
10.1515/tvsb-2016-0023 

125 

Transactions of the VŠB – Technical University of Ostrava 

Civil Engineering Series, Vol. 16, No. 2, 2016 

paper #23 

Jan MAŠEK1, Petr FRANTÍK2, Miroslav VOŘECHOVSKÝ3 

DESIGN OF EXPERIMENT USING SIMULATION OF A DISCRETE DYNAMICAL SYSTEM 

Abstract 

The topic of the presented paper is a promising approach to achieve optimal Design of Experi-
ment (DoE), i.e. spreading of points within a design domain, using a simulation of a discrete dynamical 
system of interacting particles within an n-dimensional design space. The system of mutually repelling 
particles represents a physical analogy of the Audze-Eglājs (AE) optimization criterion and its period-
ical modification (PAE), respectively. The paper compares the performance of two approaches to im-
plementation: a single-thread process using the JAVA language environment and a massively parallel 
solution employing the nVidia CUDA platform. 
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 1 STATE OF THE ART 
Engineers must face the fact that many data needed for their decisions are uncertain or even 

inherently random. A decision must be made and one of the rational approaches is to consider a certain 
model of reality and consider selected inputs as random variables. Such a probabilistic approach is long 
accepted as a reasonable way to deal with uncertainties. As the model of a system under consideration 
(e.g. a finite element model of a structure) is often a complicated transformation of input variables, the 
full model is sometimes substituted by a simplified approximation – a surrogate model (response sur-
face, neural network etc.). Such an approximation must be based and validated using an optimal set of 
input realizations. Statistical computations with the full model of the surrogate model must then be 
performed with realizations, i.e. values of the input variables weighted by the corresponding probability 
density functions.  

The design and assessment of civil engineering structures using the currently valid standards 
recognize the existence of variability and uncertainty in design variables. The commonly used approach 
is the method of partial safety factors. This method yields acceptable results for typical structures and 
structural elements that are not too special and unique and repeat themselves in practice in limited 
variety. However, there are problems that require a specific, fully probabilistic approach and the stand-
ards allow for such a higher level of assessment. This can be the case of atypical or special structures 
due to their shape, acting loads or mass-produced elements (e.g., railway sleepers) which are worth 
of special attention. A definite reason for the use of fully probabilistic approach is a deployment of 
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a newly developed material or construction system for which a design approach and values of safety 
coefficients are not specified. 

As mentioned above, the computational model of a structure can be viewed as a transformation 
of input random variables. These usually describe the dimensions of structural elements, material prop-
erties and the magnitude and duration of acting loads during the structural service life. Only in case 
of limited number of rather simplified models with low number of input random variables, it is possible 
to consider their mutual relationships and, using direct transformation, obtain probabilistic description 
of the output. This is, however, not the case of models of most real structures for which the analytical 
approach cannot be used due to the complexity of the models. One needs to estimate parameters of the 
output random vector using statistical analysis, i.e. by performing repeated simulations in the spirit of 
the Monte-Carlo method. The number of simulations will be denoted Nsim.  

The most commonly used methods for estimation of statistical characteristics of structure re-
sponse are the Monte-Carlo methods [1]: primarily the crude Monte-Carlo method (MC), Latin Hyper-
cube Sampling (LHS) [2, 3], Importance Sampling (IS), and other. The estimation of statistical char-
acteristics of response by a Monte-Carlo type method is performed as an approximation of integral 
using appropriately chosen integration points. The integration points are the selected sampling points 
the design of which is sometimes termed as the Design of Experiment (DoE).  

Virtually all problems featuring various joint probability density of inputs can be transformed 
into selection of sampling points from a simple design domain: a unit hypercube [4]. This hypercube 
represents a space of independent uniformly distributed random variables. In fact, it represents the 
space of sampling probabilities of arbitrarily distributed variables. The dimension of the hypercube is 
Nvar, which is the number of input random variables.  

The execution of a sufficient number of simulations is usually a time-consuming task due to the 
complexity of the model. This reason leads to efforts aiming at minimization of the number of per-
formed simulations Nsim while obtaining statistically significant characteristics of the output. Such a se-
lection of optimal sampling set (DoE) is a part of every Monte-Carlo type method as the accuracy of 
the used method strongly depends on the choice of integration points. 

 In case of numerical integration using the Monte-Carlo method, the upper bound on the error 
of approximation can be estimated, for instance, by the Koksma-Hlawka inequality [5]: 

	 d 		 	 ,																																																																						 1  

where the left hand side of the inequality is the error of estimation using the average obtained by sam-
pling analysis and  is the discrepancy, or the rate of uniformity of distribution of integration 
points, and  is the variation of integrated function. From the above mentioned it is clear that for 
achieving a robust design of integration points for a general, piecewise smooth function, the bound on 
error can be minimized only by obtaining as uniform distribution of integration points in design space 
as possible. The presented paper proposes a way of obtaining such design of integration points. 
The goal then is to distribute Nsim of design points within a Nvar-dimensional hypercube as evenly 
as possible. Such a process can be understood as an optimization problem, the objective of which 
is minimization of a given functional. 

 The problem at hand (a uniform distribution of finite number of points within a design space) 
is relevant not only to structural design, but it is also featured in many other engineering tasks, opera-
tional research, computer modeling and also in real experimental research.  

 One of possible optimization methods is sampling by using the LHS method [6, 7], where the 
initial coordinates of Nsim design points are selected for each individual variable from Nsim equidistant 
subintervals of length of 1/Nsim, each of which contains a single point, see figure 1a. By using the LHS 
method, a perfectly uniform distribution along each separate dimension is achieved. The entire volume 
of unitary hypercube can be so divided into 							  parts of equal volume. The remaining task is to 
minimize a chosen optimization criterion by mutual swapping of coordinates. It should be noted that 
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there exist !  different combinations of these coordinates (sampling plans). The time re-
quirements for solving such an optimization problem therefore grows steeply with the number of sim-
ulations Nsim and with the number of dimensions Nvar (this task is known to be an NP-hard problem [8]). 

 Another way of design of point layout is generating of initial coordinates of Nsim points using 
a pseudorandom number generator. Then, the distribution of points within the design space is optimized 
by one of possible optimization techniques, such as simulated annealing [8] or genetic algo-
rithm [9, 10]. 

 An optimal selection of the sampling points can also be performed using some of many criteria 
proposed in the literature to obtain uniformity of point distribution of low discrepancy of the design. 
For example, let us mention the criteria Audze-Eglajs (AE) [11], MaxiMin and MiniMax [12], Modi-
fied [13], Centered [14] or Wrap-Around [15] L2 discrepancy, Voronoi tessellation [16]. 

  

  
Fig. 1: a) Design hypercube (Nvar = 3) evenly divided into cells of equal volume. The design points 

are highlighted (Nsim = 4). b) Visualization of a relative density of distribution of design points within 
a two-dimensional domain obtained by LHS optimized via AE criterion. The white color corresponds 

to zero density while the dark gray color corresponds to four times the average density  
(figure adapted from [19]). 

 It has been already shown [17, 4, 19] that the utilization of the AE criterion and also other 
criteria with intersite distances between points for the optimization of layout of design points in bor-
dered space does not lead to a statistically uniform distribution. Due to the effect of boundaries of the 
hypercube volume, overly and also insufficiently filled regions tend to emerge. Using of such set of 
integration points for a Monte-Carlo type method leads to systematically biased results. A perfectly 
uniform distribution can be obtained considering the periodic extension of design hypercube [4, 19], 
see figure 2a. The mentioned modification of the original AE criterion (PAE) provides absolutely even 
distribution of points, see figure 1b. 

 Some of the mentioned criteria are based on a physical analogy between layout of integration 
points within the volume of the hypercube and a system of interacting mass points. Namely, the Audze-
Eglājs criterion evaluates the amount of accumulated potential energy in a system of mutually repelling 
particles. The AE criterion assumes that the mutual repelling force between particles i and j is inversely 
proportional to third power of their mutual distance Lij. In case of the PAE criterion [4,19], the shortest 
distance ij within the periodically expanded design space is considered, see figure 2a. The formula for 
evaluating the potential energy of the system EPAE can be written as follows: 

	 	
1
	,																																																																																																																					 2 		 

where	 min	 ∆ , 	; 1 ∆ , 	,																																																																														 3 		 
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with ∆ , , ,  being the projection of the distance of points i and j onto dimension v. Increas-
ing the power in (2) to infinity corresponds to transition from AE criterion to MiniMax criterion (max-
imization of the distance between the closest pair of points). 

 2 ANALOGY BETWEEN DOE AND A DISCRETE DYNAMICAL SYSTEM 
Instead of utilizing of the AE/PAE criterion as a norm for the combinatorial optimization of 

initial coordinates, one can consider solving the problem of dynamical system of charged particles 
directly, see figure 2b. The coordinates of the particles of the dynamical system, after reaching a static 
equilibrium (minimization of potential energy), may be directly used as coordinates of design points 
within the unit hypercube. 

According to previous results [20], it can be expected that obtaining of coordinates of design 
points by using simulation of dynamical system will be significantly more efficient than the combina-
torial and heuristic approaches [7]. The proposed approach will also enable solving the DoE issues 
mentioned below. 

 
Fig. 2: a) Periodical extension of design space. b) System of repelling particles. 

 In practice, after executing a set of designed simulations, there often rises a need of executing 
several more simulations with coordinates of additional design points [18]. There is, of course, the pos-
sibility of designing the layout of the new set of design points Nsim. However, this would mean discard-
ing of precious obtained results with design point from a current design. A rational approach therefore 
is the addition of new design points to the current design and optimization of their coordinates while 
preserving the coordinates of already performed simulations. 

The above-mentioned requirements of design of experiments (periodical extension of design 
space and optimization of coordinates of newly added points while preserving the results of previously 
performed simulations) can be satisfied by the simulation of discrete dynamical system. 

The aim of long-term efforts of the authors is to develop a robust tool for solving of a discrete 
dynamical system of interacting particles. By utilization of efficient numerical simulations, the influ-
ence of various constitutive laws and optimization criteria will be investigated. Special attention will 
be paid to the development of a criterion with the ability to consider the uniformity of point distribution 
not only within the volume of entire design space of dimension Nvar, but also within all subspaces 
of lower dimension. 

  

Brought to you by | Technicka Univerzita Ostrava
Authenticated

Download Date | 3/21/17 7:50 AM



129 

 

 3 COMPUTER IMPLEMENTATION 
The initial implementation [20] of dynamical system simulation has been performed in the en-

vironment of JAVA programing language. The implementation, utilizing features of object-oriented 
programing, is executed by a single CPU thread. One can therefore expect that the time requirements 
of the solution will rise steeply with the number of points within the design hypercube Nsim and espe-
cially with the dimension of the hypercube Nvar. The motivation for such kind of implementation was 
the possibility of rather transparent verification of system behavior and investigation of solution stabil-
ity. Along with the implementation of dynamical system simulation, a graphic user interface enabling 
the control and observation of the simulation was created. 

 After a deeper investigation of the nature of the problem at hand, one can state that solving 
of such a task could advantageously implemented using massive parallelism. That means a concurrent 
solution of independent instructions on many threads operated by multiple cores of a graphic processor 
unit. Using a GPU for tasks other than image processing is known as GPGPU (General-Purpose com-
puting on Graphics Processing Units). The two most exploited options are nVidia CUDA [21] and ATI 
FireStream [22] platforms. Such implementation is then performed in modifications of low-level pro-
graming languages, namely the C/C++ family or FORTRAN. 

 For the implementation of parallelized solution of the discussed dynamical system, the nVidia 
CUDA platform and the CUDA C/C++ programming language were chosen. The idea of massive par-
allelism is to divide the solution between many parallel (concurrently running) threads which typically 
execute identical independent instructions. In case of the solution of dynamical system simulation, one 
entire step of the dynamical simulation can be divided into the following substeps: 

 calculation of components of distance vectors of all point pairs, 
 calculation of absolute values of distance vectors of all point pairs, 
 calculation of repelling forces between all point pairs (depends on selected constitu-

tive law), 
 numerical integration of equations of motion (semi-implicit Euler method). 

 Each of the listed substeps is executed by the highest possible number of concurrent threads 
performing identical tasks. The maximal number of concurrently running threads is, usually rather than 
by the hardware capabilities, limited by the nature of the implemented problem.  
 A fundamental issue of all parallelized implementations lies in the need to control the read 
and write events of each thread so that these do not access the same address in memory at the very 
same time [23]. This situation is known as the race condition and can occur in case of both reading and 
writing in the memory. When reading, threads which access the memory address later than other can 
read different value (changed by activity of preceding threads). When writing, on the contrary, the 
value at the observed memory address might be unintentionally overwritten by the rest of threads. The 
result of code exhibiting the race condition cannot be predicted as the time during which equally capa-
ble threads execute an identical instruction depends on non-deterministic circumstances. 
 Figure 3 offers a simplified illustration of the write-read procedure while performing the above 
mentioned parts of one step of dynamical simulation. The highest possible number of threads used for 
execution of each substep is limited by the size of the vector which is the subject of writing. In the 
figure 3, the solution of system of three points (Nsim = 3) in two-dimensional design space (Nvar = 2) is 
shown. 
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Fig. 3: Illustration of data structure and threads used for solving of individual parts of one step of dy-

namical simulation. Instructions requiring consecutive steps differ by color. 

 The first substep of solution is calculation of distance projections onto individual axes. These 
coordinate differences are calculated for all point pairs and for all dimensions and the output is stored 
in a vector of size Nvar∗Nsim

2; this can be executed without unnecessary delay using Nvar∗Nsim
2 active 

threads. Due to the sufficient hardware capabilities, there exist only two spots of performance drop 
(known as bottlenecks). Because of possible race condition while writing, it is necessary to add the 
squared projections along individual dimensions (to get the absolute distances) consecutively for each 
dimension. The same issue appears for increments of repelling forces between particles: it necessitates 
consecutive addition of forces from all Nsim points; that represents Nsim consecutive additions for each 
point along each single dimension. The following numerical integration using semi-implicit Euler 
method utilizes an ideal thread count. That means Nvar∗Nsim threads. 
 After considering the above mentioned, one can expect the time requirements of parallelized 
solution to depend on both point count Nsim and dimension count Nvar approximately linearly. 

 4 PERFORMANCE AND COMPUTING TIME ISSUES 
The following section offers a performance comparison of the single-thread process imple-

mented in JAVA language [20] and the massively parallelized solution using nVidia CUDA platform. 
The former was executed on the Intel Core i7-4700MQ processor. Its basic parameters are summarized 
by table 1: 

 Core i7-4700MQ  
Architecture Haswell 
Maximal frequency 3400 [MHz] 
L1 cache per core 32 [KB] 
L2 cache per core 256 [KB] 
L3 cache share 6 [MB] 
Bus bandwidth 25,6 [GB/s] 
Computing performance 83 [GFLOPS]
Manufacturing technology 22 [nm] 

Tab. 1: Parameters of the processor used. 
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The massively parallel solution on the nVidia CUDA platform was executed on three graphic 
cards: nVidia Quadro K1100M, GeForce GTX580 and GeForce GTX970. Their fundamental parame-
ters are compared in table 2: 

 

 K1100M GTX 580 GTX 970  
Architecture Kepler  Fermi  Maxwell  
Multiprocessor count 2 16 64 [ - ] 
Shaders per MP 192 32 26 [ - ] 
Shaders in total 384 512 1664 [ - ] 
Core clock  716 770 1050 [MHz] 
Memory clock (effective) 2800 4000 7012 [MHz] 
Bus bandwidth  45 192 224 [GB/s] 
DRAM capacity 2048 1536 4096 [MB] 
Computing performance 542 1581 3494 [GFLOPS] 
Manufacturing technology 28 40 28 [nm] 

Tab. 2: Parameters of the graphic cards used. 

For a basic comparison of computing performance of the mentioned hardware, one can consider 
the value of performance in FLOPS (FLoating point OPerations per Second) which is a measure of 
computational power. Today’s most powerful supercomputers reach up to tens of peta (1015) FLOPS4. 
Conversely, the performance an ordinary desktop calculator varies around units of FLOPS. 

Table 3 and figure 4 show the influence of point count Nsim on the execution time of 104 steps 
of dynamical simulation. In case of the single-thread JAVA process, roughly quadratic dependence 
of computational time tCPU on the point count Nsim can be identified. The character of execution time of 
the parallelized solutions tK1100M, tGTX580 and tGTX970 confirms the said assumption of linear dependency. 

 

Nsim Nvar tCPU [s] tK1100M [s] tGTX580 [s] tGTX970 [s] 
5 2 0.144 0.312 0.292 0.394 
10 2 0.451 0.449 0.301 0.451 
20 2 1.194 0.759 0.399 0.664 
50 2 6.502 1.833 0.813 0.930 
100 2 19.361 3.560 1.922 1.662 
150 2 45.257 5.545 3.319 2.369 
200 2 76.861 8.263 5.295 3.348 

Tab. 3: Comparison of execution time dependency on point count Nsim (Nvar = 2). 

                                                                                                                                                                   
4 The peak performance of world’s most powerful supercomputer, Tianhe-2 (Guangzhou, China), is almost 

34 PFLOPS. 
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Fig. 4: The rise of execution time with point count Nsim (Nvar = 2). 

The influence of the dimension of design hypercube Nvar on the execution time is illustrated 
by table 4 and figure 5. A steep growth in execution time with the dimension Nvar while utilizing a sin-
gle thread (JAVA) is evident. 

Nsim Nvar, CPU tCPU [s] Nvar, CUDA tK1100M [s] tGTX580 [s] tGTX970 [s] 
10 2 0.133 2 0.445 0.301 0.451 
10 5 0.216 5 0.473 0.305 0.489 
10 10 0.983 10 0.525 0.306 0.587 
10 11 2.642 20 0.621 0.307 0.679 
10 12 7.302 30 0.731 0.311 0.753 
10 13 22.472 40 0.819 0.336 0.826 
10 14 73.081 50 0.984 0.372 0.947 

Tab. 4: Comparison of execution time dependency on hypercube dimension Nvar (Nsim = 10). 

 

Fig. 5: The rise of execution time with the hypercube dimension Nvar (Nsim = 10). 
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The steep growth in execution time for both Nsim and Nvar effectively disqualifies the utilization 
of the single-thread JAVA implementation even for problems of fairly low complexity. The phenome-
non of steep growth tends to appear approximately from the point count Nsim = 10 in dimension Nvar = 
12 and beyond. One can expect that this is associated with reaching the size of the allocated space in 
L1 cache of the CPU (32 KB per core). At that time, the process operates roughly with 1600 values of 
double-precision (binary64). That means the need of storing about 13 KB of data in the L1 cache. Since 
then, the process clearly begins to use the computer’s operation memory which exhibits much longer 
access time. 

On the other hand, the massively parallel solution seems to be highly suitable for solving such 
tasks for all maintained data is stored within the GPU’s global DRAM memory 
(2048 / 1536 / 4096 MB) with rather large bandwidth. Further, let us consider that the global memory 
has the longest access time of all available memory types on the GPU. One can conclude that with 
a sufficient hardware equipment, the execution time of the parallel solution is extremely insensitive to 
increase in both the point count Nsim and the dimension of the hypercube Nvar. 

  5 CONCLUSION 

The paper deals with the approach of optimization of Design of Experiment (DoE) using a sim-
ulation of a discrete dynamical system of interacting particles which is analogical to the Audze-Eglājs 
criterion for optimization of the design. The implemented simulation of dynamical system is based 
specifically on the periodical modification of the AE criterion that already exhibited excellent results 
of point layout within the design space. 

In the second part of the paper, two performed approaches of solution implementation were 
presented: the object oriented, single-thread process using the JAVA environment and the massively 
parallel solution based on the nVidia CUDA platform. For both, the sensitivity of the execution time 
on the point count Nsim and on the hypercube dimension Nvar was studied. 

It was shown that the approach of massive parallelization is highly suitable for solving of such 
tasks due to its immense computational power and low dependency on the complexity of solved task. 
Therefore, the current implementation in the CUDA C/C++ language will be further developed 
and used in the context of collective's research activities. 
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