
University of Vermont
ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2017

An Exposition of Selberg's Sieve
Jack Dalton
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in
Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact
donna.omalley@uvm.edu.

Recommended Citation
Dalton, Jack, "An Exposition of Selberg's Sieve" (2017). Graduate College Dissertations and Theses. 720.
https://scholarworks.uvm.edu/graddis/720

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ UVM

https://core.ac.uk/display/84397613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uvm.edu?utm_source=scholarworks.uvm.edu%2Fgraddis%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/etds?utm_source=scholarworks.uvm.edu%2Fgraddis%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.uvm.edu%2Fgraddis%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/720?utm_source=scholarworks.uvm.edu%2Fgraddis%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu


An Exposition of Selberg’s Sieve

A Thesis Presented

by

Jack Robert Dalton

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Master of Science

Specializing in Mathematics

May, 2017

Defense Date: March 23rd, 2017
Thesis Examination Committee:

Jonathan Sands, Ph.D., Advisor
Christian Skalka, Ph.D., Chairperson

Richard Foote, Ph.D.
Cynthia J. Forehand, Ph.D., Dean of Graduate College



Abstract

A number of exciting recent developments in the field of sieve theory have been done
concerning bounded gaps between prime numbers. One of the main techniques used
in these papers is a modified version of Selberg’s Sieve from the 1940’s. While there
are a number of sources that explain the original sieve, most, if not all, are quite
inaccessible to those without significant experience in analytic number theory. The
goal of this exposition is to change that. The statement and proof of the general
form of Selberg’s sieve is, by itself, difficult to understand and appreciate. For this
reason, the inital exposition herein will be about one particular application: to recover
Chebysheff’s upper bound on the order of magnitude of the number of primes less
than a given number. As Selberg’s sieve follows some of the same initial steps as the
more elementary sieve of Eratosthenes, this latter sieve will be worked through as
well.

To help the reader get a better sense of Selberg’s sieve, a few particular applica-
tions are worked through, including an upper bound on the number of twin primes
less than a number. This will then be used to show the convergence of the reciprocals
of the twin primes.
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List of Notational Conventions
N : The set of all natural numbers: {1, 2, . . .}.
R : The set of all real numbers.
A : Some specified set of integers to be sifted.
Ad : {an ∈ A : d | an}.
P : Some specified set of primes which will be used for sifting.

P (z) : The product of all primes in P less than z.
pi : The ith smallest prime number in some list of primes.
x : The real number used as the upper bound for the sieve.
z : The upper bound on the primes in P used for sifting.

S(A, P (z)) : The number of integers in A that are relatively prime to P (z).
π(x) : The number of primes less than x.
π2(x) : The number of twin primes less than x.

π(x;H) : The number of primes in the interval (x, x+H].
bxc : The greatest integer less than x.
ν(n) : The number of distinct prime divisors of n.
φ(n) : Euler’s totient function = |{k ∈ N : k ≤ n, (n, k) = 1}|.

f(n) = O(g(n)) : ∃K constant such that ∀n, |f(n)| ≤ Kg(n).
f(n)� g(n) : f(n) = O(g(n)).

log(x) : The natural logarithm of x.
d | n : d divides n⇒ ∃m ∈ N such that dm = n.

(x, y) : The greatest common divisor of the integers x and y.
[x, y] : The least common multiple of the integers x and y.
{x} : The fractional part of x = x− bxc.

f(x) ∼ g(x) : lim
x→∞

f(x)
g(x) = 1.

χ[statement] : 1 if the statement is true, 0 if false.∑
d|n

: Sum over all positive divisors d of some fixed natural number n.

τ(n) : The number of divisors of n.
τodd(n) : The number of odd divisors of n.

Ωodd(n) : The number of odd prime powers dividing n.
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Chapter 1

Introduction

Recent developments in the field of sieve theory have led to some exciting results

concerning positive lower bounds on the number of primes in bounded intervals.

Arguably the most exciting development was the discovery by Yitang Zhang in 2013

that there exists a bound hk ≤ 70, 000, 000 which has 2 prime numbers in the interval

[n, n+hk] for an infinite number of different values of n. Since then, this hk bound has

been reduced to 246 by the Polymath Project, a collaborative effort of mathematicians

all over the world. These works built partly on the work of Goldston, Pintz and

Yıldırım, who proved in 2005 that

lim inf
n

pn+1 − pn
log(pn) = 0.

One underlying tool used in a number of these works is a suitably altered version of

Atle Selberg’s Λ2 Sieve from the 1940s. While there are a number of sources available

to read about Selberg’s Sieve, none are accessible without much study of analytic

number theory. The goal of this exposition is to change that.
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We will start, as is classically done, with a presentation of the sieve of Eratos-

thenes: an ancient method that basically uses inclusion/exclusion. Legendre for-

malized the underlying mathematics, and as such we will refer to the sieve of Er-

atosthenes/Legendre. Using this sieve, we will work out the somewhat crude upper

bound on the number of primes less than a given real number:

π(x)� x

log(log(x)) .

Selberg’s Sieve initally follows the same methods as that of the sieve of Eratos-

thenes/Legendre, but replaces the use of the Möbius function with a sequence of real

numbers, which lead to a similar conclusion with a much improved error term. This

method will recover Chebycheff’s upper bound on the number of primes less than a

given number:

π(x)� x

log(x) .

The proof of this specific statement from basic assumptions mirrors the proof of the

general form of Selberg’s Sieve in such a way that it would be repetitive to work

through the latter proof as well. However, we will state the general theorem, as it

will be useful in applications.

A pair of additional applications will then be worked through. An upper bound

on the number of primes in a given interval turns out to be a direct application with

little modifications. An upper bound on the number of twin primes less than a given

number requires a couple extra lemmas, but enlightens the reader on the potential

applications of Selberg’s Sieve.

A prime number p is called a twin prime if either p + 2 or p − 2 is also prime.
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For example, 5 and 7 are both twin primes. The Twin Prime Conjecture states that

there are infinitely many twins primes and has eluded mathematicians for centuries.

However an upper bound on the number of twin primes less than a given x is worked

through with sieves in the applications chapter. This upper bound will then be used to

recover Brun’s theorem that the sum of the reciprocals of the twin primes converges.

Brun proved this in 1915 with a slightly more crude upper bound which makes the

proof here more immediate.
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Chapter 2

Preliminaries

This section will be statements and proof of some preliminary lemmas used in the

later proofs to make the latter more readable.

Lemma. ∑
d|n
µ(d) = χ[n = 1].

Proof. If n = 1, then since µ(1) = 1, we have that ∑d|n µ(d) = 1. Now if n > 1,

let n = pa1
1 p

a2
2 . . . parr be the unique factorization of n into distinct primes powers.

The terms in the sum ∑
d|n µ(d) with any power of a prime greater than 1 will be

zero, so we have that the sum will be equal if taken over divisors of n or divisors

of N = p1p2 . . . pr. Thus ∑d|n µ(d) = ∑
d|N µ(d). Each unique divisor d of N is the

product of elements of a unique subset of {p1, p2, . . . , pr}, so if we count how many

elements are in each subset, i.e., how many primes divide d, we get that there are(
r
k

)
divisors whose prime factorization has k primes in it. The value of µ(d) for this

d with k primes dividing it will be (−1)k. Therefore the sum can be written as∑
d|N µ(d) = ∑r

k=0

(
r
k

)
(−1)k = ∑r

k=0

(
r
k

)
(−1)k(1)r−k. Applying the binomial theorem
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to this last sum, we get (1− 1)r = 0.

Lemma. ∑
d|P (z)

1 = 2π(z).

Proof. The left hand side is counting the number of possible subsets of P , which is

just 2|P| = 2π(z).

Lemma. Möbius inversion formula: Let f, g : N→ C. Then we have

f(n) =
∑
d|n
g(d) ⇐⇒ g(n) =

∑
d|n
µ(d)f

(
n

d

)
.

Proof. If f(n) = ∑
d|n
g(d), then

∑
d|n
µ(d)f

(
n

d

)
=
∑
d|n
µ(d)

∑
e|n
d

g(e)

=
∑
d

χ[d | n]µ(d)
∑
e

χ
[
e | n

d

]
g(e)

=
∑
d,e

µ(d)g(e)χ[d | n]χ
[
e | n

d

]

=
∑
d,e

µ(d)g(e)χ[d | n]χ [de | n]

=
∑
e

g(e)
∑
d

µ(d)χ
[
d | n

e

]
χ [e | n]

=
∑
e

χ [e | n] g(e)
∑
d

µ(d)χ
[
d | n

e

]

=
∑
e|n
g(e)

∑
d|n
e

µ(d)

=
∑
e|n
g(e)χ[n = e] = g(n).
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For the other direction, assume g(n) = ∑
d|n
µ(d)f

(
n
d

)
. Then

∑
d|n
g(d) =

∑
d|n

∑
e|d
µ(e)f

(
d

e

)

=
∑
est=n

µ(e)f(s)

=
∑
s|n
f(s)

∑
e|n
s

µ(e)

= f(n).

Lemma. ∑
d|P (z)

µ(d)
d

=
∏
p<z

(
1− 1

p

)
.

Proof. Euler’s Totent Function, φ(n), is defined as the number of integers less than

n that are relatively prime to n. Clearly, on the primes, φ(p) = p − 1. Since φ is

multiplicative, this can be extended to show that, for any n ∈ N, φ(n) = n
∏
p|n

(
1− 1

p

)
.

Now let Sd be the set of integers less than n that have greatest common divisor

with n of d, i.e., Sd = {n ∈ N : 1 ≤ m ≤ n, (m,n) = d}. Using the equivalence that

(m,n) = d ⇐⇒ d | m and n, and
(
m
d
, n
d

)
= 1, we have

|Sd| = |{k ≤
n

d
: (k, n

d
) = 1}| = φ(n

d
).

Thus, ∀m ≤ n,∃d such that d | n and m ∈ Sd. Therefore, {1, . . . , n} = ⋃
d|n Sd. Now

since all the Sd’s are pairwise disjoint, taking the order of each side of this last set

equation becomes n = ∑
d|n |Sd| =

∑
d|n φ(n

d
) = ∑

d|n φ(d).
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Using Möbius inversion on this formula yields φ(n) = ∑
d|n
µ(d)n

d
. Plugging in the

above formula for φ(n) and using n = P (z), the product of all primes less than z, we

have ∑
d|P (z)

µ(d)
d

= ∏
p<z

(
1− 1

p

)
, as desired.

Lemma. The dual Möbius inversion formula states that if D is a divisor-closed subset

of N, and f, g : N→ C, then

f(n) =
∑
n|d
d∈D

g(d)

holds if and only if

g(n) =
∑
n|d
d∈D

µ

(
d

n

)
f(d),

assuming all the series are absolutely convergent.

Proof. First assume f(n) = ∑
n|d
d∈D

g(d), then

∑
n|d
d∈D

µ

(
d

n

)
f(d) =

∑
n|d
d∈D

µ

(
d

n

)∑
d|e
e∈D

g(e)

=
∑
d∈D

µ

(
d

n

)
χ[n | d]

∑
e∈D

g(e)χ[d | e]

=
∑
e∈D

g(e)
∑
d∈D

µ

(
d

n

)
χ[n | d]χ[d | e], let m = d

n

=
∑
e∈D

g(e)
∑
mn∈D

µ(m)χ[n|mn]χ[mn|e]

=
∑
e∈D

g(e)
∑
m| e

n

µ(m)

=
∑
e∈D

g(e)χ[e = n]

= g(n).
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For the other direction, assume g(n) = ∑
n|d
d∈D

µ
(
d
n

)
f(d), then

∑
n|d
d∈D

g(d) =
∑
n|d
d∈D

∑
d|e
e∈D

µ
(
e

d

)
f(e)

=
∑
d∈D

∑
e∈D

µ
(
e

d

)
f(e)χ[n | d]χ[d | e]

=
∑
e∈D

f(e)
∑
d∈D

µ
(
e

d

)
χ[n | d]χ[d | e] let m = e

d

=
∑
e∈D

f(e)
∑
e
m
∈D
µ(m)χ

[
n | e

m

]
χ[d | md]

=
∑
e∈D

f(e)
∑
m| e

n
e
n
∈D

µ(m)

=
∑
e∈D

f(e)χ[e = n]

= f(n).

Lemma. Partial Summation.

If {an}∞1 ⊆ C and if f : N→ C is continuously differentiable and we define:

S(x) =
∑

1≤n≤x
an,

then, ∀A,B ∈ N with A < B, we have:

∑
A<n≤B

anf(n) = f(B)S(B)− f(A)S(A)−
∫ B

A
S(x)f ′(x)dx.
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Proof. We have

∑
A<n≤B

anf(n) =
∑

A<n≤B
f(n)(S(n)− S(n− 1))

=
∑

A<n≤B
f(n)S(n)−

∑
A−1<n≤B−1

f(n+ 1)S(n)

= f(B)S(B)− f(A)S(A)−
∑

A−1<n≤B−1
S(n)(f(n+ 1)− f(n)).

We evaluate the sum in this last line:

∑
A−1<n≤B−1

S(n)(f(n+ 1)− f(n)) =
B−1∑
n=A

S(n)
∫ n+1

n
f ′(x)dx

=
B−1∑
n=A

∫ n+1

n
S(x)f ′(x)dx

=
∫ B

A
S(x)f ′(x)dx

which completes the proof.

9



Chapter 3

The Sieve of Eratosthenes/Legendre

The goal of this section is to estimate π(x), the number of primes less than a number

x, using the simplest sieve, that of Eratosthenes. In general, sieves are used over

some specified set A. So for this example, A = {n ∈ Z : 1 ≤ n ≤ x}, the set of all

positive integers up to x. In general, once again, we will need some way of sifting

out the primes, so to start we will consider how many integers in A are relatively

prime to some set of primes P . In this case P will just be all the prime integers.

One more piece we will need in general is a way of measuring the number of integers

in A that are relatively prime to the primes in P that are less than some number

z. So we form the product P (z) = ∏
p<z p and consider the count of all integers in

A that are relatively prime to P (z), which we will denote S(A, P (z)). So we have

S(A, P (z)) = |{n ∈ N : 1 ≤ n ≤ x, (n, P (z)) = 1}|. So S(A, P (z)) is the number

of integers in A that are relatively prime to P (z). In other words, it is the number

of integers between 1 and x that have no prime factors smaller than z. To think of

it another way, S(A,P (z)) = ∑
n≤x χ[(n, P (z)) = 1]. If everything works perfectly,

the number we get from the sieve will be exactly π(x) − π(z) + 1, the number of

10



primes less than x but greater than z, where the 1 comes from the fact that for all n,

(n, 1) = 1. This will then be used to get an upper bound on π(x).

If we make the simplifying assumption that x ∈ R+ \N, then the statement n < x

is equivalent to n ≤ x, and the same can be done for z. This will make it easier to

keep track of later calculations.

So now to start counting the elements of A divisible by small primes in P starting

with the smallest prime and working up towards the greatest. Clearly, there are bxc

integers less than x: 1, 2, . . . , bxc; so the count before any multiples of primes are

removed will be bxc. Next, for each prime p1 less than z, we “sift out” multiples

of p1. So we remove each mp1 ≤ x, where m ∈ N. Clearly, we are deleting
⌊
x
p1

⌋
numbers from the list. This leaves us with bxc − ∑

p<z

⌊
x
p

⌋
integers remaining in

the list. Upon brief inspection, we notice that too many integers were deleted. For

example, integers that are divisible by two primes less than z were counted twice. So

we can add those back in, for which we have
⌊

x
p1p2

⌋
for each pair p1, p2. The new count

is bxc −∑p1<z

⌊
x
p1

⌋
+∑

p2<p1<zb
x

p1p2
c. If this process is iterated, we get the following

count for S(A, P ) = bxc −∑p1<z

⌊
x
p1

⌋
+∑

p2<p1<z

⌊
x

p1p2

⌋
−∑p3<p2<p1<z

⌊
x

p1p2p3

⌋
+ . . .

For example, looking at the integers less than x = 25.9, we have that b25.9c = 25.

Below is a list of these integers with the primes underlined:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25.

So π(x) = 9. There are
⌊

25.9
2

⌋
= 12 different multiples of 2 in the list,

⌊
25.9

3

⌋
= 8

different multiples of 3, and
⌊

25.9
5

⌋
= 5 different multiples of 5. If we keep counting

multiples of higher primes, we will be just counting the single primes, as there will be

no composite numbers left in the list once we count multiples of
√
b25.9c =

√
25 = 5.
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In other words, each composite between
√
x and x is divisible by a prime less than

√
x. Thus, the optimal choice for z in the sieve is

√
x. Using this value in the sum

for S(A, P (z)), bxc−∑p<
√
x

⌊
x
p

⌋
= 25− (12 + 8 + 5) = 0. Clearly, too many numbers

were deleted, as we can see that there are 6 primes between
√
x and x. So adding

the sum over divisors made up of 2 primes, we have
⌊

25.9
2·3

⌋
= 4,

⌊
25.9
2·5

⌋
= 2, and lastly⌊

25.9
3·5

⌋
= 1. Thus bxc−∑p<

√
x

⌊
x
p

⌋
+∑p2<p1<z

⌊
x

p1p2

⌋
= 25−(12+8+5)+(4+2+1) = 7.

The next sum counts multiples of the product of 3 primes, but the product of the

smallest 3 primes, 2 · 3 · 5 = 30, is greater than x = 25.9, so each term in the sum will

be zero. Thus S(A, P (z)) should be 7, and upon inspection of the list,

π(25.9)− π(
√

25.9) + 1 = 9− 3 + 1 = 7, as desired.

For a slightly larger example, which will be useful later, we will do this same

calculation for x = 100.5. These are the numbers we will need

bxc = 100 b100.5
2·3 c = 16 b100.5

2·3·5 c = 3

b100.5
2 c = 50 b100.5

2·5 c = 10 b100.5
2·3·7 c = 2

b100.5
3 c = 33 b100.5

2·7 c = 7 b100.5
2·5·7 c = 1

b100.5
5 c = 20 b100.5

3·5 c = 6 b100.5
3·5·7 c = 0

b100.5
7 c = 14 b100.5

3·7 c = 4

b100.5
5·7 c = 2.

12



So we have that, for A = {n ∈ N : n < 100.5},

S(A, P (z)) = bxc −
∑
p1<z

⌊
x

p1

⌋
+

∑
p2<p1<z

⌊
x

p1p2

⌋
−

∑
p3<p2<p1<z

⌊
x

p1p2p3

⌋

= 100− (50 + 33 + 20 + 14) + (16 + 10 + 7 + 6 + 4 + 2)− (3 + 2 + 1)

= 22.

Checking with the correct number of primes in the interval, we have π(100.5) −

π(
√

100.5) + 1 = 25− 4 + 1 = 22.

This method works well for these small numbers, but does it lead to any theoretical

estimates for large values of x? To do this, we need to define the Möbius function

µ(n). µ : N→ {0,±1} by

µ(n) =



1 if n = 1

(−1)r if n = p1p2 . . . pr where p1, p2, . . . , pr are all distinct primes

0 if p2 | n for some prime p.

An alternate definition would be to define µ(1) = 1, and at prime powers pα to be

µ(pα) =


−1 if α = 1

0 if α ≥ 2.

and then extend the function multiplicatively to all positive integers. A function on

the natural numbers is said to be multiplicative if f(x · y) = f(x) · f(y) whenever

(x, y) = 1.

The Möbius function has a number of useful properties that will come into play.

13



One such is when the sum of the Möbius function is taken over all divisors of an

integer, the result is 1 if the original integer was 1, and 0 otherwise.

The proof of the following lemma can be found in the preliminaries section:

Lemma. ∑
d|n
µ(d) = χ[n = 1].

So we get:

S(A, P (z)) = bxc −
∑
p1<z

⌊
x

p1

⌋
+

∑
p2<p1<z

⌊
x

p1p2

⌋
−

∑
p3<p2<p1<z

⌊
x

p1p2p3

⌋
+ . . .

=
∑
d|P (z)

µ(d)
⌊
x

d

⌋
.

To give a more formal proof of this fact, notice that

S(A, P (z)) =
∑
n<x

χ[(n, P (z) = 1]

=
∑
n<x

∑
d|(n,P (z))

µ(d)

=
∑
n<x

∑
d|P (z)

µ(d)χ[d | n]

=
∑
d|P (z)

µ(d)
∑
n<x

χ[d | n]

=
∑
d|P (z)

µ(d)
⌊
x

d

⌋
.

Using this, we will get a general upper bound on S(A, P (z)) and then use it to get

a (weak) upper bound on π(x) in terms of x alone. Note: bxc = x−{x} = x+O(1).
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Using this notation, the above equation becomes

∑
d|P (z)

µ(d)
⌊
x

d

⌋
=

∑
d|P (z)

µ(d)
(
x

d
−
{
x

d

})

=
∑
d|P (z)

µ(d)
(
x

d
+O(1)

)

=
∑
d|P (z)

µ(d)x
d

+
∑
d|P (z)

O(1)

= x
∑
d|P (z)

µ(d)
d

+O
 ∑
d|P (z)

1
 .

Now to state a few lemmas regarding this last equation, which are proven in the

preliminaries section:

Lemma. ∑
d|P (z)

1 = 2π(z).

Lemma. Möbius inversion formula: Let f, g : N→ C. Then we have

f(n) =
∑
d|n
g(d) ⇐⇒ g(n) =

∑
d|n
µ(d)f

(
n

d

)
.

Lemma. ∑
d|P (z)

µ(d)
d

=
∏
p<z

(
1− 1

p

)
.

Applying these lemmas, we get

S(A, P (z)) = x
∑
d|P (z)

µ(d)
d

+O
 ∑
p|P (z)

1


= x
∏
p<z

(
1− 1

p

)
+O

(
2π(z)

)
.

15



The next step is to get an upper bound on S(A, P (z)) by getting a lower bound

on the reciprocal of part of the main term:

∏
p<z

(
1− 1

p

)−1
= ∏

p<z

∞∑
r=0

1
pr

By the geometric series.
∏
p<z

∞∑
r=0

1
pr
>
∑
n<z

1
n

Terms on right are proper subset of terms on left.
∑
n<z

1
n
> log(z) Comparing

∫ z
1

1
x
dx to the sum.

So we get that

S(A, P (z)) < x

log(z) +O
(
2π(z)

)
.

Taking z =
√
x would be ideal, however, for large values of x, by the prime number

theorem, 2π(
√
x) ∼ 2

√
x

log(
√
x) , which is much larger than the main term x

log(
√
x) .

Therefore, to control the error term, we must take z = log(x). Since π(z) < z, we

have that 2π(z) < 2z = 2log(x) = xlog(2), which is small enough to give us the following

upper bound on S(A, P (z)):

S(A, P (z))� x

log(log(x)) .

Thus we can get a bound on π(x) using:

π(x) = (π(x)− π(z)) + π(z)

≤ S(A, P (z)) + π(z)

≤ S(A, P (z)) + z

� x

log(log(x)) + log(x).
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And therefore

π(x)� x

log(log(x)) .

There is a general form of the sieve of Eratosthenes/Legendre and the proof follows

similar arguments to the above, but is much more technical, and for this reason is

omitted.

Theorem. Let A be any set of natural numbers, and P be any set of primes. To each

of these primes in P, let there be ω(p) distinguished residue classes modulo p. Ap is

defined to be the set of elements of A that belong to at least one of these classes. For

all squarefree d composed entirely of primes in P, set A1 to be A, Ad = ⋂
p|dAp, and

ω(d) = ∏
p|d ω(p). If z ∈ R+, as before, let

P (z) =
∏
p<z
p∈P

p.

Define S(A,P , z) = |A \ ⋃p|P (z)Ap|, and suppose there exists X such that

|Ad| =
ω(d)
d

X +Rd

for some Rd.

Now suppose |Rd| = O(ω(d)) and ∃κ ≥ 0 such that

∑
p|P (z)

ω(p) log(p)
p

≤ κ log(z) +O(1).

Also assume ∃y ∈ R+ such that ∀d > y, |Ad| = 0.

17



Then,

S(A, P (z)) = XW (z) +O
((
x+ y

log(z)
)
(log(z))κ+1 exp

(
− log(y)

log(z)
))

where

W (z) =
∏
p∈P
p<z

(
1− ω(p)

p

)
.

So that the theorem is general enough to apply in many situations, rather con-

fusingingly, X is actually a multiplicative function of x. In the application to π(x)

above, X(x) was just equal to x.
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Chapter 4

Selberg’s Sieve

Fortunately, the basic ideas of the Sieve of Eratosthenes can be extended to get much

better upper bounds on π(x). To begin with, we will re-examine the equation

S(A, P (z)) =
∑
n<x

χ [(n, P (z)) = 1] =
∑
n<x

∑
d|(n,P (z))

µ(d).

We will replace the function µ(d) in the terms in the above sum by a sequence {λd}

of real numbers. Now if λ1 = 1 and the rest of the λd’s are arbitrary real numbers,

the following will hold: for any fixed m ∈ N,

∑
d|m

µ(d) ≤
(∑
d|m

λd

)2

.

This fact can be easily verfied by noticing that the left hand side is 1 if m = 1 and 0

otherwise, while the right hand side is 1 if m = 1 and greater than or equal to zero

otherwise. Since the λd’s were chosen arbitrarily, minimizing equations by carefully

19



choosing values for λd will yield valid estimates. So we have

S(A, P (z)) =
∑
n<x

∑
d|(n,P (z))

µ(d)

≤
∑
n<x

 ∑
d|(n,P (z))

λd

2

=
∑
n<x

 ∑
d1,d2|(n,P (z))

λd1λd2


=
∑
n<x

∑
d1,d2

λd1λd2χ [d1, d2 | (n, P (z))]

=
∑
n<x

∑
d1,d2

λd1λd2χ [d1 | n]χ [d2 | n]χ [d1 | P (z)]χ [d2 | P (z)]

=
∑

d1,d2|P (z)
λd1λd2

∑
n<x
d1,d2|n

1.

Where [d1, d2] is the least common multiple of d1 and d2. Now if we recall that the

number of integers less than x that are divisible by d is

#{n < x : n ≡ 0( mod d)} =
⌊
x

d

⌋
= x

d
+O(1),

we get

S(A, P (z)) = x
∑

d1,d2|P (z)

λd1λd2

[d1, d2]︸ ︷︷ ︸
Main Term

+O
 ∑
d1,d2|P (z)

|λd1| · |λd2|


︸ ︷︷ ︸

Error Term

.

Further calculations will be simplified by the assumption that λd = 0 for all d > z.

Note that if in minimizing the main term we get |λd| ≤ 1, then the error term will be

O(z2), which will lead to a more optimal choice of z =
√
x, but this will be clearer

further on.
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Examining the part of the main term that is controlled by the choice of λd’s, we

want to minimize ∑
d1,d2<z

λd1λd2

[d1, d2] .

We will use the fact that the product of the least common multiple and the greatest

common divisor of two numbers is the same as the product of the two numbers: i.e.,

[d1, d2](d1, d2) = d1 · d2. Also, we will use the summation function for the sum over

the divisors of a number of Euler’s totient function, just as we did in the Eratos-

thenes/Legendre sieve: n = ∑
d|n
φ(d).

So we have:

∑
d1,d2<z

λd1λd2

[d1, d2] =
∑

d1,d2<z

λd1λd2

d1 · d2
(d1, d2)

=
∑

d1,d2<z

λd1λd2

d1 · d2

∑
δ|(d1,d2)

φ(δ)

=
∑
δ<z

φ(δ)
∑

d1,d2<z
δ|(d1,d2)

λd1λd2

d1 · d2

=
∑
δ<z

φ(δ)
(∑
d<z
δ|d

λd
d

)2

=
∑
δ<z

φ(δ)u2
δ

where we define the function uδ := ∑
d<z
δ|d

λd
d
. This is the new sum to be minimized

subject to λ1 = 1 and ∀d > z, λd = 0. Notice that this implies uδ = 0 for all δ > z.

Using the dual Möbius inversion formula on the formula for uδ, we get

λδ
δ

=
∑
δ|d
µ

(
d

δ

)
uδ.
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This implies that λ1 = 1 = ∑
δ<z

µ(δ)uδ.

The dual Möbius inversion formula states that if D is a divisor-closed subset of

N, and f, g : N→ C, then

f(n) =
∑
n|d
d∈D

g(d)

holds if and only if

g(n) =
∑
n|d
d∈D

µ

(
d

n

)
f(d),

assuming all the series are absolutely convergent. A set D is divisor-closed if and only

if for all x ∈ D, if d | x, then d ∈ D. See Preliminaries section for proof.

Thus we have,

∑
δ<z

φ(δ)u2
δ =

∑
δ<z

φ(δ)
(
uδ −

µ(δ)
φ(δ)V (z)

)2

+ 1
V (z) ,

where

V (z) =
∑
d<z

µ2(d)
φ(d) =

∑
d<z

d squarefree

1
φ(d) .

The minimum of ∑
δ<z

φ(δ)u2
δ will thus be 1

V (z) , which will occur when uδ = µ(δ)
φ(δ)V (z) .

An alternative way to see this is by an application of the Cauchy-Schwarz Inequality,

∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ =
(

n∑
i=1
|ai|2

) 1
2
(

n∑
i=1
|bi|2

) 1
2

,
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to the right hand side of the equation 1 = ∑
δ<z

µ(δ)uδ. So we have

1 =
∑
δ<z

µ(δ)uδ

√
φ(δ)√
φ(δ)

≤
(∑
δ<z

µ2(δ)
φ(δ)

) 1
2
(∑
δ<z

φ(δ)u2
δ

) 1
2

.

This implies the same minimum bound stated above

∑
δ<z

φ(δ)u2
δ ≥

1∑
δ<z

µ2(δ)
φ(δ)

= 1
V (z) ,

which occurs with the same value of uδ as above which was

uδ = µ(δ)
φ(δ)V (z) .

Therefore, the optimal choice of λδ is

λδ = δ
∑
d<z
δ|d

µ(d/δ)µ(d)
φ(d)V (z) .

There will be no terms in the sum for δ > z, and if we plug in δ = 1, we get

λ1 = 1
V (z) ·

∑
d<z

µ2(d)
φ(d) = 1

by the definition of V (z). Thus we get

S(A, P (z)) ≤ x

V (z) +O
 ∑
d1,d2|P (z)

|λd1| · |λd2|

 .
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To analyze the error term and get it to be the desired O(z2), we need to establish

that |λδ| ≤ 1 for all δ. If we multiply both sides of λδ = δ
∑
d<z
δ|d

µ(d/δ)µ(d)
φ(d)V (z) by V (z), we

get

V (z)λδ = δ
∑
d<z
δ|d

µ(d/δ)µ(d)
φ(d)

= δ
∑
t< z

δ

µ(t)µ(δt)
φ(δt)

= δ
∑
t< z

δ
(t,δ)=1

µ2(t)µ(δ)
φ(δ)φ(t)

= µ(δ)
∏
p|δ

(
1 + 1

p− 1

) ∑
t< z

δ
(t,δ)=1

µ2(t)
φ(t) .

Taking the absolute value of both sides, we get

|V (z)| · |λδ| ≤ |V (z)|.

Thus, ∀δ, |λδ| ≤ 1 as desired, and we have that as z, x→∞,

O

 ∑
d1,d2|P (z)

|λd1| · |λd2|

 = O(z2).

Recall that, ∀z ≤ x, we have

π(x) ≤ S(A, P (z)) + π(z)

≤ S(A, P (z)) + z.
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We now just need to find a lower bound on V (z) and to choose z such that the

error term does not get too big. Since V (z) = ∑
d<z

µ2(d)
φ(d) , we have that

V (z) ≥
∑
d<z

µ2(d)
d

=
∑
d<z

1
d
−

∑
d<z
d not

squarefree

1
d
.

Examining the two parts of this last expression separately, we can see first that

∑
d<z

1
d

= log(z) +O(1).

Also, we can see that ∑
d<z
d not

squarefree

1
d
≤ 1

4
∑
d< z

4

1
d
.

Combining these two give us:

V (z)� log(z).

We can conclude that π(x)� x
log z + z2, and thus, choosing z =

(
x

log(x)

) 1
2 , we get

π(x)� 2x
log

(
x

log(x)

) + x

log(x)

= 2x
log(x)− log(log(x)) + x

log(x) .

From this, we can recover Chebycheff’s upper estimate:

π(x)� x

log(x) .
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An almost identical proof works for the general statement of Selberg’s Sieve, but

again is more technical than enlightening, and is thus omitted. The general statement

goes as follows:

Theorem. Given A = {an}bxc1 ⊆ N a finite set such that |A| = bxc. For all primes

p ∈ P, define Ap = {an ∈ A : p | an}, and for d squarefree, Ad = {an ∈ A : d | an} =⋂
p|d
Ap, and let A1 = A. Define

S(A, P (z)) = |{an ∈ N : (an, P (z)) = 1}| = |A \
⋃

p|P (z)
Ap|.

Now assume that, for any squarefree d divisible only by primes in P,

|Ad| =
x

f(d) +Rd

where f is a multiplicative function chosen so that

V (z) =
∑
d<z
d|P (z)

µ2(d)
f1(d)

can be bounded from below, where f1 is defined by f(n) = ∑
d|n
f1(d), i.e.,

f1(n) =
∑
d|n
µ(d)f

(
n

d

)
,

and Rd ∈ R is a remainder term.

Then

S(A, P (z)) ≤ x

V (z) +O

 ∑
d1,d2<z
d1,d2|P (z)

|R[d1,d2]|

 .
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While it may be hard to see what this theorem is saying, it will become clear in

the applications. The key step is finding the multiplicative function f that provides

the best lower bound for V (z), so the reciprocal is bounded from above. The next

step is to get an upper bound on Rd, and thus for the whole error term in the main

formula. Putting these pieces together will yield an upper bound on S(A, P (z)), as

desired.

There is another lemma that will be useful in the proof of the upper bound on

the number of twin primes less than a number:

Lemma. With the above assumptions of the general Selberg Sieve, define f̃ such that

∀p ∈ P, f̃(p) = f(p) and if n = pα1
1 . . . pαrr , then f̃(n) = f(p1)α1 . . . f(pr)αr . Then we

have:

V (z) ≥
∑
d<z

(d,P (z)) 6=1

1
f̃(d)

.

Proof. By definition, we have that f̃(n) =
r∏
i=1

f̃(pi)αi =
r∏
i=1

f(pi)αi . Recall that V (z) =∑
d<z
d|P (z)

µ2(d)
f1(d) where f1(d) = ∑

c|d
µ(c)f

(
d
c

)
. If d is squarefree, write d = p1p2 . . . ps, and

f1(d) = µ(1)f
(
d

1

)
+ µ(p1)f

(
d

p1

)
+ . . .+ µ(pipj)f

(
d

pipj

)
+ . . .+ µ(d)f

(
d

d

)

= f(d)− f
(
d

p1

)
− . . .+ f

(
d

p1p2

)
+ . . .+ (−1)ν(d)f(1)

= f(p1 . . . ps)− f(p2 . . . ps)− . . .+ f(p3 . . . ps) + . . .+ (−1)ν(d)

= f(p1) . . . f(ps)− f(p2) . . . f(ps)− . . .+ f(p3) . . . f(ps) + . . .+ (−1)ν(d)

=
∏
p|d

(f(p)− 1).
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Thus,

1
f1(d) =

∏
p|d

1
f(p)− 1 =

∏
p|d

1/f(p)
1− 1/f(p) =

∏
p|d

∑
k≥1

(
1

f(p)

)k

=
 1
f(p1) +

(
1

f(p1)

)2

+ . . .

 . . .
 1
f(ps)

+
(

1
f(ps)

)2

+ . . .


=

∑
n∈Dd

1
f̃(n)

where

Dd = {n ∈ N : n = pα1
1 . . . pαss , αi ≥ 1∀i = 1, . . . , s} = {n ∈ N : p | n ⇐⇒ p | d}.

So for d1 6= d2 both squarefree, we have that Dd1 ∩ Dd2 = ∅ and ∀e < z, e ∈ Dd

for some Dd, namely the Dd such that d = ∏
p|e
p.

Thus, since d is squarefree which means µ2(d) = 1,

V (z) =
∑
d<z
d|P (z)

1
f1(d)

=
∑
d<z
d|P (z)

∑
n∈Dd

1
f̃(n)

≥
∑
d<z
d|P (z)

∑
n∈Dd

1
f̃(n)

χ[n < z]

=
∑
d<z

(d,P (z))6=1

1
f̃(d)

.
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Chapter 5

Applications of Selberg’s Sieve

5.1 Bounding the Number of Primes in

an Interval

In this section, we will work through a simple application of Selberg’s Sieve to bound

from above the number of primes in an interval.

Theorem. Let H ≥ 2, then

π(x;H) ≤ 2H
log(H) +O

(
H

log2(H)

)
.

Proof. We have π(x;H) = π(x+H)− π(x) = |{p : x < p ≤ x+H, p prime}|. So the

interval we’re working with is (x, x+H]⋂N, and this will be the set we take for A.

If p is a prime, p | P (z) or (p, P (z)) = 1, and thus we have

π(x;H) ≤ |{n : x < n ≤ x+H, (n, P (z)) = 1}|+ π(z).
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Then

|Ad| =
⌊
x+H

d

⌋
−
⌊
x

d

⌋
= x+H

d
− x

d
+O(1)

= H

d
+O(1).

And thus by Selberg’s Sieve we get

S(A, P (z)) ≤ H

V (z) +O
( ∑

d1,d2<z
d1,d2|P (z)

1
)

= H

V (z) +O(z2).

So we can choose f(d) = d, and thus

f1(n) =
∑
d|n
µ(d)f

(
n

d

)
= n

∑
d|n

µ(d)
d

= φ(n).

Thus we get

V (z) =
∑
d<z

µ2(d)
φ(d)

=
∑
d<z

µ2(d)
d

∏
p|d

(
1− 1

p

)−1

=
∑
d<z

µ2(d)
d

∞∑
m=1

p|m⇒p|d

1
m

≥
∑
n<z

1
n

> log(z).
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And thus we get

S(A, P (z)) ≤ 2H
log(z2) +O(z2).

Choosing z =
√
H

log(H) yields

S(A,P (z)) ≤ 2H
log(H)− 2 log(log(H)) +O

(
H

log2(H)

)
.

Since

π(x;H) ≤ S(A, P (z)) + π(z)

≤ S(A, P (z)) + z

≤ 2H
log(H)− 2 log(log(H)) +O

(
H

log2(H)

)
+
√
H

log(H) ,

we conclude that

π(x;H) ≤ 2H
log(H) +O

(
H

log2(H)

)
.

5.2 Bounding the Number of Twin Primes

In this section, we will discuss bounding the number of twin primes less than x from

above. The famous Twin Prime Conjecture would be solved if one could prove any

positive bound on this number from below that grows to infinity as x does.

To frame the problem of getting an upper bound on the number of twin primes in

the setup of Selberg’s Sieve, first we need to define A. In this case, we want to look

at integers n and those 2 larger, so we can define A as {n(n+2) : n < x}, and take all
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the primes as our P . So, for example, if x = 10, A = {3, 8, 15, 24, 35, 48, 63, 80, 99}.

Note that we are not looking for primes in this set, just for elements of this set that

are divisible by exactly 2 primes. So the main goal is to sift all numbers out of this set

that are divisible by primes less than z and be left only with composite numbers with

large prime factors, and hopefully take z large enough that the estimate is accurate.

To accomplish this, we to count the elements of A that are relatively prime to P (z).

So we define Ad = {an ∈ A : d | an} = {n(n + 2) : n < x, d | (n(n + 2))}, and want

to consider A \ ⋃
p|P (z)

Ap.

Now we will get an estimate on |Ad|, which will lead to the desired function

f . To do this, we define ρ(d) = |{n( mod d) : n(n + 2) ≡ 0 mod d}| = |{n(

mod d) : d | n(n+ 2)}|. If we evaluate this function at a prime, we get

ρ(p) = |{0, p− 2( mod p)}| =


1 if p = 2

2 otherwise.

We thus get that

|Ad| =
⌊
xρ(d)
d

⌋
= xρ(d)

d
+O(ρ(d)).

Thus, in the general formula for Selberg’s Sieve, we take f(d) = d
ρ(d) , and Rd =

ρ(d). Using this, we can get an upper bound on the error term ∑
d1,d2<z
d1,d2|P (z)

|R[d1,d2]|. By
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noticing that for d squarefree, we have that Rd = ρ(d) ≤ 2ν(d), so we get

∑
d1,d2<z
d1,d2|P (z)

|R[d1,d2]| =
∑

d1,d2<z
d1,d2 squarefree

ρ([d1, d2])

≤
∑

d1,d2<z
d1,d2 squarefree

2ν([d1,d2])

≤
∑

d1,d2<z
d1,d2 squarefree

2ν(d1)2ν(d2)

=
( ∑

d<z
d squarefree

2ν(d)
)2

since ν([d1, d2]) ≤ ν(d1d2) ≤ ν(d1) + ν(d2).

Since d is assumed squarefree, 2ν(d) = τ(d), where τ(d) is the number of divisors

of d, and so

∑
d<z

d squarefree

2ν(d) =
∑
d<z

d squarefree

τ(d)

=
∑
a·b<z

1

=
∑
a<z

⌊
z

a

⌋

= z
∑
a<z

1
a

+O(z)

= z log(z) +O(z).
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Now we can state the bound on the error term:

∑
d1,d2<z
d1,d2|P (z)

|R[d1,d2]| � (z log(z))2.

The next step is to get a lower bound on V (z). Define

ρ̃(n) = ρ(p1)α1 . . . ρ(pr)αr , where n = pα1
1 . . . pαrr .

So, like f̃ in the lemma on the bound on V (z) in the section on Selberg’s Sieve, ρ̃

is just the totally multiplicative extension of ρ(n) restricted to the primes. It follows

from this definition that

ρ̃(n) =
∏
pi|n

ρ(pi)αi =
∏
pi|n
pi 6=2

2αi = 2Ωodd(n),

where Ωodd(n) = ∑
pi|n
pi 6=2

αi.

Using this, by the lemma on the bound on V (z) in the section on Selberg’s Sieve,

we get

V (z) ≥
∑
d<z

p|d⇒p|P (z)

1
f̃(d)

=
∑
d<z

p|d⇒p|P (z)

1
(f(p1))α1 . . . (f(pr))αr

=
∑
d<z

p|d⇒p|P (z)

1
( p1
ρ(p1))α1 . . . ( pr

ρ(pr))
αr

=
∑
d<z

p|d⇒p|P (z)

ρ̃(d)
d

=
∑
d<z

p|d⇒p|P (z)

2Ωodd(d)

d
.
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If p = 2, then 2Ωodd(pk) = 1, and τodd(pk) = 1. Now if p is an odd prime, then

2Ωodd(pk) = 2k, and τodd(pk) = k + 1. Thus, 2Ωodd(pk) ≥ τodd(pk) for all p, and so we

can substitute into the above inequality to get

V (z) ≥
∑
d<z

p|d⇒p|P (z)

2Ωodd(d)

d
≥

∑
d<z

p|d⇒p|P (z)

τodd(d)
d

.

Now

∑
n<z

τodd(n) =
∑
n<z

∑
d|n
χ[d odd]

=
∑
n

∑
d

χ[d odd]χ[n < z]χ[d | n]

=
∑
d<z
d odd

∑
n<z
d|n

1

=
∑
d<z
d odd

⌊
z

d

⌋

=
∑
d<z
d odd

z

d
+O(1)

= z
∑
d<z
d odd

1
d

+O(z).
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If we break ∑
d<z
d odd

1
d
into the difference of two sums, i.e., ∑

d<z

1
d
− ∑

c< z
2

1
2c we see

z
∑
d<z
d odd

1
d

+O(z) = z

∑
d<z

1
d
−
∑
c< z

2

1
2c

+O(z)

= z
(

log(z) +O(1)− 1
2 log

(
z

2

)
+O(1)

)
+O(z)

= z

2 log(z) +O(z).

Therefore, we have that

V (z) ≥
∑
d<z

τodd(d)
d

= 1
z

∑
d<z

τodd(d) +
∫ z

1

∑
d<z

τodd(d)

t2
dt

= O(log(z)) +
∫ z

1

1
2t log(t) +O(t)

t2
dt

= 1
4 log2(z) +O(log(z)).

Thus we get that

V (z)� log2(z).

Combining this with the above upper bound on the error term, we get that

S(A, P (z)) ≤ x

V (z) +O

 ∑
d1,d2<z
d1,d2|P (z)

|R[d1,d2]|


� x

log2(z)
+O((z log(z))2)
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and conclude, taking z = x
1
4 , that

S(A, P (z))� x

log2(x)
+O

(
x

1
2 log2(x)

2

)

� x

log2(x)
.

Recall that S(A, P (z)) = |{n(n+ 2) : (n(n+ 2), P (z)) = 1, n < x}|. Thus we get

a bound on π2(x):

π2(x) = (π2(x)− π2(z)) + π2(z)

≤ S(A, P (z)) + π2(z)

≤ S(A, P (z)) + z

� x

log2(x)
+ x

1
4 .

And therefore

π2(x)� x

log2(x)
.
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Chapter 6

Sum of Reciprocals

6.1 Divergence of the Sum of the Re-

ciprocals of the Primes

Theorem. ∑p
1
p
diverges.

Proof. Fix j ∈ N, and let 2, 3, 5, . . . , pj be the first j primes. Define:

N(x) = #{n ∈ N : n ≤ x and ∀pk > pj, (n, pk) = 1}.

Thus N(x) is the number of positive integers less than or equal to x that are not

divisible by any prime greater than pj.

We will first prove a lemma: N(x) ≤ 2j
√
x. Let n be a number in the set that

N(x) is counting. If all the non-zero even powers of primes in the factorization of n

are lumped into one term n1, then n can be written as n2
1m, where m is square-free.
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Since all of the prime factors of n are less than or equal to pj, m = 2b13b2 . . . p
bj
j , where

bi ∈ {0, 1}. Since there are 2j subsets of a set of size j, there are 2j possible different

values of m. The largest n1 can be in relation to n is
√
n, so because n ≤ x, we have

that n1 ≤
√
n ≤

√
x. Thus there are at most

√
x possible values of n1. Therefore

N(x) ≤ 2j
√
x.

Now to finish the proof of the theorem. Suppose ∑
p

1
p
converges. Then we can pick

j such that ∑
p>pj

1
p
< 1

2 . Notice that

#{n ≤ x : p | n} =
⌊
x

p

⌋
≤ x

p
.

Hence,

x−N(x) = #{n ≤ x : pi | n for some i > j} ≤
∑
i>j

x

pi
.

By assumption, this is less than x
2 and we get, by the lemma:

x

2 < N(x) ≤ 2j
√
x.

This implies that
√
x < 2j+1, and so x < 22j+2. But this is clearly not true for all

x ≥ 22j+2, a contradiction, and therefore ∑
p

1
p
diverges.

6.2 Brun’s Theorem

Recall that a twin prime is a prime number p such that p + 2 is also prime, such as

p = 29. We will now prove the convergence of the sum of the reciprocals of the twin
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primes. In 1915, using sieves, Viggo Brun showed that

π2(x) = The number of twin primes less than x� x(log log(x))2

(log(x))2 .

In the Applications of Selberg’s Sieve section, we showed the better bound

π2(x)� x

(log(x))2 = x

log2(x)

which implies that ∃c ∈ R such that for all x large enough, π2(x) < cx
log2(x) .

To prove ∑
twin primes

1
p
converges, we will get an estimate on the growth of ∑

p a twin
p<x

1
p

as x→∞ using a lemma, whose proof can be found in the preliminaries section:

Lemma. Partial Summation.

If {an}∞1 ⊆ C and if f : N→ C is continuously differentiable and we define:

S(x) =
∑

1≤n≤x
an,

then, ∀A,B ∈ N with A < B, we have:

∑
A<n≤B

anf(n) = f(B)S(B)− f(A)S(A)−
∫ B

A
S(x)f ′(x)dx.

We will apply this lemma with an = χ[n is a twin prime], f(n) = 1
n
, and S(x) =

π2(x). So χ[n is a twin prime] = π2(n)− π2(n− 1).
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Thus we have

∑
p a twin
p<x

1
p

=
∑

2≤n≤x

1
n
χ[n is a twin prime]

= 1
x
π2(x)− 1

2π2(2)−
∫ x

2

π2(y)
−y2 dy

= π2(x)
x

+
∫ x

2

π2(y)
y2 dy.

Applying the bound we got from Selberg’s Sieve, we get:

π2(x)
x

+
∫ x

2

π2(y)
y2 dy <

c

log2(x)
+
∫ x

2

dy

y log2(y)
.

The first term c
log2(x) clearly goes to 0 as x→∞. Evaluating the integral, we get

∫ x

2

dy

y log2(y)
= −1

log(y)

∣∣∣∣∣
x

2
= 1

log(2) −
1

log(x) →
1

log(2) as x→∞.

Therefore, we get

∑
p a twin
p≤x

1
p
< 2c

(
1

log(2) −
1

log(x)

)
→ 2c

log(2) as x→∞,

and thus ∑
p a twin

prime

1
p
<∞.
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Chapter 7

Conclusion

While the Sieve of Eratothenes/Legendre can recover a weak upper bound for the

number of primes less than a given number, the more sophisticated Selberg’s Sieve

is needed to recover the Chebycheff’s upper bound. The convergence of the sum of

the reciprocals of the twin primes is usually proved in the literature using Brun’s

estimate, as that is historically where the proof originates. However the proof shown

in this work is using the slightly better bound from Selberg’s Sieve.

There are methods of using sieves to get lower bounds for growth rates of se-

quences, which is how the positive prime gap results were reached. Additionally,

rather than choosing an optimal set of λd’s, it turns out that a less than optimal set

is used to prove Zhang’s Theorem.

There are some conjectures regarding these tools that are yet to be settled, but

to discuss them, first we need to define what an admissible set is.

Definition. Admissible Set: A set of natural numbers H = {h1, h2, . . . , hk} is called

admissible if ∀p, at least one of the residue classes modulo p is missed by every one

of the hi’s.
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For example, the sets {0, 2}, {0, 4}, {0, 4, 6} are all admissible, but the set {0, 2, 4}

is not admissible since it fails the criterion for p = 3. So the Twin Prime Conjecture

is saying that the admissible set {0, 2} has infinitely many prime translates on the

natural numbers. That is, there exist infinitely many n such that n + 0 and n + 2

are both prime. A strong generalization of this conjecture is the Admissible Set

Conjecture:

Conjecture. There exist infinitely many k-tuples, (n+ h1, n+ h2, . . . , n+ hk), con-

sisting entirely of primes if and only if the set H = {h1, h2, . . . , hk} is an admissible

set.

So Zhang’s Theorem is a weaker form of this theorem. In 2013, James Maynard

and Terrance Tao proved the related case for any number of primes which is known

as the Maynard-Tao Theorem:

Theorem. ∀m ≥ 2,∃k ∈ N such that if {h1, h2, . . . , hk} is an admissible set, then

there exists infinitely many n for which at least m entries of the k-tuple (n+ h1, n+

h2, . . . , n+ hk) are all prime.

Assuming a strong form of the Elliot-Halberstam Conjecture, Maynard was also

able to show:

Conjecture. lim inf
n

(pn+1 − pn) ≤ 12 and lim inf
n

(pn+2 − pn) ≤ 600.

These bounds are considered the limit of the current sieve methods. To state the

Elliot-Halberstam Conjecture, first we need to define the function

Θ(x) =
∑

p prime
p≤x

log(p).
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It can be shown that the Prime Number Theorem is equivalent to showing that

Θ(x) ∼ x as x → ∞. The Prime Number Theorem for Arithmetic Progressions can

then be stated as

Θ(x; q, a) =
∑

p prime
p≤x

p≡a( mod q)

log(p) ∼ x

φ(x) as x→∞.

The Bombieri-Vinogradov Theorem can be thought of as a Prime Number Theo-

rem for Arithmetic Progressions on average and is stated:

Theorem. ∀A > 0,∃B(A) such that

∑
q≤Q

max
a( mod q)

(a,q)=1

∣∣∣∣∣Θ(x; q, a)− x

φ(q)

∣∣∣∣∣�A
x

(log(x))A

where Q = x
1
2

(log(x))B .

Finally, the Elliot-Halberstam Conjecture appears similar but has eluded proof

and is stated as:

Conjecture. ∀A > 0 and ε such that 0 < ε < 1
2 ,

∑
q≤Q

max
a( mod q)

(a,q)=1

∣∣∣∣∣Θ(x; q, a)− x

φ(q)

∣∣∣∣∣� x

(log(x))A

where Q = x
1
2 +ε.
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