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ABSTRACT 

 

The species of two genera in Insecta: Hemiptera: Adelgidae were investigated through the 

lenses of genetics, morphology, life cycle and host species. The systematics are unclear 

due to complex life cycles, including multigenerational polymorphism, host switching and 

cyclical parthenogenesis. I studied the hemlock adelgids, including the nonnative invasive 

hemlock woolly adelgid on the east coast of the United States, that are currently viewed as 

a single species. I used multivariate morphometric analyses to identify morphological 

differences among hemlock adelgid lineages. With principal component analyses and 

MANOVA, the six lineages that were used in this study were found to be significantly 

different from each other. The findings of this project provide evidence for taxonomic 

designation of different hemlock adelgid lineages, which will hopefully inform regulation 

of these distinct lineages, as these distinctions between the lineages of hemlock adelgids 

could equate to other biological differences, ex. cold tolerance, host specialization, 

fecundity and dispersal ability. I also investigated the relationship between species Pineus 

similis, Pineus abietinus through phylogeny, genetic distances, life cycle and host species. 

This was done through using three mitochondrial (COI, COII, cytB) and one nuclear 

(EF1a) gene, in Maximum Parsimony, Maximum Likelihood and Bayesian analyses, along 

with genetic distance measurements. The P. similis and P. abietinus on Pinus could not be 

separated within the Bayesian analyses, and P. similis and P. abietinus on Abies had low 

calculated distance measurements (2.98%) compared to the average distance between 

species within the genus (28.07%). These two studies emphasize the current confusion 

within the Adelgidae family, and the results presented in this thesis stress the importance 

of using components of multiple species concepts to better understand the systematics of 

these lineages.
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CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

1.1 Adelgidae family 

The Adelgidae family is situated within the Aphidoidea (Hemiptera: 

Sternorrhyncha) superfamily (Havill & Foottit, 2007). This family has a complex life 

cycle, including cyclical parthenogenesis, multigenerational polymorphism and host 

switching (Havill & Foottit 2007).  Some confusion exists in the general classification of 

adelgids. In 1908, Börner revised the original taxonomy of this group when he split the 

genus Chermes into 8 genera and in Cholodkovksy’s dichotomous key of these genera, 

all eight were defined by larval attributes (Cholodkovky 1915). This was disputed in 

Annand’s monograph of North American Adelginae (1928), where he described only 2 

genera within the group: Pineus Shimer with four pairs of abdominal spiracles on adults 

and Adelges Vallot with five. In 1968, Steffan attempted the first genera description of 

Adelgidae base on phylogeny by altering Börner’s classification, using morphology, 

number of chromosomes and endosymbiotic bacteria (Havill & Foottit 2007). Even 

recently, there are discrepancies between different authors on which taxonomy method 

should be utilized, although Annand’s taxonomy is the most commonly used in North 

America (Havill & Foottit 2007). 

All adelgids have multigenerational polymorphic life cycles, while some have 

even more complexity with cyclically parthenogenetic and heteroecious life cycles as 

well (Havill & Foottit 2007, Fig. 1).  This complex life cycle starts on a primary host, the 

Picea Miller spp., where it reproduces parthenogenetically as fundatrix phenotype. 

Fundatrix feed on first year Picea twigs, which alter the growth of the twig forming a 

gall. The adult fundatrix lays eggs of the next generation, gallicola. As the gallicola feed, 

the peripherally damaged plant tissue continues to become more damaged, adding to the 
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gall which grows around individuals until the gallicola are engulfed in the gall. The 

nymphs go through 3 instars while inside the gall. Once the gallicola are mature, the galls 

dry out and the nymphs emerge and molt into winged adults. These new adults then fly 

off to find a suitable secondary host where they will lay eggs and die. The generations 

which live out their entire life cycle on the secondary host are called exulis, or the ‘one 

who is banished’ in Latin. There are two generations of exulis, sistentes and 

progredientes. The eggs laid by the gallicola are sistentes; they hatch on the secondary 

host in the early summer and aestivate until the late summer. In late summer, the sistentes 

begin to feed on new host growth before reverting to state of dormancy. They remain 

dormant until early spring and lay eggs in late spring. These eggs are progredientes, 

which are density dependent; apterous progredientes are sessile individuals which are 

prominent at low densities and sexuparae progredientes are winged individuals which are 

prominent at high densities (Sussky & Elkinton 2014). According to Sussky et al. (2014), 

the ratio of apterous and sexuparae progredientes depends on the density of its current 

generation, rather than the density of parental sistentes. The apterous progredientes 

complete development on the secondary host tree, resulting in the new sistentes 

generation. The sexuparae individuals also feed on secondary host and look identical to 

apterous progredientes until the final instars, when wing pads and wings develop. Once 

fully developed, the sexuparae migrates to a Picea tree, the primary host. They die after 

laying their eggs, using its roof-like wing positioning to protect the newly laid eggs. The 

sexualis go through 4 instars, develop as male or female and are the only adelgid 

generation to reproduce sexually. Each female sexualis lays a single egg on the Picea 

spp, which later hatches into a fundatrix. This explanation of the adelgid life cycle is 
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based on descriptions from experts (Cholodkovsky 1912, Marchal 1913, Annand 1928, 

Havill & Foottit 2007) and terms used in the above description are those proposed by 

Marchal in 1913. Although other nomenclature has been created and used by various 

authors, this is the most common terminology. 

1.2 Difficultly of Adelgidae systematics 

Species within the Adelgidae family are defined by their multigenerational, 

polymorphic, cyclically parthenogenetic and host switching life cycle, along with the 

retention of the ancestral relationship to gymnosperms (Havill & Foottit 2007). The life 

cycle complexity is not consistent throughout Adelgidae (see Havill & Foottit 2007). 

Multigenerational polymorphic life cycles that reproduce asexually only are termed 

anholocyclic.  They have lost the ability to migrate back to either the primary or 

secondary host and therefore utilize only part of its full ancestral life cycle (Havill & 

Foottit 2007). Holocyclic species have retained the 5 generation life cycle, switching 

from primary host to secondary host (Havill & Foottit 2007). There are still other species 

that have holocyclic populations and anholocyclic populations, the anholocyclic 

populations occurring where either the primary host or the secondary host does not occur 

(Havill & Foottit 2007). 

The complexity of the Adelgidae life cycle has made systematics of this group 

very difficult (Annand 1928, Havill & Foottit 2007). It can be difficult to ascertain 

whether an anholocyclic grouping of adelgids are a population of an existing holocylclic 

species that do not have access to one of the two hosts, or whether it is its own distinct 

species (Havill & Foottit 2007). One example of this confusion includes Pineus orientalis 

Dreyfus and Pineus pini Gmelin (Havill et al. 2007). Pineus orientalis is a holocyclic 
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species native to the Caucausus Mountains using Picea orientalis (Linnaeus) Link as a 

primary host and multiple Pinus Linnaeus spp. as secondary hosts (Havill & Foottit 

2007). Pineus pini is an anholocylic species, which uses only Pinus spp as a host and 

exists in Europe where Picea oreintalis does not naturally occur (Havill & Foottit 2007). 

Although unusual for diagnosing species outside of this family, this distinction between 

existing on primary and secondary host species, along with geography, are the only traits 

separating these species. Havill et al (2007) found that some P. orientalis and P. pini 

have identical COI, COII, cytb and EF1a sequences. In addition, winged adults from this 

species complex have been found in Italy (in Covassi and Binazzi 1981; referenced in 

Havill et al. 2007) and Denmark (in Heie 19976; referenced in Havill et al. 2007), which 

are within the range of P. pini. These two pieces of evidence support the conclusion that 

the relationship between P. orientalis and P. pini is not completely understood (Havill et 

al. 2007). 

There is an on-going discussion among experts in the field of adelgid biology 

about using the life cycle to determine species (Cholodkovsky 1915, Steffan 1964, Havill 

& Foottit 2007). There are plenty of examples, like the one stated above, of populations 

which are morphologically similar or seemingly identical but are designated species level 

because they are not known to migrate among hosts (Havill & Foottit 2007). Molecular 

evaluations of these groups may shed light on the evolutionary history, and inform the 

systematics of these species (Havill & Foottit 2007). 

 

1.3 Hemlock Adelgids 

1.3.1 Adelges tsugae distribution and description 
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Hemlock woolly adelgid, (Adelges tsugae, Annand), is native to Asia and western 

North America (Havill & Foottit 2007). The species has a relatively small native range 

due to its host specificity; A. tsugae uses species in the genus Tsuga Carrière as 

secondary hosts, and like all adelgids, are restricted to certain species in the genus Picea 

as a primary host (McClure 1989, Havill, Vieira & Salom 2014). In 1951 A. tsugae was 

found in Richmond, Virginia; this introduction is thought to have been from southern 

Japan (Havill et al. 2006). Currently A. tsugae is an invasive pest in approximately half of 

Tsuga canadensis (Linnaeus) Carrière range, about 9308 square kilometers and its 

limitation is speculated to be due to its low cold tolerance, as well as multiple other 

factors (Butin, Porter & Elkinton 2005). 

1.3.2 Tsuga and Adelges tsugae significance 

Hemlocks on the east coast of North America, both eastern hemlock (Tsuga 

canadensis) and Carolina hemlock (T. carolinina), are ecologically formative species. 

Hemlock is often thought of as a foundation species (Martin & Goebel 2013), creating 

and maintaining a significantly moist and cool microclimate compared to the surrounding 

environments. The soil in this micro-ecosystem becomes significantly more acidic then 

areas that lack regular deposits of hemlock needles (Ellison et al. 2005). Although 

slightly acidic soils (pH = 6.5) can be extremely beneficial to the majority of plants by 

allowing a greater accessibility to important minerals and phosphorous, a lower pH (4.0-

5.0) creates a slightly toxic environment which allows only specialized organisms to 

colonize the area (Bickelhaupt unknown, Ellison et al. 2005). The change in soil 

chemistry and change in leaf litter has been seen to change ground dwelling arthropod 

communities (Rohr et al. 2009, Ingwell et al. 2012). The removal of hemlocks from 
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ecosystems also dramatically changes the plant species composition; for example, black 

birch (Betula lenta) has started to replace eastern Hemlock in western Massachusetts 

where A. tsugae scare has cause salvage logging (Zukswert et al. 2014). This change 

from a coniferous to a deciduous canopy increases the light reaching the understory 

during the summer months (Zukswert et al. 2014). 

Hemlocks also have some economic value; Hemlocks have little significance in 

logging operations, but the decline of Hemlocks due to A. tsugae has brought housing 

property values down (Holmes, Murphy, & Bell 2006). 

1.3.3 Historic research of Adelges tsugae 

Dreyfus presumably first discovered A. tsugae in 1889; although he used 

extremely colorful language, such as comparing the juvenile adelgid to an overturned 

boat, his description of the specimen’s morphology and biology was very broad and 

could fit a variety of Adelgid species. Dreyfus named the species Chermes funitectus, 

because of the adults’ large size. Very little can be extracted from this original report by 

Dreyfus: only the general description and the host tree the specimen was found on- Tsuga 

heterophylla (Rafiensque) Sargent (then called ‘Abies canadensis’). In Cholodkovsky’s 

monograph of European Adelgids (1915) the species Chermes funitectus is mentioned as 

an adelgid which exists in Eastern Europe, though by its current name (Adelges tsugae) it 

hasn’t been reported in Eastern Europe.  

The next observation of a similar specimen was by Chrystal in 1916, ‘The Forest-

Insect Problem in Stanley Park’. Chrystal refers to the insect as “Western Hemlock 

Chermes”, and based on the host tree alone Annand (1928) believed the specimens found 

by Chrystal (Chermes funitectus) were the same species he described on the western 
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coast of North America in 1924. Annand noted that the genus Chermes should no longer 

be used due to the imprecise uses in the nomenclature (see Bulletin of Zoological 

Nomenclature below). In 1924, Annand described this species with a new name, A. 

tsugae, taken from a host tree Tsuga heterophylla in Eugene, Oregon. He stated in this 

description of A. tsugae that if there is a primary host of the species, it is unknown. Since 

then A. tsugae has been reported as a globally distributed species, having been found on 

all nine species of Tsuga and observed to complete a full holocyclic life cycle in parts of 

its range (in Takahashi 1937, referenced in Havill et al. 2006, in Inouye 1953, referenced 

in Havill et al. 2007, McMclure 1992, McMclure 1989, Montgomery et al 2000). 

1.3.4 Adelges tsugae as an invasive insect 

Adelges tsugae’s current range includes most of Tsuga’s current range: mainland 

China, Taiwan, South Korea, Japan, western North America and eastern North America 

(Havill et al 2008, Havill, Montgomery & Keena 2011). Of this global distribution, only 

the population in eastern North America is considered to be invasive (Havill 2006). In its 

invaded range A. tsugae is a serious threat to Tsuga species, having caused mortality in 

some forest stands in 2-3 years (McClure 1990). Of the effected forests, tree mortality is 

faster in southern counties (Levy & Walker 2014, Sussky & Elkinton 2014, McClure 

1996). As a sap-sucking insect, A. tsugae feeds on ray parenchyma tissue of young 

hemlock growth (Young, Sheilds & Berlyn 1995). These feeding habits, when occurring 

in high densities, reduce new growth of hemlock by reduced photosynthesis and water 

loss (Gonda-King et al. 2014) 

Since the 1990s, biological control has been extensively studied as a method of 

control for A. tsugae on the east coast of North America (Cheah et al 2004, Havill, Vieira 
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& Salom 2014). During this time, no specialist fungal or parasitic biological control has 

been found to reduce the A. tsugae population (Havill, Vieira & Salom 2014). There has 

been some success with predator biological control (Cheah et al 2004). Of the more than 

five predator biological controls released in the east coast of North America, none have 

had the ability to fully control hemlock adelgids (Havill, Vieira & Salom 2014). 

1.3.5 Recent research 

Until recently, it was unclear whether A. tsugae found on western North American 

hemlocks were native to the Pacific Northwest, or if they were introduced along with A. 

tsugae found on the east coast (McClure 1987). A. tsugae clearly have a different 

relationship with the hemlock trees on the west coast as the populations are found in 

lower densities and have significantly lower impact on the trees than in the east (Havill et 

al. 2006, McClure 1989). Through genetic work of global populations of A. tsugae, 

Havill et al. (2006) found little evidence to suggest a recent invasion of A. tsugae to 

western North America. It is more likely that A. tsugae on the west coast of North 

America has been co-evolving with the hemlock species in the area for thousands of 

years (Havill et al 2006).  

In the same study, Havill et al. (2006) found a large genetic difference between 

the global populations of A. tsugae. The mitochondrial DNA from samples within A. 

tsugae from mainland China and Taiwan differed from the samples from Japan at the 

same range as mitochondrial DNA of different species of adelgids (Havill et al. 2006). 

The study determined that more research is needed on the morphology, biology and 

ecology of A. tsugae to understand the true relationship between these adelgid 

populations. 
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1.4 Pineus similis, Pineus abietinus 

Gillette (1907) described the species Chermes similis as an adelgid species with 

apterous females laying egg clusters, sometimes in the presence of galls on blue spruce in 

Colorado. Later, Annand (1928) placed this species in the Pineus genus with Gillette’s 

(1907) apterous type specimen. Cumming (1962) published a more complete description 

of Pineus similis, introducing this species as anholocyclic, restrictively settling on the 

primary host. When studying P. similis, Cumming used specimens from northern North 

America: Manitoba, Saskatchewan, Alberta and British Columbia. Cumming (1962) 

found P. similis to have a seemingly four generations, fundatrices, winged gallicolae, 

apterous gallicoae, and apterous females, which do not live in new galls.  

Johnson (1959) reported a previously unknown species of Pineus genus in 

Washington state. This species was descripted to be the first species within this genus to 

feed on true firs, attacking the trunk and branches of both Abies amabilis (Douglas) and 

Abies grandis (Douglas) (Johnson 1959). This species was officially described as Pineus 

abietinus by Underwood and Balch (1964). The specimens used to describe this species 

were collected from the bark of Abies amabilis, in Kitimat British Columbia and were 

recorded to be indistinguishable from specimens found in Washington. Underwood and 

Balch (1964) recorded P. abietinus to be anholocyclic on the secondary host, species in 

the Abies genus. 

1.4.1 Current understandings of Pineus similis and Pineus abietinus 

In 2006 adelgid specimens that were morphologically identical to P. abietinus 

were found on the bark of Pinus monticola Douglas trees in Oregon (Havill, personal 

communication, 10 February 2016). The existence of P. abietinus on a Pinus host had not 
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been observed previously. When genetic analysis of COI was conducted, these newly 

discovered specimens were found to have identical COI sequences to P. similis (Havill, 

personal communication, 10 February 2016). This discovery revealed the possibility of a 

current misunderstanding in the relationship between P. abietinus, P. similis and these 

specimens found on the bark of Pinus monticola. 
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1.5 Figures 

 

Figure 1.  Description of Adelgid life cycle (Havill & Foottit 2007). 
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Figure 1. 
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CHAPTER 2: MORPHOMETRIC VARIATION AMONG GENETICALLY 

DISTINCT LINEAGES OF THE HEMLOCK WOOLLY ADELGID, ADELGES 

TSUGAE ANNAND (HEMIPTERA: ADELGIDAE) 

2.1 Abstract 

Hemlock adelgid, Adelges tsugae Annand, are non-native invasive forest insects 

in eastern North America, originating from Japan. They threaten the sustainability of two 

ecologically and economically important native trees species: eastern and Carolina 

hemlock. There are additional populations of hemlock adelgids native to China, Taiwan, 

Japan, South Korea and western North America. Within these populations there are eight 

distinct genetic lineages: one from central China, one from western China, two from 

Taiwan, two from Japan, one from Ulleung Island (South Korea), and one from western 

North America. These genetic distinctions provide evidence that the species designation 

A. tsugae, which places all eight lineages under the same description, does not reflect the 

diversity within the global hemlock adelgid distribution.  

We used multivariate morphometric analyses to identify morphological 

differences among hemlock adelgid lineages. Using principal component analyses and 

MANOVA, the six lineages that were evaluated in this study were found to be 

significantly different (p < 0.05). The findings of this project provide evidence for 

taxonomic designation of different hemlock adelgid lineages that can inform regulation 

and biological control. 

 

2.2 Introduction 
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Although Adelgidae (Hemiptera: Sternorrhyncha) has been studied for over 900 

years, the first reference of adelgids in 1583, there is still much left unknown about this 

family (Annand 1928).  Much of this confusion is due to their complex life cycle, which 

exists in all species in the family (Annand 1928). The complex life cycle presents itself in 

multiple ways: cyclical parthenogenesis, multigenerational polymorphy, and host 

switching (Havill & Foottit 2007). Although some adelgids species have lost cyclical 

parthenogenesis and host switching (Annand 1928), all contain multigenerational 

polymorphy, making it difficult to compare individuals between and within the same 

species.  

Until 2016, hemlock adelgids were assumed to be one species with a global 

distribution (McClure 1987).  Havill et al. (2016) reported eight genetically distinct 

lineages: western China, central China, Ulleung island, western North America, two in 

Taiwan, and two in Japan- on Tsuga diversifolia Masters and Tsuga sieboldii Carrière. In 

our study, we utilized multivariate morphometric methodologies to better understand if, 

and how, six of these eight genetically distinct lineages are manifested morphologically. 

These six, western China, Ulleung island, western North America, one in Taiwan, and the 

two lineages on Tsuga diversifolia and Tsuga sieboldii, predetermined lineages were used 

as groupings in the analyses. 

A. tsugae is dramatically altering ecosystem functions as it spreads across 

hemlock forests in eastern United States.  Understanding the species differentiation 

among populations worldwide is critical for management of these forested ecosystems.  If 

these global populations are in fact separate species with distinct niches, including cold 

tolerance, fecundity and host use, the unintended introduction of individuals from Japan, 
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western North America, Taiwan, China and Ulleung island into a new environment could 

be similarly disastrous to the hemlock populations and ecosystem function around the 

world. 

This study aims to understand the potential differences in morphology between 

the genetically distinct A. tsugae populations. The results of this study will help to inform 

the systematics of A. tsugae populations. 

 

2.3 Methods 

2.3.1 Adelgid samples 

Samples of adelgids that were collected between 1994-2015 from five different 

countries (Table 1) were individually slide-mounted in Canada balsam. Out of the eight 

genetic lineages previously found (Havill et al 2016), only specimens from western 

China, Ulleung island, western North America, one in Taiwan, and the two lineages from 

Japan on Tsuga diversifolia and Tsuga sieboldii were available for morphologic analysis. 

This left six lineages to be represented in this analysis. Specimens were grouped 

according to life stage and generation. Only 1st instar nymphs and adults were used 

because these stages have been established as being the most informative for 

distinguishing adelgid species (Blackman and Eastop 1994). Adelgid individuals have 

historically been classified as sistentes or progredientes (singular = sistens and 

progrediens) based on whether they do, or do not undergo an aestivation period, 

respectively (Havill and Foottit 2007). Morphological differences between sistentes and 

progredientes, such as the extent of sclerotization, stylet length, number of wax glands, 

and antennal length, have been noted in some adelgid species (see references in Havill et 
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al. 2007), but these have not been reported for A. tsugae (Annand 1924, McClure 1989). 

A. tsugae is described as having two generations per year on hemlock: a generation of 

sistens individuals that hatches in late summer, aestivates for several months, 

overwinters, and lays eggs in the spring, and a generation of progrediens individuals that 

hatches in the spring and lays eggs in early summer (McClure 1989). Our samples were 

classified as sistentes or progredientes based on life cycle timing that has been 

documented for different regions (Veira et al. 2013, Joseph et al. 2011, Mausel et al. 

2008, Kohler et al. 2008, Shiyake et al. 2008, Lamb et al. 2008). Temperatures from 

recorded life cycle timings were obtained, and compared to temperatures of locations that 

contained hemlock adelgids of the same genetic lineage.  We used the minimum and 

maximum temperatures of each province from the Japan Meteorological Agency to 

estimate the generation of adelgids collected in Japan (retrieved 2016). For the Chinese 

specimens, unpublished data were used from a forest service scientist who recorded 

hemlock adelgid phenology (personal communication with Havill, September 2016). The 

Taiwanese hemlock adelgid lineages, for which the life cycle had never been recorded, 

were classified as sistentes or progredientes using the Chinese life cycle data, as they are 

assumed to have similar life cycle as the recorded adelgids of China. Any specimen 

collected in a timeframe which both sistentes and progredientes had previously been 

collected were taken out of the analysis.  Each individual was therefore classified as a 1st 

instar sistens, 1st instar progrediens, adult sistens, or adult progrediens. 

 

2.3.2 Morphometrics 
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We analyzed the morphology of these six distinct genetic lineages by measuring 

characters of 688 specimens (Table 1). Character measurements were selected based on a 

similar study of balsam woolly adelgid, Adelges piceae (Foottit et al. 1980, 1989). 

Images of each slide were captured using a Keyence VHX-2000 digital microscope 

(Keyence Corporation, Boston, Massachusetts, USA) and measurements were made 

using the VHX-2000 Communication software (add manufacturer details). Dorsal and 

ventral views were captured of each specimen.  Eighteen morphological characters were 

measured on the most intact lateral side of each 1st instar specimen (Table 2 and Fig. 2), 

and 19 morphological characters were measured on adult specimens (Table 3 and Fig. 3).  

The accuracy measuring these characters was assessed by measuring one specimen ten 

times, on half hour intervals, throughout one day. Characters with a coefficient of 

variation lower than 0.035 were included in statistical analysis, following previous 

adelgid morphology research (Foottit & Mackauer, 1989). Only individuals for which it 

was possible to measure all characters were included in analyses.  

2.3.3 Statistical analyses 

We performed all analyses in R Version 3.3.1 (R Core Team 2014). We used the 

prcomp package (Sigg and Buhmann 2008) for principal components analyses (PCA), 

and base package for multivariate analysis of variance (MANOVA). The vegan package 

(Oksanen et al 2016) was used for visual representation of the principal component 

analysis. PCA and MANOVA analyses were run to test differences between sistens and 

progrediens generations across all lineages, and for differences among genetic lineages 

within each of the four groups: 1st instar sistens, 1st instar progrediens, adult sistens, and 

adult progrediens. The ellipses were based on standard deviation for each designated 
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lineage grouping. P-values were calculated using Bonferroni correction when multiple 

significance tests were run on the same data set. 

2.4 Results 

The results of our morphological analyses support the six distinct genetic lineages of 

the species complex of hemlock adelgids (Havill et al. 2016). Although not all lineages 

were represented in each analysis, each lineage was shown to be statically significantly 

different from other lineages, with the exception of Ulleung island (see Tables in 

Appendix).  

2.4.1 Morphological analysis 

Differences among distinct genetic linages of 1st instar sistentes were tested using 

seven characters (N=62) (Table 2). The first two principal components accounted for 

51.61% of the total variation (Fig. 4). The first principal component, which accounted for 

30.24% of variation, consisted of only negative values (Table 4). The rostrum 3rd segment 

width (R3mw) and antenna 3rd segment length (Au) had the largest negative scores. The 

second principal component, which accounted for 21.40% of the variability, has low 

negative scores, with the exception of rostrum base (R4bw) and rostrum 4th segment 

length (R34L) which had high positive scores. 

The MANOVA revealed the statistically significant differences of morphological 

traits among distinct genetic lineages of 1st instar sistentes.  Four of the six distinct 

genetic lineages of 1st instar sistentes were different from each other in pairwise 

comparisons (Table 5). For these statistically significant pairwise comparisons of linages, 

F3, Tb3, dTs3, and Au were the defining characteristics (Table 6). 
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We used thirteen characters of 1st instar progredientes to test for statistical 

differences among distinct genetic lineages (N=121) (Table 2). The first two principal 

components accounts for 38.75% of the total variation (Fig. 5). The first principal 

component accounted for 25.82% of the total variation (Table 7). All the character scores 

for the first principal component had low negative values. The second principal 

component, which accounted for 12.93% of variation, had low negative scores except 

rostrum 4th segment base (R4bw) and rostrum 3rd segment width (R3mw) which were 

relatively high positive values. 

The MANOVA found some of these lineages within the 1st instar progredientes 

analysis to be significantly different.  A pairwise comparison of the lineages was done of 

the available lineages for 1st instar progredientes and four pairwise comparisons were 

found to be statistically different from each other (Tables 8).  For the statistically 

significant pairwise comparisons of 1st instar progrediens lineages, R4bw, R4L, R3mw, 

F3, Tb3, F2, Tb2, dTs2, F1, F1w, Tb1, Au were defining characters (Table 9). 

Seven characters were included in the analysis of adult sistentes (N=82) (Table 3). 

The first two principal components accounted for 61.32% of the variability (Figure 6). 

The first principal component accounted for 42.38% of variability and consisted of only 

positive scores (Table 10). Of these scores, the 3rd femur length (F3) was the highest 

score, with 2nd femur length (F2) and ovipositor length (Ov) as next highest 

measurements. The second principal component, which accounted for 18.94% of 

variability, consisted of relatively low positive scores, except for ovipositor length (Ov) 

which had a large negative score. 
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The MANOVA found these lineages within the adult sistentes analysis to be 

significantly different.  A pairwise comparison was done of all available lineages and five 

of the ten pairwise comparisons were found to be statistically different from each other 

(Table 11). The characters R4bw, F3, F3w, F2, Tb1 and Au were found to be defining of 

the significant lineages (Table 12). 

In the analysis of adult progredientes, four measurements were used (N=51) 

(Table 3). The first two principal components accounted for 85.12% of variability (Fig. 

7). The first principal component, which accounted of 59.25% of variability, consisted of 

only negative scores (Table 13). Most of these scores were low, with exception of the 3rd 

femur length (F3) which had a large negative score. The second principal component, 

which accounted for 20.68% of variability, had relatively high positive scores for rostrum 

4th segment base (R4bw) and 3rd femur width (F3w) but relatively a large negative score 

for antennal 3rd segment length (Aubw). 

The MANOVA found these lineages within the adult progredientes to be 

significantly different.  A pairwise comparison done on the available lineages and four of 

the six pairwise comparisons were statistically different from each other (Table 14). For 

these statistically significant pairwise comparisons of lineages, R4bw, F3, F3w, Au were 

found to be defining characters (Table 15). 

2.4.2 Morphological groups 

This study found each lineage, besides Ulleung, to have differences between at 

least one other lineage. Eight of the 15 lineage comparisons resulted in no morphological 

differences (Table 16). These morphological differences which separate the genetically 
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defined lineages differ between lineage comparisons and life cycle stages (Appendix I, II, 

III, IV).  

 

2.5 Discussion 

Although systematics of multigenerational polymorphic species can be 

challenging to fully understand, incorporating morphology, genetics and geographic 

distribution can help clarify obscured boundaries of lineages. The results of this 

morphological analyses agree with the genetic lineages of hemlock adelgids found by 

Havill et al. (2006, 2016).  

Differences observed in the morphology of the genetic lineage were not 

necessarily consistent between the two generations (Table 16). For example, western 

China is significantly different from the same lineages in both 1st instar sistentes and 

adult sistentes analyses. Whereas, the progredientes analyses between generations did not 

match up as well.  Within the 1st instar progredientes analysis, western China was only 

significantly different from Taiwan. In the adult progredientes analysis, western China 

was not significantly different from Taiwan but was significantly different from T. 

sieboldii and western North America.  

 The significance level between lineages was not always seen through the 

generations.  Although T. sieboldii was significantly different from Taiwan in both 1st 

instar progredientes and adult sistentes analysis, these lineages were not significant in 1st 

instar sistentes and adult progredientes. T. sieboldii was also not significant from western 

China in the 1st instar progredientes analysis but was significantly different in the rest of 

the analyses.  
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Although these significant morphological differences between lineages did not 

hold true throughout all four analyses, the analyses should not be considered 

contradictory. In the past, all known life cycle and 1st instar and adult generations of 

adelgids were considered important information and used in the description and 

identification of adelgids (Annand 1924 & 1928, Cumming 1962, Underwood & Balch 

1964). Both instar and adult biology are independently important for defining and 

identifying a species, and thus do not necessarily have to tell the same story. 

Each polymorphy which exists in the adelgid’s multiple generations have distinct 

rolls in the life cycle. Although both sistentes and progredientes are categorized under the 

label of exules within adelgid biology, the stages have different existences.  The sistentes 

have a period of diapause within the 1st first instar stage and in hemlock adelgids, 

sistentes are the generational stage to overwinter (Havill & Foottit 2007). The 

progredientes generation have no diapause and only exist a short period in the spring and 

early summer. Because of this, there are many traits of sistentes recorded to be distinct 

from progredientes (Havill & Foottit 2007). These two generational stages on the 

secondary host of hemlock adelgids are significantly different in morphology (Appendix 

V, VI) and represent distinct parts of the typical 5-year adelgid life cycle. The differences 

found in this study between the sistens and progrediens generations are not representative 

of a misunderstanding in the lineages, but rather both generations bring different and 

valid evidence to the existence of multiple distinct lineages within the hemlock adelgid 

species complex.  

2.6 Conclusions 
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The results show a need for re-examination of the diversity of hemlock adelgids. 

Although not all generations were included in this study, the exules proved to be helpful 

in an examination of the morphological diversity within the six lineages included. Further 

research should include the two lineages that were not available for this study, central 

China and the second lineage in Taiwan, along with the inclusion of generations on the 

primary hosts, where it exists.  

This research may also stimulate comprehensive policy for the species where it is 

invasive. Hemlock adelgids have been known to exist on the east coast of North America 

since 1951 (Stoetzel 2002), and since then caused damage on the eastern and Carolina 

hemlock population and eastern hemlock dominated ecosystems (Havill, Montgomery & 

Kenna 2011). This invasive population is an introduction from the lineage on T. sieboldii 

in Japan (Havill et al. 2016). In this study, there were four comparisons of lineages that 

were morphologically significantly different in at least three analyses, one of which were 

western North America and T. sieboldii (Table 16). This morphological evidence along 

with past genetic evidence (Havill et al. 2016), which both suggest the significant 

difference between these lineages, highlight the possibility for a negative outcome if the 

hemlock adelgid currently residing on the east coast of North America was transported to 

the west coast of North America or vice versa. Both these lineages currently existing in 

the United States adds additional potential for new introduction - although there is 

standard regulation when transporting plant matter to and from the United States 

(Canadian Border Agricultural Clearance Manual 2012), there is some regulation, but no 

check points when individuals transport plant matter across state lines (Don’t Move 

Firewood: State by State information 2017). This is cause for concern as hemlock 
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adelgids have been introduced through logging operations (McClure 1990), and many 

other non-native insects have been accidently introduced by individuals crossing long 

distances with plant matter (Herms & McCullough 2013). 
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2.9 Tables 

Table 1. Description of samples for this study: sample sizes, geographic region and host species. 

 

Host Species 
Genetic Lineage by 

Geographic region 

Sample Size 

Adult  1st Instar 

Progrediens Sistens   Progrediens Sistens 

Tsuga chinensis 

Western China 6 76 

 

3 9 Tsuga dumosa  

Tsuga forrestii  

Tsuga formosana Taiwan 3 33  144 17 

Tsuga diversifolia Japan lineage 1 11 5  24 2 

Tsuga ulleungensis Ulleung Island 0 12  8 0 

Tsuga canadensis Japan lineage 2, in 

eastern North 

America 

31 39 
 

18 35 
Tsuga caroliniana  

Tsuga sieboldii Japan lineage 2 8 65  26 27 

Tsuga heterophylla 
Western North 

America 
21 23 

 
28 10 

Tsuga mertensiana   
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Table 2. Character list of measurements taken on 1st instar hemlock adelgids. 

 

Instar Adelgid 

Character number Acronym Character 

1 R4bw Rostrum 4th segment base  Ө*ǂ 

2 R4L Rostrum 4th length Ө*ǂ 

3 R3mw Rostrum 3rd width Ө*ǂ 

4 F3 3rd Femur length Ө*ǂ 

5 F3w 3rd Femur width Ө 

6 Tb3 3rd Tibia length Ө*ǂ 

7 dTs3 3rd Tarsus length Ө*ǂ 

8 F2 2nd Femur length Өǂ 

9 F2w 2nd Femur width 

10 Tb2 2nd Tibia length Өǂ 

11 dTs2 2nd Tarsus length ǂ 

12 F1 1st Femur length Өǂ 

13 F1W 1st Femur width Өǂ 

14 Tb1 1st Tibia length Өǂ 

15 dTs1 1st Tarsus length 

16 A1w Antenna 1st segment width 

17 Aubw Antenna 3rd segment base 

18 Au Antenna 3rd segment length Ө*ǂ 

 (*) symbol indicates characters used in statistical analysis of sistens, (Ө) symbol 

indicates characters used in statistical analysis of progrediens, (ǂ) symbol indicates 

characters used in statistical analyses of both sistens and progrediens 1st instars. 
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Table 3. Character list of measurements taken on adult hemlock adelgids. 

 

Adult Adelgid 

Character number Acronym Character 

1 R4bw Rostrum 4th segment base  Ө*ǂ 

2 R4L Rostrum 4th segment length 

3 R3mw Rostrum 3rd segment width 

4 F3 3rd Femur length Ө*ǂ 

5 F3w 3rd Femur width Ө*ǂ 

6 Tb3 3rd Tibia length 

7 dTs3 3rd Tarsus length ǂ 

8 F2 2nd Femur length* 

9 F2w 2nd Femur width 

10 Tb2 2nd Tibia length 

11 dTs2 2nd Tarsus length 

12 F1 1st Femur length 

13 F2W 1st Femur width 

14 Tb1 1st Tibia length* 

15 dTs1 1st Tarsus length 

16 A1w Antenna 1st segment width 

17 Aubw Antenna 3rd segment base 

18 Aubw Antenna 3rd segment length Ө*ǂ 

19 Ov Ovipositor length* 

 (*) symbol indicates characters used in statistical analysis of sistens, (Ө) symbol 

indicates characters used in statistical analysis of progrediens, (ǂ) symbol indicates 

characters used in statistical analyses of both sistens and progrediens adults. 
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Table 4. Character scores of the seven morphological characters to the seven principal components calculated from 1st instar sistens 

(N=62). 

 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 

R4bw -0.339 0.556 -0.187 0.6 0.419 -0.07 -0.032 

R4L -0.205 -0.142 -0.581 -0.094 -0.174 -0.624 0.415 

R3mw -0.514 0.563 0.2 -0.458 -0.405 0.059 0.035 

F3 -0.28 -0.182 -0.636 -0.145 0.043 0.673 -0.092 

Tb3 -0.424 -0.285 0.246 -0.405 0.701 -0.149 0.017 

dTs3  -0.156 -0.115 -0.141 -0.01 -0.149 -0.344 -0.1 

Au -0.545 -0.475 0.321 0.487 -0.339 0.091 0.122 

Relative % of 

variability 
30.24 21.4 13.19 10.73 8.78 8.07 7.59 
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Table 5. MANOVA pairwise significance of 1st instar sistens lineages using seven 

morphological characters.   

 

 Western China T. sieboldii Western North America Taiwan 

Western 

China 
na 

p<0.001* 

df: 7,34 

0.0041* 

df: 7,7 

0.0019* 

df: 7,11 

T.sieboldii 
-- na 

0.0026* 

df: 7,35 

0.0421 

df: 7,39 

Western 

North 

America -- -- 

na 
0.0565 

df:7,12 

Taiwan -- -- -- na 

The values with an asterisk represent instances where values are significant at a corrected 

alpha of 0.008. The degrees of freedom are reported under the p-values: treatment, 

residual.  
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Table 6. MANOVA p-values of significant pairwise 1st instar sistens lineages using six morphological characters. 

 

  R4bw R4L R3mw F3 Tb3 dTs3 Au 

T.sieboldii vs Western 

China df=40 
0.4518 0.1924 0.898 0.0271 0.3365 0.0014* 0.1907 

T.sieboldii vs Western 

North America df=41 
0.1655 0.05458 0.0156 0.0001* 0.0002* 0.3041 0.0004* 

Western North 

America vs Western 

China df=13 

0.5281 0.7353 0.1050 0.2454 0.0316 0.1346 0.0129 

Western China vs 

Taiwan df=17 
0.0774 0.0322 0.0416 0.1146 0.2927 0.0076 0.1351 

  

The values with an asterisk represent instances where values are significant at a corrected alpha of 0.006.  
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Table 7. Character scores of the 13 morphological characters to the 13 principal components calculated from 1st instar progrediens. 

(N=121).   

 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 

R4bw -0.223 0.591 -0.107 0.12 -0.275 0.036 0.037 -0.003 0.051 0.576 0.128 0.367 -0.105 

R4L -0.195 -0.049 0.0003 0.032 -0.104 0.343 0.429 0.309 -0.636 -0.262 0.104 0.258 -0.007 

R3mw -0.294 0.685 0.075 0.12 0.287 -0.091 -0.092 0.123 -0.031 -0.425 -0.109 -0.324 0.109 

F3 -0.289 -0.132 -0.229 -0.016 -0.211 0.246 0.033 0.118 -0.138 0.381 -0.351 -0.662 0.016 

Tb3 -0.372 -0.194 -0.017 -0.06 0.198 0.086 0.201 0.56 0.618 -0.02 -0.055 0.175 -0.058 

dTs3 -0.121 -0.0456 0.023 0.053 -0.068 -0.016 0.086 -0.023 0.081 -0.045 0.791 -0.403 -0.411 

F2 -0.318 -0.117 -0.336 -0.043 -0.535 -0.155 -0.52 0.049 0.003 -0.386 -0.028 0.164 -0.107 

Tb2 -0.338 -0.137 -0.265 -0.166 0.252 -0.731 0.277 -0.118 -0.24 0.14 -0.006 0.046 0.0125 

dTs2 -0.104 -0.061 -0.097 0.051 -0.129 0.028 0.017 -0.015 0.1 0.0289 0.393 -0.052 0.887 

F1 -0.323 -0.15 -0.187 0.532 0.164 0.267 0.161 -0.601 0.157 -0.141 -0.102 0.11 -0.059 

F1w -0.118 0.166 0.1 -0.672 -0.275 0.139 0.375 -0.402 0.224 -0.204 -0.087 -0.031 0.007 

Tb1 -0.32 -0.076 0.05 -0.415 0.474 0.3454 -0.487 -0.134 -0.193 0.179 0.167 0.133 0.0007 

Au -0.374 -0.176 0.831 0.159 -0.223 -0.187 -0.075 -0.065 -0.061 0.092 -0.084 0.004 0.041 

Relative % of 

variability 
25.82 12.93 8.77 8.07 7.15 6.7 5.65 5.17 4.7 4.35 3.91 3.67 3.13 
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 Table 8. MANOVA pairwise significance of 1st instar progrediens lineages. 

 

 

 

 

 

 

 

 

The values with an asterisk represent instances where values are significant at a corrected alpha of 0.006. x values were used where 

the degrees of freedom were not sufficient to complete an analysis. The degrees of freedom are reported under the p-values: treatment, 

residual. 

  

  

Western 

China 
T.sieboldii Western North America T.diversifolia Ulleung Taiwan 

Western. 

China 
na 

0.11 

df:13,5 
x x x 

p<0.001* 

df:13,64 

T. sieboldii -- na 
0.0309 

df:13,15 

0.0282 

df:13,16 

0.5068 

df:13,5 
p<0.001* 

df:13,81 

Western 

North 

America 

-- -- na 
0.0498 

df:13,7 
x 

p<0.001* 

df:13,72 

T. diversifolia -- -- -- na x 
0.0022* 

df:13,72 

Ulleung -- -- -- -- na 
0.0570 

df:13,59 

Taiwan -- -- -- -- -- na 
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Table 9. MANOVA significance levels of significant pairwise 1st instar progredientes lineages using 13 characters.  

 

 

 

 

 

 

 

 

 

 

 

The values with an asterisk represent instances where values are significant at a corrected alpha of 0.006. 

 

 
R4bw R4L R3mw F3 Tb3 dTs3 

T. sieboldii vs Taiwan 

df:93 
0.0053* 0.0102 0.4449 p<0.001* p<0.001* 0.0386 

Taiwan vs T. diversifolia 

df:85 
0.0051* 0.1552 0.3269 0.1853 0.4719 0.6327 

Taiwan vs Western China 

df:76 
0.0003* 0.0584 0.0006* 0.4719 0.4415 0.1224 

Western North America 

vs Taiwan 

df: 84 

0.1169 0.3545 p<0.001* 0.0091 0.1161 0.6551 
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Continued - Table 9. MANOVA significance levels of significant pairwise 1st instar progredientes lineages using 13 characters. 

 

 F2 Tb2 dTs2 F1 F1w Tb1 Au 

T. sieboldii vs Taiwan 

df:93 
p<0.001* p<0.001* p<0.001* p<0.001* 0.7818 0.0156 0.2976 

Taiwan vs T. diversifolia 

df:85 
0.8143 0.0961 0.9400 0.7134 0.0067 0.4288 0.1252 

Taiwan vs Western China 

df:76 
0.6759 0.8628 0.6366 0.3244 0.9005 0.8872 0.0041* 

WNA vs Taiwan 

df: 84 
0.0705 0.0055* 0.6835 0.1095 0.0336 0.0002* 0.1625 

The values with an asterisk represent instances where values are significant at a corrected alpha of 0.006. 
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Table 10. Character scores of the seven morphological characters to all seven principal components calculated from adult sistens 

(N=82). 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 

R4bw 0.305 0.164 -0.812 -0.371 -0.285 -0.052 0.003 

F3    0.577 0.229 0.428 -0.402 0.102 -0.294 -0.416 

F3w 0.273 0.109 -0.306 0.393 0.764 -0.263 0.116 

F2 0.461 0.139 0.236 -0.06 -0.07 0.314 0.778 

Tb1 0.318 0.272 -0.044 0.549 -0.198 0.552 -0.422 

Au 0.077 0.173 0.073 0.475 -0.519 -0.662 0.158 

Ov 0.425 -0.886 -0.039 0.128 -0.106 -0.028 -0.069 

Relative % of 

variability 
42.38 18.94 14.55 7.93 7.02 5.07 4.11 
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Table 11. MANOVA pairwise significance of adult sistens lineages. 

  
western China T.sieboldii Ulleung Taiwan 

western North 

America 

w. China na 
p<0.001* 

df:7,58 

0.0073 

df:7,35 

p<0.001* 

df:7,46 

p<0.001* 

df: 7,34 

T.sieboldii -- na 
0.465 

df:7,19 

p<0.001* 

df:7,30 

p<0.001* 

df: 7,18 

Ulleung -- -- na 
0.3398 

df:7,7 
x 

Taiwan -- -- -- na 
0.0782 

df:7,6 

WNA -- -- -- -- na 

The values with an asterisk represent instances where values are significant at a corrected alpha of 0.007. x values were used where 

the degrees of freedom were not sufficient to complete an analysis. The degrees of freedom are reported under the p-values: treatment, 

residual.  
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Table 12. MANOVA significance level of significant pairwise adult sistens lineages using seven characters. 

    R4bw F3 F3w F2 Tb1 Au Ov 

Taiwan vs T. sieboldii 

df: 36 
0.1122 0.0005* 0.5764 0.0109 0.4217 0.5715 0.1092 

T. sieboldii vs Western 

China 

df: 64 

0.0002* 0.1493 0.0019* 0.0628 p<0.001* 0.0001* 0.2582 

Taiwan vs Western 

China 

df: 52 

p<0.001* 0.0237 0.0237 p<0.001* p<0.001* 0.0076 0.1822 

Western China vs 

WNA 

df: 40 

p<0.001* p<0.001* 0.0032* p<0.001* p<0.001* 0.7974 0.1050 

WNA vs T. sieboldii 

df: 24 
0.1282 0.0009* 0.2532 0.0005* 0.0232 0.5115 0.1870 

The values with an asterisk represent instances where values are significant at a corrected alpha of 0.006. 

 

  



 

45 

 

Table 13. Character scores of the four morphological characters to the four 

principal components calculated from adult progrediens (N=51). 

 

  

            PC1 PC2 PC3 PC4 

R4bw  -0.175 0.556 -0.602 -0.545 

F3    -0.927 -0.033 0.352 -0.124 

F3w -0.199 0.521 -0.192 0.808 

Au -0.264 -0.647 -0.69 0.188 

Relative % of 

variability 
59.25 20.68 11.71 8.36 
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Table 14. MANOVA pairwise significance of adult progrediens lineage. 

  T.sieboldii western China western North America Taiwan 

T.sieboldii na 
0.0003* 

df: 5,28 

p<0.001* 

df: 5,36 

0.0892 

df: 5,25 

w. China -- na 
0.0002* 

df: 5,14 

0.0893 

df: 5,3 

WNA -- -- na 
0.0021* 

df: 5,11 

Taiwan -- -- -- na 

The values with an asterisk represent instances where values are significant 

at a corrected alpha of 0.008. The degrees of freedom are reported under 

the p-values: treatment, residual. 
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Table 15. MANOVA significance level of significant pairwise adult 

progrediens lineages using four morphological characters. 

  R4bw F3 F3w Au 

W. China vs T. sieboldii 

df: 32 
0.0003* 0.5169 0.0102 0.0009* 

WNA vs Taiwan 

df: 15 
0.0457* 0.0038* 0.0434 p<0.001* 

W. China vs WNA 

df: 18 
p<0.001* 0.0007* 0.0006* 0.4023 

WNA vs T. sieboldii 

df: 40 
0.0048* p<0.001* 0.0173 p<0.001* 

The values with an asterisk represent instances where values are significant 

at a corrected alpha of 0.008. 
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Table 16. Summary of the findings in the study, showing if each lineage comparison was significantly different in each analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X represents a significant result, 0 represents no significant result, and (--) indicates that this lineage comparison was not available for 

the analyses. 

 

 

1st instar 

sistentes 

1st instar 

progredientes Adult sistentes 

Adult 

progredientes 

Western China vs Taiwan x x x 0 

Western China vs T. sieboldii x 0 x x 

Western China vs western North America x 0 x x 

Western China vs Ulleung (--) 0 0 (--) 

Western China vs T. diversifolia (--) 0 (--) (--) 

      

Taiwan vs T. sieboldii 0 x x 0 

Taiwan vs western North America 0 x 0 x 

Taiwan vs Ulleung (--) 0 0 (--) 

Taiwan vs T. diversifolia (--) x (--) (--) 

      

T. sieboldii vs western North America x 0 x x 

T. sieboldii vs Ulleung (--) 0 0 (--) 

T. sieboldii vs T. diversifolia (--) 0 0 (--) 

      

Western North America vs Ulleung (--) 0 0 (--) 

Western North America vs T. diversifolia (--) 0 0 (--) 

      

Ulleung vs T. diversifolia (--) 0 0 (--) 
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2.10 Figure legends 

Figure 2. 1st instar hemlock adelgid, continuous appendage measurements. 

Figure 3. Adult hemlock adelgid, continuous appendage measurements. 

Figure 4. Principal component analysis of instar sistens lineages using seven 

morphological characters. The MANOVA found these lineages to be significant, 

p<0.001, N=62, DF= 21, 162. 

Figure 5. Principal component analysis of instar progrediens lineages using fourteen 

morphological characters. The MANOVA found these lineages to be significantly 

different, p<0.001, N= 121, DF= 60, 495. 

Figure 6. Principal component analysis of adult sistens lineages using seven 

morphological characters. The MANOVA found these lineages to be significantly 

different, p<0.001, N=82, DF= 28, 296. 

Figure 7. Principal component analysis of adult progrediens lineages using four 

morphological characters. The MANOVA found these lineages to be significantly 

different, p<0.001, N=51, DF=28, 296. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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CHAPTER 3: PHYLOGENETIC IDENTITY OF ADELGIDS (HEMIPTERA: 

ADELGIDAE) ON THREE HOST GENERA IN NORTH AMERICA 

3.1 Abstract 

Adelgids (Hempiera: Adelgidae) are host-specific insects closely related to aphids 

(Aphididae) and phylloxerans (Phylloxeridae). The holocyclic individuals alternate 

between spruce (Picea) primary hosts and secondary hosts in another conifer genus, 

while anholocyclic species complete their life cycle only on Picea or only on a secondary 

host genus. A recent molecular phylogeny of Adelgidae found that groups of species that 

feed on the same secondary host genus form divergent clades, indicating that switching to 

a different host genus is rare in their evolutionary history. The phylogeny also highlighted 

misunderstandings of the diversity within the family, probably due to their complex life 

cycles. In western North America, Pineus similis is described as being anholocyclic on 

Picea and Pineus abietinus is described as being anholocyclic on Abies. Pineus abietinus 

is also the only known Pineus species that uses a genus other than Pinus as a secondary 

host. Analysis of DNA sequence data from three mitochondrial genes and one nuclear 

gene showed that samples of P. abietinus collected from Abies spp. were very closely 

related to samples of P. similis collected from Picea spp. We also report the first records 

of P. abietinus collected from Pinus monticola, and show that while using the four genes 

previously mentioned they are phylogenetically indistinguishable from samples of P. 

similis. This suggests that some P. similis are capable of completing a holocycle by 

migrating to Pinus monticola, and points to a very recent secondary host switch from 

Pinus to Abies, the only example of a recent secondary host switch that has been 

observed in Adelgidae. 
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3.2 Introduction 

Adelgids (Hemiptera: Adelgidae) form a small group of insects with 65 species in 

two genera, Adelges and Pineus, further separated into seven subgenera (Favret et al. 

2015). They are host-specific and restricted to conifer host plants in the genera Picea, 

Pinus, Abies, Tsuga, Pseudotsuga, and Larix (Havill & Foottit 2007). Adelgid species 

can be holocyclic, having both sexual and parthenogenetic generations and host alteration 

between spruce (Picea) primary hosts where galls are formed, and secondary hosts in one 

of the other genera. Other species are anholocyclic, with only parthenogenetic 

reproduction and restricted to only Picea or only a secondary host genus (Havill and 

Foottit 2007). Species that are anholocyclic are hypothesized to have originated from 

holocyclic species (Havill & Foottit 2007).  A recent phylogeny of Adelgidae found that 

species that feed on the same secondary host genus form divergent clades that originated 

in the Late Cretaceous to Early Tertiary, indicating that successful switching to a 

different genus is rare in their evolutionary history (Havill et al. 2007).  

The complexity of the adelgid life cycle has led to some difficulty in 

circumscribing species (Havill & Foottit 2007). There has historically been a tendency to 

include life cycle and host plant identity in addition to morphology to delimit species 

(Annand 1928, Havill & Foottit 2007). This has resulted in species groups that include 

closely related holocyclic and anholocyclic members. For example, Adelges (Dreyfusia) 

nordmannianae (Eckstein), is holocyclic on Picea and Abies, and A. (Dreyfusia) piceae 

(Ratzeburg) is anholocyclic on Abies. The shared generations of these species on Abies 

are morphologically very similar and DNA sequence data cannot distinguish them, and 
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do not support them to be monophyletic groups (Eichhorn 1967, Havill et al. 2007, 

Foottit et al. 2009, Zurovcova et al. 2010).  

We summarize new information about the phylogenetic identity of a pair of 

adelgid species native to North America by analyzing DNA sequence data. Pineus similis 

Gillette was described from galls on Picea pungens Engelmann (Gillette 1907). It has 

also been reported on Picea engelmannii Parry, P. glauca (Moench) Voss, P. mariana 

(Miller) Britton Sterns & Poggenburg, P. sitchensis (Bongard) Carriere, P. rubens 

Sargent, and P. abies Karsten (Cumming 1962, Carter 1975). It was described as being 

anholocyclic on Picea with alternating generations of fundatrices that settle at the base of 

buds and initiate gall formation, and winged gallicolae that emerge from galls and settle 

back on spruce to produce more fundatrices (Brown 1941, Cumming 1962, Carter 1975). 

Cumming (1961) also describes a small number of wingless progeny of the fundatrix that 

settle inside or outside of galls. Approximately 60 years later, Underwood and Balch 

(1964) described Pineus abietinus, the first anholocyclic species in the genus Pineus to be 

on Abies, rather than on Pinus. They described it from specimens settled on the bark of 

Abies amabilis (Douglas) Forbes and A. grandis (Douglas) Lindley. 

In the course of accumulating DNA barcode data for adelgid species (after Foottit 

et al. 2009), it was found that COI DNA sequences from P. similis collected on Picea 

matched P. abietinus collected on fir, as well as newly-discovered P. abietinus samples 

collected on Pinus monticola Douglas. This study aims to better understand the species 

grouping of Pineus similis on Picea and Pineus abietinus on Abies and Pinus using DNA 

sequence data from additional mitochondrial and nuclear genes.  
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3.3 Methods 

For outgroup taxa, we used one individual each from 11 other Pineus species, 12 

Adelges species, and two members of the sister family Phylloxeridae (Table 17). Many of 

the outgroup samples and DNA sequences were the same as those reported in Havill et al. 

(2007). Unidentified Pineus sp. A NPH-2007 refers to Havill et al. (2007), and Pineus sp. 

A RGF-2008, B RGF-2008, D RGF-2008, and E RGF-2008 refers to Foottit et al. (2009). 

Pineus similis and P. abietinus specimens were collected between 1998-2016. All 

samples of Pineus similis were either fundatrices or gallicolae associated with galls on 

Picea. Samples of Pineus abietinus were collected from the bark of Abies lasiocarpa, 

Pinus monticola, Pinus strobus, or Picea engelmanni (Table 17). Most of the samples 

used have slide mounted vouchers at either the Yale Peabody Museum of Natural 

History, New Haven, Connecticut, USA (YPM) or the Canadian National Collection of 

Insects, Ottawa, Ontario, Canada (CNC). 

DNA sequence data for three mitochondrial genes [cytochrome oxidae I (COI), 

cytochrome oxidae II (COII), cytochrome b (cytb)] and one nuclear gene [elongation 

factor-1α (EF1α)] were generated for new samples using the methods described in Havill 

et al. (2007), except that DNA was extracted from individual adelgids using the Mag-

Bind Blood & Tissue HDQ Kit (Omega Bio-tek, Norcross, GA). The EF1α intron was 

retained in the data sets for Pineus samples but excluded from phylloxerid and Adelges 

outgroup taxa because they could not be aligned. Sequences for each gene were aligned 

using ClustalW (Thompson et al.,1994) and concatenated. PartitionFinder 1.1.1 (Lanfear 

et al. 2016) was used to determine the most appropriate substitution model for the data.  
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Maximum likelihood (ML) and Bayesian analyses were performed for each gene 

separately and for the concatenated data matrix using a HKY+G model for 3rd codon 

positions of COI, COII, and cytb, and GTR+I+G for all other codon positions. For 

maximum likelihood analysis, Garli 2.01 (Zwickl 2006) was run locally, with 5 search 

replications and 500 bootstrap replicates. The Bayesian analysis was run using Mr. Bayes 

3.2.6 (Ronquist & Huelsenbeck 2012), with four heated Markov chains, and two runs of 

10 million generations. Tracer v1.6.0 (Rambaut et al. 2009) was used to plot the log-

likelihood scores versus number of generations to verify that the analysis had reached 

stabilization after discarding the first 25% of generations. Fifty percent consensus trees 

were visualized in Geneious 10.0.9 (Kearse et al 2012).  

Maximum parsimony (MP) analysis was performed using PAUP* 4.0a152 

(Swofford 2002) with tree-bisection-reconnection (TBR) branch swapping. Clade support 

was evaluated with 1000 bootstrap replicates with the same heuristic search conditions. 

Genetic uncorrected p-distances, number of nucleotide differences divided by the total 

number of nucleotides, among Pineus species was calculated using PAUP* 4.0a152 

(Swofford 2002). Samples of P. similis, P. abietinus collected from Abies, and P. 

abietinus collected from Pinus were grouped for intra- and inter-specific comparisons.  

3.4 Results 

For outgroup taxa, sequences were included for all four genes in all except for 

COII in Pineus sp. B-rgf2008, and cytb in A. abietis, A. lariciatus, and A. laricis. The 

final aligned and concatenated data set was 2321 base pairs long with insertions and 

deletions only in the EF1α intron. The MP analysis resulted in >500 equally 

parsimonious trees with a length of 2073 steps. Two of the five ML trees had a log 
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likelihood score of -12661.05, and three had a score of -12661.31, showing convergence 

among replicates. 

The topologies of the individual gene trees were consistent with each other and 

with the tree resulting from the concatenated data set.  All of the trees placed the study 

group in a clade sister to the rest of the species in Pineus, with the exception of outlier P. 

pinifoliae. With this congruence in the analyses within the study group, the conclusions 

of this research will be based on the species tree, rather than the gene trees (Edwards et 

al. 2007). 

The trees resulting from Bayesian, ML, and MP analyses agreed in topology. The 

50% Bayesian consensus tree is shown in Figure 8, with clade support from all three 

analyses. The relationships among species in Adelgidae agree with those in Havill et al. 

(2007) with the exception of A. cooleyi and A. tsugae, whose placement within Adelges 

was unresolved in our analysis. We also added several additional taxa that were not 

included in Havill et al. (2007). These included the unidentified Pineus species from 

Foottit et al. (2008) [including Pineus boerneri (which was called Pineus sp. C)], and P. 

pinifoliae. The position of the latter species is unresolved within Adelgidae, but was 

placed in a basal position in Pineus with low support (<50%) in the best ML tree (not 

shown). The P. similis and P. abietinus samples formed a well-supported clade that was 

sister to the rest of the Pineus species minus P. pinifoliae.  

Samples in the P. similis-P. abietinus clade were very closely related (Table 18). 

A sample of P. abietinus collected from Pinus monticola was in a basal position in the P. 

similis-P. abietinus clade with low support. Samples of P. similis and P. abietinus 

collected from Pinus were very closely related. The five samples of P. abietinus collected 
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from Abies were monophyletic in the Bayesian tree (Figure 8), and formed a weakly-

supported paraphyletic group in the ML tree (not shown).  The single sample of P. 

abietinus collected from the bark of Picea engelmanni was in a basal position to the clade 

of P. abietinus collected on Abies.  

 The mean distance of species within Pineus, excluding the study group, was 

28.07%. The distance between all specimens in the study group was 1.10%. The distance 

between P. similis and P. abietinus on Pinus is 0.51%, between P. similis and P. 

abietinus on Abies is 2.98% and between P. abietinus on Pinus and Abies is 2.32%. 

 

3.5 Discussion and Conclusions 

 With the exception of P. abietinus, the relationships among species in Adelgidae 

in our results are consistent with past research of this family. While conducting a 

phylogenetic study on Adelgidae, Havill et al. (2007) found that groups of species that 

feed on the same secondary host genus form divergent clades, indicating that switching to 

a different host genus is rare in their evolutionary history. The unresolved placement of 

A. cooleyi and A. tsugae in our results do not affect this hypothesis since they are the only 

species known to utilize Pseudotsuga and Tsuga, respectively, as hosts.  

The placement of P. pinifoliae at the base of Adelgidae or the base of Pineus is 

not surprising because it is morphologically unique within the genus in lacking gland 

facets in the dorsal plates of the head, thorax and first three abdominal segments (Annand 

1928), and is the only member of the genus that has been placed in its own subgenus, 

Pineodes, based on its original description in 1926 (Börner 1926, Favret et al. 2015).  
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With a one nuclear and four mitochondrial genes included in these analyses, P. 

similis and the P. abeitinus on Pinus host cannot be separated. The distance between 

these groups were also found to be extremely low, 0.51%. This suggests that P. similis 

and the P. abietinus specimens on Pinus are conspecific, and that in some instances, P. 

similis and P. abietinus (Pinus) are capable of completing a holocycle. If this is the case, 

then it can be inferred that the holocyclic form of P. similis that migrates to Pinus is 

ancestral, because every other species within the Pineus genus uses Pinus as a secondary 

host (Havill and Foottit 2007).   

There has been past research to test whether P. similis was in fact holocyclic. 

When P. similis was first described, Gillette (1907) did host selection tests by seeing if 

gallicolae would settle on Pseudotsuga menziesii as a potential secondary host. It was 

recorded to not be an acceptable host. Cumming (1962) also did host selection tests on 

this species, and found that P. similis gallicolae would not settle on Pseudotsuga 

menziesii, and only one individual settled on a Pinus contorta twig, but did not 

reproduce. Pinus monticola, Pinus strobus, or Abies spp. were not tested. More host 

selection tests should be done with P. similis gallicolae with these and related species to 

provide conclusive evidence for the existence of a holocycle. 

The relationship between P. abeitinus found on Abies and P. similis- P. abietinus 

(Pinus) is less clear. These groups are clearly closely related with a mean pairwise 

nucleotide distance of 2.98%, but P. abeitinus found on Abies form a separate 

monophyletic group in the Bayesian analysis. One likely scenario is that P. abeitinus 

(Abies) is an anholocyclic descendent of the holocyclic form that arose after a secondary 

host switch from Pinus to Abies. This divergence is likely to have occurred very recently 
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because of the short genetic distance. Through this hypothesis, P. abietinus (Abies) is a 

newly formed group which has started to separate from the P. similis- P. abietinus 

(Pinus) group.  

Another possible scenario is that the same small clonal lineage stays on the 

secondary host, while the rest of the population has some gene flow through the P. 

similis- P. abietinus (Pinus) holocycle. It is therefore possible that all the specimens used 

in this study were from an isolated clonal lineage on a secondary host, and if we collected 

more specimens of P. abietinus from Abies, there could be a less distance between P. 

abietinus found on Abies and P. similis. If this scenario were true, this would be the first 

recorded case of a species within Adelgidae to have multiple secondary hosts in different 

subfamilies. 

The single sample of P. abietinus from the bark of Picea engelmanni included in 

this analysis was basal to the P. abietinus (Abies) clade, but with low support (Figure 8). 

This points to the possibility that the ability to feed on the bark of Picea engelmanni 

might have mediated the host switch from Pinus to Abies. A holocyclic ancestor 

alternating between Picea and Pinus could have produced some individuals with the 

ability to settle on Picea bark, rather than on Pinus bark. Cumming’s (1964) report of 

occasional “anomalies” in the life cycle of P. similis, where wingless individuals were 

found settled on Picea out of sync with alternating generations of fundatrices and 

gallicolae, could be evidence of this plasticity.  

The results of this research shows that Pineus similis and Pineus abietinus form a 

grouping that is not fully expressed through the current taxonomy. The genetic distance 

and inability to resolve the relationship between these individuals from each other could 
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point to these groups being forms of the same species. Sampling more individuals from 

each group would help to be sure there is not cryptic diversity that is being missed, as has 

been shown in other species in Adelgidae (Havill et al. 2016). In addition, transfer 

experiments from Picea to Pinus monticola, Pinus strobus, and Abies spp., and vice versa 

could test which Pineus similis-Pineus abietinus groups are capable of completing the 

holocycle. 
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3.8 Tables 

Table 17. Sample information. Vouchers deposited at the Canadian National Collection of Insects (CNC) or Yale Peabody Museum of Natural 

History (YPM). GenBank accession numbers are listed for DNA sequences; X represents genes not yet in GenBank.  

Species Voucher Locality Collector Host plant COI COII cytb EF1a 

Daktulosphaira 

vitifoliae Fitch 
CNC#HEM054242 

USA; California; Davis; 8 

December 2004 
J. Granett Vitis vinifera L KR041862 EF073121 EF073183 EF073221 

Phylloxera caryaecaulis 
Fitch 

CNC#HEM017791 
CANADA; Ontario; Wolfe 
Island 

M. Doyle Carya sp. EF073060 EF073122 EF073184 EF073222 

Adelges abietis Linaeus CNC#HEM053176 
USA; Massachusetts; Jamaica 

Plain 
N. P. Havill Picea abies (L.) H. Karst. EF073061 EF073123 -- EF073223 

Adegles cooleyi Gillette CNC#HEM053435 Poland C. Bystrowski Pseudotsuga menziesii (Mirb.) Franco EF073065 EF073127 EF073185 EF073224 

Adelges piceae 
Ratzeburg 

CNC#HEM053155 USA; Maine; Owls Head C. Donoghue Abies balsamea (L.) Mill. EF073085 EF073147 EF073194 EF073239 

Adegles tsugae Annand CNC#HEM053367 
JAPAN; Osaka Prefecture; 

Nakahata 

N. P. Havill, G. Yu, S. 

Shiyake 
Tsuga sieboldii Carr. EF073092 EF073154 EF073201 EF073243 

Adegles glandulae 

Zhang 
CNC#HEM053399 

CHINA; Yunnan Province; 

Shangri-La 
N. P. Havill, G. Yu Abies sp. EF073072 EF073134 EF073188 EF073229 

Adelges japonicus 

Monzen 
CNC#HEM050119 

JAPAN; Hokkaido; 

Hitsujigaoka 
K. Ozaki Picea jezoensis (Siebold & Zucc.) Carr. EF073073 EF073135 EF073189 EF073230 

Adelges kitamiensis 

Inouye 
CNC#HEM053415 

JAPAN; Yamanashi 

Prefecture; Yamanaka 
S. Shiyake 

Picea torano (Siebold ex. K.Koch) 

Koehne 
EF073102 EF073164 EF073210 EF073250 

Adelges lariciatus Patch CNC#HEM040004 CANADA; Alberta; Edson E. Maw Picea glauca (Moench) Voss EF073075 EF073137 -- EF073231 

Adelges laricis Vallot CNC#HEM054132 SWITZERLAND; Delemont N. P. Havill, M. Kenis Larix decidua Mill. EF073078 EF073140 -- EF073233 

Adelges pectinatae 

ishiharai Inouye 
CNC#HEM053389 

JAPAN; Yamanashi 

Prefecture; Mount Fuji 

N. P. Havill, G. Yu, S. 

Shiyake 
Abies veitchii Lindley X X X X 

Adelges pactinatae 

Cholodkovsky 
CNC#HEM054110 

POLNAD; Warsaw; Sowinski 

Park 

N. P. Havill, C. 

Bystrowski 

Abies concolor (Gordon) Lindley ex 

Hildebrand 
EF073084 EF073146 EF073193 EF073238 

Adelges sp B CNC#HEM053359 
CHINA; Yunnan Province; 

Lijiang 
N. P. Havill, G. Yu Larix sp. EF073103 EF073165 EF073211 EF073251 

Pineus armandicola 

Zhang, Zhong & Zhang 
CNC#HEM053097 

CHINA; Shaanxi Province; 

Huoditang Forest Farm 

N. P. Havill, G. Yu, M. E. 

Montgomery 
Pinus sp. (5-needle) EF073106 EF073168 EF073212 EF073253 

Pineus boerneri Annand CNC#HEM061818 USA; Washington; Seattle 
M.E. Montgomey, R. 

McDonald 
Pinus pinaster Aiton X X X X 

Pineus cembrae 

Cholodkovsky 
CNC#HEM053433 POLNAD; Powsin C. Bystrowski Pinus cembra L. EF073109 EF073171 EF073213 EF073254 
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Species Voucher Locality Collector Host plant COI COII cytb EF1a 

 

Pineus coloradensis 
Gillette 

CNC#HEM076222 USA; Washington; Beaver G. Kohler Pinus monticola Douglas ex D. Don X X X X 

Pineus pini Macquart CNC#HEM053442 
POLAND; Ostrow 

Mazowiecka Forest District 
C. Bystrowski Pinus sylvestris L. EF073114 EF073176 EF073216 EF073258 

Pineus pinifoliae Fitch 15_037 USA; Idaho; Clark Fork S. Kegley Pinus monticola Douglas ex D. Don X X X X 

Pineus similis Gillette CNC#HEM026782 
CANADA; British Columbia; 

New Denver 
E. Maw Picea glauca (Moench) Voss X -- -- -- 

Pineus similis Gillette CNC#HEM026892 
CANADA; British Columbia; 
Duhamel Road 

R. G. Foottit Picea glauca (Moench) Voss X -- -- -- 

Pineus similis Gillette CNC#HEM054844 
CANADA; British Columbia; 

Saanichton 
C. Von Dohlen Picea sitchensis (Bong.) Carr. EF073116 EF073178 EF073217 EF073259 

Pineus abietinus 
Underwood and Balch 

CNC#HEM057990 USA; Oregon; St. Paul G. Kohler Pinus monticola Douglas ex D. Don FJ502620 X X X 

Pineus abietinus 

Underwood and Balch 
CNC#HEM059802 USA; Idaho; Moscow S. Lyons Pinus monticola Douglas ex D. Don X X X X 

Pineus abietinus 
Underwood and Balch 

CNC#HEM061812 USA; Washington; Seattle 
M.E. Montgomery, R. 
McDonald 

Pinus strobus L. KR036696 X X -- 

Pineus similis Gillette CNC#HEM061820 USA; Washington; Seattle 
M.E. Montgomery, R. 

McDonald 
Picea glauca (Moench) Voss KR043864 X X X 

Pineus similis Gillette CNC#HEM061825 
USA; Washington; King 
County 

M.E. Montgomery, R. 
McDonald 

Picea engemannii Parry ex. Engelm. X X X X 

Pineus similis Gillette CNC#HEM070449 
CANADA; British Columbia; 

Salmon Arm 
B. Bains 

Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm. 
KR041314 X X -- 

Pineus abietinus 
Underwood and Balch 

CNC#HEM076256 
USA; Washington; North 
Seattle 

G. Kohler Pinus monticola Douglas ex D. Don X X X X 

Pineus similis Gillette CNC#HEM076303 USA; Idaho; Elk River G. Davis Picea engemannii Parry ex. Engelm. X X X X 

Pineus similis Gillette CNC#HEM076310 USA; Idaho; Elk River G. Davis Picea engemannii Parry ex. Engelm. X X X X 

Pineus abietinus 
Underwood and Balch 

CNC#HEM076317 USA; Montana; Darby M. Church Abies lasiocarpa (Hooker) Nuttall X -- -- -- 

Pineus similis Gillette CNC#HEM076325 USA; Washington; Pomeroy G. Kohler Picea sp X X X X 

Pineus abietinus 

Underwood and Balch 
CNC#HEM076328 

USA; Montana; Gallatin 

Gateway 
M. Church Abies lasiocarpa (Hooker) Nuttall X X X -- 

Pineus abietinus 

Underwood and Balch 
CNC#HEM076329 

USA; Montana; Gallatin 

Gateway 
M. Church Abies lasiocarpa (Hooker) Nuttall X -- -- -- 

Pineus abietinus 

Underwood and Balch 
14-090 USA; Idaho; Dry Creek S. Kegley Pinus monticola Douglas. ex D. Don X X X X 
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Species Voucher Locality Collector Host plant COI COII cytb EF1a 

Pineus abietinus 

Underwood and Balch 
15-065 

USA; Washington; Colville 

National Forest 
D. Dickinson Pinus monticola Douglas. ex D. Don X X X X 

Pineus abietinus 
Underwood and Balch 

15-193 
USA; Idaho; Payette National 
Forest 

L. Lowrey Abies lasiocarpa (Hooker) Nuttall X X X X 

Pineus abietinus 

Underwood and Balch 
15-194 

USA; Idaho; Payette National 

Forest 
L. Lowrey Abies lasiocarpa (Hooker) Nuttall X X X X 

Pineus strobi Hartig CNC#HEM053138 
UDA; Connecticut; 

Bridgewater 
N. P. Havill Pinus strobus L. EF073117 EF073179 X EF073260 

Pineus similis Gillette CNC#HEM032874 USA; Idaho E. Maw Picea engemannii Parry ex. Engelm. X -- -- -- 

Pineus similis Gillette CNC#HEM070450 
CANADA; British Columbia; 
Salmon Arm 

B. Bains 
Picea glauca (Moench) Voss x Picea 
engelmannii Parry ex Engelm. 

KR042094 -- -- -- 

Pineus similis Gillette CNC#HEM070451 
CANADA; British Columbia; 

Salmon Arm 
B. Bains 

Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm. 
KR033298 -- -- -- 

Pineus similis Gillette CNC#HEM070453 
CANADA; British Columbia; 
Salmon Arm 

B. Bains 
Picea glauca (Moench) Voss x Picea 
engelmannii Parry ex Engelm. 

KR041409 -- -- -- 

Pineus similis Gillette CNC#HEM070454 
CANADA; British Columbia; 

Salmon Arm 
B. Bains 

Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm. 
KR038285 -- -- -- 

Pineus similis Gillette CNC#HEM070456 
CANADA; British Columbia; 
Salmon Arm 

B. Bains 
Picea glauca (Moench) Voss x Picea 
engelmannii Parry ex Engelm. 

KR040849 -- -- -- 

Pineus similis Gillette CNC#HEM070457 
CANADA; British Columbia; 

Salmon Arm 
B. Bains 

Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm. 
KR044188 -- -- -- 

Pineus similis Gillette CNC#HEM070458 
CANADA; British Columbia; 
Salmon Arm 

B. Bains 
Picea glauca (Moench) Voss x Picea 
engelmannii Parry ex Engelm. 

KR044584 -- -- -- 

Pineus similis Gillette CNC#HEM070459 
CANADA; British Columbia; 

Salmon Arm 
B. Bains 

Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm. 
KR045131 -- -- -- 

Pineus similis Gillette CNC#HEM070460 
CANADA; British Columbia; 
Salmon Arm 

B. Bains 
Picea glauca (Moench) Voss x Picea 
engelmannii Parry ex Engelm. 

KR040996 -- -- -- 

Pineus similis Gillette CNC#HEM070462 
CANADA; British Columbia; 

Salmon Arm 
B. Bains 

Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm. 
KR040250 -- -- -- 

Pineus similis Gillette CNC#HEM070463 
CANADA; British Columbia; 
Salmon Arm 

B. Bains 
Picea glauca (Moench) Voss x Picea 
engelmannii Parry ex Engelm. 

KR043785 -- -- -- 

Pineus similis Gillette CNC#HEM070464 
CANADA; British Columbia; 

Salmon Arm 
B. Bains 

Picea glauca (Moench) Voss x Picea 

engelmannii Parry ex Engelm. 
KR032862 -- -- -- 

Pineus similis Gillette CNC#HEM070466 
CANADA; British Columbia; 
Salmon Arm 

B. Bains 
Picea glauca (Moench) Voss x Picea 
engelmannii Parry ex Engelm. 

KR044341 -- -- -- 

Pineus similis Gillette CNC#HEM076301 USA; Idaho; Elk River G. Davis Picea engelmannii Parry ex. Engelm. X X X X 

Pineus similis Gillette CNC#HEM076304 USA; Idaho; Elk River G. Davis Picea engelmannii Parry ex. Engelm. X X X X 
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Species Voucher Locality Collector Host plant COI COII cytb EF1a 

Pineus similis Gillette CNC#HEM076309 USA; Idaho; Elk River G. Davis Picea engelmannii Parry ex. Engelm. X X X X 

Pineus sp A CNC#HEM056294 
JAPAN; Nagano Prefecture; 
Ina 

S. Shiyake, M. E. 
Montgomery 

Pinus sp. X X X X 

Pineus sp B CNC#HEM056254 
JAPAN; Nagano Prefecture; 

Nagano 

S. Shiyake, M. E. 

Montgomery 
Picea koyamai Shiras. FJ502626 -- X X 

Pineus sp D CNC#HEM056259 
JAPAN; Nagano Prefecture; 
Chino 

S. Shiyake, M. E. 
Montgomery 

Pinus pumila (Pall.) Regel FJ502630 X X X 

Pineus sp E CNC#HEM053099 
CHINA; Yunnan Province; 

Lijang 
N. P. Havill Picea sp. FJ502632 X X X 
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Table 18. Genetic distance (percent sequence divergence) for Pineus species in this study. Mean pairwise distances were calculated for species 

with multiple samples.  

 

    1 2 3 4 5 6 7 8 9 10 11 12 13 

1  Pineus armandicola              

2  Pineus boerneri 0.1813             

3  Pineus cembrae 0.1402 0.1634            

4  Pineus coloradensis 0.1410 0.1542 0.1370           

5  Pineus pini 0.2094 0.1722 0.1861 0.1796          

6  Pineus pinifoliae 0.2932 0.2958 0.3127 0.2734 0.2994         

7 Pineus sp A RGF-2008 0.1812 0.1484 0.1621 0.1654 0.1807 0.3280        

8 Pineus sp B RGF-2008 0.2075 0.1553 0.2033 0.1888 0.1828 0.3436 0.1579       

9 Pineus sp D RGF-2008 0.1431 0.1594 0.1178 0.1204 0.1708 0.2838 0.1694 0.1889      

10 Pineus sp E RGF-2008 0.1034 0.1883 0.1681 0.1578 0.2081 0.3128 0.1924 0.2065 0.1556     

11 Pineus strobi 0.1760 0.1568 0.1526 0.1546 0.1544 0.2855 0.1765 0.2111 0.1667 0.1817    

12 Pineus similis 0.2209 0.2110 0.2179 0.2053 0.2554 0.3071 0.2380 0.2481 0.2089 0.2299 0.2578   

13 Pineus abietinus (ex. Pinus) 0.1952 0.1800 0.1965 0.1768 0.2100 0.3104 0.2077 0.2144 0.1864 0.1992 0.2082 0.0051  

14 Pineus abietinus (ex. Abies) 0.2128 0.2164 0.2121 0.1966 0.2439 0.3116 0.2327 0.2406 0.2015 0.2277 0.2450 0.0298 0.0233 
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3.9 Figures 

Figure 8. Bayesian 50% majority rule consensus tree of the concatenated data set. The 

three values shown for each clade are the Bayesian posterior probabilities, the maximum 

likelihood bootstrap support values, and the maximum parsimony bootstrap support 

values, in that order. 
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Figure 8. 
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CONCLUSION 

Though it is widely understood that adelgid species designation should represent 

biologically distinct lineages, informed by their evolutionary history, the complexity of their life 

cycle has made this difficult (Havill & Foottit 2007). In recent research, genetic analyses have 

been used to understand adelgid systematics without these past difficulties (Havill, Foottit & 

Dohlen 2007, Foottit & Havill 2009, Havill et al. 2006, Havill et al. 2016). This project has 

attempted to use multiple delimitation tools to better understand questioned species groups within 

the family Adelgidae. Using information on morphology, genetics, and life history we have added 

to the clarification of both the diversity of global populations of hemlock adelgids and the 

problematic species group Pineus similis and Pineus abietinus. Not being restricted by one 

species delimitation tool, we have gotten closer to understanding the relationship of individuals 

within these studies. We recommend using similar methods to better understand other 

problematic species groups within this complex family. Understanding this family by using 

multiple methodologies will help to fully comprehend adelgid diversity and their evolutionary 

history.  
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APPENDICES 

Appendix I. Measurements (µm ± SD) of the seven morphological characters of instar 

sistens hemlock adelgids, organized by lineage.   

Variable 1.Western China 2.Taiwan 3.T .sieboldii 
4.Western North 

America 

R4bw 29.36±1.74 27.00±3.73 28.50±3.85 32.63±5.48 

R4L 33.31±2.942 31.02±1.751 32.13±2.35 34.03±2.19 

R3mw 39.11±1.282 35.35±3.461 37.88±4.574 43.71±6.153 

F3 44.17±3.543 42.97±2.32 42.43±2.401,4 47.76±3.363 

Tb3 46.21±6.704 47.84±3.88 47.52±3.374 51.92±1.501,3 

dTs3 22.00±2.832,3 19.44±1.551 18.69±1.921 19.78±1.76 

Au 60.63±6.704 62.89±2.76 61.74±3.544 67.45±2.811,3 

Superscript numbers describe which column that number was determined to be 

significantly different from, at an alpha level of 0.05
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Appendix II. Measurements (µm ± SD) of the 13 morphological characters of instar progrediens hemlock adelgids, organized by 

lineage.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Superscript numbers describe which column that number was determined to be significantly different from, at an alpha level of 0.05. 

Variable 
1.Western 

China 
2.Taiwan 3.T. sieboldii 4.T. diversifolia 5.Ulleung 

6.Western North 

America 

R4bw 21.90±1.82 30.23±3.341,3,4 28.93±3.921,2,4,6 27.91±4.632 24.00±4.30 31.35±3.843,4 

R4L 29.13±1.12 33.25±3.643 31.90±2.372,4,6 40.00±2.383 30.74±1.60 33.53±2.703 

R3mw 30.30±2.072 39.60±3.841,6 39.26±5.316 39.35±5.37 33.39±4.46 43.72±4.982,3,4 

F3 47.00±1.44 46.32±5.183,6 42.82±2.962,4,6 46.36±2.263 39.25±2.50 47.61±3.603,6 

Tb3 50.33±4.07 52.01±4.763 47.47±3.292,4,6 52.22±3.313 46.30±1.11 53.18±4.343 

dTs3 19.00±1.39 20.47±1.743 19.33±1.662 20.63±1.73 17.63±0.84 20.38±2.12 

F2 43.77±2.27 44.76±3.213 40.83±3.942,4,6 45.15±2.513 38.47±1.94 46.05±3.363 

Tb2 47.85±0.07 48.14±3.523,6 45.16±3.222,4,6 49.53±2.903 41.53±2.82 50.94±4.512,3 

dTs2 20.37±0.51 19.45±1.663 17.94±1.542,4 19.84±1.463 16.96±1.13 19.12±1.91 

F1 42.37±2.27 43.57±4.163 39.69±3.002,4,6 44.03±2.833 37.42±0.30 44.01±4.063 

F1w 21.87±3.57 23.01±3.274,6 23.37±2.92 21.47±2.092 19.53±3.04 24.98±2.682,4 

Tb1 43.17±5.38 46.25±4.323,6 44.60±3.472,4,6 48.18±3.113 40.46±2.61 50.30±4.542,3,4 

Au 56.67±1.222 64.25±5.061,3 62.34±4.412,4,6 66.47±3.183 52.39±5.72 65.99±4.283 
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Appendix III.  Measurements (µm ± SD) of the seven morphological characters of adult sistens hemlock adelgids, organized by 

lineage. 

Variable 1.Western China 2.Taiwan1 3.T. sieboldii 4.Ulleung 5. Western North America 

R4bw 43.16±7.262,5 41.45±10.43 55.39±12.96 39.00±2.69 57.27±14.91 

F3 80.44±11.452,4,5 97.71±17.221,3 85.43±17.622,5 72.60±6.291 112.51±31.511,3 

F3w 40.09±6.8693,4,5 44.34±11.731 47.96±10.811 31.79±2.171 54.94±15.951 

F2 69.92±9.502,3,4,5 79.16±15.581,3 75.62±13.415 63.16±5.411 96.14±26.171 

Tb1 48.48±6.471,3,5 58.36±8.251 59.14±8.971,5 51.93±4.83 73.63±14.651,3 

Au 20.69±3.992,3 27.74±13.811 24.64±4.491 27.06±2.75 28.38±6.95 

Ov 73.96±12.704 76.87±20.44 72.55±16.45 44.91±11.671 73.75±25.15 

Superscript numbers describe which column that number was determined to be significantly different from, at an alpha level of 0.05.
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Appendix IV. Measurements (µm ± SD) of the four morphological characters of adult 

progrediens hemlock adelgids, organized by lineage.   

Superscript numbers describe which column that number was determined to be 

significantly different from, at an alpha level of 0.05. 

  

  

Variable 1.Western China 2.Taiwan 3.T. sieboldii 4. Western North America 

R4bw 34.47±4.313,4 42.60±3.624 44.41±5.391,4 50.14±5.522,3 

F3 80.23±24.244 84.13±5.064 76.60±10.864 112.24±13.092,3 

F3w 32.30±6.273,4 35.93±5.084 39.83±5.681,4 43.92±5.651,3 

Au 33.75±7.153 22.40±1.144 22.42±6.691,4 35.53±4.40A2,3 
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Appendix V. Principal component analysis of 1st instar specimens, separated by 

generation. 

 

MANOVA found generations to be significant, is p<0.001, N=171, DF= 65, 785. 
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Appendix VI. Principal component analysis of adult specimens, separated by generation. 

 

MANOVA found generations to be significant, p<0.001, N=162, DF=30, 775. 
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