

            % First plot the whiskers 

            semilogx(repmat(P50X,[2,1]),[P25Y; WhLBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            hold on 

            semilogx(repmat(P50X,[2,1]),[P75Y; WhUBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogx([P25X; WhLBX],repmat(P50Y,[2,1]),'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 
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            semilogx([P75X; WhUBX],repmat(P50Y,[2,1]),'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            % Set the whisker lower bounds and upper bounds in x direction 

            LBX=10.^(log10(P50X)-Param.WhWidth); 

            UBX=10.^(log10(P50X)+Param.WhWidth); 

            LBY=10.^(log10(P50Y)-Param.WhWidth); 

            UBY=10.^(log10(P50Y)+Param.WhWidth); 

            % Now plot the cap of the whisker 

            semilogx([LBX; UBX],repmat(WhLBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogx([LBX; UBX],repmat(WhUBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogx(repmat(WhLBX,[2,1]),[LBY; UBY],'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogx(repmat(WhUBX,[2,1]),[LBY; UBY],'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX 

            clear LBY 

            clear UBY             

            % Now plot the box 

            for i=1:Param.NumBox 
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                % plot the IQR using rectangle 

                rectangle('Position',[P25X(i) P25Y(i) IQRX(i) IQRY(i)],... 

                          'EdgeColor',Param.BoxColor,'LineWidth',... 

                          Param.LineWidth) 

            end             

            % Now plot the median 

            semilogx([P25X; P75X],repmat(P50Y,[2,1]),'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth) 

            semilogx(repmat(P50X,[2,1]),[P25Y; P75Y],'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth)             

            % Now plot the outliers 

            for i=1:Param.NumBox 

                % Find Any Outliers 

                OutMaskY=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i); 

                OutMaskX=X(:,i)<WhLBX(i)|X(:,i)>WhUBX(i); 

                % If there are outliers plot them 

                if sum(OutMaskY)>0 

                    semilogx(repmat(P50X(i),[sum(OutMaskY),1]),... 

                             Y(OutMaskY,i),'+','Color',Param.OutColor,... 

                             'LineWidth',Param.LineWidth) 

                end 

                if sum(OutMaskX)>0 
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                    semilogx(X(OutMaskX,i),repmat(P50Y(i),... 

                             [sum(OutMaskX),1]),'+','Color',... 

                             Param.OutColor,'LineWidth',Param.LineWidth) 

                end 

            end    

        case 'semilogy' 

            % The plot is semilogy 

            % First plot the whiskers 

            semilogy(repmat(P50X,[2,1]),[P25Y; WhLBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            hold on 

            semilogy(repmat(P50X,[2,1]),[P75Y; WhUBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogy([P25X; WhLBX],repmat(P50Y,[2,1]),'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogy([P75X; WhUBX],repmat(P50Y,[2,1]),'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            % Set the whisker lower bounds and upper bounds in x direction 

            LBX=P50X-Param.WhWidth; 

            UBX=P50X+Param.WhWidth; 

            LBY=P50Y-Param.WhWidth; 

            UBY=P50Y+Param.WhWidth; 
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            % Now plot the cap of the whisker 

            semilogy([LBX; UBX],repmat(WhLBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogy([LBX; UBX],repmat(WhUBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogy(repmat(WhLBX,[2,1]),[LBY; UBY],'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogy(repmat(WhUBX,[2,1]),[LBY; UBY],'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX 

            clear LBY 

            clear UBY             

            % Now plot the box 

            for i=1:Param.NumBox 

                % plot the IQR using rectangle 

                rectangle('Position',[P25X(i) P25Y(i) IQRX(i) IQRY(i)],... 

                          'EdgeColor',Param.BoxColor,'LineWidth',... 

                          Param.LineWidth) 

            end             

            % Now plot the median 

            semilogy([P25X; P75X],repmat(P50Y,[2,1]),'-',... 
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                        'Color',Param.MedColor,'LineWidth',Param.LineWidth) 

            semilogy(repmat(P50X,[2,1]),[P25Y; P75Y],'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth)             

            % Now plot the outliers 

            for i=1:Param.NumBox 

                % Find Any Outliers 

                OutMaskY=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i); 

                OutMaskX=X(:,i)<WhLBX(i)|X(:,i)>WhUBX(i); 

                % If there are outliers plot them 

                if sum(OutMaskY)>0 

                    semilogy(repmat(P50X(i),[sum(OutMaskY),1]),... 

                             Y(OutMaskY,i),'+','Color',Param.OutColor,... 

                             'LineWidth',Param.LineWidth) 

                end 

                if sum(OutMaskX)>0 

                    semilogy(X(OutMaskX,i),repmat(P50Y(i),... 

                             [sum(OutMaskX),1]),'+','Color',... 

                             Param.OutColor,'LineWidth',Param.LineWidth) 

                end 

            end 

        case 'loglog' 

            % The plot is loglog 
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            % First plot the whiskers 

            loglog(repmat(P50X,[2,1]),[P25Y; WhLBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            hold on 

            loglog(repmat(P50X,[2,1]),[P75Y; WhUBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            loglog([P25X; WhLBX],repmat(P50Y,[2,1]),'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            loglog([P75X; WhUBX],repmat(P50Y,[2,1]),'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            % Set the whisker lower bounds and upper bounds in x direction 

            LBX=10.^(log10(P50X)-Param.WhWidth); 

            UBX=10.^(log10(P50X)+Param.WhWidth); 

            LBY=10.^(log10(P50Y)-Param.WhWidth); 

            UBY=10.^(log10(P50Y)+Param.WhWidth); 

            % Now plot the cap of the whisker 

            loglog([LBX; UBX],repmat(WhLBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            loglog([LBX; UBX],repmat(WhUBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            loglog(repmat(WhLBX,[2,1]),[LBY; UBY],'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 
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            loglog(repmat(WhUBX,[2,1]),[LBY; UBY],'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX 

            clear LBY 

            clear UBY             

            % Now plot the box 

            for i=1:Param.NumBox 

                % plot the IQR using rectangle 

                rectangle('Position',[P25X(i) P25Y(i) IQRX(i) IQRY(i)],... 

                          'EdgeColor',Param.BoxColor,'LineWidth',... 

                          Param.LineWidth) 

            end             

            % Now plot the median 

            loglog([P25X; P75X],repmat(P50Y,[2,1]),'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth) 

            loglog(repmat(P50X,[2,1]),[P25Y; P75Y],'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth)             

            % Now plot the outliers 

            for i=1:Param.NumBox 

                % Find Any Outliers 

                OutMaskY=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i); 
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                OutMaskX=X(:,i)<WhLBX(i)|X(:,i)>WhUBX(i); 

                % If there are outliers plot them 

                if sum(OutMaskY)>0 

                    loglog(repmat(P50X(i),[sum(OutMaskY),1]),... 

                           Y(OutMaskY,i),'+','Color',Param.OutColor,... 

                           'LineWidth',Param.LineWidth) 

                end 

                if sum(OutMaskX)>0 

                    loglog(X(OutMaskX,i),repmat(P50Y(i),... 

                           [sum(OutMaskX),1]),'+','Color',... 

                           Param.OutColor,'LineWidth',Param.LineWidth) 

                end 

            end    

    end 

else 

    % Take the median of X 

    X=prctile(X,50,1); 

    switch Param.Axis 

        case 'cartesian' 

            % Cartesian plot 

            % First plot the whiskers 

            plot(repmat(X,[2,1]),[P25Y; WhLBY],'--',... 
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                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            hold on 

            plot(repmat(X,[2,1]),[P75Y; WhUBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            % Set the whisker lower bounds and upper bounds in x direction 

            LBX=X-Param.WhWidth; 

            UBX=X+Param.WhWidth; 

            % Now plot the cap of the whisker 

            plot([LBX; UBX],repmat(WhLBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            plot([LBX; UBX],repmat(WhUBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX             

            % Now plot the box 

            % First calculate the box lower and upper bounds in the x 

            % direction 

            LBX=X-Param.BoxWidth; 

            UBX=X+Param.BoxWidth; 

            for i=1:Param.NumBox 

                % plot the IQR using rectangle 

                rectangle('Position',... 
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                          [LBX(i) P25Y(i) UBX(i)-LBX(i) IQRY(i)],... 

                          'EdgeColor',Param.BoxColor,'LineWidth',... 

                          Param.LineWidth) 

            end             

            % Now plot the median 

            plot([LBX; UBX],repmat(P50Y,[2,1]),'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX 

            % Now plot the outliers 

            for i=1:Param.NumBox 

                % Find Any Outliers 

                OutMask=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i); 

                % If there are outliers plot them 

                if sum(OutMask)>0 

                    semilogy(repmat(X(i),[sum(OutMask),1]),Y(OutMask,i),... 

                             '+','Color',Param.OutColor,'LineWidth',... 

                             Param.LineWidth) 

                end 

            end 

        case 'semilogx' 

            % The plot is semilogx 
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            % First plot the whiskers 

            semilogx(repmat(X,[2,1]),[P25Y; WhLBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            hold on 

            semilogx(repmat(X,[2,1]),[P75Y; WhUBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            % Set the whisker lower bounds and upper bounds in x direction 

            LBX=10.^(log10(X)-Param.WhWidth); 

            UBX=10.^(log10(X)+Param.WhWidth); 

            % Now plot the cap of the whisker 

            semilogx([LBX; UBX],repmat(WhLBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogx([LBX; UBX],repmat(WhUBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX             

            % Now plot the box 

            % First calculate the box lower and upper bounds in the x 

            % direction 

            LBX=10.^(log10(X)-Param.BoxWidth); 

            UBX=10.^(log10(X)+Param.BoxWidth); 

            for i=1:Param.NumBox 
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                % plot the IQR using rectangle 

                rectangle('Position',... 

                          [LBX(i) P25Y(i) UBX(i)-LBX(i) IQRY(i)],... 

                          'EdgeColor',Param.BoxColor,'LineWidth',... 

                          Param.LineWidth) 

            end             

            % Now plot the median 

            semilogx([LBX; UBX],repmat(P50Y,[2,1]),'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX             

            % Now plot the outliers 

            for i=1:Param.NumBox 

                % Find Any Outliers 

                OutMask=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i); 

                % If there are outliers plot them 

                if sum(OutMask)>0 

                    loglog(repmat(X(i),[sum(OutMask),1]),Y(OutMask,i),... 

                           '+','Color',Param.OutColor,'LineWidth',... 

                           Param.LineWidth) 

                end 

            end 
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        case 'semilogy' 

            % The plot is semilogy 

            % First plot the whiskers 

            semilogy(repmat(X,[2,1]),[P25Y; WhLBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            hold on 

            semilogy(repmat(X,[2,1]),[P75Y; WhUBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            % Set the whisker lower bounds and upper bounds in x direction 

            LBX=X-Param.WhWidth; 

            UBX=X+Param.WhWidth; 

            % Now plot the cap of the whisker 

            semilogy([LBX; UBX],repmat(WhLBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            semilogy([LBX; UBX],repmat(WhUBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX             

            % Now plot the box 

            % First calculate the box lower and upper bounds in the x 

            % direction 

            LBX=X-Param.BoxWidth; 
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            UBX=X+Param.BoxWidth; 

            for i=1:Param.NumBox 

                % plot the IQR using rectangle 

                rectangle('Position',... 

                          [LBX(i) P25Y(i) UBX(i)-LBX(i) IQRY(i)],... 

                          'EdgeColor',Param.BoxColor,'LineWidth',... 

                          Param.LineWidth) 

            end             

            % Now plot the median 

            semilogy([LBX; UBX],repmat(P50Y,[2,1]),'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX             

            % Now plot the outliers 

            for i=1:Param.NumBox 

                % Find Any Outliers 

                OutMask=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i); 

                % If there are outliers plot them 

                if sum(OutMask)>0 

                    semilogy(repmat(X(i),[sum(OutMask),1]),Y(OutMask,i),... 

                             '+','Color',Param.OutColor,'LineWidth',... 

                             Param.LineWidth) 



386 

 

                end 

            end 

        case 'loglog' 

            % The plot is a loglog 

            % First plot the whiskers 

            loglog(repmat(X,[2,1]),[P25Y; WhLBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            hold on 

            loglog(repmat(X,[2,1]),[P75Y; WhUBY],'--',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            % Set the whisker lower bounds and upper bounds in x direction 

            LBX=10.^(log10(X)-Param.WhWidth); 

            UBX=10.^(log10(X)+Param.WhWidth); 

            % Now plot the cap of the whisker 

            loglog([LBX; UBX],repmat(WhLBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            loglog([LBX; UBX],repmat(WhUBY,[2,1]),'-',... 

                      'Color',Param.WhiskColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX             

            % Now plot the box 

            % First calculate the box lower and upper bounds in the x 
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            % direction 

            LBX=10.^(log10(X)-Param.BoxWidth); 

            UBX=10.^(log10(X)+Param.BoxWidth); 

            for i=1:Param.NumBox 

                % plot the IQR using rectangle 

                rectangle('Position',... 

                          [LBX(i) P25Y(i) UBX(i)-LBX(i) IQRY(i)],... 

                          'EdgeColor',Param.BoxColor,'LineWidth',... 

                          Param.LineWidth) 

            end             

            % Now plot the median 

            loglog([LBX; UBX],repmat(P50Y,[2,1]),'-',... 

                        'Color',Param.MedColor,'LineWidth',Param.LineWidth) 

            clear LBX 

            clear UBX 

            % Now plot the outliers 

            for i=1:Param.NumBox 

                % Find Any Outliers 

                OutMask=Y(:,i)<WhLBY(i)|Y(:,i)>WhUBY(i); 

                % If there are outliers plot them 

                if sum(OutMask)>0 

                    loglog(repmat(X(i),[sum(OutMask),1]),Y(OutMask,i),... 
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                           '+','Color',Param.OutColor,'LineWidth',... 

                           Param.LineWidth) 

                end 

            end             

    end 

end 
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