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Abstract. Squirrel cage induction machine are the
most commonly used electrical drives, but like any other
machine, they are vulnerable to faults. Among the
widespread failures of the induction machine there are
rotor faults. This paper focuses on the detection of bro-
ken rotor bars fault using multi-indicator. However,
diagnostics of asynchronous machine rotor faults can
be accomplished by analysing the anomalies of machine
local variable such as torque, magnetic flux, stator cur-
rent and neutral voltage signature analysis. The aim of
this research is to summarize the existing models and
to develop new models of squirrel cage induction mo-
tors with consideration of the neutral voltage and to
study the effect of broken rotor bars on the different
electrical quantities such as the park currents, torque,
stator currents and neutral voltage. The performance
of the model was assessed by comparing the simulation
and experimental results. The obtained results show
the effectiveness of the model, and allow detection and
diagnosis of these defects.
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1. Introduction

The squirrel-cage induction machines are widely used
and are the most common type of electrical rotating
machine used in industry. However, due to the combi-
nation of poor working environment and installation,
internal faults frequently occur on rotor, such as bro-
ken rotor bars, end ring connectors and eccentricities
[1]. Detection of these faults is an absolute must in
any real-life engineering system. Detection of broken
rotor bar, particularly at an early stage, is rather dif-
ficult than stator faults [2] and [3]. This research is
important because that even if though broken bars do
not cause motor failures initially, they can significantly
lower the efficiency and shorten the durability of induc-
tion machines.

In order to deal with the problems connected with
these failures, a numerical simulation model is usu-
ally implemented to improve traditional techniques.
In fact, some companies use simulation technique for
designing their new product [4]. To detect the mechan-
ical or electrical faults in induction machine, multiple
methods have been utilized in the literature such as:
Fast Fourier Transforms (FFT), Motor Current Signa-
ture Analysis (MCSA), Park Vectors, Stator voltages
monitoring and recently Neutral Voltage (NV) [5] and
[6]. Generally, MCSA is the most commonly used tech-
nique because it is simple and effective in appropriate
conditions. However, this technique has significant lim-
itations due to the increasing complexity of electrical
machines and drives [10]. In order to reduce these limi-
tations, the neutral voltage signature analysis has been
used. This technique focuses on the use of voltage be-
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tween the stator neutral voltage and an artificial supply
neutral voltage [11] and [12].

To demonstrate the performance of the model,
a comparison between simulation and experimental re-
sults have been verified, the obtained results show the
effectiveness of the model, and allow detection and di-
agnosis of broken rotor bars defects.

2. Detection of Broken Rotor
Bars

Among the widespread failures of the induction ma-
chine are the rotor faults, precisely broken rotor bars,
end ring connectors and eccentricities. Rotor faults
lead to speed fluctuation, torque pulsation, changes of
the frequency component in the supplying neutral volt-
age and current of the motor, temperature increase,
arcing in the rotor, and vibration of the machine.
These side effects have been utilized in recent years
for detecting and diagnosing this type of fault [13] and
[14].

2.1. Line Current Spectrum Analysis

Motor Current Signature Analysis (MCSA), based on
spectrum amplitude, have been widely used to detect
broken rotor bars and end ring faults. This technique
analyses the anomaly, which corresponds to broken bar
faults in motor stator current spectrum, and then pre-
dicts the existence of the faults. Considering the speed
ripple effect, it was reported that other frequency com-
ponents of stator current due to rotor asymmetry could
be observed around the fundamental at the following
frequencies [8]:

fb = (1 ± 2 · k · s) fs, (1)

where s is slip, fs is supply frequency and
k = 1, 2, 3, . . .

Other higher harmonic components can be also in-
duced nearby to the rotor slot harmonics in the stator
current spectrum:

fhk = fs

[
λ
Nr
p

(1 − s) ± 1 ± 2 · k · s
]
, (2)

where s is slip, fs is supply frequency, λ is positive
integer, Nr is number of rotor bars, p is number of
pole pairs and k = 1, 2, 3, . . .

2.2. Line Neutral Voltage Spectrum
Analysis

The proposed approach based on spectral analysis of
line-neutral voltage focuses on the use of voltage be-

tween the supply and the stator neutrals for broken
rotor bars detection. Broken rotor bars causes asym-
metries in the mutual inductance of the machine, which
gives rise to reveal of additional components in the
spectrum of the neutral voltage at frequencies given
by the relation:

fh = fs [3h− (3h± 1) s] , (3)

where s is slip, fs is supply frequency and
h = 1, 3, 5, . . .

The speed ripple induced additional harmonic com-
ponents around the previous frequency given by
Eq. (3), and frequencies of all components can be ex-
pressed as follows:

fh = fs [3h · (1 − s) ± s (1 + 2k)] , (4)

where s is slip, fs is supply frequency, k = 1, 2, 3, . . .
and h = 1, 3, 5, . . .

The following Tab. 1 presents a summary of fre-
quency components of motor current signature analysis
and neutral voltage signature analysis.

3. Squirrel Cage Induction
Motor Model

The model is built considering that both stator and
rotor consist of multiple inductive circuits coupled to-
gether, and the current in each circuit is considered
as an independent variable. We include in this model
the most important supply voltage harmonics but also
a large number of space harmonics. These harmonic
spaces allow obtaining a machine model closer to the
real one. However, the main information for the detec-
tion of broken bars is at the level of harmonic 3 in this
voltage. The model of the induction motor takes into
account the following assumptions [13], [14], [16] and
[18]:

• saturation is neglected,

• uniform air gap,

• neglecting inter-bar currents,

• evenly distributed rotor bars,

• neglecting flux coupling between different winding
without air gap crossing.

3.1. System of Equations

The Stator comprises conventional three phase wind-
ings, thus three circuits are required to represent the
stator. The rotor consists of Nr identical and equally
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Tab. 1: Frequency components of broken rotor bars motor faults.

Signature analysis Components frequency Harmonic components frequency
Motor Current fb = (1± 2 · k · s)fs fhk = fs

[
λNr

p
(1− s)± 1± 2 · k · s

]
Neutral voltage fh = fs [3h− (3h± 1) s] fh = fs [3h · (1− s)± s (1 + 2k)]

spaced bars shorted together by two identical end rings
[13]. Voltage equations for the motor can be written in
vector-matrix form as follows:

Vs = Rs · Is +
dΦs

dt
,

Vr = Rr · Ir +
dΦr

dt
,

Φs = Ls · Is + Msr · Ir,
Φr = Lr · Ir + Mrs · Is,

Cem =
1

2

[
Is
Ir

]T
d

dq

[
Ls Msr

Msr Lr

] [
Is
Ir

]
,

W =
dq

dt
,

(5)

where Msr is the Mutual matrix inductances between
the stator and rotor, Rs is the Stator resistances ma-
trix, Rr is the Rotor resistances matrix, Vr is the Ro-
tor voltages vector, Vs is the Stator voltages vector,
Φs is the Stator flux vector and Φr is the Rotor flux
vector. The matrix Msr depends on time, which ne-
cessitates the inversion of the inductance matrix Ls of
dimension Nr + 4 in each calculation. To make this
matrix constant, we apply the Park transformation.
The use of the Park transformation bypasses allows ob-
taining a system of equations with constant coefficients
which facilitates their resolution.

3.2. Inductances Calculation

It is obvious that the calculation of all inductances is
the key to successful simulation of an induction motor.
These inductances are conveniently calculated using
the Winding Function Approach. According to wind-
ing function theory, the inductance between any two
windings i and j in any electric machine can be com-
puted by the following equation [7] and [17]:

Lij (ϕ) = µ0 · Lr

2π∫
0

ni (ϕ, θ)Nj (ϕ, θ)

e (ϕ, θ)
dθ, (6)

where µ0 = 4π · 10−7 H·m−1, e is the air gap length,
θ is the particular rotor angular position, r is the av-
erage radius of the air gap, L the active stack length
of the motor, ϕ angular position along the stator in-
ner surface, and ni(θ, ϕ), Nj(θ, ϕ) is called the wind-
ing function of circuit, i and j represent the magneto-
motive force distribution along the air gap for the unit
current in winding.

3.3. Quadrature-Phase Model

The Park transformation is a well-known three-phase
to two-phase transformation in machine analysis, con-
sisting of the application of current, voltage and flux,
a change of variable by involving the angle between
the axis of the windings and the d and q axes.
We transform the three-phase windings a, b and c in
three orthogonal d, q and o windings, referred to as [13]
and [17]:

• direct axis d,

• transverse axis q,

• homopolar axis o.

The mathematical model machine equations in the
axis system d, q can be written in vector matrix form
as follows:

V0s

Vds

Vqs

0
0
0
0
...
...
0
. . .
0

0



=Ltr
d

dt



I0s
Ids
Iqs

Ir0
Ir1
Ir2
Ir3
...
...

Irk
. . .

Ir(Nr−1)

Ie



+Rtr



I0s
Ids
Iqs

Ir0
Ir1
Ir2
Ir3
...
...

Irk
. . .

Ir(Nr−1)

Ie



, (7)

and the Electromagnetic torque equation of the ma-
chine is defined as follows:

Ce =

√
3

2
pLsr

(
Iqs

Nr−1∑
k=0

Irk cos (Ka)

−Ids
Nr−1∑
k=0

Irk sin (Ka)

)
,

(8)

where Vsd is the Component according to the d axis
voltage, Vsq is the Component according to the q axis
voltage, Isq is the Component of the rotor current along
the axis d, Isd is the Component of the stator current
on the axis d, Irq is the Rotor current component along
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the axis q, Ird is the Component of the stator cur-
rent on the axis q, Cem is the Electromagnetic torque,
Ltr and Rtr are global matrices inductors and resistors
obtained after the transformation of Park [13].

Lsr =
4µ0NsRl

eπp2
sin
(a

2

)
,

a =
2π

Nr
,

K = 0, . . . , Nr − 1.

(9)

3.4. Line-Neutral Voltage Analysis

The approach of Neutral Voltage Signature Analysis
focuses on the use of voltage between the supply and
the stator neutrals [9], [11], [12] and [19]. This voltage
is given by the following mathematical relationship:

V3s = Rsi3s +
d

dt
Ψ3s + Vnn, (10)

Vnn = Rsi3s + La
dI3s
dt

+
dLa
dθ

ΩI3s − Vsupply, (11)

where Rs represents the stator-phase resistance,
La his inductance, Isa is the current passing through
it, Ω is the rotation speed, θ is the angular position of
the rotor and Vsupply is simple voltage generated by
network supply.

In order to depict the harmonic components related
to broken rotor bars defects in the line neutral voltage,
it is necessary to explore its theoretical formula.

As the stator windings are star-connected then:{
vsa + vsb + vsc = 3vso,
isa + isb + isc = 0,

(12)

and

vso =

∞∑
h=1

Vsoh cos (hωst+ ϕh) , (13)

where vos is the zero-sequence component of the supply
voltage.

By the summation of the Eq. (10) and Eq. (13) we
get:

vnn = −1

3

(
dΨsa

dt
+
dΨsb

dt
+
dΨsc

dt

)
. (14)

The mutual inductance as described by Eq. (15)
presents harmonics with respect to the electrical an-
gle θ, where a = p(2π · N−1r ) is the electrical angle of
a rotor loop.

Therefore, the line voltage between neutrals can be
written as Eq. (16), where Vnn is the potential differ-
ence between the neutral of star-connected stator and
the neutral network in the case of a direct feed or arti-
ficial neutral in the case of a supply voltage by inverter
results in healthy condition of induction motor.

4. Simulation Results Analysis

For a squirrel cage induction motor with Nr bars, and
one end ring current, Eq. (7) and Eq. (8) can be re-
solved using the fourth-order Runge-Kutta method. To
validate the proposed model, the machine was first sim-
ulated under healthy condition. Then, the rotor faults
under different broken rotor bars were simulated. The
rotor has been presented by all the meshes allowing the
representation of various faults, to simulate a broken
rotor bar, the resistance of a bar of the cage is increased
40 times its healthy value (Rbb = 40 · Rb) in the Rtr

until the current in the bar is closest to zero.

4.1. Simulation and Analysis of
Healthy State

The simulation study was at: no load for 1 sec and then
the motor is loaded with 15 Nm load using a machine
of 3 phases, 50 Hz, 48 stator slots, 28 rotor bars and
2 poles machine. The Fig. 1(a), Fig. 1(b), Fig. 1(c),
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(a) Stator current at no load.
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(b) Stator current when the motor is loaded.
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(c) Rotor currents.
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Msr =

∞∑
h=1

Msr
h ·

 cos(h · (θ + φh)) . . . cos(h · (θ + φh + k · a) . . .
cos(h · (θ + φh − 2π

3 )) . . . cos(h · (θ + φh + k · a− 2π
3 )) . . .

cos(h · (θ + φh + 2π
3 )) . . . cos(h · (θ + φh + k · a− 2π

3 )) . . .

 . (15)

Vnn = −
∞∑
h=1

Msr
3h

[
cos(3h(θ + ϕ3h)) . . . cos(3h(θ + ϕ3h + ka)) . . .

] d
dt

irk +
dθ

dt

∞∑
h=1

3hsωsM
sr
3h

·
[
cos(3h(θ + ϕ3h)) . . . cos(3h(θ + ϕ3h + ka)) . . .

]
· irk +

∞∑
h=1

Vsoh cos(hωst+ ϕh).

(16)
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(d) Electromagnetic torque.
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Fig. 1: Simulation results of healthy state.

Fig. 1(d) and Fig. 1(e) show the simulation results in
healthy condition of induction motor.

4.2. Simulation and Analysis of
Broken Bars Fault in Motor

The motor is simulated at no load for 1 sec and then
the motor is loaded with 15 Nm load, at 3 sec a com-
pletely broken rotor bars occur in a rotor induction
motor. The Fig. 2(a), Fig. 2(b), Fig. 2(c), Fig. 2(d)
and Fig. 2(e) show the simulation results for failures of
the induction motor.

The impact of broken rotor bars fault on machine
current can be examined through Park vector trans-
formation approach. The current Park’s vector for
a healthy motor corresponds to a circle, whereas for
a faulty one, the shape distorts depending upon the
amount of fault level. To decide on the nature of the

fault occurred in induction machine, an analysis with
the well-known FFT is done to decide on the fault and
also its severity. In this case, broken bars related har-
monic components are clearly located around the fun-
damental Fig. 4.
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(a) Stator current.
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(b) Rotor currents.
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(c) Zoom of rotor currents.
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(d) Electromagnetic torque.
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Fig. 2: Simulation results of broken bars fault in motor.

5. Experimental Results
Analysis

In order to test the proposed model, an experimen-
tal system is configured as shown in Fig. 6. The ex-
perimental tests were developed on a 3 kW, 50 Hz,
220 V = 380 V, 4-poles Induction Machine. The mo-
tor was directly coupled to a direct current machine
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Fig. 3: Motor current’s Park’s vector representation.

acting as a load. Two voltage sensors are used to mon-
itor the induction machine operation. The IM voltages
are measured by means of the two sensors, which are
used as inputs of the signal conditioning and the data
acquisition board integrated into a personal computer.
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Fig. 4: Simulation: Normalized FFT spectrum of machine line
current of IM with 3 broken rotor bars.
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Fig. 5: (a) Simulation: Normalized FFT spectrum of machine
line neutral voltage of IM with 3 broken rotor bars, (b)
Zoom of line neutral voltage around the 3rd harmonic.
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Fig. 6: Experimental setup.
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Fig. 7: Line neutral voltage comparison.
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Fig. 8: Line current comparison.

6. Discussion

Broken rotor bars fault in induction machine lead to
changes of the frequency component in the supplying
neutral voltage and current of the motor, electromag-
netic torque and power pulsation. The simulation re-
sults are shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5,
Fig. 6, Fig. 7 and Fig. 8.

Figure 1 shows the simulation results of induction
machine in healthy case. Figure 1(a): Stator current
for no load normal condition, Fig. 1(b): Stator cur-
rent when the motor is loaded, Fig. 1(c): Rotor cur-
rents, Fig. 1(d): Electromagnetic torque and Fig. 1(e):
Power.

Figure 2 shows the simulation results in defect case,
under one and three adjacent broken bars: Fig. 2(a):
Stator current, Fig. 2(b): Rotor currents, Fig. 2(c):
Zoom of rotor currents, Fig.1(d): Electromagnetic
torque and Fig. 2(e): Power.

Figure 3 shows the motor current’s Park’s vector rep-
resentation, Fig. 3(a): Healthy case, Fig. 3(b): Faulty
case.

Figure 4(a) Simulation: Normalized FFT spectrum
of machine line current of IM with 3 broken rotor bars
and Fig. 4(b) show a zoom around the fundamental
frequency.

Figure 5(a) shows the spectrum content of the
line between neutrals (Vnn), when a rotor dissym-
metry is considered (constructional dissymmetry or
broken rotor bar) under a balanced sinusoidal volt-
age supply. Equation (4) clarifies the frequencies of
the additional harmonics, fh(3h, 0,±k), where 3h =
3, 9, 15, 21, 27, . . . , η = 0 and k = 0,±1,±2,±3,±4 . . . .
Figure 5(b) shows a zoom around the first-order har-
monic 3h, which gives fh(3, 0,±k) = 3−(3h±1)s+2ks.

Figure 7 shows a Line neutral voltage comparison
between the simulations results (Fig. 7(a) and experi-
ment ones (Fig. 7(b)), we note a match between these
results.

Figure 8 shows a line current comparison between
the simulations results Fig. 8(a) and experiment ones
Fig. 8(b), we note a match between these results. This
model is helpful in quantifying the rotor slot harmonics
under healthy as well as faulty condition.

7. Conclusion

In this paper, we presented a mathematical model and
simulation of squirrel cage induction motor in healthy
case and under defects of one and three adjacent bro-
ken bars. The particularity of the model is that it
takes into account the line neutral voltage in the sys-
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tem equation, and it is based on a detailed modeling of
the induction motors, represented by m stator phases
and Nr rotor bars, which allows detecting and localiza-
tion of the completely and partially broken rotor bars
with multi indicators, without the need to change the
model structure. The simulation results show the ef-
fectiveness of the model as it adapts with the presented
problem and it shows a good match with the theoreti-
cal predictions. The accuracy of the simulation results
is verified by the experimental results.

The results presented in this paper are promising
and clear and thus the future research work should fo-
cus on the use of information collected from multiple
sensors (indicators), such as current, voltage, torque,
vibration, and temperature, to detect and identify mo-
tor faults.
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Appendix A

Tab. 2: Units for magnetic properties.

Symbol Quantity Numerical
application

P Power 5 kW

U
Power supply

voltage 380 V

f
Current stator

frequency 50 Hz

p
Number of
pole pairs 2

Nr
Number of
rotor bars 28

Sn
Number of
stator slots 48

Ns
Number of turns in
series per phase 80

ea Ring thickness 0.28 · 10−3 m

Rs
Resistance of
a stator Phase 1.5 Ω

Rb
Resistance of
a rotor bar 96.9 · 10−6 Ω

Re
Resistance of a short

circuit ring 5 · 10−6 Ω

Lb
Leakage inductance of

a rotor bar 0.28 · 10−6 H

Le
Leakage inductance of
a ring of short circuit 0.036 · 10−6 H

j
Moment of
inertia 0.0131 Kg·m2

µ Permeability 4π · 10−7
Wb

A ·m
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