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Abstract 

 

This dissertation examines different financial applications of some conditional expectation 

estimators. In the first application, we provide some theoretical motivations behind the use of the 

moving average rule as one of the most popular trading tools among practitioners. In particular, we 

examine the conditional probability of the price increments and we study how this probability 

changes over time. In the second application, we present different approaches to evaluate the 

presence of the arbitrage opportunities in the option market. In particular, we investigate 

empirically the well-known put-call parity no-arbitrage relation and the state price density. We first 

measure the violation of the put-call parity as the difference in implied volatilities between call and 

put options. Furthermore, we propose alternative approaches to estimate the state price density 

under the classical hypothesis of the Black and Scholes model. In the third application, we 

investigate the implications for portfolio theory of using conditional expectation estimators. First, 

we focus on the approximation of the conditional expectation within large-scale portfolio selection 

problems. In this context, we propose a new consistent multivariate kernel estimator to approximate 

the conditional expectation. We show how the new estimator can be used for the return 

approximation of large-scale portfolio problems. Moreover, the proposed estimator optimizes the 

bandwidth selection of kernel type estimators, solving the classical selection problem. Second, we 

propose new performance measures based on the conditional expectation that takes into account 

the heavy tails of the return distributions. Third, we deal with the portfolio selection problem from 

the point of view of different non-satiable investors, namely risk-averse and risk-seeking investors. 

In particular, using a well-known ordering classification, we first identify different definitions of 

returns based on the investors’ preferences. The new definitions of returns are based on the 

conditional expected value between the random wealth assessed at different times. Finally, for each 

problem, we propose an empirical application of several admissible portfolio optimization 

problems using the US stock market.  

Keywords: Moving Average, conditional probability, systemic risk, arbitrage opportunities, state 

price density, conditional expectation estimators, and large-scale portfolio selection problems.
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1. Introduction  

 

In this thesis, we study some financial applications of the conditional expectation and apply this 

work to three distinguished problems in finance. The main component that connects these three 

issues is the notion of conditioning, an important concept in probability and statistics, which 

turn out to be extremely useful in financial modeling. The conditional expectation 𝐸(𝑌|𝑋), 

represents the best estimate of the random variable Y given the available information about X. 

Given the importance that conditional expectation plays in modern finance and in several 

pricing and risk management problems. 

First, we extensively use the conditional expectation to provide some theoretical 

motivations behind the use of the moving average rule as one of the most popular trading tools 

among practitioners. In particular, we examine the conditional probability of the price 

increments and we study how this probability changes over time. Then, we compare the ex-post 

wealth obtained using these trading rules and other portfolio strategies. The ex-post analysis 

confirms that it is better using these rules to predict the market trends. In this context, we suggest 

a methodology that incorporates moving average rules as alarm rules to predict potential fails 

of the market. 

Second, we present different approaches to evaluate the presence of the arbitrage 

opportunities in the market. In this context, we propose alternative approaches to estimate the 

state price density using the conditional expectation estimators. In particular, we use two 

different methodologies to evaluate the conditional expectation of a random variable 𝑋 given a 

random variable 𝑌, namely the kernel method and the OLP method recently proposed by 

Ortobelli et al. (2015). The kernel nonparametric regression method allows estimating the 

regression function, which is a realization of the conditional expectation 𝐸(𝑌|𝑋), while the 

second approach estimates the conditional expectation (intended as a random variable), based 

on an appropriate approximation of the σ-algebra generated by 𝑋.  

Third, we examine the use of the conditional expectation, either to reduce the 

dimensionality of large-scale portfolio problem or to propose alternative risk-reward 

performance measures. In particular, we focus on three different financial uses. In the first use, 

we discuss and examine some correlation measures (based on the conditional expectation) used 

to approximate properly the returns in large-scale portfolio problems. Then, we compare the 

impact of alternative return approximation methodologies on the ex-post wealth of a classic 
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portfolio strategy. In this context, we show that correlation measures that use properly the 

conditional expectation perform better than the classical ones. Moreover, the correlation 

measure typically used for returns in the domain of attraction of a stable law works better than 

the classical Pearson correlation does. In the second usage, we propose new performance 

measures based on the conditional expectation that takes into account the heavy tails of the 

return distributions. Then, we examine portfolio strategies based on the optimization of the 

proposed performance measures. In particular, we compare the ex-post wealth obtained 

applying portfolio strategies, which use alternative performance measures based on the 

conditional expectation. Finally, we deal with the portfolio selection problem from the point of 

view of different non-satiable investors: namely, risk-averse and risk-seeking.  Doing so, we 

propose alternative use of the conditional expectation in different portfolio problems. Let us 

proceed to give a more detailed introduction of the content of the three chapters.  

1.1 On the use of moving average rule  

Technical trading rules are based on past prices and volume information, which help to generate 

discrete (buy or sell signal) trading recommendation. However, until 1980s the academic 

society was skeptical towards the use of technical analysis. Accordingly, we can divide 

technical analysis literature into two periods. The first period supported the impracticability of 

applying technical analysis for prediction of the future (see Alexander, 1964; Fama and Blume, 

1966; Fama, 1970; and the references therein). There are maybe two reasons for such 

conclusion. The first reason is that earlier studies often assume a random walk model for the 

stock price, which rule out any profitability of technical trading. The second reason is that no 

adequate theoretical support for such strategies was provided. This thesis attempts to overcome 

this gap and provides theoretical foundations for the most popular rule among practitioners, the 

moving average rule. The second period can be considered as a rebirth of technical analysis, 

where a significant amount of theoretical and empirical works has been developed to support 

its validity and efficiency (see Brock et al, 1992; Levich and Thomas, 1993; Lo et al., 2000; 

Chiarella et al., 2006; Moskowitz et al., 2012; and the references therein). 

According to many researchers the seminal work of Brock et al. (1992) seems to be the 

first major study that provides convincing evidence on the profitability of technical analysis. 

They test two of the simplest and most popular trading rules, the moving average and the trading 

range break rules. Their overall results, using the bootstrap methodology, provide a strong 

support to technical strategies against four popular null models: the random walk, the AR (1), 

GARCHM and the EGARCH models. They find that buy signals generate higher returns than 
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sell signals and the return following buy signals are less volatile than returns following sell 

signals. Recently, Neely et al. (2013) find that technical indicators, primarily the moving 

averages, have the forecasting power of the stock market matching or exceeding that of 

macroeconomic variables. To sum up, there is sufficient evidence in the literature to support 

the technical analysis as a profitable strategy.   

In the first chapter, we discuss and provide some theoretical motivations for the use of 

the moving average as one of the most popular technical trading rules. In contrast to the vast 

studies that use the moving average as an indicator function that indicates merely an up or down 

state of the market, this study sets the theoretical foundation by demonstrating its validity from 

a statistical point of view under some particular hypothesis. Thus, we prove that when the 

moving average rule applies, we could have some implications on the up and down trend 

probabilities. For this reason, we believe that this rule can be better used to predict the 

probability of the market fails, such as during periods of systemic risk as suggested by Tichý et 

al. (2015) and Giacometti et al. (2015). Now, we provide a more detailed introduction for the 

second application of the conditional expectation.  

1.2 Alternative methods to evaluate the arbitrage opportunities   

 The option-pricing theory has had a central role in modern finance ever since the pioneering 

work of Black and Scholes (1973) (hereinafter BS). The main idea behind the BS option pricing 

model is that the price of an option is defined as the least amount of initial capital that permits 

the construction of a trading strategy whose terminal value equals the payout of the option. BS 

model has a great importance for improving research on the option pricing techniques. 

Unfortunately, widespread empirical analyses point out that a set of assumptions under which 

BS model built, particularly normally distributed returns and constant volatility, result in poor 

pricing and hedging performance. However, different generalizations of the BS model have 

been proposed in literature – see, e.g., Merton (1976), Heston (1993) and Bates (1996) for more 

details. Generally, most models that have been proposed so far mainly relax some assumptions 

of BS model and then trying to be justified via general fundamental theorem of asset pricing-

FTAP, Harrison and Kreps (1979). This theorem provides many challenges in asset pricing 

theory. In particular, it asserts that the absence of arbitrage in a frictionless financial markets if 

and only if there exist an equivalent martingale measure under which the price process is a 

martingale.  

One fundamental entity in asset pricing theory is the so called State Price Density 

(hereinafter SPD). Among no-arbitrage models, the SPD is frequently called risk-neutral 
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density, which is the density of the equivalent martingale measure with respect to the Lebesgue 

measure. The existence of the equivalent martingale measure follows from the absence of 

arbitrage opportunities, while its uniqueness demands complete markets. Breeden and 

Litzenberger (1979) proposed an excellent framework to fully recover the SPD in an easy way. 

In this method, the SPD is simply equal to the second derivative of a European call option with 

respect to the strike price, see among others Brunner and Hafner (2003), Yatchew and Härdle 

(2006) for other estimation technique. Furthermore, it is well known that option prices carry 

important information about market conditions and about the risk preferences of market 

participants. In this context, the SPD function derived from observed standard option prices has 

gained considerable attention in the last decades. Indeed, an estimate of the SPD implicit in 

option prices can be useful in different contexts, see among others Ait-Sahalia and Lo (1998). 

The most significant application of the SPD is that it allows us to compute the no-arbitrage 

price of complex or illiquid option simply by integration techniques. 

The first fundamental contribution is to evaluate the presence of arbitrage opportunities 

in the market. To do so, we focus on the violation of the put-call parity no-arbitrage relation 

and then the nonnegativity of the SPD. Firstly, we measure the violation of put-call parity as 

the difference in implied volatility between call and put options that have the same strike price, 

the same expiration date and the same underlying asset. Secondly, we discuss the violation of 

the nonnegativity of the SPD. This is important, because negative values of the SPD 

immediately correspond to the possibility of free-lunch in the market.  

The second crucial contribution is to propose different approaches to estimate the SPD. 

We deviate from previous studies in that we estimate SPD directly from the underlying asset 

under the hypothesis of the BS model. To this end we follow two distinguished approaches to 

recover the SPD, the first one based on nonparametric estimation techniques “kernel” which 

are natural candidates (see among others Ait-Sahalia and Duarte, 2003;  Benko et al. 2007,  for 

an application to options), then a new method based on conditional expectation estimator 

proposed by Ortobelli et al. (2015). Firstly, we examine the so called real mean return function 

using local polynomial smoothing technique. Then, we estimate the conditional expectation 

under real probability density. According to the hypothesis of BS model, we are able to derive 

a closed formula for approximating the conditional expectation under risk neutral probability. 

The main goal of this contribution is to examine and compare the conditional expectation 

method and the nonparametric technique. These methods allow us extrapolating arbitrage 

opportunities and relevant information from different markets (futures and options) consistently 
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with the analysis of the underlying. Finally, we give a more detailed introduction for the third 

application of the conditional expectation. 

1.3 On the impact of conditional expectation estimators in portfolio theory  

It is well known that the mean-variance model (see Markowitz 1952) is theoretically justified 

even by utility theory when returns are normally distributed.1 Unfortunately, the Gaussian 

distributional assumption of financial return series is mostly rejected, as was already proved by 

e.g. Mandelbrot (1963) and Fama (1965).2 Over the years, a significant number of studies have 

been published related to the topic of portfolio selection problems. Most of these studies have 

proposed different portfolio selection formulations based on operational research models that 

try to overcome the mean-variance shortcomings.3 

According to many researchers, see among others Papp et al. (2005) and Kondor et al. 

(2007), the portfolio selection problem is extremely related to the estimation of inputs, 

statistical parameters, which describe the dependence structure of the returns. In particular, the 

problem of parameter estimation increases with the number of assets. Several approaches have 

been proposed in the literature to mitigate this problem, among which are naïve diversification, 

shrinkage estimators, resampling methods, and imposing constraints on the portfolio weights 

(see DeMiguel et al. 2009; Ledoit and Wolf 2003 and the reference therein). In this context, 

statistical nonparametric techniques have received significant interest from academics and the 

investment management community (see, e.g. Ait-Sahalia and Lo 1998, and Scott 2015). 

In this chapter, we assess the impact of nonparametric techniques based on the use of 

conditional expectation estimators in the portfolio theory. In particular, we discuss the use of 

the conditional expectation for three financial applications: a) approximation problems within 

large-scale portfolio selection problems, b) performance valuation considering the heavy tails 

of returns and, c) optimal portfolio choices consistent with different investor preferences. 

The first contribution of this chapter is to investigate the impact of alternative return 

approximation methods depending by k-factors in large-scale portfolio problem (such as in the 

k-fund separation model of Ross (1979)). In particular, we examine and compare the classical 

return approximation with a nonparametric approximation of the returns depending on few 

factors obtained by a principal components analysis (PCA). Furthermore, according to Ortobelli 

                                                           
1 See, among others, Tobin (1958); and Levy and Markowitz (1979).  
2 For deeper discussion see among others Samorodnitsky and Taqqu 1994; Rachev and Mittnik 2000 and the 

references therein. 
3 For a survey of recent contributions from operation research and finance to the theory of portfolio selection see 

Fabozzi et al. (2010). 
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and Tichý (2015), we determine the principal components (of PCA) either using a correlation 

matrix suitable for heavy-tailed distribution (called stable linear correlation) or using the 

classical Pearson correlation matrix (which summarizes the joint dispersion behavior of 

Gaussian vectors).  

The most commonly used approach to estimate the relationship between returns and k 

factors is the linear approximation based on the ordinary least squares (OLS) estimator (see 

Ross (1979)). This approximation appears good enough when the returns are normally 

distributed. Admitting small departures from normality of the returns do not affect the 

regression coefficients greatly, however errors with a heavier tailed distribution, which is more 

suitable for modeling asset returns, can significantly affect the estimated OLS regression 

coefficients, (see Nolan et al. (2013)). Moreover, we believe that there exists substantial 

evidence of nonlinearity in the financial dataset used to estimate the returns (see among others 

Rachev et al. 2008). For this reason, according to Ruppert and Wand (1994), we propose a 

nonparametric regression analysis to approximate the returns. This approach relaxes the 

assumptions of linearity and it suitable even for non-Gaussian distributions. In this context, we 

prove that the variability of errors of the return approximation decreases as the number of factor 

increases even when elliptically distributed returns present heavy tails. In addition, using 

convex dominance testing, we find that the nonparametric regression outperforms much better 

than its counterpart parametric (OLS) does. This empirical analysis is provided using portfolios 

of the components of S&P 500 index.  

The second contribution of this chapter is to deal with a proper evaluation of portfolio 

choices that account the distributional tails of portfolios. In particular, the primary purpose of 

this contribution is to present theoretically sound portfolio performance measures considering 

a more realistic behavior of the returns (i.e. heavy-tailed distributions). Using a new alternative 

conditional expectation estimator proposed by Ortobelli et al. (2015), we are able to forecast 

the conditional expected portfolio returns with respect to a given sigma algebra of events (either 

generated by possible profits or generated by possible losses). More specifically, the first 

suggested performance measure is based on the conditional expectation with respect to two 

different σ-algebras (the σ-algebra generated by the portfolio losses, and the σ-algebra 

generated by the portfolio profits). While the second performance measure considers σ-algebras 

generated by the joint losses and by joint gains in the market. Moreover, we illustrate how the 

new performance measures can mitigate the shortcoming of the classical Sharpe ratio (see 

Sharpe (1994)) showing with an ex-post empirical analysis their tested higher capacity to 

produce wealth in the US market. 
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Finally, we deal with the portfolio selection problem from the point of view of different 

non-satiable investors, namely, risk-seeking and risk-averse, see Ortobelli et al. (2015). In 

particular, using a well-known ordering classification, we first identify different definitions of 

returns according to the investor’s preferences. The new definitions of returns are based on the 

conditional expected value between the random wealth assessed at different times. Using 

conditional expectation estimator, we are able to forecast the investors’ behavior by comparing 

the wealth sample path obtained by considering their different preferences. 

1.4 The aim of the thesis  

Conditional expectation is an important concept in probability and statistics which turn out to 

be extremely useful in financial modeling. It plays a crucial role in portfolio theory and in 

several pricing and risk management problems. The aim of this dissertation is to assess the 

impact of the conditional expectation on different financial applications, e.g. arbitrage 

opportunities, state price density estimation and large-scale portfolio selection problems etc. 

Given uncertainty in the input model and parameters, the goal of the study often becomes the 

estimation of a conditional expectation among different financial variables. The conditional 

expectation is expected performance conditioned on the selected model and parameters. The 

distribution of this conditional expectation describes precisely, and concisely, the impact of 

input uncertainty on performance prediction. Conceptually, from probability theory 

perspective, the conditional expectation is well studied and its properties are mainly proved.  

Given the importance of technical analysis, we extensively use the conditional 

expectation to provide theoretical foundations for the most popular rule among practitioners, 

the moving average rule. This contribution attempts to overcome a significance gap in literature 

which is that no adequate theoretical support for such strategies exists.  Moreover, to contribute 

to the literature on option pricing theory, we present different approaches to evaluate the 

presence of the arbitrage opportunities in the option market. Then, we propose alternative 

methods to estimate the SPD. To achieve this aim, we estimate the density of a conditional 

expectation using two different approaches, namely the classical kernel estimator and a new 

method recently proposed by Ortobelli et al. (2015). Finally, the last aim of the thesis is to 

examine and investigate the implications for portfolio theory of using conditional expectation 

estimators.  

The rest of this dissertation is organized as follows. Chapter 2, contains detailed 

discussion of the conditional expectation and summaries the financial theory needed for the 

development of the thesis. Chapter 3, provides theoretical and practical motivation behind the 
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use of moving average rules. Chapter 4, presents some methods to evaluate the arbitrage 

opportunities and proposes alternative methods to estimate the SPD. Chapter 5, examines and 

discusses the impact of conditional expectation estimators in the portfolio theory. Finally, 

chapter 6 concludes the thesis. 
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Chapter 2 

 

 

 

 

Conditional expectation and principles of finance 

 

 

2. Summary 

In this chapter we briefly introduce some of the most important concepts from the probability 

theory and financial mathematics that are useful in the financial applications of the conditional 

expectation. The main goal is not to give a comprehensive study or a complete overview of the 

literature related to this matter. The purpose is to define all concepts that we deemed necessary 

for the reminder of the thesis and present them in compact way, for deeper discussion we refer 

to Shreve (2004) and Musiela and Rutkowski (1997), Rachev et al. (2008) among others. 

2.1 Probability Theory Preliminaries  

In this section we briefly give an overview of those aspects and concepts of the probability 

theory that will be used throughout the thesis. There is, of course, a plenty of excellent books 

introducing the probability theory. A few among them are Billingsley (1995), Shiryaev (1996) 

and Chung (2001).   

We start with a recall that a probability space is a triple (Ω, ℑ, 𝑃) where  

 Ω is a non-empty set of all possible outcome that we are interested in, called sample 

space. 

 ℑ is a sigma algebra on Ω, i.e. a collection of sub-sets of Ω closed under all countable set 

operations. This collection is a 𝜎-field and its elements are called events. 

 𝑃 ∶ ℑ → [0,1] is the probability measure such that: 

― 𝑃 is countably additive i.e. if 𝐴𝑖 ⊆ ℑ, 𝑖 = 1,2, …, is a countable collection of pairwise 

disjoint sets, then 𝑃(⋃ 𝐴𝑖
∞
𝑖=1 ) = ∑ 𝑃(𝐴𝑖)

∞
𝑖=1 , 
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― 𝑃(Ω) = 1. 

A random variable 𝑋 is simply a ℑ-measurable function mapping Ω to the real numbers 

i.e.  𝑋: Ω → ℝ, such that 𝑋−1((∞, 𝑥]) ∈ ℑ, for any 𝑥 ∈ ℝ, where 𝑋−1((∞, 𝑥]) = {𝜔 ∈

Ω|𝑋(𝜔) ≤ 𝑥}. In other words, {𝜔: 𝑋(𝜔) ≤ 𝑥} belongs to ℑ for all real x.  

Next we define the cumulative distribution function (cdf) any function  𝐹𝑋(∙)  with 

domain the real line and counter domain the interval [0,1] which satisfies:  

                                                        𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥),       ∀ 𝑥 ∈ ℝ,                                   (2.1) 

where, right-hand side represents the probability that the random variable X takes on a value 

less than or equal to x. Generally, every cumulative distribution function 𝐹𝑋 is a non-decreasing 

and right continuous function. Furthermore, it has the following two properties: 

 lim
𝑥→−∞

𝐹𝑋(𝑥) = 0. 

 lim
𝑥→∞

𝐹𝑋(𝑥) = 1. 

Furthermore, if the derivative of the distribution function exists then we say that its 

cumulative distribution function is absolutely continuous. In this case we denote 𝑓𝑋(𝑥) =

𝐹𝑋
′ (𝑥), and 𝑓𝑋(𝑥) is called the probability density function (pdf).  

We are often interested in the inverse of the distribution function F which we define as: 

                                               𝐹𝑋
−1(𝑝) = inf

𝑥∈ℝ
{𝐹𝑋(𝑥) ≥ 𝑝},    0 < 𝑝 < 1.                          (2.2) 

𝐹𝑋
−1(𝑝) is correspondingly called the quantile function (𝑄𝑝(𝑋)) and it can be used to translate 

results obtained for the uniform distribution to other distributions.  

Conceptually, when we deal simultaneously with more than one random variable the joint 

cumulative distribution function can also be generalized. Indeed, for 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑛) and 𝐱 =

(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ𝑛  we define 𝐹 𝒕(𝐱) the multivariate distribution function of the random 

vector (𝑋𝑡1
, 𝑋𝑡2

, … , 𝑋𝑡𝑛
)  as: 

                                      𝐹 𝒕(𝐱) = 𝑃(𝑋𝑡1
≤ 𝑥1, 𝑋𝑡2

≤ 𝑥2, … , 𝑋𝑡𝑛
≤ 𝑥𝑛).                              (2.3) 

Given (𝑋𝑡1
, 𝑋𝑡2

, … , 𝑋𝑡𝑛
) an absolutely continuous random vector, then we denote its density in 

case it exists, by 𝑓 𝒕(𝐱). The same is true when (𝑋𝑡1
, 𝑋𝑡2

, … , 𝑋𝑡𝑛
) is discrete, here we define 

 𝑓 𝒕(𝐱) as  

                                      𝑓 𝒕(𝐱) = 𝑃(𝑋𝑡1
= 𝑥1, 𝑋𝑡2

= 𝑥2, … , 𝑋𝑡𝑛
= 𝑥𝑛).                               (2.4) 

Finally, we discuss the concept of conditioning and briefly introduce some notions of the 

conditional probability and conditional expectation. To gain some intuition about these 

concepts, consider two continuous random variables 𝑋 and 𝑌 with joint probability density 
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function 𝑓𝑋,𝑌(𝑥, 𝑦), marginal probability functions 𝑓𝑋(𝑥), 𝑓𝑌(𝑦) and the necessary condition 

that 𝑓𝑌(𝑦) > 0. The conditional probability density function of 𝑋 given Y can be defined as: 

                                                        𝑓𝑋|𝑌(𝑥|𝑦) =
𝑓𝑋,𝑌(𝑥,𝑦)

𝑓𝑌(𝑦)
 .                                                    (2.5) 

With that introduction, we start our study of the conditional expectation. Since both X and 

Y are continuous random variables then the conditional expectation of X given Y can be easily 

defined as: 

                                                    𝐸(𝑋|𝑌 = 𝑦) = ∫ 𝑥𝑓𝑋|𝑌(𝑥|𝑦)𝑑𝑥.                                        (2.6) 

The more formal definition of the conditional expectation is presented below. We first 

define the measurability concept and then next theorem leads to a definition of conditional 

expectation given a sigma-field.  

Definition 2.1: Given a probability space (Ω, ℑ, 𝑃), let 𝒢 ⊆ ℑ be sub-σ-field of events. A 

random variable 𝑋: Ω → ℝ is measurable with respect to 𝒢 (or briefly, 𝒢-measurabble) if and 

only if the event {𝑋 ≤ 𝑥}  is an element of 𝒢 for all 𝑥 ∈ ℝ. 

We know that the conditional expectation of an integrable random variable 𝑋 given a non-

null event G means:   

𝐸(𝑋|𝐺) =
𝐸(𝑋 𝕝𝐺)

𝑃(𝐺)
 

where, 𝕝𝐺is indicator function and 𝐸(𝑋 𝕝𝐺) = ∫ 𝑋𝑑𝑃
𝐺

  for all 𝐺 ∈  𝒢. 

Theorem 2.1 (Existence and uniqueness of conditional expectations): Let X be an integrable 

random variable, i.e. 𝐸(𝑋) < ∞, defined on the probability space (Ω, ℑ, 𝑃), and let 𝒢 ⊂ ℑ be 

sub-σ-field of ℑ. Then there exists an integrable 𝒢-measurabe random variable Y such that  

        𝐸(𝕝𝐺𝑌) =  𝐸(𝕝𝐺𝑋) 

for all 𝐺 ∈  𝒢. Furthermore, if there exists another 𝒢-measurabe random variable 𝑌′ such 

that 𝐸(𝕝𝐺𝑌′) =  𝐸(𝕝𝐺𝑋) for all 𝐺 ∈  𝒢, then 𝑌 = 𝑌′ a.s.  

Two main general concepts here are: i) we condition with respect to a sub-σ-field and ii) 

we view the conditional expectation itself as a random variable. Before illustrating the most 

important properties of conditional expectation, we give a formal definition of the conditional 

expectation.       

Definition 2.2 (Conditional expectation): Let X be an integrable random variable on the 

probability space (Ω, ℑ, 𝑃) and let 𝒢 be sub-σ-field contained in ℑ. Then there exists an almost 

surely unique random variable 𝐸(𝑋|𝒢), called the conditional expectation of X given 𝒢, which 

satisfies the following conditions: 
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 𝐸(𝑋|𝒢) is 𝒢-measurable  

 𝐸(𝑋|𝒢) satisfies: 

                                                           ∫ 𝐸(𝑋|𝒢)𝑑𝑃 = ∫ 𝑋𝑑𝑃,
𝐺𝐺

 ∀𝐺 ∈  𝒢.                              (2.7) 

Now, we present the most important properties of the conditional expectation. Let all 

random variables appearing below be such that the correspondent conditional expectations are 

defined, and let 𝒢 be sub-σ-field contained in ℑ. Then, the conditional expectation has the 

following properties: 

 Linearity: 𝐸(𝑎𝑋 + 𝑏𝑌 + 𝑐|𝒢) = 𝑎𝐸(𝑋|𝒢) + 𝑏𝐸(𝑌|𝒢) + 𝑐 a.s. for constants a, b and c. 

 Monotonicity: 𝑋 ≤ 𝑌  a.s.  ⇒ 𝐸(𝑋|𝒢) ≤ 𝐸(𝑌|𝒢) a.s. 

 Monotone convergence theorem: 𝑋𝑛 ≥ 0, 𝑋𝑛 ↗ 𝑋  a.s.   ⇒  𝐸(𝑋𝑛|𝒢) ↗  𝐸(𝑋|𝒢) a.s. 

 Fatou’s lemma: 𝑋𝑛 ≥ 0 ⇒ 𝐸( lim
𝑛→∞

inf 𝑋𝑛 |𝒢) ≤ lim
𝑛→∞

inf 𝐸 (𝑋𝑛|𝒢)  a.s. 

 Dominated convergence theorem: If 𝑋𝑛 → 𝑋  a.s. and |𝑋𝑛| ≤ 𝑌 for some integrable 

random variable Y ⇒ 𝐸(𝑋𝑛|𝒢) →  𝐸(𝑋|𝒢) a.s. 

 Jensen’s inequality: f convex ⇒  𝐸(𝑓(𝑋)|𝒢) ≥ 𝑓(𝐸(𝑋|𝒢)) a.s.  

 If X is independent of 𝒢 then 𝐸(𝑋|𝒢) = 𝐸(𝑋). In particular, 𝐸(𝑋|𝒢) = 𝐸(𝑋) if 𝒢 is 

trivial. 

 If X is 𝒢-measurable, then 𝐸(𝑋|𝒢) = 𝑋. 

 Tower property or law of iterated expectations: if ℋ ⊆ 𝒢 then  

𝐸(𝐸(𝑋|𝒢)|ℋ) = 𝐸(𝐸(𝑋|ℋ)|𝒢) = 𝐸(𝑋|ℋ). 

 

2.2  Stochastic processes preliminaries  

Stochastic processes have a central role in asset pricing theory, for this reason, we will briefly 

outline some important facts useful in the financial applications of the conditional expectation. 

Standard references are Karatzas and Shreve (1991), Bjork (2004) and Shreve (2004) among 

others.  

Definition 2.3 (Stochastic process): A stochastic process indexed by 𝑡 ∈ ℝ+, taking its values 

in (ℝ, ℬ), is a family of measurable mappings (𝑋𝑡)𝑡∈ℝ+
, from a probability space (Ω, ℑ, 𝑃)  

into (ℝ, ℬ). The measurable space (ℝ, ℬ) is called the state space and ℬ is the Borel σ-field 4 

on ℝ.  

A stochastic process 0( )t tX X    is stationary if its joint probability distribution does not 

change when shifted in time. In other words, for any integer 1k   and real numbers 

                                                           
4 The Borel σ-field ℬ on ℝ is the smallest sigma–field containing every open set.  
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1 20 kt t t        the distribution of the random vector 
1 2

( , ,..., )
kt t t t t tX X X    does not 

depend on t. Let us now define an increment of the process 0( )t tX   between time s and t, t s

, as the difference t sX X . A stochastic process 0( )t tX   has stationary increments when the 

probability distribution of any increment t sX X  depends only on the length t s  of the time 

interval, thus it is invariant by translation in time. In particular, increments on equally long time 

intervals are identically distributed.  

Definition 2.4: A filtration 𝔽 = (ℑ𝑡)𝑡≥0 on the probability space (Ω, ℑ, 𝑃)  is a non-decreasing 

family of sub-σ-fields such that:  

                                                      s t      for 0 .s t                                               (2.8)  

The filtration is often used to represent the information structure that completely specifies 

the evolution of information over time. Thus, t stands for the information presents at time t. 

A stochastic process 0( )t tX X   is called  
0t t

 - adapted if and only if the random variable 

tX  is t  -measurable for all 0.t   It simply means that tX  is known at time t. Now we are 

able to define the natural filtration  
0

X

t t
 of a continuous stochastic process 0( )t tX   which is 

the smallest filtration such that the process is adapted. 

Definition 2.5: A stochastic process 𝑋 = (𝑋𝑡)𝑡≥1 is predictable, with respect to a filtration, if 

𝑋𝑡 is ℑ𝑡−1- measurable for all 𝑡 ≥ 1. 

Now we come to one of the most important concept in financial mathematics, the 

martingale. A martingale is simply an adapted stochastic process that is constant on average in 

the following sense: 

Definition 2.6 (Martingale): A stochastic process 0( )t tX X   is a martingale with respect to 

a filtration  
0t t

  if   

 X is  
0t t

  - adapted 

  tE X     for all 0t  . 

  |t s sE X X    𝑃 − 𝑎. 𝑠., for every pair s, t such that 0 s t  .  

The third property is of great practical importance and states that the conditional expected 

value of future observation, given all the past observation, is equal to the last observation.  More 

generally, Martingales turn out to be extremely useful in finance theory since if we can convert 

any financial assets into martingales, then we consider them as riskless assets under the 

equivalent martingale measure. On one hand, the process 0( )t tX X   is called a 
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supermartingale relative to a filtration 0( )t t  if the third martingale property becomes

 |t s sE X X   𝑃 − 𝑎. 𝑠., for all 0 s t  , here the process has a negative drift. On the other 

hand, a process 0( )t tX X   is called submartingale whenever we replace the last martingale 

property with  |t s sE X X   𝑃 − 𝑎. 𝑠., for all 0 s t  , thus the process has a positive drift.  

Let us now introduce one of the most fundamental continuous-time stochastic processes, 

Wiener process, which has stationary, independent increments, named in honor of Norbert 

Wiener and first used by Bachelier (1900) in a thesis submitted to the Academy of Paris.   

Definition 2.7 (Wiener process): We define the standard Wiener process 𝐵 = (𝐵𝑡)𝑡≥0 as an 

 
0t t

 -adapted process with Gaussian stationary independent increments and continuous 

sample paths for which  

𝐵0 = 0,  𝐸(𝐵𝑡) = 0,    𝑉𝑎𝑟(𝐵𝑡 − 𝐵𝑠) = 𝑡 − 𝑠, for all 𝑡 ≥ 0  and 𝑠 ∈ [0, 𝑡]. 

The Wiener process is also known as Brownian motion. The most commonly used 

process in continuous stock price behavior is the Geometric Brownian Motion (GBM), also 

known as exponential Brownian motion, which satisfies the following stochastic differential 

equation (SDE): 

                                                     𝑑𝑆𝑡 = 𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)                                                    (2.9)   

and the solution is given by  

                                            𝑆𝑡 = 𝑆0𝑒𝑥𝑝(𝜇𝑡 − 0.5𝜎2𝑡 + 𝜎𝐵𝑡) ,                                          (2.10) 

where, 𝐵𝑡  is a Brownian motion and 𝜇 and 𝜎 > 0 are drift and volatility constants.  

The main underlying assumption of the GBM model is that log-returns are normally 

distributed. This turn out to play a significant role in many financial theories, including the 

pioneering Markowitz optimal portfolio model (Markowitz (1952)), Capital Asset Pricing 

Model (CAPM) (Sharpe 1964; Treynor 1961; Linter 1965) and seminal BS model (1973). 

However, empirical studies show that the return distributions sensibly diverge from the normal 

one. Indeed, the profit/loss distributions tend to be asymmetric and present fat tails (Mandelbrot 

1963; Fama 1965; Rachev and Mittnik 2000). As a matter of fact, the normality of the assets 

returns combined with the continuity of the trajectories exhibited by the geometric Brownian 

model is very often inappropriate since it ignores the fat tails and the fact that real assets prices 

exhibits jumps. 

2.3 Asset pricing  

In this section we provide a brief description of the asset pricing methods. Before starting to 

evaluate the financial strategies we have to define the underlying economy in which we are 
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going to work. Financial markets are places in which people trade financial securities, 

commodities and other contingent claims at low transaction costs and at prices that reflect 

supply and demand. Securities include stocks and bonds, and commodities include precious 

metals or agricultural products. Besides primary assets there are also the secondary instruments 

that become largely traded during the last decades. In particular, instruments whose payoffs 

contingent on some primary underlying asset or other factors, the so called the derivatives 

markets.  

The purpose of this section is to provide the main formal ideas that enable us pricing a 

given financial instrument. Definitely, a pricing model has to be based on an appropriate model 

of the financial market. First, we consider a continuous-time financial market model where 

trades can take place continuously during some trading period  0, ,t T 0T  . Second, we 

impose some rules for the risky asset. We will not allow market friction; there is no default risk, 

agents are rational and there is no arbitrage. In more concrete terms, no transaction costs (e.g. 

broker’s commission), no bid/ask spread, no taxes, no restrictions on short sales, infinitesimally 

divisible assets and, if not written otherwise, “no dividends”. Clearly, over time we will be 

concerned only with the price value, therefore only this must be modeled.  Since the value of 

an asset in the future is not known in advance, it is uncertain, so we can model it as a real valued 

stochastic process.  

The concept of risk and uncertainty has a long tradition in modern finance. In this context, 

the well-developed mathematical theory of probability gives the opportunity to depend on 

probabilities as a representation of uncertainty. Hence, the uncertain world of a financial market 

can be described through a probability space  , , P  , where   is the sample space,  is a 

sigma algebra on   representing the information structure on the market and P is a probability 

measure. In addition, we equip our probability space  , , P   with a filtration  ,0t t T    

of sub- -algebra   such that s t T        for all 0 s t T   . In this context, it is clear 

that in real life investors can use only information available up to the current time t, so t  

represents the set of information available to the investor at time t, and then  ,0t t T    

represents the information flow evolving with time.  

Assume that t  is right continuous (i.e. t s t s   ) and due to technical reasons 0  

contains all P-null sets of  , this intuitively means that we know which events are possible and 

which are not. Without loss of generality assume T  . Now we consider a market with 1n  

assets, and we denote their price processes by ,0 ,1 ,n( , ,......, )T

t t t tS S S S , for all  0,t T . 
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Definitely, price-processes , , 1,.....,t i nS i   should be at least t  adapted which mean that 

, , 1,.....,t i nS i   is t - measurable for each t, thus , , 1,.....,t i nS i   is known at time t i.e. 

,( , )s i tS s t    for  0 ≤ 𝑡 ≤ 𝑇. Moreover, we assume the existence of a money market 

account. If we invest in this account, we have a high degree of certainty about what the return 

will be over a period of time. Let us call this asset numéraire. In other words, it is a security 

with strictly positive price at all time. Assume that the 0-th asset is the numéraire; therefore 

assume that   0 ,0 , 0,tS S t T   P-a.s. positive. It is often convenient to express the price of a 

security in units of a chosen numéraire. Therefore, the so called discounted price processes can 

be defined as   *

, ,0 , 0,...., , 0,t t i tS S S i n t T   .  

The last crucial assumption that needs to be clarified is the no-arbitrage assumption. An 

arbitrage is a way of trading “strategy” so that one investor starts with zero capital and at some 

later time say T is sure not have lost money and furthermore has a positive probability of having 

made money “makes money from nothing”. The essence of arbitrage-free is that with no initial 

capital it should not be possible to make a profit without exposure to risk. To be more precise, 

a definition of strategy is needed and the content of “making money from nothing” needs to be 

interpreted.  

A trading strategy over some time interval 0 ≤ 𝑡 ≤ 𝑇  is a t predictable   process 

  , 0,..., , 0,t i ni t T     such that 
*

0

t

s sdS    and 
0

t

s sdS   , where predictable means 

, 1i t t   for each 0 ≤ 𝑡 ≤ 𝑇, we interpret ,i t  as the quantity of security i (like shares) holds 

by the investor between time 1t   and t. By requiring that   be predictable, we are allowing 

the investor to select his time t portfolio after the prices 1tS   are observed. The value of the 

trading strategy   can be defined as ( ) T
t tV S  . Most compelling is a strategy which requires 

initial investment 0 ( )V   and thereafter is self-financing. Roughly  speaking, a portfolio is called 

self-financing if and only if an initial investment is made and any reallocation of the portfolio 

is made without infusion or withdrawal of money, so it is done in a budget neutral way. To be 

precise, we adopt the following definition. A trading strategy with value process ( )tV   is called 

self-financing if , ,
0

0

( )
n t

t s i s i

i

dV dS 


  for 0 ≤ 𝑡 ≤ 𝑇. For some technical constraints on the 

strategy (i.e. lower bound) we refer to Musiela and Rutkowski (1997).  
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An appealing property of a financial market is that it is free of arbitrage, meaning that it 

is impossible to make money out of nothing. In particular, we call a portfolio an arbitrage 

opportunity if it is self-financing, its value 0 ( )V   at time zero is equal to zero and its value at T 

is always nonnegative, whereas ( )TV   strictly positive is possible. So, with an arbitrage 

portfolio it is impossible to lose money, whereas making a profit is a possibility. Formally, we 

say that a self-financing strategy is an arbitrage opportunity if and only if  0 0 1P V   , 

 0 1TP V    and  0 0TP V   . A market is arbitrage free if no arbitrage possibilities exist. 

In the sequel the financial market is considered to be arbitrage-free – without any arbitrage-

opportunity. 

We present now one important relationship between the no-arbitrage assumption and 

equivalent martingale measures. This is important because this relationship is so relevant for 

the pricing theory and it is known as Fundamental Theorems of Asset Pricing (FTAP). In this 

context, following Shreve (2004) we develop and illustrate two fundamental theorems of asset 

pricing, namely Girsanov and Martingale representation theorems, then we provide some of the 

main concepts of derivative pricing in continuous time setting. Let  1( ) ( ),.......... ( )dB t B t B t  

be a multidimensional Brownian motion on a probability space  , , P  , P is interpreted as 

the actual probability measure, the one that would be observed from empirical studies of price 

data.     

Theorem 2.2 (Girsanov Theorem): Let T be a fixed positive time, and let 

 1( ) ( ),...., ( )dt t t     be a d-dimensional adapted process, define:  

             

2

0 0

1
(t) exp ( ) d ( ) ( )

2

t t

Z u B u u du
 

      
 
   and  �̃�(𝑡) = 𝐵(𝑡) + ∫ Θ(𝑢)𝑑𝑢

𝑡

0
  (2.11)

     
 

where,
0 0

1

( ) ( )
dt t

j j

j

dB u dB u


     , and 

1/2

2 2

1

( ) ( )
d

j

j

u u


 
   

 
  

And assume that: 
2 2

0
( ) ( )

T

E u Z u du    

Set (T)Z Z .Then ( ) 1E Z  , and under the probability measure Q  given by  

                                            
( ) ( ) ( )

A
Q A Z w dP w   for all A ,                                    (2.12)                                                       

The process �̃�(𝑡) is a d-dimensional Brownian motion                                                            ∎ 

For a complete proof we refer the reader to Shreve (2004) chapter 5. In the following, we 

consider a stock price process defined with the differential equation: 
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 ( )t t t t tdS S dt S dB t   ,  0,t T                                          (2.13)  

where, the mean rate of return t  and the volatility t  are allowed to be adapted process, and 

 0, ,t T   t  a.s. not zero. The stock price process is a generalized geometric Brownian 

motion and an equivalent way of writing it is: 

                                          2

0
0 0

exp ( ) ( 0.5 ) .
t t

t s s sS S dB s ds                                   (2.14) 

Moreover, we define a discounted process as:  0
exp

t

t sD r ds  where tr  (money market 

account) an adapted interest process. It can be shown that 𝑑(𝐷𝑡𝑆𝑡) = 𝜎𝑡𝐷𝑡𝑆𝑡𝑑�̃�𝑡, from which 

we have:  

                                                   𝐷𝑡𝑆𝑡 = 𝑆0 + ∫ 𝜎𝑢𝐷𝑢𝑆𝑢𝑑�̃�(𝑢)
𝑡

0
.                                        (2.15) 

Using the Girsanov theorem, particularly the relation 𝑑𝐵(𝑡) = −Θ(𝑡)𝑑𝑡 + 𝑑�̃�(𝑡), where ( )t  

is the market price of risk (i.e. ( ) t t

t

r
t






  ), one can obtain the following formula: 

                                          𝑆𝑡 = 𝑆0𝑒𝑥𝑝 {∫ 𝜎𝑠𝑑�̃�(𝑠) + ∫ (𝑟𝑠 − 0.5𝜎𝑠
2)𝑑𝑠

𝑡

0

𝑡

0
}.                            (2.16) 

 In continuous time setting, the change from the actual measure P to the risk-neutral 

measure Q changes the mean rate of return of the stock but not the volatility. In practice, overall 

return is reduced from t  to the riskless interest rate tr .   

Theorem 2.3 (Martingale representation Theorem): Let T be a fixed positive time, and 

assume that ,0t t T   , the filtration generated by the d-dimensional Brownian motion

( ),0B t t T  . Let ,0tM t T  , be a martingale with respect to this filtration under P.  Then 

there is an adapted, d-dimensional process  1( ) ( ),...., ( ) ,0du u u u T      , such that  

                                         
 𝑀𝑡 = 𝑀0 + ∫ Γ(𝑢)𝑑𝐵(𝑢)

𝑡

𝑡
, 0 t T                                           (2.17) 

If in addition, we assume the notation and assumption of the Girsanov theorem and if 
tM , 

0 t T  , is Q martingale , then there is an adapted, d-dimensional process Γ̃(𝑢) =

(Γ̃1(𝑢), … , Γ̌𝑑(𝑢))  such that  �̃�𝑡 = �̃�0 + ∫ Γ̃(𝑢)𝑑�̃�(𝑢)
𝑡

𝑡
, 0 t T                                   ∎ 

We call Q the measure defined in Girnasov’s Theorem, the risk-neutral measure, because 

it is equivalent to the original measure P and it reduces the discounted stock price t tD S  into a 

martingale.  

Definition 2.8: A probability measure Q is said to be risk-neutral measure if: 

(i) Q and P  are equivalent ( i.e. for every ,A  ( ) 0P A   if and only if ( ) 0Q A   ) and  
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(ii) Under Q, the discounted stock prices 
,t t iD S   is a martingale for every 1,...., ni  . 

       In other words, a market is arbitrage-free if and only if there is a measure Q defined on 

( , )   equivalent to P (i.e. with same null-sets) such that the discounted price process is a Q - 

martingale, i.e. ( | )Q

t s sE S S    for 0 s t  . In this context, we present two fundamental 

theorems that are always true whenever the price process follows the classical GBM.  

Theorem 2.4 (First FTAP Theorem): If a market model has a risk-neutral probability 

measure, then it does not admit arbitrage.                                                                                ∎ 

From financial theory perspective one knows that should never offer prices derived from 

a model that permits arbitrage, hence the assumption of no-arbitrage follows. Indeed, First 

FTAP provides us a simple condition to apply in order check whether the model adequate or 

not.  Before dealing with the Second FTAP theorem, we provide the following definition: 

Definition 2.9: A market model is complete if every derivative security can be hedged.  

Theorem 2.5 (Second FTAP Theorem): Consider a market model that has a risk-neutral 

probability measure. The model is complete if and only if the risk-neutral probability measure 

is unique                                                                                                                                     ∎ 

Nicely readable proofs for both theorems can be found in several books, see among others 

Shreve (2004). 

     Generally, by uniqueness we mean to find a unique solution of the following system:

1

( )
d

i i ij j

j

r t 


   , 1,....,i m  which called market price of risk equations. Clearly there are 

m equations in d unknown market price processes 1( ),....., ( )dt t  .Unfortunately, it already 

documented in the literature that the equivalent martingale measure Q is not unique. Hence, we 

denote by Q the set of equivalent martingale measures. Until now, only the primary assets have 

been considered. The next step towards pricing financial derivatives is simply to define the 

derivatives.  A derivative (or contingent claim) H with expiry date T is some nonnegative ( t -

measurable) random variable such that ,0( / )Q

TE H S    for all QQ . 

The random variable H models the payoff of the derivative, typically this payoff is 

determined as a function of the underlying asset (or assets) – the payoff function 

( ), [0, ]tH S t T . A good example could be the plain vanilla call and put options, which they 

have the following payoff functions max( ;0)tS K  and max( ,0)tK S  respectively.  

The main idea of the pricing based on the no-arbitrage consideration is to find an 

appropriate (self-financing) strategy that provides the same payoff. Thus, the value of the 
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strategy and the price of such derivative correspond under no-arbitrage conditions. Sadly, this 

is not always possible. The set of derivatives for which this is fairly possible is called attainable. 

In this context, a trading strategy   is called admissible if it is self-financing and ( ) 0V    or 

if there is *Q Q  such that *( )V   is *Q  martingale. Let   denote the set of all admissible 

strategy, a derivative with expiration time T is said to be attainable if there exists some   

such that ( )TV H   almost surely (see Harrison and Pliska (1981). 

Definitely, the price of the claim denoted by ( )t H  and the value process ( )tV  , under 

no-arbitrage assumption, must coincide for all  0,t T . Moreover, it can be demonstrated, see 

Hafner (2004), that: 

                                                    
 

1
,0( ) ( | )Q

t T tH E S H    for all [0, ]t T .                     (2.18) 

The last formula is of great practical importance and it is well known as risk neutral 

pricing formula, see Cox and Ross (1976). The price process of the claim is invariant with 

respect to the choice of the equivalent martingale measure. At this point, it is clear that risk 

neutral pricing formula (arbitrage free) allows us pricing attainable derivatives. Conceptually, 

two fundamental markets are well-defined in the literature. The security market model is called 

complete if every contingent claim is attainable. Otherwise the market is said to be incomplete. 

For a deep discussion on the completeness of the market we refer to Harrison and Pliska (1981) 

and Delbaen and Schachermayer (2006). Clearly, the completeness of a market is equivalent to 

the uniqueness of the risk-neutral measure Q, see among others Föllmer and Schied (2002). In 

the following section a well-known complete market, the BS model, will be introduced. 

2.4 Black Scholes market 

The pioneering work of BS has a central role in modern finance and a great importance for 

improving research on the option pricing techniques. The main idea behind BS option pricing 

model is that the price of an option is defined as the least amount of initial capital that permits the 

construction of a trading strategy whose terminal value equals the payout of the option. In other 

words, if options are correctly priced in the financial market, it should not be possible for investors 

to set up a riskless arbitrage position and earn more than the risk free rate of return. Interestingly, 

it can be shown that the BS market consisting of a single asset and a risk-free security is a complete 

market. This means that every contingent claim can be replicated by a dynamic trading strategy, 

and then the risk-neutral measure is unique. Indeed, the completeness of the market and its 

assumptions yield the popularity of the BS model. 



 21  
 

Since BS market model is complete, any derivatives can be easily priced. Thus, the 

fundamental result is the pricing formula of European calls and puts options or simply BS 

pricing formula. Let 
BS
tC  denotes the price of a European call option with expiration date T and 

strike price K, see Black and Scholes (1973). Then 

                                         1 2( , , , , ) ( ) ( )BS r
t t tC S K r S d Ke d                                   (2.19) 

where, 
2

1

ln( / ) ( 0.5 )tS K r
d

 

 

 
 , 2 1d d    , T t    is time to maturity, r is a 

riskless interest rate and ( )   is the standard normal distribution function. The power of BS 

model relies on the construction of a replicating portfolio containing both the option and its 

underlying asset, which under risk-neutral measure has a return equal to the risk free rate of 

return r. The corresponding price of a European Put option tP  can be obtained from the put-call 

parity: 

                                             ( , , , , ) ( , , , , ) .r
t t t t tP S K r C S K r S e K                         (2.20) 

For the proof of (2.20) see among others Shreve (2004). 

Furthermore, it is possible to consider dividend case. Simply, the BS formula for the price 

( , )C K T  at time zero of European call option on the stock that yields a continuous dividend   

is given by the following formula: 

                                              1 2( , , , , , ) ( ) ( ),BS r
t t tC S K r e S d ke d                        (2.21) 

where, 
2

1

ln( / ) ( 0.5 )tS K r
d

  

 

  
 , 2 1d d    , and T t    is the time to maturity 

and the put-call parity (2.20) becomes: 

                                        ( , , , , ) ( , , , , ) .r
t t t t tP S K r C S K r e S e K                          (2.22) 

The next measures that are related to financial market model (BS) are the Greeks letters. 

In particular, for the aim of controlling the risk of their positions, practitioners in the options 

market varied sensitivities of the BS formula to some variables. Indeed, the sensitivity of a 

financial instrument (or even a portfolio) with respect to parameters such as spot price (S), 

volatility ( ) , interest rate ( )r  are denoted by different Greek letters: delta, vega, rho etc. In 

this context, the sensitivities are measured in terms of derivatives with respect to the parameters, 

e.g. the Greeks of the call and put options whose price is denoted by 
BS

t tC C   and 
BS

t tP P  

respectively, are summarized in the following Table. 
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Table 2.1: Greeks letters, Delta, Vega and Rho 

 

Of course, there are other Greeks that are commonly treated in financial practice, see 

among others Hull 2015, but they are not considered in this thesis therefore are omitted at this 

place. The Greeks are very important for hedging – in practice they control the risk of a portfolio 

position.  The main idea is to make a portfolio robust, i.e. insensitive with respect to the 

parameters changes. Delta, for example, represents the number of shares that must be held at 

each time in order to perform a perfect dynamic hedge of the options.   

2.4.1 Generalizations of the Black Scholes market 

The pioneering work of BS model played a crucial role in modern finance and a great 

importance for improving research on the option pricing methods. Unfortunately, widespread 

empirical analyses point out that a set of assumptions under which BS model established, 

particularly normally distributed returns and constant volatility, result in poor pricing and 

hedging performance. Indeed, the presence of skewness and kurtosis in the market complicates 

the situation significantly. However, using BS principle different generalizations have been 

proposed. In this chapter we introduce briefly two of the most common generalizations: 

― Merton Model, following BS pricing formula, Merton (1976) derived an option pricing 

formula for the more general case, arguing that the price process might be affected by a 

sudden shock, e.g. important information.  In this case the underlying stock returns are 

generated as a mixture of both continuous and jump process. The stochastic differential 

equation governing the dynamics of tS  in this model is given by: 

                                                 t t t t t tdS S dt S dB S dZ                                               (2.23) 

where, tZ  is a compounded Poisson process that has logarithmic normal distributed 

jumps. The Poisson process tZ  models the jump time and it is independent of tB . The 

 Call option Put option 

Delta 

1( )
BS
tC

d
S


 


 1( ) 1

BS
tP

d
S


  


 

Vega 
1( )

BS
t

t

C d

S



  





 1( )

BS
t

t

P d

S



  





 

Rho 

2( )
BS

rtC
e K d

r


 


 2( ( ) 1)

BS
rtP

e K d
r
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rest of parameters are as in the BS model. Merton model is also known as jump diffusion 

model. 

― Heston Model attacks the constant volatility of BS model. In particular, Heston (1993) 

derived a closed-form solution for pricing European call option on an asset that has 

stochastic volatility. The Heston stochastic volatility model is given by the following two 

stochastic differential equations:  

                                                         
 

(1)
t t t t tdS S dt S B                                               (2.24) 

                                                         
2 (2)( )t t t td dt dB                                       (2.25) 

where, 
(1)
tB  and 

(2)
tB  are two Brownian motions (possibly correlated with  ).   models 

the mean reversion speed of the variance, parameter   is the long term variance and 
2  

stands for the volatility of the variance. Heston model is also known as stochastic 

volatility model.   

Clearly, advanced generalizations are possible, for an extension of Heston model see for 

instance Bates (1996).  

Given the strong assumptions under which BS model built, in particular normal 

distribution of returns and constant volatility. Nowadays BS model is still a useful tool among 

practitioners. A common practice is when BS formula inverted on the market’s option. Thus, 

the so called implied volatility obtained. Indeed, the implied volatility shows that asset prices 

are more complicated than geometric Brownian motion, so BS parameter   must be dynamic. 

Let us briefly introduce the implied volatility concepts in the following section.  

2.4.2 Black Scholes Implied Volatility 

The Implied volatility (IV), first introduced by Latané and Rendelman (1976), is the parameter 

estimate obtained by inverting the BS model on market data. In particular, the implied volatility 

�̃�(𝐾) is defined as the volatility, under which the BS price 
BS
tC  equals the price of call option 

�̃�𝑡 observed on the market.  

For the sake of simplicity, we assume no-dividend (i.e. 0  ), most variables which are 

needed to specify the BS model are all directly observable except the volatility of the underlying 

stock. For example, the risk-free rate can be approximated by government bonds or through the 

inter-bank offered rates (i.e. Euribor, T-bill). Therefore, observing the market price of an option 

the implied volatility can be calculated, i.e. a number that assures that BS formula provides the 

right price. Clearly, due to the non-linearity of BS formula the implied volatility has to be 

determined by some numerical iterative procedure, typically the Newton-Raphson method is 
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used. Please note that using the same argument as above one can calculate the implied volatility 

from put option prices. Definitively, under arbitrage free assumption the implied volatility 

obtained from either put options or call options yields to the some result, see among other 

Brunner and Hafner (2004). In this context, a related concept is the so called implied volatility 

surface, which is simply the implied volatility implemented as a function of both strike price 

and time to maturity, i.e. �̃�𝑡(𝐾, 𝜏).  

2.5 State Price Density 

SPDs derived from cross-sections of observed standard option prices have gained considerable 

attention during last decades. Since given an estimate of SPD, one can immediately price any 

path independent derivative. Clearly, the well-known arbitrage free pricing formula is of vital 

practical importance. In this approach, the option price is given as the expected value of its 

future payoff with respect to the risk-neutral measure Q discounted back to the present time t. 

Formally, the price ( )t H  at time t of a derivative with expiration date T and payoff –function 

(S )TH  is given by: 

                    ( ) ( )

0

( ) | (s) (s)
T

r T t Q r T t
t t SH e E e H dH q s


           for all  0,t T ,       (2.26)                                                                 

where, (s)
TSq  denotes the SPD of TS  conditional on the information t , and  . |Q

tE   is the 

conditional expectation operator with respect to the risk-neutral measure. Constant risk-free 

saving account is assumed. Consider a standard European call option with strike price K and 

maturity T on an underlying asset with price process tS . Setting  (S )( ) max ,0T T TH S S K   

the pricing formula (2.18) yields at current time t to the price ( , )tC K T :                             

                ( ) ( )
,

0

( , ) ( | ) (S )( ) ( )
T

r T t Q r T t
t t T t SC K T e E H e H s q s ds


                                  (2.27) 

                                                                  ( )
,

0

max ,0 ( )
T

r T t
t Se s K q s ds


     for all  0,t T  

where, , Tt Sq  denotes the SPD of TS  at the current time t.  

Within the no-arbitrage models, the SPD is frequently called the risk-neutral density, 

based on the analysis of Ross (1976) and Cox and Ross (1976) see formula (2.18) and thereafter 

for further discussion.  

Breeden and Litzenberger (1978) derived an elegant formula for obtaining an explicit 

expression for the SPD from option prices. In fact, they observed that the second derivative of 
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the call price function ( , )tC K T  with respect to the strike price K is proportional to the SPD. 

Formally: 

                                               
2

( )
, 2

( , )
( , ) .

T

r T t t
t S

K x

C K T
q x e

K
 







     

                                   (2.28) 

The last formula is of great practical importance. Since for any fixed time T, the relation 

between SPD and IV can be obtained simply by a successive application of (2.21) and (2.28). 

After some algebra, applying chain rule for derivatives one get:  

            

 

1

2

2, 1 2
1 2

2

2 ( , )1 ( , )

( , ) ( , )
( , ) (d ( , )) ,

( , ) ( , )

( , )

T

K x
r

t S t

K x K x

d x K

Kx K x x
q x e S x

d x d x

x K K



  

     
  

   

 



 

 
  


 

  
   

     

     (2.29) 

where, 
   2

1

ln 0.5 ( , )
( )

( , )

tS x r x
d x

x

  

  

 
 , 2 1( , ) ( , )d d x x      and ( )   is  the pdf of 

a standard normal random variable, we refer the reader to Benko et al (2007) and Brunner and 

Hafner (2003) for further details.  

Please note that the equation (2.29) in order to be perfectly defined, the implied volatility 

function has to be twice-differentiable function with respect to strike price K. Moreover, the 

SPD has a great practical importance.  Indeed, an estimate of the SPD implicit in option prices 

can be useful in different contexts, see among others Ait-Sahalia and Lo (1998). The most 

significant application of the SPD is that it allows us computing the no-arbitrage price of 

complex or illiquid option simply by integration techniques. 

2.5.1 No-arbitrage conditions implied by the SPD 

In this section, we summarize a set of properties that the SPD demands to satisfy in order to be 

consistent with no arbitrage argument. Therefore, any violation of these properties, particularly 

non-negativity, implies the existence of the arbitrage opportunities in the market. Since the SPD 

is a probability density function, then it must satisfy the nonnegativity condition and 

integrability to one. Moreover, under no arbitrage condition SPD should reprices all calls, hence 

the so called martingale property holds. Formally: 

 Nonnegativity property:  the SPD is nonnegative, i.e.: 

                                                        , ( ) 0,
Tt Sq x    [0, )x                                                       (2.30)  

 Integrability property: the SPD integrate to one, i.e.: 
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                                                            ,

0

( ) 1
Tt Sq x dx



                                                         (2.31) 

 Martingale property: the SPD reprices all calls, i.e.:  

                                         ( )
,

0

max ,0 ( ) ( , ),
T

r T t
t S tx K q x dx e C K T


    0.K                        (2.32) 

The first two properties ensure that the SPD is indeed a probability density. Furthermore, 

if , Tt Sq  satisfies the three properties, it is a well-defined SPD and the market is free of arbitrage 

opportunities with respect to maturity T. Following Carr (2001), see also Brunner and Hafner 

2003, we are able to express the conditions (2.30), (2.31) and (2.32) in terms of call option price 

function and implied volatility .Indeed,  after a set of equivalent equations it can be shown that: 

 The value of a call option is bounded from below and above by its intrinsic value and 

the underlying stock price respectively, i.e.: 

                                             ( )( , ) max ;0r T t
t t tS C K T S Ke    ,   0K                       (2.33) 

 Setting 0K   the value of call option approaches the value of the stock, while setting 

K    the call option value vanishes, i.e.: 

                                                  (0, )t tC T S ,    lim ( , ) 0t
K

C K T


                                            (2.34) 

 The positivity of 
( )r T te 

 and nonnegativity condition of the SPD imply that call  option 

values are convex in strike prices, i.e.:  

                                                  
2

2

( , )
0tC K T

K





,   0K                                                   (2.35) 

In this section, we stated the bounds via European call option, deriving the analogous 

bounds for a put option is straightforward. To conclude this section Bruner and Hafner (2003) 

point out that the existence of arbitrage opportunities may hinge on options with different 

maturities (calendar arbitrage) even there exists a time t a SPD that satisfies the above three 

properties for all maturities  0,t T . For more details on SPD and arbitrage considerations 

we refer to Brunner and Hafner (2003) and literature therein.  

2.6  Portfolio selection problems  

In finance, a portfolio is a collection of investments held by an individual, an institution or a 

fund. In this context, a fundamental theory of asset choice under uncertainty is expected utility. 

There are two different approaches to the problem of portfolio selection under uncertainty 

stemming from the utility theory. One of them is the stochastic dominance approach, while the 
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second is reward–risk analysis, according to which, the portfolio choice is made with respect to 

two criteria – the expected portfolio reward and the portfolio risk. In particular, a portfolio is 

preferred to another one if it has higher expected return and lower risk. Markowitz (1952) 

introduced the first rigorous approximating model to the portfolio selection problem, where the 

return and risk are modeled in terms of portfolio mean and variance. Markowitz’s main idea 

was to propose variance as a risk measure and he introduced it in a computational model by 

measuring the risk of a portfolio via the covariance matrix associated with individual asset 

returns. This leads to a quadratic programming formulation and it was far from being the final 

answer to the problem of portfolio selection. Generally, the mean-variance approach works well 

with Gaussian distribution, which is a very restrictive assumption. Indeed, the Gaussian 

distributional assumption of financial return series is mostly rejected, see for instance Rachev 

and Mittnik (2000) and the references therein. It follows that several alternative approaches to 

portfolio selection has been proposed, see among others Rachev et al. (2008), Farinelli et al. 

(2008) and the references therein. 

Several alternative models have been proposed over the last sixty years, see for instance 

(Konno and Yamazaki, 1991; Sharpe, 1994; Young, 1998; Rockafellar et al., 2006; Rachev et 

al., 2008; Farinelli et al., 2008, Ortobelli and Tichý 2015 and the literature therein). For example 

the Mean-Absolute Deviation (MAD) model, proposed by Konno and Yamazaki (1991) and 

pioneered by Yitzhaki (1982), introduced and analyzed the mean risk model using the Gini’s 

mean difference as a risk measure. While Markowitz model assumes normality of stock returns, 

the MAD model does not make this assumption. The MAD model also minimizes a measure of 

risk, where the measure is the mean absolute deviation (Kim et al., 2005; Konno, 2011). This 

new measure of risk and its formulation has been broadly applied in the financial field (Zenios 

and Kang, 1993; Simaan, 1997; Ogryczak and Ruszczynski, 1999). 

In the following, we suppose that a portfolio contains n assets, we have a frictionless 

market in which no short selling is allowed and all investors act as price takers. Thus, the general 

portfolio selection problem among n assets in the reward-risk model consists of minimizing a 

given risk measure 𝜌 provided that the expected reward v is constrained by some minimal value 

m, (see Biglova et al. 2004), that is    

 b
x

min x' z z   

                                               s.t.    bx' z z m   , 
1

1
n

i

i

x


 , 0ix  ,                             (2.36) 

where, 𝑧𝑏 represents the returns of a given benchmark, and 𝑥′𝑧 = ∑ 𝑥𝑖𝑧𝑖
𝑛
𝑖=1  denotes the returns 

of a portfolio with weights 𝑥′ = (𝑥1, … , 𝑥𝑛)′. The portfolio that maximizes the expected reward 
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v per unit of risk 𝜌 is known as the market portfolio and we obtain it solving the problem (2.36) 

for one value m among all admissible portfolios. In particular, it is obtained by maximizing the 

ratio between the reward and risk when both are positive measures, (see Ortobelli et al. 2009), 

i.e.: 

 
 

b

x
b

v x' z z
max

x' z z




 

                                                  s.t.        
1

1
n

i

i

x


 ,  0ix  .                                                  (2.37) 

Of course, in the literature, we can find many possible performance ratios. For example, 

Rachev ratio is the ratio between the CVaR of the opposite of the excess return at a given 

confidence level and the CVaR of the excess return at another confidence level. Let us briefly 

formalize the two portfolio performance measures (Sharpe ratio and Rachev ratio) that are used 

in the empirical analysis.  

Sharpe ratio (1994). The Sharpe ratio is used to characterize how well the return of an asset 

compensates the investor for the risk taken. The Sharpe ratio computes the price for unity of 

risk, by subtracting the risk-free rate from the rate of return of the portfolio and then dividing 

the result by the standard deviation of the portfolio returns. Formally: 

                                                          0

'z

( 'z)
( 'z)

x

E x z
SR x




 ,                                                 (2.38) 

where, 𝐸(𝑥′𝑧) is the portfolio expected returns, 𝑧0  is the risk-free return and 𝜎𝑥′𝑧 is the 

portfolio standard deviation.  

Rachev ratio. The Rachev ratio, see Biglova et al. (2004), is the ratio between the average of 

largest earnings and the mean of largest losses. i.e.: 

                                            
 

 
b

b

CVaR z x' z
RR x' z, ,

CVaR x' z z





 





,                                  (2.39) 

where, Conditional Value-at-Risk (CVaR) is a coherent risk measure (see Rockafellar and 

Uryasev (2002) and Artzner et al. (1999)) defined as 

   
0

1
qCVaR X VaR X dq,






   

and                    

      1
q XVaR X F q inf x\ P X x q ,       

is the Value-at-Risk (VaR) of the random return X. If we assume a continuous distribution for 

the probability law of X, then 𝐶𝑉𝑎𝑅𝛼(𝑋) = −𝐸[𝑋|𝑋 ≤ 𝑉𝑎𝑅𝛼(𝑋)], therefore CVaR can be 

interpreted as the average loss beyond VaR. Typically, we use historical observations to 
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estimate the portfolio return and risk measures. A consistent estimator of 𝐶𝑉𝑎𝑅𝛼(𝑋) is given 

by  

                                                               𝐶𝑉𝑎𝑅𝛼(𝑋) =
−1

[𝛼𝑀]
∑ 𝑋𝑖:𝑀

[𝛼𝑀]
𝑖=1                               (2.40) 

where M is the number of historical observations of X, [𝛼𝑀]is the integer part of 𝛼𝑀, and 𝑋𝑖:𝑀 is 

the ith observation of X ordered by increasing values. Similarly, an approximation of 𝑉𝑎𝑅𝑞(𝑋) 

is simply given by −𝑋[𝛼𝑀]:𝑀 . Once we approximate the portfolio return and risk measures, we 

apply portfolio selection optimization problems to the approximated portfolio returns. 

Therefore, when no short sales are allowed (𝑥𝑖 ≥ 0) and it is not possible to invest more 

than a fixed percentage 𝜃 in any asset (𝑥𝑖 ≤ 𝜃), we assume that investors will choose the market 

portfolio solution to the following optimization problem:  

                                                                 𝑚𝑎𝑥𝑥𝐺(𝑥′𝑟)                                                       (2.41) 

s.t.    ∑ 𝑥𝑖 = 1𝑛
𝑖=1  

𝑥𝑖 ≥ 0; 𝑥𝑖 ≤ 𝜃; 𝑖 = 1, … , 𝑛 

where 𝐺(𝑥′𝑟), for example, could be either the Sharpe Ratio or the Rachev Ratio. Generally, 

many performance measures have been proposed in the literature, for an overview see among 

others Farinelli et al. (2008) and the references therein. Furthermore, one important aspect in 

portfolio optimization is the computational complexity. Some recent studies (see Rachev et al., 

2008; Stoyanov et al. 2007) classify the computational complexity of reward-risk portfolio 

selection problems. In particular, Stoyanov et al. (2007) have shown that we can distinguish 

four various cases of reward and risk that admit a unique optimum in myopic strategies. Thus, 

in order to optimize some portfolio selection problems in an acceptable computational time, we 

use a heuristic algorithm for overall optimization such as the one proposed in Angelelli and 

Ortobelli (2009) for overall portfolio optimization. 
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Chapter 3 

 

 

 

 

 

Theoretical and practical motivations for the use of the Moving 

average rule  

 

 

 

 

3. Summary 

In this chapter, we provide some theoretical motivations behind the use of the moving average 

rule as one of the most popular trading tools among practitioners. In particular, we examine the 

conditional probability of the price increments and we study how this probability changes over 

time. We find that under some assumptions the probability of up-trend is greater than the 

probability of down trend. Finally, we compare the ex-post wealth obtained using these trading 

rules and other portfolio strategies. The ex-post analysis confirms that it is useful to use these 

rules to predict the market trends. In this context, we suggest a methodology that incorporate 

moving average rules as alarm rules to predict potential fails of the market. 

3.1 Introduction 

Technical trading rules are based on past prices and volume information, which help to generate 

discrete (buy or sell signal) trading recommendation. However, until 1980s the academic 

society was sceptic towards the usage of technical analysis. Accordingly we can divide 

technical analysis literature into two periods. The first period supported the impracticability of 

applying technical analysis for prediction of the future (see Alexander, 1964; Fama and Blume, 

1966; Fama, 1970; and the references therein). There are maybe two reasons for such 

conclusion. The first reason is that earlier studies often assume random walk model for the stock 

price, which rule out any profitability from technical trading. The second reason is that no 

adequate theoretical support for such strategies was provided. This paper attempts to overcome 

this gap and provides theoretical foundations for the most popular rule among practitioners, the 



 32  
 

moving average rule. The second period can be considered as a rebirth of technical analysis, 

where a significant amount of theoretical and empirical works has been developed to support 

its validity and efficiency (see Brock et al, 1992; Levich and Thomas, 1993; Lo et al., 2000; 

Chiarella et al., 2006; Moskowitz et al., 2012; and the references therein). 

According to many researchers the seminal work of Brock et al. (1992) seems to be the 

first major study that provides convincing evidence on the profitability of technical analysis. 

They test two of the simplest and most popular trading rules, the moving average and the trading 

range break rules. Overall their results, using the bootstrap methodology, provide a strong 

support to technical strategies against four popular null models: the random walk, the AR (1), 

GARCHM and the EGARCH models. They find that buy signals generate higher return than 

sell signals and the return following buy signals are less volatile than returns following sell 

signals. Recently, Neely et al. (2013) find that technical indicators, primarily the moving 

averages, have forecasting power of the stock market matching or exceeding that of 

macroeconomic variables. To sum up, there is sufficient evidence in literature to support the 

technical analysis as a profitable strategy.   

In this chapter, we discuss and evaluate the use and the impact of the very popular (among 

practitioners and academics) moving average rule. This rule generates buy and sell signals 

based on past data, by calculating the differences between a long run and a short run moving 

averages. The method attempts to predict the direction of the future price without searching to 

forecast its level. Mainly it is used to detect major upturns or downturns of the financial market. 

The common rule is to trade with the trend. The trader initiates a position early in the trend and 

maintains that position as long as the trend continues. Here we distinguish between trend-

following, the most used form, and reverse trend-following. The main difficulty of this method 

is that a rule has to be chosen from an infinite number of alternatives.  

The first central contribution of this chapter is to provide some theoretical motivations 

for the use of the moving average as one of the most popular technical trading rules. In contrast 

to the vast studies that use the moving average as an indicator function that indicates merely an 

up or down state of the market, this study sets the theoretical foundation by demonstrating its 

validity from a statistical point of view under some particular hypothesis. Thus, we prove that 

when the moving average rule applies, we could have some implications on the up and down 

trend probabilities. For this reason, we believe that this rule can be better used to predict the 

probability of market fails, such as during periods of systemic risk as suggested by Tichý et al. 

(2015) and Giacometti et al. (2015). 

The second fundamental contribution of the chapter is to implement some popular moving 
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averages rules using daily data of S&P 500 components. Thus, we introduce an alarm rule that 

predicts the presence of market systemic risk. The alarm is a simple rule that counts the assets 

whose average returns on the last n days is lower than the mean on the last N trading days (n < 

N). If the number of these assets reach a benchmark we deduce that systemic risk is probably 

present on the market and thus we should not invest in any asset. Finally, we evaluate the 

usefulness of the moving average rules by comparing their ex-post wealth with those obtained 

from other portfolio strategies. In particular, we compare the ex-post wealth obtained 

maximizing a stochastic timing performance proposed by Ortobelli et al 2016, and the wealth 

obtained maximizing the Sharpe ratio when in both cases we use a moving average rule as alarm 

of systemic risk.  

The rest of the chapter is organized as follows. Section 3.2 describes the theoretical 

motivations to the use of moving average rules in relation with conditional expectations from a 

statistical point of view. Section 3.3 examines different applications of moving average rules. 

Section 3.4 concludes the chapter.  

3.2 Theoretical motivations for the use of the moving average rule 

In this section we explore, the theoretical foundations behind using, one of the simplest and 

most popular technical rules: moving average rule. In this method, buy and sell signals are 

generated by two moving averages, a long period, and a short period:  
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where 𝑥𝑇 is the price at time T, while n and N are the lengths of the short and long time periods, 

respectively. The buy and sell signals of this rule are generated as: 

 

   If    , ,n T N TMA x MA x  and    , 1 , 1n T N TMA x MA x   buy at time   (3.1) 

        If    , ,n NMA x MA x   and    , 1 , 1n NMA x MA x   sell at time   (3.2)  

 

In other words, buy (sell) signals are generated when the short moving average crosses 

the long moving average from below (above). Intuitively, the moving average rule detects 

changes in stock price trend, as the short moving average is more sensitive to recent price 

movement than longer one. There are many possible combinations of moving average that can 

be used based on the choice of n and N, although trial and errors is usually the best way to find 

an appropriate length. Some popular MA on daily basis rule are (n, N) = [(1, 50), (5, 200), (2, 

200), (1, 150)] (see Gencay and Stengos, 1998). The usefulness of the moving average is 
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conditional to fact that trends in prices tend to persist for certain time and can be detected. For 

more details we refer to Orlandini (2008). Clearly we believe that relationships (3.1) and (3.2) 

will happen with a given probability belonging to (0, 1). However, we first analyze the case in 

which we are sure that at a given time inequalities (3.1) and (3.2) apply. We demonstrate that 

the condition (3.1) is indeed an up-trend and consequently condition (3.2) is a down-trend.  

Theorem 3.1: Let 𝑥 = {𝑥𝑠}𝑠∈ℕ  be a stochastic process adapted to a filtered 

space (𝛺, ℑ, {ℑ𝑠}𝑠∈ℕ, 𝑃). Suppose there exists a sub-sigma algebra G   such that the 

conditional expected value of one step increments 1s s sx x    assumes only two values 

0   or 0   for any s, that is 
      

  1 
( | )

s

s

s

with probability p

with probabilit
E G

y p

















  for any s. Suppose 

there exist two integers n and N (with n N ) and t s  such that: 

        , ,n t N tMA x MA x  and    , 1 , 1n t N tMA x MA x   a.s.       (3.3) 

Then 1
2tp   if the following inequality is verified: 

         2 2A BnE k N n E k N n    ,    (3.4)  
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Proof of Theorem 3.1:  Starting from the hypothesis assumption of the Theorem: 
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The system can be rewritten considering that 
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For notational simplicity, we change the starting point. Let 𝑥0 be the first observation such that 

t Nx x  Then, we define the observations as follow: 

 

      

 

It follows that the system (3.5) can be formulated as: 
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then the first inequality of the system can be developed as: 
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from which it follows 
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and consequently, 
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Simplifying last inequality, we obtain that (3.3) implies: 
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At this point the assumption system has been traced as a unique inequality, for which the 

system is indeed a sufficient condition. To simplify further such inequality we apply the 

definition of t  recursively, so that we obtain 0i  : 0
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Now we recall the definition of t  and by applying  t tE G   we get: 
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Given that t  assumes only two values, either 0   or 0  , for any t, and using the fact 

that the random variables Ak  and Bk  are the number of times when
 i  assumes the value   

for i varying from 1t N   to t n  and from 1t n   to 1t  , respectively, the inequality 

becomes 
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Then applying the expected value operator to last inequality we get: 
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Therefore system (3.3) is indeed a sufficient condition for the inequality: 
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At this point, after simple manipulation, condition (3.4) can be written as:  
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Now, considering jointly the two last inequalities we get:  

  .
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                      (3.8) 

Given that    1N N NE p p      , then (3.8) is equivalent to: 

 1 ,
2

N Np p
 

   
 


    

from which, after few steps, such that 0   and 0  , we obtain 1
2Np  .             Q.E.D. 

In Theorem 3.1 we do not point out that the process x is the price process. Thus, the 

theorem could be applied to any stochastic process that satisfies the above conditions. Anyway, 

Theorem 3.1 suggests that the probability to be in up-trend is greater than the probability to be 

in down trend when the moving average (3.3) and condition (3.4) apply. Clearly, requiring that 

the moving average rule holds almost surely, is a strong assumption as proved by the following 
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corollary.  

Corollary 3.1: Condition (3.3) cannot be applied almost surely for independent stationary 

processes.                                                                                                                                   ∎ 

Proof of Corollary 3.1: Since the process  
1,..,i i T




 is stationary and independent, then 

( ) ( )i jE E       ,i j . From equation (3.7) derived by condition (3.3) we should have that: 
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Thus, condition (3.3) cannot be true.                                                     Q.E.D. 

These results essentially prove that the moving average rule has some implications in 

terms of probability of the future price. Moreover, when we consider stationary and independent 

increments of log prices (typically Lévy processes), the moving average rules holds for log 

prices 𝑥 = {𝑥𝑠}𝑠∈ℕ  only with probability lower than 1. Therefore, under the assumption the 

process of log prices 𝑥 = {𝑥𝑠}𝑠≥0  is a Lévy process, we have that:  

        , , , 1 , 1, 1n T N T n T N TP MA x MA x MA x MA x     

and 

        , , , 1 , 1, 1n T N T n T N TP MA x MA x MA x MA x    . 

On the one hand, Theorem 3.1 cannot be applied to log price processes which are 

generally considered with stationary and independent increments in financial literature, on the 

other hand, moving average rules are applied to the price processes which generally do not 

present stationary and independent increments. In addition, we could obtain a result similar to 

Theorem 3.1 when we consider non-stationary independent increments. In this case, we can 

better specify the conditional probability and sub-sigma algebra G used in Theorem 3.1. 

Proposition 3.1: Let 𝑥 = {𝑥𝑠}𝑠≤𝑇 be a stochastic process adapted to a filtered 

space (𝛺, ℑ, {ℑ𝑠}𝑠≤𝑇 , 𝑃) and suppose the one step increments 𝛿𝑠 = 𝑥𝑠 − 𝑥𝑠−1 are independent. 

Consider the 𝜎-algebra G=<⋃ 𝐺𝑠
𝑇
𝑠=1 >, where the 𝜎-algebra 𝐺𝑠 is given by 𝐺𝑠 = {𝛺, ∅, {𝛿𝑠 >

0}, {𝛿𝑠 ≤ 0}}, then 
,

,
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swith probability p

with probabilit
E G
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, where ,( | 0)s s sE u     and 

,( | 0)s s sE u     for any s. If we assume that 𝜇+,𝑠, 𝜇−,𝑠 are constant over time (i.e. 𝜇+,𝑠 =

𝜇+ and 𝜇−,𝑠 = 𝜇−), t s and there exist two integers 𝑛 and 𝑁 (with 𝑛 < 𝑁) such that:  

     , ,n t N tMA x MA x  and    , 1 , 1n t N tMA x MA x   a.s. (3.9) 



 38  
 

Then 1
2tp   if the following inequality is verified: 

 
1

1 1

2 2( )
t n t

i i

i t N i t n

n p N n p N n
 

     

      (3.10) 

where,𝑝𝑖 = 𝑃(𝛿𝑖 > 0)                                                                                                               ∎ 

Proof of Proposition 3.1: To prove this result we need the following lemma: 

Lemma 3.1: Let Y be a real random variable defined on a probability space  , , P  . Let 1  

be a finite sub-𝜎-algebra contained in the 𝜎-algebra generated by Y namely   Y   .  Given a 

finite sequence of finite sub- 𝜎-algebras i    2,....,i n   independent on 1 , then: 

𝐸(𝑌| < ⋃ ℑ𝑖 >𝑛
𝑖=1 ) = 𝐸(𝑌|ℑ1). 

Proof of Lemma 3.1: First we prove the result for n = 2. Since 𝜎-algebra 1 2     is finite, 

then any event 1 2A     can be seen as the intersection of events belonging to 1  and 

2  (i.e. A C D  where 1C  and 2D ). 

Thus 
1 2A    , A C D   , 1C , 2D  

                   ∫ 𝑌𝑑𝑃 = ∫ 𝐸(𝑌| < ℑ1 ∪ ℑ2 >)𝑑𝑃 = ∫ 𝑌𝐼𝐷𝑑𝑃 = 𝑃(𝐷)𝑃(𝐶) ∫ 𝑌𝑑𝑃
𝐶𝐶𝐶∩𝐷𝐴

 

= 𝑃(𝐷)𝑃(𝐶) ∫ 𝐸(𝑌|ℑ1)𝑑𝑃 = ∫ 𝐸(𝑌|ℑ1)𝑑𝑃
𝐴𝐶

, 

where the 1st and 4th equalities are derived from conditional expected value definition, while the 

3rd and 5th equalities are derived from the independence between 1  and 2  (that implies the 

independence between 1)( |E Y   and 2 ). Thus from the unicity we get 

1 1 2| ) ( |( )E YE Y        P.a.s. Furthermore, the 𝜎-algebra generated by ⋃ ℑ𝑖
𝑛
𝑖=2  is still 

finite and independent on ℑ1, thus, considering that < ℑ1 ∪< ⋃ ℑ𝑖 >𝑛
𝑖=2 > = < ⋃ ℑ𝑖 >𝑛

𝑖=1 . Then 

applying the result obtained for 2n  , the equality 𝐸(𝑌| < ⋃ ℑ𝑖 >𝑛
𝑖=1 ) = 𝐸(𝑌|ℑ1). P.a.s. holds.  

                                                                                                                                           Q.E.D. 

Now we can prove Proposition 3.1. Observe that any 𝜎-algebra 𝐺𝑠 is a sub- 𝜎-algebra of the 𝜎-

algebra generated by s . Thus, we can apply Lemma 3.1 to any increment 𝛿𝑠 and we get that: 

𝐸(𝛿𝑠| < ⋃ 𝐺𝑞 >𝑇
𝑞=1 ) = 𝐸(𝛿𝑠|𝐺𝑠). P. a. s. 

Since 𝐺𝑠 is a finite 𝜎-algebra if we apply the conditional expected value definition we get:  

[ 0] [ 0]( | ) ( | 0) ( | 0)
s ss s s s s sE G E I E I          ,   P. a.s.  

where, ,( | 0)s s sE u      and ,( | 0)s s sE u    . Thus, if we apply Theorem 3.1 we get the 

thesis.                                                                                                                                 Q.E.D. 



 39  
 

So considering non-stationary independent increments, Proposition 3.1 states that the 

probability to be in up-trend is greater than the probability to be in down-trend if the moving 

average (3.9) and condition (3.10) apply.  

3.3 Ex-post empirical analysis 

In this section, we examine two possible uses of the moving average rules. First, we apply the 

moving average rules to predict possible losses when we use the components of the S&P 500 

index. Secondly, we use the moving average rules as proper portfolio strategies. Finally, we 

compare the effectiveness of the moving average rule with other portfolio strategies. In all cases 

we consider daily observations of the S&P 500 components from January 1, 2000 to January 

10, 2015 - using a collection of 15 years of daily prices. From the beginning, the list included 

large well-known and actively traded stocks. In recent years the S&P 500 represent about 70 

percent of the American equity market by capitalization. The data set is taken from Thomson-

Reuters DataStream. Simultaneously, in neither case the short sales are allowed. We use 𝑥 =

[𝑥1, … , 𝑥500]′  to denote the vector of percentages invested in each asset and 𝑅 = [𝑅1, … , 𝑅500]′  

for the vector of returns. 

According to several studies, one of the main difficulties in evaluating the profitability 

using moving average rules is that performance of trading rules depends on accurate choice of 

rule parameters. In essence, these rules crucially depend on the choice of the short and the long 

period moving average, n and N respectively. Therefore, the possibility that various 

combinations of the moving average rules are suitable cannot be dismissed. Although a 

complete remedy for this issue does not exist, trial and errors remains the best way to find an 

appropriate length, we mitigate this problem by reporting results from different choices that 

cover a wide range of possible parameter values, see Table 3.1. In addition, as suggest by 

several papers, see for instance Brock et al. (1992), these wide range of combinations are quite 

substantial to give a full picture about the performance of the moving average rules. The rules 

differ by the length of the short and long period. For example (1,200) indicates that the short 

period is one day and the long period is 200 days. 

           In the first empirical analysis, we compare two possible uses of the moving average 

rules. Firstly, we propose a methodology to predict the periods of systemic risk as suggested by 

Giacometti et al. (2015). In particular, we consider the assets whose mean on the last n days is 

lower than the mean on the last N trading days ( )n N . If the number of the assets satisfying 

this rule is higher than 75% of the all assets, we deduce that the probability of systemic losses 
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in the market is high because 3/4 of the assets5 during last n days are losing their value. 

Therefore, in presence of systemic risk we do not invest in the market for any asset. Conversely, 

we invest in the uniform portfolio (0.2% in each components), when we do not observe periods 

of jointly losses among the assets (for more details on the uniform investment strategy see 

DeMiguel et al. (2009) and Pflug et al. (2012)). Secondly, since we want to value the impact of 

the moving average rule, we do not consider (𝑛, 𝑁) alarm rule for the second type of strategies. 

In particular, the second strategy suggests to invest on all assets whose average over the last n 

days is greater than the average over the last N trading days. In this analysis, starting from 

January 1, 2000 we calibrate the portfolio every 15 trading days. 

Table 3.1 reports summary statistics (mean, standard deviation, skewness, kurtosis, VaR 

5%, CVaR 5%, final wealth) of the ex-post returns of a wide range of strategies with and without 

alarms. In addition, in Table 3.2, we compute the Sharpe Ratio and the performance measure 

𝑆𝑇𝐴𝑅𝑅𝛼 defined by Martin et al. (2003) 

                                            
( )

( )
( )

E X
STARR X

CVaR X




 ,                                               (3.11) 

with a confidence level 1 − 𝛼 = 95%. STARR allows us to overcome the drawbacks of the standard 

deviation as a risk measure (Artzner et al. (1999)) and focuses on the downsides risk.6   

                                                           
5 Obviously, it is possible to apply several barriers for detecting systemic risk. However as suggested by several 

papers (see Biglova et al. (2014) and the references therein) the ¾ of the assets distressed in the market appears 

sufficient to guarantee contagion and the presence of systemic risk in the market.  

6 STARR ratio is not a symmetric measure of risk when returns present heavy-tailed distributions, see Martin et 

al. (2003). 
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Table 3.1: Average of some statistics of the ex-post returns and the final wealth obtained by 

different moving average rules combinations  

 
Mean St dev Skewness Kurtosis VaR 5 % 

 

CVaR 5% Final W 

1 – 50 with alarm 0.046% 1.083% -0.1362 7.8801 1.690% 

 

3.063% 4.6002 

1 – 150 with alarm  0.052% 1.034% -0.1297 6.5956 1.643% 2.903% 5.7265 

2 – 200 with alarm  0.044% 1.081% -0.3198 7.5438 1.699% 3.067% 4.1908 

5 – 200 with alarm  0.048% 1.070% -0.3230 7.6047 1.667% 3.032% 4.8585 

5 – 100 with alarm  0.050% 1.072% -0.2737 8.6372 1.643% 3.081% 5.3458 

5 – 150 with alarm  0.050% 1.066% -0.3077 7.7075 1.655% 3.011% 5.2298 

10 – 100 with alarm  0.054% 1.090% -0.2499 8.3118 1.656% 3.045% 6.1948 

10 – 150 with alarm 0.050% 1.066% -0.2893 7.7514 1.648% 3.003% 5.2609 

15 – 100 with alarm 0.053% 1.093% -0.2046 8.4293 1.656% 3.050% 5.8536 

15 – 150 with alarm  0.051% 1.061% -0.2732 7.7636 1.644% 2.976% 5.5344 

20 – 100 with alarm 0.052% 1.078% -0.2263 8.7559 1.642% 3.030% 5.6249 

20 – 150 with alarm 0.052% 1.078% -0.2690 7.8337 1.643% 2.965% 5.7556 

25 – 100 with alarm 0.054% 1.083% -0.2148 8.6427 1.643% 3.033% 6.0565 

25 – 150 with alarm 0.053% 1.075% -0.2640 7.6521 1.655% 3.002% 5.9502 

1 – 50 (no alarm)  0.021% 1.239% -0.3778 10.459 1.943% 3.509% 1.6678 

1 – 150 (no alarm)  0.036% 1.151% -0.2696 8.0333 1.830% 3.243% 3.0084 

2 – 200 (no alarm)  0.034% 1.146% -0.2892 7.9222 1.820% 3.242% 2.8575 

5 – 200 (no alarm)  0.034% 1.152% -0.2996 8.0004 1.824% 3.270% 2.8138 

5 – 100 (no alarm) 0.038% 1.187% -0.3186 8.4779 1.844% 3.331% 3.1872 

5 – 150 (no alarm) 0.041% 1.156% -0.3106 7.6341 1.821% 3.250% 3.6248 

10 – 100 (no alarm) 0.037% 1.218% -0.3914 9.2551 1.880% 3.419% 3.0101 

10 – 150 (no alarm) 0.041% 1.170% -0.3070 8.0923 1.820% 3.280% 3.6720 

15 – 100 (no alarm) 0.037% 1.225% -0.4697 10.074 1.888% 3.439% 2.9868 

15 – 150 (no alarm) 0.041% 1.184% -0.3654 8.8566 1.840% 3.320% 3.6034 

20 – 100 (no alarm) 0.038% 1.218% -0.3705 9.7320 1.883% 3.409% 3.1943 

20 – 150 (no alarm)  0.043% 1.183% -0.3157 8.7960 1.816% 3.311% 3.9271 

25 – 100 (no alarm) 0.040% 1.223% -0.4209 11.558 1.866% 3.403% 3.4130 

25 – 150 (no alarm)  0.043% 1.184% -0.2993 8.8991 1.812% 3.311% 3.9178 

S&P 500  0.017% 1.283% 0.0104 11.191 1.977% 3.561% 1.3917 
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Table 3.2: Sharpe and STARR ratios of the ex-post returns obtained by different moving 

average strategies with and without alarm rule 

 (5,100) 

alarm 

(5,150) 

Alarm 

(10,150) 

Alarm 

(15,100) 

alarm 

(15,150) 

alarm 

(20,100) 

alarm 

(20,150) 

alarm 

(25,100) 

alarm 

(25,150) 

alarm 

 

Sharpe 4.682% 4.649% 4.665% 4.832% 4.807% 4.788% 4.917% 4.952% 4.935%  

STARR 1.663% 1.646% 1.655% 1.732% 1.714% 1.703% 1.754% 1.768% 1.768%  
 (5,100) 

No 

alarm 

(5,150) 

No 

Alarm 

(10,150) 

No 

Alarm 

(15,100) 

No 

alarm 

(15,150) 

No 

alarm 

(20,100) 

No 

alarm 

(20,150) 

No 

alarm 

(25,100) 

No 

alarm 

(25,150) 

No 

alarm 

 

Sharpe 3.187% 3.534% 3.536% 2.985% 3.466% 3.142% 3.661% 3.277% 3.652%  

STARR 1.135% 1.257% 1.261% 1.063% 1.236% 1.122% 1.308% 1.178% 1.306%  

 (10,100)  

alarm 

(1,150) 

Alarm 

(2,200) 

Alarm 

(5,200) 

alarm 

(10,100) 

No 

alarm 

(1,150) 

No 

alarm 

(2,200) 

No 

alarm 

(5,200) 

No 

alarm 

S&P 

500 

 

Sharpe 4.980% 4.991% 4.055% 4.452% 2.991% 3.116% 3.006% 2.960% 1.324%  

STARR 1.782% 1.777% 1.429% 1.571% 1.260% 1.106% 1.063% 1.043% 0.477%  

 

From Tables 3.1 and 3.2 we observe that: 

1. The moving average rules used as portfolio strategies without alarms present the ex-

post lowest return mean, Sharpe ratio (mean/St. dev.) and STARR performance, but 

also the highest risk (standard deviation, VaR 5%, CVaR 5%), compared the 

strategies that use moving average rules as alarms.   

2. The strategies that use moving average rules as alarms achieve the greatest average, 

final wealth, Sharpe ratio, STARR performance, and also the lowest risk (standard 

deviation, VaR 5%, CVaR 5%) compared to the strategies without alarms and S&P 

500 benchmark.  

3. The moving average strategies with and without alarms are performing much better 

than S&P 500 benchmark, which presents the worst results in terms of mean return, 

final wealth and risk measures (standard deviation, VaR 5%, CVaR 5%).     

4. The ex-post returns are strongly leptokurtic for all strategies presented in Table 1. 

In addition, all strategies expect S&P 500 show some signs of skewness.   

5. Overall, we observe that some strategies with moving average rules as alarms are 

performing much better than others. For example, the rule (10,100) with alarm 

presents the highest mean return, STARR performance and final wealth, while the 

strategy (1,150) shows the greatest Sharpe ratio and the lowest CVaR.  

Interestingly, these preliminary results give us a general overview about the profitability 

and usefulness of the use of the moving average rules either as proper portfolio strategies or as 
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systemic risk alarms. However, a further analysis is necessary to compare the effects of the 

different moving average rules. Therefore, we evaluate and test the observed ex-post 

dominances between the proposed portfolio strategies. In particular, we examine the ex-post 

log-returns obtained with different strategies and we check whether there exist stochastic 

dominance relations between the ex-post log-returns of the optimal portfolios. We test for first-

order (FSD), second-order (SSD), Third-order (TSD) and increasing-convex-order (ICX) that 

accounts for the choice of non-satiable risk-seeking investors (for formal definition and deeper 

discussion on stochastic dominance see Appendix B). In this thesis, we consider the week form 

of the stochastic dominance (see, among others, Muller and Stoyan 2002; and Davidson and 

Jean-Yves 2000). Thus, we use 3779 daily observations (returns realizations), from January 1, 

2000 to January 10, 2015, for these stochastic dominance comparisons.  

In Table 3.3, we examine whether there are dominance orderings between the optimal 

portfolios obtained when the moving average rules are used as systemic risk alarms. 

According to the stochastic dominance tests of Table 3.3, applied to all strategies with 

alarms, the optimal portfolio (10,100) as a systemic risk alarm rule dominates most portfolio 

strategies in the ICX sense. Additionally, we observe that the strategy (1,150) as alarm rule, 

whereas it is dominated by (10,100) in terms of ICX, dominates most remaining strategies in 

the SSD sense (and thus also for the TSD). Generally, from Table 3.3, we conclude that some 

moving average rules are performing much better than others in terms of stochastic dominance 

test. These results confirm that the choice of the moving average lengths remains very crucial 

even used as a systemic risk alarm. Furthermore, all optimal portfolio strategies with alarms 

dominate the S&P 500 benchmark in terms of SSD (and thus also for the TSD). However, the 

most interesting analysis is to test whether there are dominance orderings between the optimal 

portfolios obtained by the moving average strategies with and without alarm rules. Table 3.4 

contains our results. 
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Table 3.3: Dominance relations between optimal portfolios obtained applying different strategies with alarms 
 (1,50) 

alarm 

(1,150) 

alarm 

(2,200) 

alarm 

(5,200) 

alarm 

(5,100) 

alarm 

(5,150) 

alarm 

(10,100) 

alarm 

(10,150) 

alarm 

(15,100) 

alarm 

(15,150) 

alarm 

(20,100) 

alarm 

(20,150) 

alarm 

(25,100) 

alarm 

(25,150) 

alarm 

S&P 

500 

(1,50) 

alarm 
𝐧. 𝐜 ≺ SSD n. c n. c n. c n. c n. c n. c n. c n. c n. c n. c n. c n. c ≻ SSD 

(1,150) 

alarm 
≻ SSD 𝐧. 𝐜 ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≺ ICX ≻ SSD ≻ SSD 

≺ ICX 

n. c ≻ SSD n. c ≺ ICX n. c ≻ SSD 

(2,200) 

alarm 
n. c ≺ SSD 𝐧. 𝐜 n. c n. c n. c ≺ ICX n. c ≺ ICX n. c n. c n. c n. c n. c ≻ SSD 

(5,200) 

alarm 
n. c ≺ SSD n. c 𝐧. 𝐜 n. c n. c ≺ ICX n. c ≺ ICX n. c n. c n. c n. c n. c ≻ SSD 

(5,100) 

alarm 
n. c ≺ SSD n. c n. c. 𝐧. 𝐜. n. c ≺ ICX n. c ≺ ICX n. c ≺ ICX ≺ SSD n. c n. c ≻ SSD 

(5,150) 

alarm 
n. c ≺ SSD n. c n. c. n. c 𝐧. 𝐜 ≺ ICX n. c ≺ ICX n. c n. c n. c ≺ ICX n. c ≻ SSD 

(10,100) 

Alarm 
n. c ≻ ICX ≻ ICX ≻ ICX ≻ ICX ≻ ICX 𝐧. 𝐜 ≻ ICX n. c ≻ ICX n. c ≻ ICX n. c ≻ ICX ≻ SSD 

(10,150) 

Alarm 
n. c ≺ SSD n. c n. c. n. c n. c ≺ ICX 𝐧. 𝐜 ≺ ICX n. c n. c n. c ≺ ICX n. c ≻ SSD 

(15,100) 

alarm 
n. c ≺ SSD 

≻ ICX 

≻ ICX ≻ ICX ≻ ICX ≻ ICX n. c ≻ ICX 𝐧. 𝐜 ≻ ICX n. c ≻ ICX n. c ≺ SSD ≻ SSD 

(15,150) 

alarm 
n. c n. c n. c n. c. n. c n. c ≺ ICX n. c ≺ ICX 𝐧. 𝐜 n. c n. c ≺ ICX n. c ≻ SSD 

(20,100) 

alarm 
n. c ≺ SSD n. c n. c. ≻ ICX n. c n. c n. c n. c n. c 𝐧. 𝐜 ≺ SSD n. c n. c ≻ SSD 

(20,150) 

alarm 
n. c n. c n. c n. c. ≻ SSD n. c ≺ ICX n. c ≺ ICX n. c ≻ SSD 𝐧. 𝐜 ≺ ICX n. c ≻ SSD 

(25,100) 

alarm 
n. c ≻ ICX n. c n. c. n. c ≻ ICX n. c ≻ ICX n. c ≻ ICX n. c ≻ ICX 𝐧. 𝐜 n. c ≻ SSD 

(25,150) 

alarm 
n. c n. c n. c n. c. n. c n. c ≺ ICX n. c ≻ SSD n. c n. c n. c n. c 𝐧. 𝐜 ≻ SSD 

S&P 500 ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD 𝐧. 𝐜 

  



 45  
 

Table 3.4: Dominance relations between optimal portfolios obtained applying different strategies with and without alarms 

 (1,50) 

No 

alarm 

(1,150) 

No 

alarm 

(2,200) 

No 

alarm 

(5,200) 

No 

alarm 

(5,100) 

No 

alarm 

(5,150) 

No 

alarm 

(10,100) 

No 

alarm 

(10,150) 

No 

alarm 

(15,100) 

No 

alarm 

(15,150) 

No 

alarm 

(20,100) 

No 

alarm 

(20,150) 

No 

alarm 

(25,100) 

No 

alarm 

(25,150) 

No 

alarm 

S&P 

500 

(1,50) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(1,150) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(2,200) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(5,200) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(5,100) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(5,150) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(10,100) 

Alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(10,150) 

Alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(15,100) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(15,150) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(20,100) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(20,150) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(25,100) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

(25,150) 

alarm 
≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD ≻ SSD 

S&P 500 n. c ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD ≺ SSD n. c ≺ SSD n. c 
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According to the stochastic dominance tests of Table 3.4, as one could expect, all optimal 

portfolio strategies with alarms dominate all other portfolio strategies, as far as alarm rule is not 

used, in the SSD sense. Generally, our results provide strong support for the use of the moving 

average rules as alarms to detect the presence of systemic risk. To stress this point, Figure 3.1 

reports the ex post wealth obtained with the application of different alarm systemic rules 

considering the following possible combination: (n, N) = [(1, 50), (5, 200), (2, 200), (1, 150), 

(10, 100)], as suggested by Gencay and Stengos (1998) and Brock et al. (1992). 

Figure 3.1: Ex-post wealth obtained with different moving average rules with alarms 

 
Observe that the alarm inserted to detect the presence of systemic risk works well enough 

since it is able to identify and forecast the largest period of systemic risk of the recent crises, 

sub-prime crisis 2007-2009 and the European credit risk crisis (fall-winter 2011). Moreover, 

Figure 3.1 shows that the rule based on (10, 100) presents the highest final wealth, and appears 

to be the most appropriate strategy since it increases more during the last period of crisis, while 

the rule (2, 200) was the worst among all. On the one hand, the rule based on (1, 150) has been 

relatively less affected by the sub-prime crisis 2007-2009 than other trading rules, on the other 

hand, the rule (10, 100) was comparatively less affected by European credit risk crisis 2010-

2011. Furthermore, as expected, all strategies are performing much better than the S&P 500 

benchmark.  
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In order to evaluate the effectiveness of the moving average we go further with the 

following empirical analysis, where we compare four portfolio strategies. In the first strategy 

we consider the uniform portfolio with (10, 100) systemic risk alarm rule. The second strategy 

suggests to invest on all the assets whose average over the last 10 days is greater than the 

average over the last 100 trading days. Since we want to value the impact of this moving average 

rule, we do not consider (10, 100) alarm rule for this strategy. In the third strategy we maximize 

the Sharpe ratio considering the (10, 100) systemic risk alarm rule. The last strategy optimizes 

the ratio between two expected first passage times − as suggested by Ortobelli et al. (2016) − 

the expected first time we loss more than 2% and the expected first time we earn more than 

20%. Even for this portfolio strategy we consider the (10, 100) systemic risk alarm rule. The 

Sharpe and Timing type portfolio strategies can be formalized and described as follows. 

Sharpe ratio (1994): The Sharpe ratio is used to characterize how well the return of an asset 

compensates the investor for the risk taken. The Sharpe ratio computes the price for unity of 

risk and is calculated by subtracting the risk-free rate from the rate of return on a portfolio and 

by dividing the result by the standard deviation of the portfolio returns. Formally: 

 

'

( ' )
( ' )

f

x R

E x R r
SR x R




 ,  (3.12)  

where 𝐸(𝑥′𝑅) is the portfolio expected return, 𝑟𝑓 is the risk-free return and 𝜎𝑥′𝑅 is the portfolio 

standard deviation. In Sharpe strategy an alarm is inserted to predict the systemic risk. 

Timing strategy: Ortobelli et al. (2016) suggests to optimize the average of two first passage 

times under different distributional assumptions of the wealth Markov process. In this paper, 

we apply the same algorithm under the assumptions the wealth process follows a nonparametric 

Markov process approximated by a Markov chain according to Angelelli and Ortobelli (2009). 

On Markov chain see Ortobelli et al. (2006) and (2007). In this case, it is still possible to 

compute the distributions of the following stopping times: 

( ) inf{ N | ( ) 0.98}d kx k W x T     , 

( ) inf{ N | ( ) 1.2} ,u kx k W x T      

where ( )kW x  is the future wealth at any time 1, 2,....,k T  (see also Angelelli and Ortobelli, 

2009). We consider d  the first time the future wealth loses 2% and u  the first time the future 

wealth increases by 20%. Then, at any recalibration time we maximize the following timing 

portfolio performance:  
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where [ ]

1 if

0 otherwise
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 as suggested by Ortobelli et al. (2015). In performance measure 

(3.13) we penalize the case the first passage time u  overcome the temporal horizon T (i.e.

u T  ), while we reward the possibility that the first passage time d  overcome the temporal 

horizon (i.e. d T  ). This timing strategy is implemented with alarm (10, 100) rule to detect 

systemic risk. As for the first empirical analysis we recalibrate the portfolio every 15 trading 

days. Thus, at the k-th recalibration time, the following steps are performed for Sharpe and 

Timing strategies: 

Step 1 (alarm rule) Verify if the percentage of assets whose mean over the last 10 days is lower 

than the mean on the last 100 days is higher than the benchmark barrier 75%. If the alarm is not 

verified, proceed to Step 2, otherwise to Step 3. 

Step 2 Compute the optimal portfolio solution 
( 1)k
Mx 

 of the optimization problem: 

( )max

. .

x

x R

s t

 
 

500

1
=1; 0; =1,...,500i ii

x x i


 , 

where ( )x R   is one of the performance measure (3.12) or (3.13) associated to the portfolio

x R . When we use the Sharpe optimization problem 

Step 3 Calculate the ex-post final wealth as follows:  

 1 ( 1)
1(1 ) ,

k

k k
k M k

W if alarm applies

W
W x R otherwise

 





      

 

where 1kR   is the ex-post vector of the returns between the k-th time and k+1-th time. 

We apply the algorithm until the observations are available. The results of this analysis 

are reported in Figure 3.2. 
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Figure 3.2: Ex-post wealth obtained with Uniform, Sharpe, S&P 500 and Timing strategies 

 

Figure 3.2 reports the ex-post wealth evolution obtained with the four portfolio strategies 

and the S&P 500 benchmark. Clearly, the Timing portfolio strategy outperforms the strategies 

based on Sharpe ratio and moving average rule (10, 100). Another remarkable observation is 

that the Sharpe strategy is also better than the moving average rule strategy applied without 

alarm. Furthermore, Figure 3.2 shows that during sub-prime crisis 2007-2009 the moving 

average rule (10, 100) without alarm has a significant loss of 60%, while the moving average 

rule (10,100) with alarm, Sharpe and timing strategies present losses of 38%, 48% and 57% 

respectively. However, the same effect does not applies for the European credit risk crisis where 

we observe a big loss only for the very aggressive Timing strategy, while the other strategies 

do not present significant losses.  

Table 3.5 reports the basic statistics (mean, standard deviation, skewness, kurtosis, VaR 

5%, CVaR 5%, final wealth) of the ex-post returns of all strategies of Figures 3.1 and 3.2. 

Instead, Table 3.6 contains Sharpe ratio and STARR performance of the ex-post returns of all 

strategies depicted in two Figures.  
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Table 3.5: Average of some statistics of the ex-post returns plus the final wealth obtained by 

different strategies 

 Mean St dev Skewness Kurtosis VaR 5 % CVaR 5% Final Wealth 

2 – 200 rule  0.044% 1.081% -0.3198 7.8801 1.699% 3.067% 4.1908 

5 – 200 rule  0.048% 1.070% -0.3230 6.5956 1.667% 3.032% 4.8585 

1 – 150 rule  0.052% 1.034% -0.1297 7.5438 1.643% 2.903%  5.7265 

1 – 50 rule  0.046% 1.083% -0.1362 7.6047 1.690% 3.063%  4.6002 

10 – 100 rule  0.054% 1.090% -0.2500 8.6372 1.656% 3.045%  6.1948 

Sharpe (with alarm)  0.054% 1.321% -0.3561 7.7075 2.064% 3.087%  5.5182 

Timing (with alarm) 0.092% 2.131% -0.2696 8.3118 3.319% 5.021%  13.817 

10 – 100 (no alarm)  0.036% 1.218% -0.3909 9.2544 1.879% 2.892%  2.9826 

S&P 500  0.017% 1.283% 0.0104 11.191 1.977% 3.561%  1.3917 

 

Table 3.6: Sharpe and STARR ratios of the ex-post returns obtained by different strategies 

with and without alarm rules 

 (10,100) 

Alarm 

(1,150) 

Alarm 

(5,200) 

Alarm 

(1,50) 

alarm 

(2,200) 

alarm 

Timing 

strategy 

Alarm 

(10,100) 

No 

alarm 

Sharpe 

strategy 

Alarm 

S&P 

500 

Sharpe 4.980% 4.991% 4.452% 4.275% 4.055% 4.335% 2.991% 4.091% 1.324% 

STARR 1.782% 1.777% 1.571% 1.512% 1.429% 1.839% 1.260% 1.750% 0.477% 

 

     From Tables 3.5 and 3.6 we observe that: 

1. S&P 500 benchmark presents the ex-post lowest return mean, final wealth, Sharpe 

ratio and STARR performance. 

2. The moving average rule (10,100) used as a portfolio strategy without alarm 

presents the ex-post lowest return mean, Sharpe ratio and STARR performance 

compared to other portfolio strategies with alarms. 

3. The strategy, that invest 0.2% in each asset once that the (1, 150) alarm rule applies, 

presents the lowest risk (standard deviation, VaR 5% and CVaR 5%) and the highest 

Sharpe ratio.  

4. Timing strategy achieves the greatest average and STARR performance, but also 

the highest risk (standard deviation, VaR 5%, CVaR 5%). 

Conceptually, Timing strategy depends crucially on the parameter of stopping time. In 

this study, we follow Ortobelli et al. (2016), however, it would be interesting to examine the 

results for some others values of theses parameters. Thus, we consider three different 

symmetrical cases, the results of this analysis are reported in Table 3.7 
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Table 3.7: Average of some statistics of the ex-post returns plus the final wealth obtained by 

timing strategy with different parameters of stopping times 

Timing   Mean St dev Skewness Kurtosis VaR 5 % CVaR 5 % Final W Sharpe STARR 

(0.9-1.1) 0.102% 2.218% -0.3204 3.4918 3.570% 5.230% 18.112 4.591% 1.947% 

(0.95-1.05) 0.103% 2.057% -0.3486 3.5866 3.230% 4.848% 21.772 5.018% 2.129% 

(0.98-1.02) 0.077% 1.805% -0.3052 3.2702 2.930% 4.308% 9.8804 4.292% 1.798% 

          
Overall, from Table 3.7, we observe that Timing strategy presents the greatest average 

finale wealth, Sharpe and STARR performance, but also the highest risk (standard deviation, 

VaR 5%, CVaR 5%). In particular, the best performing strategy is the one that considers the 

first time the future wealth loses 5% and the first time the future wealth increases by 5%. 

In summary, these results give us a nice overview about the profitability and usefulness 

of the use of the moving average method as a systemic risk alarm rule. For further confirmation, 

as before, we examine whether there are dominance orderings between the optimal portfolios 

obtained with the moving average rules and the ones obtained with the Sharpe and Timing 

strategies with systemic risk alarm rule. Table 3.8 summarizes our tests.  

Table 3.8: Dominance relations between optimal portfolios obtained applying different 

strategies with and without alarms 
Optimal 

portfolios 

Timing strategy 

Alarm 

(10,100) 

Alarm 

Sharpe strategy 

Alarm 

(10,100) 

No alarm 

S&P 

  500 

Timing 

strategy 

Alarm 

 

𝐧. 𝐜. 
 

≻ICX 

 

 

≻ICX 

 

 

≻ICX 

 

 

≻ICX 

 

(10,100) 

Alarm 

 

≺ICX 

 

𝐧. 𝐜. 
 

≻SSD       

 

≻SSD 

 

≻SSD 

 

Sharpe 

strategy 

Alarm 

 

≺ICX 

 

≺SSD 

        

 

𝐧. 𝐜. 
 

n. c. 
 

n. c. 

(10,100) 

No alarm 

 

≺ICX 

 

≺SSD 

 

 

n. c. 
 

𝐧. 𝐜. 
 

≻SSD 

 

S&P 

500 

 

≺ICX 

 

≺SSD 

 

 

n. c. 
 

≺ SSD 

 

 

𝐧. 𝐜. 
 

 

The Timing strategy dominates all strategies presented in Figure 3.2 in the ICX sense. As 

we could expect, the moving average rule (10,100) is dominated by the rest of the strategies as 

far as the moving average method is not used as a systemic risk alarm rule. However, the 

strategy becomes comparable in the stochastic ordering sense as long as moving average is used 

as a systemic risk alarm rule. Indeed, according to the stochastic dominance tests of Table 3.8, 

we observe that the rule (10,100) with alarm dominate Sharpe strategy with alarm, the (10,100) 
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without alarm and S&P 500 benchmark in terms of SSD. Thus, Tables 3.2, 3.3 and 3.8 confirm 

with the proper tests the dominance observed in Figures 3.1 and 3.2. This fact strengthens the 

hypothesis that the moving average rule cannot be used as a profitable strategy, but rather than 

as a useful tool to detect the presence of systemic risk. 

Overall results, we deduce that the moving average rules are much more effective when 

used as alarms to detect the presence of systemic risk.  

Further research could involve theoretical and empirical studies. On the one hand, 

investors may employ complex versions of the moving average rules. On the other hand, the 

impact of calendar periods such as the weekend effect, the turn-of-the-month effect, the holiday 

effect and the January effect. Future research will investigate this aspects. Another promising 

direction for future research is to consider other technical indicators, which may be easier to 

detect algorithmically, to examine whether or not such indicators are able to predict the 

presence of systemic risk.  

3.4 Conclusions 

In this chapter, we provide some theoretical motivations behind the use of the moving average 

rule as trading strategy. In particular, we demonstrate that under some technical assumptions 

the probability to be in up-trend is greater than the probability to be in down-trend. For this 

reason, we propose to use moving average rules to predict periods of systemic risk. Thus, we 

examine the impact of the moving average rules on the U.S. stock market. Firstly, a comparison 

among different moving average trading rules with and without alarms of losses is performed. 

Secondly, we compare the ex post wealth obtained with the best performing systemic risk rule 

used as trading strategy with the wealth obtained maximizing two different portfolio 

performances. From the comparison among different strategies and stochastic dominance tests, 

we deduce that the best use of the moving average rules is obtained to predict periods of market 

distress. These empirical analyses suggest that the moving average rules are much more 

effective and performing when used to detect the presence of systemic risk. 
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Chapter 4 

 

 

On the valuation of the arbitrage opportunities and the SPD 

estimation  

 

 

 

4. Summary 

In this chapter, we present different approaches to evaluate the presence of the arbitrage 

opportunities in the market. In particular, we investigate empirically the well-known put-call 

parity no-arbitrage relation and the SPD. First, we measure the violation of the put-call parity 

as the difference in implied volatilities between call and put options. Then, we discuss the 

usefulness of the nonnegativity of the SPD. We evaluate the effectiveness of the proposed 

approaches by an empirical analysis on S&P 500 index options data. Moreover, we propose 

alternative approaches to estimate the SPD under the classical hypothesis of the BS model. To 

this end, we use the classical nonparametric estimator based on kernel and a recent alternative 

the so called OLP estimator that uses a different approach to evaluate the conditional 

expectation consistently.  

The remainder of this chapter is structured as follows. The first part describes some 

theoretical properties of two approaches. In particular, section 4.1.1 focuses on local 

polynomial estimator, while section 4.1.2 introduces the conditional expectation estimator 

(OLP). The second part presents alternative methods to evaluate the arbitrage opportunities and 

describes the procedure followed towards estimating the SPD. The rest of this part is organized 

as follows. Section 4.2 presents some methods to evaluate the arbitrage opportunities. Section 

4.2.1 illustrates the first empirical analysis. Section 4.3 proposes alternative methods to estimate 

the SPD. Section 4.3.1 includes the second empirical analysis. Concluding remarks are 

contained in Section 4.4 
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4.1 Nonparametric estimation  

Regression analysis is surely one of the most suitable and widely used statistical techniques. In 

general, it explores the dependency of the so-called dependent variable on one (or more) 

explanatory or independent variables. 

                                                     ( | ) ( )Y E Y X x g x                                              (4.1) 

It is well known that, if we know the form of the function ( ) ( | )g x E Y X x  , (e.g. 

polynomial, exponential, etc.), then we can estimate the unknown parameters of ( )g x  with 

several methods (e.g. least squares). In particular, if we do not know the general form of ( )g x

, except that it is a continuous and smooth function, then we can approximate it with a 

nonparametric method, as proposed by E. A. Nadaraya (1964) and G. S. Watson (1964). The 

aim of nonparametric technique is to relax assumptions on the form of regression function, and 

allows data search for an appropriate function that represent well the available data, without 

assuming any specific form of the function. Thus, ( )g x can be estimated by:  

                                                      
1

1

( )
ˆ ( ) ,

( )

n
i

i

i

n n
i

i

x x
y k

h n
g x

x x
k

h n





 
 
 
 
 
 




                                             (4.2) 

where, ( )k  is a density function such that: i) ( ) Ck x    , ii) lim ( ) 0
x

xk x


 , iii) ( ) 0h n 

when n  . h is a bandwidth, also called a smoothing parameter, which controls the size of 

the local averaging.  The function ( )k x  is denoted by the kernel; observe that kernel functions 

are generally used for estimating probability densities nonparametrically (see for instance V. 

A. Epanechnikov (1965)).   

It was proved in E. A. Nadaraya (1964) that if 𝑌 is quadratically integrable then ˆ ( )ng x  is 

a consistent estimator for ( )g x . In particular, observe that, if we denote by ( , )f x y  the joint 

density of ( ),X Y , the denominator of (4.2) converges to the marginal density of X ( , ) ,f x y dy

while the numerator converges to the function 
 

( ) ( , )
X x

yf xy dy yP dx dy


 
   . Please note 

that, if X is continuous, the function 
  

( ,dy) / ( , )
X x X x

yP dx P dx dy


      has to be intended as 

a regular conditional probability. An overview of nonparametric regression or smoothing 

techniques may be found, e.g., in Härdle (1990); Simonoff (1996); Fan and Gijbels (1996); 

Härdle et al. (2004). In the next section, one poplar type of nonparametric estimation techniques 

is presented, the so called local polynomial estimation.  
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4.1.1 Local polynomial regression 

For the sake of clarity, consider a random sample  ,i it Y 1,...., ni  . A regression model can be 

presented as follows:  

                                                 
  ( )i i iY X t    for 1,...., ni                                                 (4.3)  

where, 1( ,...., )nY YY are dependent variables, 1( ,...., )nt tt are explanatory variables, X is the 

regression function, and i  are i.i.d random variable with zero mean and var( ) ( )i it  ,

1,...., ni  . In local polynomial estimation, a lower-order Weighted Least Square (WLS) is fit 

at each point of interest t using some data from its neighborhoods. Assume that function X has 

( 1)thp   derivatives, and then it is possible to use Taylor expansion to approximate the 

regression function X at point it  as: 

                                  (1) ( ) 1
( ) ( ) ( )( ) ..... ( )( )

!

P p
i i iX t X t X t t t X t t t

p
                            (4.4) 

where, ( )jX stands for thj  derivative of X and 
1( ) p

it t   is order of approximation error. In 

practice it possible to estimate these terms using WLS by solving for 
( ) ( )

!

l

l

X t

l
  , 0,...,l p . 

Hence the estimate of regression function X at the point t is given by minimization of the 

following criterion:                     

                          

2

1 0

ˆ ( , , , ) arg min ( ) ,
p

j i
i j i

i J

n t t
t h p k Y t t k

h
 

 

   
     

  
                            (4.5) 

where, the weighting function ( )k   is kernel function and h is the bandwidth controlling the 

size of the local averaging. According to (4.5) there are three parameters that may have direct 

impact on the quality of the fit. Mainly, the bandwidth h, the local polynomial order p, and the 

kernel function k (see below).  It clear form WLS estimation (4.5) and Taylor expansion (4.4) 

that 0
ˆ ( )X t  , where ˆ ( )X t  is an estimate of the regression function at the point t, furthermore: 

                                                    
( )ˆ ˆ( ) ! ( , , , )v

vX t v t h p k ,                                                   (4.6) 

where, ˆ
v  is an estimate of the vth derivative of the function X. Thus, the local polynomial 

estimator provides us not only an estimate of the function X but also its derivatives up to the 

order p. A special case of this estimator is when 0p  . Indeed in this case we obtain (4.2), 

which is also known as Nadaraya-Watson (kernel) estimator. For a complete discussion of the 

theoretical properties of this estimator we refer to Fan and Gijbels (1996).  

  Clearly, it is usually simpler to work with matrix notation. In this context, (4.5) becomes:                 
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                                , , , , , , , ,
ˆ arg min ( ) ( ),    W

T

t p t p h k t pn n ntYtY                                   (4.7) 

where, 
1( ,....,Y )T

nYY ,  0 ,.....,
T

p    while 
, ,t pn

t  and 
, , , ,Wt p hn k

 are as follow:   

                                                 

2
1 1 1

,n,

2

1 (t t) (t t) (t t)

,

1 (t t) (t t) (t t)

   
 

  
 

   

p

t p

p
n n n

t                                (4.8) 

                                                 1
, , , , diag ,.........., .n
nt p h k

t tt t
k k

h h

    
     

    
W                      (4.9) 

Definitively, from (4.5) it is clear that higher order polynomials yield higher 

computational costs and typically the choice 1p v   is preferred, for detailed discussion see 

Fan and Gijbels (1996).  

Concerning the parameter that may have some effect on the quality of polynomial 

regression, it is documented that large h increase the bias and decrease the variance, while small 

h has the opposite effect. In general, the choices of the bandwidth-selection methods are based 

on the balancing of the bias and variance. Since bandwidth plays an important role in the 

practical usage of the local polynomials, several automated selection rules have been proposed. 

Mainly there are two approaches in literature. The first method is the so called global bandwidth 

choice, a bandwidth valid for all points  0,1t , typically we choose the bandwidth by 

minimizing MISE of the estimate, for an overview see Härdle et al. (2004). A more 

sophisticated approach is known as local bandwidth choice, essentially it is chosen by 

minimizing the MSE individually for each t where the estimate is constructed; see Härdle 

(1990), Spokoiny (2006). For the bandwidth selection within no arbitrage argument and option 

implied volatility, see Kopa and Tichý (2014).  

Another question concerns the choice of the kernel function k. It has been shown that the 

choice of kernel function has not a crucial role in the practice, see among others Härdle et al. 

(2004). Normally a probability density function is used, some common choices are: 

 Uniform kernel  𝑘(𝑢) =
1

2
𝟏(|𝒖| ≤ 1),  

 Epanechnikov kernel  𝑘(𝑢) =
3

4
(1 − 𝑢2)𝟏(|𝒖| ≤ 1), 

 Quadratic kernel 𝑘(𝑢) =
15

16
(1 − 𝑢2)𝟐𝟏(|𝒖| ≤ 1), 

 Gaussian Kernel 𝑘(𝑢) = (2𝜋)−1 2⁄ exp (
−𝑢2

2
). 

The third issue in local polynomial regression is the choice of the order of the local 

polynomial. In practice for a given bandwidth h, a large value of p would cause a large variance 
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and a considerable computational cost, but it would reduce the modeling bias. Since the 

bandwidth is used to control the size (complexity), it is recommended to use the lowest odd 

order, i.e. 1p v  , or sometimes 3p v  .  

To conclude this section we note that local polynomial estimators belong to an interesting 

class of smoothing methods. It well known that smoothing methods can be written as weighted 

local average of responses variables: 

                                                            
1

ˆ ( ) ( ) .i i

i

n

X t w t Y


                                                     (4.10) 

A clear example could be the Nadaraya-Watson -smoothers (4.2) where the weights ( )iw t  

can be written as: 
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i
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                                                (4.11) 

In this context, the local polynomial estimator ˆ
v  can be given as: 

                                                            
1

ˆ ,i
n

v v i

i

t t
w Y

h




 
  

 
                                               (4.12) 

where, 𝑤𝑣
𝑇(𝑢) = 𝑒𝑣+1

𝑇 (𝒕𝒕,𝒏,𝑷
𝑇𝑾𝒕,𝒏,𝒑,𝒉,𝒌𝒕𝒕,𝒏,𝑷)

−1
{1, 𝑢ℎ, … , (𝑢ℎ)𝑝}𝑇

𝑘(𝑢) ℎ,⁄   for 1,....,v p .  

Please note that local polynomial estimator can be expressed in the form of the so-called 

equivalents kernel. In particular formula (4.12) shows that the estimator ˆ
v  is very much like 

a standard kernel estimator except that the ‘kernel’ 
T
vw  depends on the locations and design 

points, for more details see Fan and Gijbels (1996), section 3.2.2.   

The idea of the local polynomial estimation can be extended to multi-dimensional 

regression problems in straightforward way. Many of their properties have been rigorously 

investigated and are well understood, see, for example, Fan and Gijbels (1996), Gyorfi et al. 

(2002) and Tsybakov (2009). 

4.1.2 Conditional expectation estimators 

The kernel nonparametric regression method allows estimating the regression function ( )g x , 

which is a realization of the conditional expectation ( | )E Y X . A recent alternative approach 

consists in estimating the conditional expectation (intended as a random variable), based on an 

appropriate approximation of the σ-algebra generated by X. In this section, we present the 

procedure of estimating the distribution of the conditional expectation based on the kernel 
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method, so that it is possible to compare the two approaches by verifying which one better 

estimates the true distribution of ( | )E Y X . In particular, if we assume that the two-dimensional 

variable ( | )E Y X  is normally distributed, then the true distribution of ( | )E Y X  can be 

computed quite easily, and the comparison can be performed in terms of goodness-of-fit tests. 

We now describe an alternative nonparametric approach, see Ortobelli et al (2015), for 

approximating the conditional expectation; the method is denoted by “OLP”, which is an 

acronym of the authors’ names. 

Define by X  the σ-algebra generated by X (i.e.ℑ𝑋 = 𝜎(𝑋) = 𝑋−1(ℬ) =

{𝑋−1(𝐵): 𝐵𝜖ℬ}, where  is the Borel σ-algebra on ℝ). Observe that the regression function is 

just a “pointwise” realization of the random variable ( | )XE Y  , which can equivalently be 

denoted by ( | )E Y X . The following methodology is aimed at estimating ( | )E Y X  rather than 

function ( )g x . For this reason, we propose the following consistent estimator of the random 

variable ( | )E Y X .  

Let 𝑋: Ω → ℝ and 𝑌: Ω → ℝ be integrable random variables in the probability space 

(Ω, ℑ, 𝑃) and define by X  the σ-algebra generated by X. Notice that: ( | )E Y X is equivalent to 

( | )XE Y  . We can approximate X  with a σ-algebra generated by a suitable partition of  . 

In particular, for any k , we consider the partition {𝐴𝑗}
𝐽=1

𝑏𝑘

= {𝐴1, … , 𝐴𝑏𝑘} of Ω in 𝑏𝑘 

subsets, where b is an integer number greater than 1 and: 

 𝐴1 = {𝜔: 𝑋(𝜔) ≤ 𝐹𝑋
−1 (

1

𝑏𝑘)}, 

 𝐴ℎ = {𝜔: 𝐹𝑋
−1 (

ℎ−1

𝑏𝑘 ) < 𝑋(𝜔) ≤ 𝐹𝑋
−1 (

ℎ

𝑏𝑘)}, for ℎ = 2,…, 𝑏𝑘–1, 

 𝐴𝑏𝑘 = Ω − ⋃ 𝐴𝑗
𝑏𝑘−1
𝐽=1 = {𝜔: 𝑋(𝜔) > 𝐹𝑋

−1 (
𝑏𝑘−1

𝑏𝑘 )}. 

Thus, starting with the trivial σ-algebra ℑ0 = {∅, Ω}, we can generate a sequence of σ-

algebras generated by these partitions obtained by varying k (𝑘 = 1, … , 𝑚,…). Thus, ℑ1 =

𝜎{∅, Ω, 𝐴1, … , 𝐴𝑏} is the σ-algebra generated by 𝐴1 = {𝜔: 𝑋(𝜔) ≤ 𝐹𝑋
−1(1/𝑏)}, 𝐴𝑠 =

{𝜔: 𝐹𝑋
−1 (

𝑠−1

𝑏
) < 𝑋(𝜔) ≤ 𝐹𝑋

−1 (
𝑠

𝑏
)}, 𝑠 = 1, . . . , 𝑏 − 1 and 𝐴𝑏 = {𝜔: 𝑋(𝜔) > 𝐹𝑋

−1((𝑏 − 1)/𝑏)} 

, moreover:  

                                                    ℑ𝑘 = 𝜎 ({𝐴𝑗}
𝐽=1

𝑏𝑘

) , 𝑘 ∈ ℕ                                             (4.13) 

 

Proposition 4.1 Given the sequence of σ-algebras {ℑ𝑘}𝑘∈ℕ defined above: 
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                                                𝐸(𝑌|𝑋) = lim
𝑘→∞

𝐸(𝑌|ℑ𝑘),     a.s.                      (4.14) 

where , 𝐸(𝑌|ℑ𝑘)(𝜔) = ∑ 𝐸(𝑌|𝐴𝑗)1𝐴𝑗
(𝜔)𝑏𝑘

𝑗=1  a.s. and 1𝐴𝑗
(𝜔) = {

1   𝜔 ∈ 𝐴𝑗

0   𝜔 ∉ 𝐴𝑗
. 

Proof:  

Observe that the increasing sequence of simple functions (i.e. 𝑠𝑘 ≤ 𝑠𝑘+1):  

                                                      𝑠𝑘(𝑤) = ∑ 𝐹𝑋
−1 (

𝑗−1

𝑏𝑘
)𝑏𝑘

𝑗=1 1𝐴𝑗
(𝜔)                          (4.15) 

converges to X almost surely, i.e.  𝑋 = lim
𝑘→∞

𝑠𝑘  a.s.. Moreover, the sequence of σ-

algebras  {ℑ𝑘}𝑘∈ℕ is a filtration and ℑ𝑋 = 𝜎(⋃ ℑ𝑘𝑘∈ℕ ), because the σ-algebra generated by 𝑠𝑘 

is ℑ𝑘 and ℑ𝑘 ⊂ ℑ𝑘+1 for 𝑘 ∈ ℕ. According to Ortobelli et al. (2015), the equality 𝐸(𝑌|𝑋) =

lim
𝑘→∞

𝐸(𝑌|ℑ𝑘) holds, since the family of random variables 𝐸(𝑋|ℑ𝑘) is uniformly integrable. 

Therefore, using the definition of conditional expectation, we can easily verify that 𝐸(𝑌|ℑ𝑘) is 

defined by  

           
1

1 ( )
( | )( ) ,

(A )

k
j

j

Ab

k j A
j

E Y YdP
P





    

because 𝐸(𝑌|ℑ𝑘) is the unique ℑ𝑘-measurable function such that for any set 𝐴 ∈ ℑ𝑘 (that can 

be seen as a union of disjoint sets, in particular 𝐴 = ⋃ 𝐴𝑗)𝐴𝑗⊆𝐴  we obtain the equality 

      
1

( | ) 1 ( ) ( )
(A )

k
j

j
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k Aj A
jA
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                                                            ( ) ( )
j j

A A A A
YdP Y dP 


           

                        

(4.16) 

Since 
1

( | )
(A ) jA

j

E Y X YdP
P

  , we obtain 
1

( | )( ) ( | )1 ( )
k

j

b
k j Aj

E Y E Y A 


   Q.E.D.∎     

When b is large enough, even 𝐸(𝑌|ℑ1) can be a good approximation of the conditional 

expected value 𝐸(𝑌|𝑋) because from equation (4.15) we get  𝑋 = lim
𝑏→∞

𝑠1 a.s. On the one side, 

given N i.i.d. observations of Y, we get that  
1

𝑛𝐴𝑗

∑ 𝑦𝑦∈𝐴𝑗
 (where 𝑛𝐴𝑗

 is the number of elements 

of 𝐴𝑗) is a consistent estimator of 𝐸(𝑌|𝐴𝑗). On the other side, if we know that the probability 

𝑝𝑖 is the probability of the i-th outcome 𝑦𝑖 of random variable Y, we get  𝐸(𝑌|𝐴𝑗) =

∑ 𝑦𝑖𝑝𝑖𝑦𝑖∈𝐴𝑗
𝑃(𝐴𝑗)⁄ , Otherwise, we can give uniform weight to each observation, which yields 

the following consistent estimator of 𝐸(𝑌|𝐴𝑗) = 
1

𝑛𝐴𝑗

∑ 𝑦𝑖𝑦𝑖∈𝐴𝑗
, where 𝑛𝐴𝑗

 is the number of 
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elements of 𝐴𝑗 . Therefore, we are able to estimate 𝐸(𝑌|ℑ𝑘), that is a consistent estimator of the 

conditional expected value 𝐸(𝑌|𝑋) as a consequence of Proposition 4.1. 

4.1.2.1  Comparison in case of normality 

If we assume that 𝑋 and 𝑌 are jointly normally distributed, i.e. (𝑋, 𝑌)~𝑁(𝜇𝑋 , 𝜇𝑌, 𝜎𝑋 , 𝜎𝑌, 𝜌), 

we can obtain the distribution of the random variable 𝐸(𝑌|𝑋) quite easily. Indeed, we know 

that: 

                                          𝑔(𝑥) = 𝐸(𝑌|𝑋 = 𝑥) = 𝜇𝑌 + 𝜌
𝜎𝑌

𝜎𝑋
(𝑥 − 𝜇𝑋),                          (4.17) 

therefore, as 𝑋~𝑁(𝜇𝑋 , 𝜎𝑋), we obtain that: 

                                         𝐸(𝑌|𝑋) = 𝜇𝑌 + 𝜌
𝜎𝑌

𝜎𝑋
(𝑋 − 𝜇𝑋)~𝑁(𝜇𝑌, |𝜌|𝜎𝑌).                       (4.18) 

Of course, if we simulate data from (𝑋, 𝑌) and approximate 𝐸(𝑌|𝑋) with the estimator 

𝐸(𝑌|ℑ𝑘) defined in (4.14), we can finally compare the true and the theoretical (estimated) 

distribution by performing a goodness-of-fit test. Differently, the kernel nonparametric 

regression method does not allow to estimate 𝐸(𝑌|𝑋), but only yields a consistent estimator 

of 𝑔(𝑥). However, assume that the random variable 𝑋′ is independent from 𝑋 and moreover 

𝑋 =𝑑 𝑋′ (that is, 𝑋′~𝑁(𝜇𝑋, 𝜎𝑋) and 𝜌(𝑋, 𝑋′) = 0): in this case we can estimate 𝐸(𝑌|𝑋′) with  
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                                           (4.19) 

and thereby we can also estimate the distribution of 𝐸(𝑌|𝑋), because 𝐸(𝑌|𝑋′) =𝑑 𝐸(𝑌|𝑋). 

Obviously, the estimate depends on the choice of the kernel function k. It is proved that 𝐸(𝑌|ℑ𝑘) 

converges almost surely to 𝐸(𝑌|𝑋) i.e. (𝐸(𝑌|ℑ𝑘) →𝑎.𝑠. 𝐸(𝑌|𝑋)). Moreover, note that also 

𝑔𝑛(𝑋′) satisfies a weaker convergence property (convergence in distribution). Indeed, we have 

that 

                                              𝑔𝑛(𝑋′) →𝑎.𝑠. 𝐸(𝑌|𝑋′) =𝑑 𝐸(𝑌|𝑋),                                    (4.20)    

thus we obtain that  𝑔𝑛(𝑋′) →𝑑 𝐸(𝑌|𝑋). 

Finally, it is possible to compare the two methods by verifying which one better estimates 

the distribution of 𝐸(𝑌|𝑋). Without significant loss of generality, the mathematical notation 

changes in the next section (the distinction of the variables will always be clear from context). 

Interpret Y as ST , while X as St .  

4.2  Methods to evaluate the arbitrage opportunities 

4.2.1 Black and Scholes methodology  
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Fisher Black and Myron Scholes (1973) achieved a major breakthrough in European option 

pricing. In this model we assume that the price process follows a standard geometric Brownian 

motion defined on filtered probability space  
0

( , , , )t t
P


   , where  

0t t
  is the natural 

filtration of the process completed by the null sets. Under these assumptions we know that 

E( | ) E( | )T t T tS S S   as consequence of Markovian property. The model of stock price 

behavior used is defined as: 

                                                                ,dS Sdt SdB                                                 (4.21) 

where,   is the expected rate of return,   is the volatility of stock return and B denotes a 

standard Brownian motion. Under this hypothesis we know that the log price is normally 

distributed: 

                                                     
  2 2

0ln ln 0.5~ ,,TS S T T    
 

                          (4.22) 

where, TS is the stock price at future time T, 0S  is the stock price at time 0 and   denotes a 

normal distribution. Please note that   in equation (4.21) represents the expected rate of return 

in real world, while in BS model (risk neutral world) it becomes risk-free rate r.7 

4.2.2 Put-call parity 

We recall an important relationship between the prices of European put and call options that 

have the same strike price and the same time to maturity. This relationship is known as put-call 

parity, see Stoll (1969). In particular, it shows that the value of a European call option with a 

certain strike price and expiration date can be deduced from the value of a European put option 

with the same strike price and expiration date, and vice versa. Formally, in perfect markets, the 

following equality must hold for European options on non-dividend-paying stocks: 

                                                             0 ,rtC P S Ke                                                    (4.23) 

where, 0S  is the current stock price, C and P are the call and put prices, respectively, that have 

the same strike price K, the same expiration date and the same underlying asset.    

To illustrate the arbitrage opportunities when equation (4.23) does not hold, we measure 

the violation of put-call parity as the difference in implied volatility between call and put 

options that have the same strike price, the same expiration date and the same underlying asset. 

In this context, it is well known that the BS model satisfies put-call parity for any assumed 

value of the volatility parameter  . Hence, 

                                                           
7  For more details about BS assumptions we refer to Hull (2015) 
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 0( ) ( ) ,BS BS rtC P S Ke           0,                              (4.24) 

where, ( )BSC   and ( )BSP   denotes BS call and put prices, respectively, as a function of the 

volatility parameter  . At this point, from equation (4.23) and (4.24) we can deduce that: 

                                                  ( ) ( )BS BSC P C P              0,                           (4.25) 

By definition, the implied volatility (IV) of a call option ( )callIV  is that value of the volatility 

of the underlying asset, which matches the BS price with the price actually observed on the 

market. In formal way:  

                                                         ( ) ,BS callC IV C                                                        (4.26) 

Now, it is straightforward form equation (4.25) that: 

                                                         ( ) ,BS callP IV P                                                         (4.27) 

this in turn implies that: 

                                                          .call putIV IV                                                           (4.28) 

Put-call parity holds only for European options. Thus, for this type of options, put-call 

parity is equivalent to the statement that the BS implied volatilities of pairs of call and put 

options must be equal. Therefore, any violation of put-call parity may contain useful 

information about the presence of tradable arbitrage opportunities. No attempt will be made to 

formulate the case of American option, which beyond the scope of this study. However, it 

possible to derive some results for American options price, where put-call parity takes the form 

of an inequality.  

In this study, we will carry the analysis on the European options style. Since put-call 

parity is one of the best known no-arbitrage relations, we use the difference in implied volatility 

between pairs of call and put options in the spirit of equation (4.28) in order to detect the 

presence of arbitrage opportunities in the market. Intuitively, lower call implied volatilities 

relative to put implied volatilities means that calls are less expensive than puts, and lower put 

implied volatilities with respect to call implied volatilities suggest the opposite.  

We compute the difference in implied volatilities between call and put options that have 

the same strike price, the same maturity and are written on the same underlying asset. Hence, 

we refer to such difference as volatility spread (VS) which may represent a valid indicator of 

the presence of arbitrage opportunities in the market, especially close to at-the-money options. 

Formally, given call and put options with the same strike price and expiration date, we compute 

the VS as: 

                                                        max | |call putVS IV IV                                             (4.29) 
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Of course, higher volatility spread is a significant indicator of arbitrage opportunities 

since put-call parity is a fundamental relation of no-arbitrage. A simple example illustrates 

intuitively this result.   

Example: Consider a put option on S&P 500 index with strike price 2200K   and has 6 

months to maturity. The current underlying asset price is 0 2100S   and the 6-month risk free 

rate of return is 0.08%r  . Let us assume that the price of this put option is 160P   and the 

price of the call option on the S&P 500 index with the same strike price and the same maturity 

is 120C  . It is very simple to verify that the put-call parity does not hold and that the volatility 

of call option is greater than the volatility of the put option. Indeed, 

0 2240 2299.1rTP S C Ke     , 

    0.2723callIV  , 0.1699putIV   and 0.1024VS   

Arbitrage position: Buy the put option at 160P   and the stock at 0 2100S  , then sell the 

call option at 120C  . To finance this position, borrow:   

0 160 2100 120 2140D P S C         at 0.08%.r   

Payoff to this arbitrage position: 

 If 2100TS  , the trader exercises the put option and the payoff is: 

( ) 59.14rT
T TK S S De     

 If 2100TS  , the short call option exercised and the payoff is: 

( ) 59.14rT
T TS S K De                                                                    

In both cases, the trader ends up with a payoff of 59.14 and selling the stock at 2200K  .  

This example illustrates the situation when the call implied volatility is greater than the 

put implied volatility, such that the option has the same strike price, the same maturity and is 

written on the same underlying asset. On the opposite, lower call implied volatility relative to 

put implied volatility means that call option is less expensive than put option. Therefore, one 

may follow the simplest strategy that involves buying the call option and shorting both the put 

option and the stock. 

The efficacy of this theoretical arbitrage mechanism in maintaining put and call price 

parity will be examined empirically. However, several papers argue that violations of the put-

call parity can be justified via the short sale constraint, data-related issues or even the payment 

of dividend streams, see among others Ofek et al (2004). To overcome these issues and to have 

a valid confirmation of this approach we could combine the IV smoothing with SPD estimation, 

which requires some properties in order to be consistent with no-arbitrage argument. In 
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particular, the nonnegativity property of SPD since its negative values immediately corresponds 

to the possibility of the arbitrage opportunities in the market. For complete treatment of this 

method we refer the reader to a relatively conservative approach adopted by Benko et al. (2007). 

4.2.3 First empirical analysis 

In this section, we report numerical experiments obtained using the methods introduced to 

detect the presence of arbitrage opportunities in the market. To evaluate the empirical 

importance of these techniques and the corresponding SPD estimate, we present some 

applications to the S&P 500 index using daily data obtained from DataStream for the sample 

period December 26, 2012 to May 13, 2015. Of course, S&P 500 Index options are among the 

most actively traded financial derivatives in the world.  

In the first empirical application to S&P 500 index options we present the analysis 

concerning the estimation of IVs. For this purpose we use as dataset all options listed on May 

13, 2015. The options are European style and the average daily volume during the sample day 

was 82.65 and 179.01 contracts for call and put respectively. Strike price is at 130 percent and 

barrier at 70 percent of the underlying spot price at 2098.48, while strike price intervals are 5 

points. During sample period, the mean and standard deviation of continuously compounded 

daily returns of the S&P index are 1.078 percent and 11.268 percent, respectively. Throughout 

this period short-term interest rates exhibit a very low level. They range from 0.01 percent 

monthly to 0.89 percent in almost three years. The options in our sample vary significantly in 

price and terms, for example the time-to-maturity varies from 2 days to 934 days. 

The row data present some challenges that must be addressed. Clearly, in-the-money 

(ITM) options are rarely traded relative to at-the -money (ATM) and out-the-money (OTM) 

options. For example, the average daily volume for puts that are 25 points OTM is 2553 

contracts, in contracts, the volume for puts that are 25 points ITM is 2. This can be justified by 

the strong demand of portfolio managers for protective puts. 

In this analysis, we consider different kernel functions and different choices of bandwidth 

selection. It was shown that the violation of arbitrage-free conditions heavily depends on all 

these settings. Theoretically, there has been major progress in recent years in data-based 

bandwidth selection for kernel density estimation (for a more complete treatment, from a 

historical viewpoint, with complete references, and detailed discussion of variations that have 

been suggested, see among others Jones et al. 1996 and Scott 2015). Some methods, including 

plug-in and smoothed bootstrap techniques, have been developed that are far superior to well-

known earlier methods, such as rules of thumb, least squares cross-validation, and biased cross-
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validation. Several researchers, see among others Jones et al. (1996) and Scott (2015), 

recommend a plug-in bandwidth selector as being most reliable in terms of overall performance. 

Thus, for bandwidth selection, we consider three different methods Bowman and Azzalini rule, 

Scott’s rule and Freedman-Diaconis rule, for more details about these rules see among others 

Scott (2015). Conceptually, we have two different kinds of bandwidths, i.e. moneyness 

bandwidth ℎ𝑚 and maturity (calendar) bandwidth ℎ𝜏. The following Table reports the optimal 

bandwidths obtained from the three reference rules for Gaussian kernel function.  

Table 4.1: Optimal bandwidths obtained from three reference rules  

Type of bandwidth 
Freedman-

Diaconis rule 

Bowman and 

Azzalini rule Scott’s rule 

Optimal band. ℎ𝑚 for Gaussian 0.0885 0.0548 0.0551 
Optimal band.  ℎ𝜏   for Gaussian 0.1449 0.1123 0.1344 

From Table 4.1, we observe that Scott’s and Bowman and Azzalini rules have closer 

moneyness bandwidth, while Freedman-Diaconis rule gives higher bandwidth (for deeper 

discussion about the differences between the three rules see Scott’s 2015). Empirically, in order 

to consider different kernel functions, it will be convenient to fix one of these bandwidth 

selection methods. In particular, in what follows we start showing the results obtained by 

applying the Scott’s rule, because it provided better approximations in these analyses. We recall 

that the optimal bandwidth, according to the Scott’s rule, is given by 3.5 𝜎𝑋𝑛−1 3⁄ .  

For a variety of reasons, there is no single kernel that can be recommended for all 

circumstances. One potential candidate is the normal kernel; however, it is relatively inefficient 

and has infinite support. The optimal Epanechnikov kernel is not continuously differentiable 

and cannot be used to estimate derivatives. In practice, the ability to switch between different 

kernels without having to reconsider the calibration problem at every turn is convenient. This 

task is easy to accomplish, but only for kernels of the same order. As Scott (2015) noted, if ℎ1 

and ℎ2 are smoothing parameters to be used with kernels 𝐾1 and 𝐾2, respectively, then Table 

4.2 gives a summary of factors for equivalent smoothing bandwidths among popular kernels. 

Table 4.2:  Factors for equivalent smoothing among popular kernels 

From \ To Gaussian Uniform Epanech. Triangle Biweight Triweight 

Gaussian 1 1.740 2.214 2.423 2.623 2.978 

Uniform 0.575 1 1.272 1.398 1.507 1.711 

Epanech. 0.452 0.786 1 1.099 1.185 1.345 

Triangle 0.411 0.715 0.910 1 1.078 1.225 

Biweight 0.3881 0.663 0.844 0.927 1 1.136 

Triweight 0.336 0.584 0.743 0.817 0.881 1 
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To investigate the impact of kernel functions on the proposed measure of arbitrage we 

proceed as follows. We start using Scott’s rule for bandwidth selection with different kernel 

functions. Therefore, with each kernel function we use the correspondent factor for equivalent 

smoothing, summarized in Table 4.2, to determine the optimal bandwidth. 

Figure 4.1 shows the IV surface estimated using put options for the daily data on May 13, 

2015, Scott’s rule and all kernel functions presented in Table 4.2. The IV smile is very clear for 

small maturities and still evident as time to maturity increases for all examined kernel functions.  

Figure 4.1: Implied Volatility Surface (IVS) of S&P 500 put options obtained with Scott’s 

rule and different kernel functions (i.e. Gaussian, Triangle, Epanechnikov, Biweight, 

Triweight and Uniform) 
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Clearly, from Figure 4.1, we observe almost the same surface for all kernel functions. 

Overall, these results confirms that the choice of kernel is not critical, while the performance 

of the smoothed IVS is more a question of bandwidth choice. To evaluate the presence of 

arbitrage opportunities, we compute the difference in implied volatilities between call and put 

options that have the same strike price, the same maturity and are written on the same 

underlying asset. In particular, we consider the differences that are greater than 80 percent of 

the maximum absolute value of the differences between call and put implied volatilities. In this 

way, we rule out some differences due to the noisy data or transaction costs.  Figure 4.2 shows 

the differences in implied volatilities between call and put options using Scott’s rule and 

different kernel functions (i.e. Gaussian, Epanechnikov, Triangle, Uniform, Biweight and 

Triweight). 
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Figure 4.2: Implied volatility surface differences (IVSD) with Scott’s rule and different kernel 

functions (i.e. Gaussian, Triangle, Epanechnikov, Biweight, Triweight and Uniform) 

  

  

  

 

So far as IV surface, we obtain almost the same surface hence the type of kernel function 

does not matter. Interestingly, in Figure 4.2, it is clear that the differences are significant at 

lower moneyness which corresponds to OTM put options and ITM call options. However, since 

the market increases and it is well known that OTM put options and ITM call options are not 
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reliable data to evaluate arbitrage opportunities, we focus on at ATM options. From figure 4.2, 

we observe even at ATM option there are small differences for all considered kernel functions, 

which may represent arbitrage opportunities. In particular, the differences increase as the 

maturities increase.  

Generally, it is well known that bandwidth selection in nonparametric smoothing 

problems is very crucial step, for this reason, we consider other selection methods. To simplify 

the exposition of our results, we show first the impact of bandwidths choices for Gaussian 

kernel function considering different normal reference rules on total VS (which is the sum of 

VS (4.29) for all considered maturities). In practice, we try to change the bandwidth ℎ𝑚, fix the 

optimal ℎ𝜏  and observe what happens. In particular, we increase the optimal bandwidth  ℎ𝑚 for 

each normal reference rule with step length 0.01.  

Table 4.3: Comparison of the total VS with different bandwidth choices using Gaussian 

kernel function 

 

Freedman-

Diaconis rule 

Bowman and 

Azzalini rule Scott’s rule 

Optimal bandwidth (ℎ𝑚)) 
Optimal bandwidth (ℎ𝜏)  

0.0885 
0.1449 

0.0548 
0.1123 

0.0551 
0.1344 

Total VS  361.44 380.31 383.46 

ℎ𝑚 0.0985 0.0648 0.0651 

Total VS  355.99 373.62 376.51 

ℎ𝑚 0.1085 0.0748 0.0751 

Total VS  351.62 366.88 369.48 

ℎ𝑚 0.1185 0.0848 0.0851 

Total VS  348.33 360.59 362.91 

ℎ𝑚 0.1285 0.0948 0.0951 

Total VS  346.08 355.05 357.16 

    

From Table 4.3, we observe that Scott’s rule presents the highest total VS and an optimal 

bandwidth between the two normal reference rules (i.e. Bowman and Azzalini rule and 

Freedman-Diaconis rule). Generally, for the three normal reference rules, the total VS decreases 

as the bandwidth increases. This result confirms the importance of bandwidth selection 

methods. 

Next, we compare the optimal bandwidth choices and the total VS from three different 

normal reference rules either using Gaussian kernel function or Epanechnikov kernel function. 

In this context, we use the factor for equivalent smoothing bandwidths between Gaussian and 

Epanechnikov of 2.214, see Table 4.2. The result of this analysis is reported in Table 4.4. 
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Table 4.4: Comparison of the optimal bandwidth choices and total VS from three normal reference 

rules either with Gaussian kernel or with Epanechnikov function 

 

Type of 

bandwidth 

Freedman-

Diaconis rule 

Bowman and 

Azzalini rule Scott’s rule 

Optimal band. Gaussian ℎ𝑚 0.0885 0.0548 0.0551 
Optimal band. Gaussian ℎ𝜏 0.1959 0.1213 0.1219 

Total VS with Gaussian  361.44 380.31 383.46 

Optimal band. Epanech. ℎ𝑚 0.1959 0.1213 0.1219 
Optimal band. Epanech ℎ𝜏 0.0885 0.0548 0.0551 

Total VS with Epanech.  358.71 380.98 383.52 

     

Using Epanechnikov kernel function, which requires a higher optimal bandwidth (2.214 

factor) than the Gaussian kernel function, we obtain total VS less than normal case for 

Freedman-Diaconis rule, while the opposite holds for the others reference rules. Yet the Scott 

rule achieves the biggest total VS either using Gaussian or Epanechnikov kernel function. 

Overall, Tables 4.3 and 4.4 numerically show the importance of the bandwidth selection. 

Visually, Figure 4.3 reports the IVSD using three reference rules either with Gaussian or 

Epanechnikov kernel function.  

Figure 4.3: comparison of the implied volatility surface differences (IVSD) obtained with three 

different normal reference rules and either with Gaussian kernel function (column 1) or with 

Epanechnikov one (column 2) 

Gaussian kernel Epanechnikov kernel 
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From figure 4.3, we observe some differences either between the three normal reference 

rules or between the two types of kernel function (that use different optimal bandwidths). For 

example, among the three normal references rules, observe the difference between Scott’s rule 

and Bowman and Azzalini rule. While for the difference among kernel functions see IVSD 

based on Bowman and Azzalini rule either with Gaussian or Epanechnikov kernel function. 

These results confirm the impact of bandwidth selection methods on smoothed surface and the 

marginal contribution of kernel functions. Generally, from all Figures, we observe at ATM 

option there are small differences, which may represent arbitrage opportunities. In particular, 

the differences increase as the maturities increase for all kernel functions and bandwidths 

selection methods. Hence, we argue that the proposed method measure of arbitrage, even it is 

sensitive for the examined settings, remains theoretically and empirically valid method to detect 

the presence of arbitrage opportunities in the option market.  

To evaluate the size of the arbitrage opportunities, one also could combine the IV 

smoothing with SPD estimation. This is important, because the SPD requires some properties 

in order to be consistent with no-arbitrage argument. In particular, the nonnegativity property 
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of SPD since its negative values immediately corresponds to the possibility of the arbitrage 

opportunities in the market. For complete treatment of this method see a relatively conservative 

approach adopted by Benko et al. (2007). The last approach is of great practical importance and 

generally confirms the result obtained via the violation of the put call parity relation. 

The second contribution of this study is to propose different methods to estimate SPD 

under the classical hypothesis of BS model. In particular, we use two different methodologies 

to evaluate the conditional expectation. Namely, the nonparametric estimator based on kernel 

estimator and a new alternative technique the so called OLP estimator proposed by Ortobelli et 

al. (2015). Differently from previous studies we estimate SPD directly from the underlying 

asset under the hypothesis of the BS model. To do so, firstly we examine the real mean return 

function using local polynomial smoothing technique. Then, we estimate the conditional 

expectation under real probability density. According the hypothesis of the BS model, we are 

able to derive a closed formula for approximating the conditional expectation under risk neutral 

probability. Now, we describe in details our alternative approach towards estimating the SPD. 

4.3 Alternative methods to estimate the SPD 

For the sake of clarity, denote RWS for a real world price and RNS for the risk neutral price. 

Under the hypothesis of the BS model it is straightforward to write:    

                                                              
( ) ,RN RW r T

T TS S e                                                  (4.30) 

Since 
(T t) ( | )r RN

t T tS e E S   , we can write 
(T t) ( )( | )r RW r T

t T tS e E S e       from which we 

obtain:  

                                                    
 ( | ) ( | ),RN T rt RW

T t tE S e E S                                     (4.31) 

If we assume   changes over time in model (4.21), then equation (4.31) becomes  

                                                          
 ( )

0 ( | ) ( | ),

T
r d Q

T t T te E S E S
   

                                   (4.32) 

where, ( | )Q
T tE S  denotes expectation under risk neutral world and (S | )T tE   the conditional 

expected price under real world. Moreover, (4.32) is equivalent to:  

                                                         
( )

0

0 0
(s) (s)ds,

T
d rT

RW RNe sq ds e sq
     

                        
  
(4.33) 

where, q (s)RW  and ( )RNq s  denotes SPDs under real and risk neutral world respectively. Please 

note that under the BS hypothesis T tS   has the same distribution as .t
TS e 

 

4.3.1 Local polynomial smoothing technique  
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The first step in this approach is to propose a direct method of estimating the real mean return 

function. Therefore, we use a local estimator that automatically provides an estimate of the real 

mean function and its derivatives. The input data are daily prices. Denoting the intrinsic value 

by 𝜇𝑖 and the true function by ( )it , 1,...., ,i n  we assume the following regression model: 

                                                                    
  𝜇𝑖 = 𝜇(𝑡𝑖) + 휀𝑖,                                             (4.34) 

where, i  models the noise, n denotes the number of data considered. The local quadratic 

estimator 𝜇(𝑡) of the regression function ( )t  in the point t is defined by the solution of the 

following local least squares criterion:  

                        min
𝛼0,𝛼1,𝛼2

∑ {�̃�𝑖 − 𝛼0 − 𝛼1(𝑡𝑖 − 𝑡) − 𝛼2(𝑡𝑖 − 𝑡)2}𝑛
𝑖=1 𝑘ℎ(𝑡 − 𝑡𝑖)                        (4.35) 

where, 
1

( ) i
h i

t t
k t t k

h h

 
   

 
 is kernel function, see Fan and Gijbels (1996) for more details. 

Comparing the last equation with the Taylor expansion of   yields: 

                                               0
ˆ ( )it  , 

'
1

ˆ ( )it  , 
''

2
ˆ2 ( ),it                                     (4.36) 

which make the estimation of the regression function and its two derivatives possible. The 

second step towards estimating the SPD is to use two methodologies, namely OLP estimator 

and kernel estimator, to estimate the quantity ( | )T tE S S . 

4.3.2 Second empirical analysis 

In the second empirical analysis, we present an application to the S&P 500 index using daily 

data for the sample period April 28, 2014 to April 28, 2015. In this context, we use Treasury 

Bond 3 months as a riskless interest rate for a period matching our selecting data. Firstly, we 

examine the real mean return function using local polynomial smoothing technique (4.35). The 

results of this analysis are reported in Figure 4.4. 
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Figure 4.4: Real mean return function estimation over time (mu  )  

 

Secondly, we evaluate the conditional expected price using both estimators, namely 

kernel estimator and OLP, to estimate (S | S )T tE as described above. In particular, for kernel 

method, it is well known that bandwidth choice is very crucial step, for this reason, as previous 

analysis we consider three selection methods (i.e. Scott’s rule, Bowman and Azzalini rule and 

Freedman-Diaconis rule). Following Table reports the optimal bandwidth for each normal 

reference rule: 

Table 4.5: Comparison of the optimal bandwidth choices from three normal reference rules  

 

Freedman-

Diaconis rule 

Bowman and 

Azzalini rule Scott’s rule 

Optimal bandwidth 0.6586 0.3637 0.4310 

    

So far as previous empirical analysis, Scott’s rule gives an optimal bandwidth between 

the two other normal reference rules (i.e. Bowman and Azzalini rule and Freedman-Diaconis 

rule). Furthermore, in what follows we choose Gaussian as a kernel function (motivated by 

assumptions of the BS model). Finally, we use the relationships (4.32) and (4.33) in order to 

recover the SPD. The results of this analysis are reported in Figure 4.5 
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Figure 4.5: State Price Densities obtained with Kernel and OLP estimators 
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From Figure 4.5, we observe that Scott’s rule gives the best result (SPDs from both 

estimators are almost identical). While for the other rules (Bowman and Azzalini rule and 

Freedman-Diaconis rule) we note a slight difference in the result obtained from both estimators.  

This result can be explained by the nature of the two methodologies. In particular, the OLP 

method proposed by Ortobelli et al (2015) yields a consistent estimator of the random 

variable 𝐸(𝑌|𝑋), while the generalized kernel method proposed in equation (4.2) yields a 

consistent estimator of the distribution function of 𝐸(𝑌|𝑋).Thus, OLP method that yields 

consistent estimators of random variables 𝐸(𝑌|𝑋) can be used to evaluate the SPD. Overall, the 

small differences between the two methods principally could be explained by the impact of 

bandwidth choice and then by other parameters (such as polynomial degree, type of kernel 

function etc.). Therefore, especially for kernel method, we examine the impact of bandwidth 

selection in a different way. In particular, we use Scott’s rule then we try to increase or decrease 

the optimal bandwidth with step length 0.1 to observe what happens. The results of this analysis 

are reported in Figure 4.6. 

Figure 4.6: State Price Densities obtained with OLP and Kernel estimator with different 

bandwidth choices  
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From Figure 4.6, with Scott’s optimal bandwidth (ℎ = 0.4310) we obtain the best result 

(SPDs from both estimators are almost identical). While increasing or decreasing the optimal 

bandwidth with step length 0.1, we observe increasing differences between the two estimators. 

In particular, when we increase the optimal bandwidth the kernel method surpasses the OLP 

estimator. Whereas the opposite holds when we decrease the optimal bandwidth. Furthermore, 

it would be of interest to consider even smaller bandwidth (e.g. when minimizing the bias). 
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Thus, we examine the shape of the SPD using two smaller bandwidths (ℎ = 0.1 and ℎ = 0.05). 

The results of this analysis are reported in Figure 4.7.     

Figure 4.7: State Price Densities obtained with OLP and Kernel estimator with small 

bandwidth choices  

  

 

From Figure 4.7, we clearly observe that the SPD based on kernel method, with smaller 

bandwidths, allocates under the SPD based on OLP estimator. The gap between the two SPDs 

increases as the bandwidth decreases. This analysis confirms that the bandwidth selection 

methods have direct impact on the arbitrage free condition. In particular, it was shown that as 

the bandwidth parameter increases the degree of no-arbitrage violation decreases (for deeper 

discussion see Kopa and Tichý 2014). On the one hand, these analyses show the importance of 

bandwidth selection methods. On the other hand, observe that OLP estimator also could be 

improved depending on the parameter 𝑏𝑘 that we choose (in this analysis we use the rule of 

thumb proposed by Ortobelli et al. (2015)). 

Furthermore, we examine the third polynomial degree (In practice for a given bandwidth 

h, a large value of polynomial would cause a large variance and a considerable computational 

cost, but it would reduce the modeling bias. Since the bandwidth is used to control the size 

(complexity), it is recommended to use the lowest odd order) and other kernel functions. 

Overall, these analysis confirm the previous conclusion (either polynomial degree or kernel 

function types contribute marginally in comparison with the impact of bandwidth selection 

methods).   

Finally, we use the same procedure to extend our analysis to the tridimensional case 

towards examining the evolution of SPDs over time. In particular, with kernel method we use 

Scott’s rule and Gaussian as a kernel function.  Figures 4.8 and 4.9 show SPDs estimated via 



 79  
 

kernel and OLP estimator respectively, from which we observe as well a slight difference 

between the two estimators.  

Figure 4.8: State Price Densities obtained with Kernel estimator  

 

Figure 4.9: State Price Densities obtained with OLP estimator   

 

 

4.4 Concluding remarks  

In this chapter, we present alternative methods to evaluate the presence of arbitrage 

opportunities in the market. In particular, we examine the violation of the well-known put-call 

parity no-arbitrage relation and discuss the nonnegativity of the SPD. Then, we propose 

different methods to estimate SPD.  Particularly, we use two distinct methodologies for 

estimating the conditional expectation, namely the kernel method and the OLP method recently 

proposed by Ortobelli et al. (2015). We deviate from previous studies in that we estimate SPD 

directly from the underlying asset under the hypothesis of BS model. To this end, firstly we 

examine the real mean return function using local polynomial smoothing technique. Then, we 

estimate the conditional expectation under real probability density. Under the hypothesis of BS 
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model, we are able to derive a closed formula for approximating the conditional expectation 

under risk neutral probability. This analysis allows us extrapolating arbitrage opportunities and 

relevant information from different markets (futures and options) consistently with the analysis 

of the underlying. 
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Chapter 5 

 

 

 

On the impact of  conditional expectation estimators in portfolio 

theory  

5. Summary 

 

 

 

In this chapter, we investigate the implications for portfolio theory using conditional 

expectation estimators. In particular, we focus on three financial applications: i) approximation 

of the conditional expectation within large-scale portfolio selection problems, ii) performance 

valuation considering the heavy tails of returns, and iii) the optimal portfolio choices for 

different investors’ preferences.  

In the first application, we discuss and examine some correlation measures (based on the 

conditional expectation) used to approximate properly the returns in large-scale portfolio 

problems. Then, we compare the impact of alternative return approximation methodologies on 

the ex-post wealth of a classic portfolio strategy. In this context, we show that a correlation 

measures that use properly the conditional expectation perform better than the classical ones. 

Moreover, the correlation measure typically used for returns in the domain of attraction of a 

stable law works better than the classical Pearson correlation does. 

In the second application, we propose new performance measures based on the 

conditional expectation that takes into account the heavy tails of the return distributions. Then, 

we examine portfolio strategies based on the optimization of the proposed performance 

measures. In particular, we compare the ex-post wealth obtained applying portfolio strategies, 

which use alternative performance measures based on the conditional expectation.   

In the third application, we first propose a new consistent multivariate kernel estimator to 

approximate the conditional expectation. We show how the new estimator can be used for the 

return approximation of large-scale portfolio problems. Moreover, the proposed estimator 

optimizes the bandwidth selection of kernel-type estimators, solving the classical selection 

problem. Second, we deal with the portfolio selection problem from the point of view of 
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different non-satiable investors, namely risk-averse and risk-seeking investors. In particular, 

using a well-known ordering classification, we first identify different definitions of returns 

based on the investors’ preferences. The new definitions of returns are based on the conditional 

expected value between the random wealth assessed at different times. 

Finally, for each problem, we propose an empirical application of several admissible 

portfolio optimization problems applied to the US stock market. The proposed empirical 

analysis allows us to evaluate the impact of the conditional expectation estimators in portfolio 

theory. 

5.1 Introduction 

The mean-variance model has had a central role in portfolio theory ever since the pioneering 

work of Markowitz (1952). The main idea behind this model is that the return and the risk are 

modelled in terms of the portfolio mean and variance. This may be particularly suitable for 

small rational investors whose investments cannot influence market prices and who prefer 

smaller risks to larger ones and higher yields to lower ones. Unfortunately, widespread research 

has pointed out that the set of assumptions under which the classical mean-variance framework 

is established is not consistent with all investors’ preferences. For this reason, several 

alternative approaches to portfolio selection have been proposed: see, among others, Biglova et 

al. (2004), Rachev et al. (2008), and Ortobelli et al. (2009). Despite the fact that portfolio 

optimization based on several advanced measures has been introduced in the literature (Konno 

and Yamazaki, 1991; Young, 1998; Rockafellar et al., 2006; Rachev et al., 2008; Ortobelli and 

Tichý, 2015 and the literature therein) and has been utilized in practice, the literature on the 

impact of the conditional expectation estimation in portfolio theory is limited. Therefore, the 

general aim of this chapter is to assess the impact of conditional expectation estimators on 

different financial applications within portfolio theory. 

The first contribution of this chapter is to investigate the impact of alternative return 

approximation methods depending by k-factors in large-scale portfolio problem (such as in the 

k-fund separation model of Ross (1979)). In particular, we examine and compare the classical 

return approximation with a nonparametric approximation of the returns depending on few 

factors obtained by a principal components analysis (PCA). Furthermore, according to Ortobelli 

and Tichý (2015), we determine the principal components (of PCA) either using a correlation 

matrix suitable for heavy tailed distribution (called stable linear correlation), or using the 

classical Pearson correlation matrix (which summarizes the joint dispersion behavior of 

Gaussian vectors). The most commonly used approach to estimate the relationship between 

returns and k factors is the linear approximation based on the ordinary least squares (OLS) 
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estimator (see Ross (1979)). This approximation appears good enough when the returns are 

normally distributed. Admitting small departures from normality of the returns do not affect the 

regression coefficients greatly, however errors with a heavier tailed distribution, which is more 

suitable for modeling asset returns, can significantly affect the estimated OLS regression 

coefficients, (see Nolan et al. (2013)). Moreover, we believe that there exists substantial 

evidence of nonlinearity in the financial dataset used to estimate the returns (see among others 

Rachev et al 2008). For this reason, according to Ruppert and Wand (1994), we propose a 

nonparametric regression analysis to approximate the returns. This approach relaxes the 

assumptions of linearity and it suitable even for non-Gaussian distributions. In this context, we 

prove that the variability of errors of the return approximation decreases as the number of factor 

increases even when elliptically distributed returns present heavy tails. In addition, using 

concave dominance testing, we find that the nonparametric regression outperforms much better 

than its counterpart parametric (OLS) does. This empirical analysis is provided using portfolios 

of the components of S&P 500 index.  

The second contribution of this chapter is to deal with a proper evaluation of portfolio 

choices that account the distributional tails of portfolios. In particular, the main purpose of this 

contribution is to present theoretically sound portfolio performance measures considering a 

more realistic behavior of the returns (i.e. heavy tailed distributions). Using a recent alternative 

conditional expectation estimator proposed by Ortobelli et al. (2015), we are able to forecast  

the conditional expected portfolio returns with respect to a given sigma algebra of events (either 

generated by possible profits or generated by possible losses). More specifically, the first 

suggested performance measure is based on the conditional expectation with respect to two 

different σ-algebras (the σ-algebra generated by the portfolio losses, and the σ-algebra 

generated by the portfolio profits). While the second performance measure considers σ-algebras 

generated by the joint losses and by joint gains in the market. Moreover, we illustrate how the 

new performance measures can mitigate the shortcoming of the classical Sharpe ratio (see 

Sharpe (1994)) showing with an ex-post empirical analysis their tested higher capacity to 

produce wealth in the US market. 

The third contribution of this chapter proposes a new consistent multivariate kernel 

estimator to approximate the conditional expectation, and we stochastically compare the errors 

of the return approximation. We show that the approximation error is reduced with the new 

estimator, and that we can optimize the bandwidth parameters (whose approximation is always 

considered a problem for kernel-type estimators).Then, we deal with the portfolio selection 

problem from the point of view of different non-satiable investors, namely risk-seeking and 
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risk-averse investors (see Ortobelli et al. (2015)). In particular, by using the conditional 

expected value properly, we first identify different definitions of returns based on the investors’ 

preferences. The new definitions of returns are based on the conditional expected value between 

the random wealth assessed at different times. Finally, we compare the ex-post wealth obtained 

by maximizing some well-known performance ratios applied to the different returns definitions. 

In doing this, we can examine the impacts of the choices of investors with different risk aversion 

attitudes. 

The rest of the chapter is organized as follows. In section 5.2, we discuss and examine 

the impact of the approximation methods/correlation measures within large-scale portfolio 

selection problems. In section 5.3, we introduce the optimal portfolio choices using consistent 

estimation of the conditional expectation. In section 5.4, we deal with the optimal portfolio 

choices for different investors’ preferences. In this context, we propose a new methodology to 

solve bandwidth selection problem by introducing a new multivariate kernel estimator.  Each 

section is empirically self-contained. Finally, our conclusions are summarized in section 5.5. 

5.2 Practical and theoretical aspects of return approximation in large-scale portfolio 

selection problems 

In this section, we focus on the approximation methods within large-scale portfolio selection 

problems. In particular, we theoretically and empirically compare different methodologies 

based on the approximation of the dependence between returns and factors obtained by a PCA 

applied to different return correlation matrices.  

In this chapter, we consider n risky assets defined on a probability space (𝛺, ℑ, 𝑃). We 

point out the portfolios gross returns, 𝑥′𝑧, where 𝑥 ∈ 𝑆 = {𝑦 ∈ 𝑅+
𝑛| ∑ 𝑥𝑖 = 1𝑛

𝑖=1 ; 𝑥𝑖 ≥ 0; ∀ 𝑖 =

1, … , 𝑛} is the vector of non-negative allocations (i.e., no short sale are allowed 𝑥𝑖 ≥ 0) among 

n risky limited liability investments with gross returns8 𝑧 = [𝑧𝑖, … , 𝑧𝑛]′. Moreover, we generally 

assume that portfolio of gross returns belong to 𝐿𝑝(𝛺, ℑ, 𝑃) = {𝑋|𝐸(|𝑋|𝑝) < ∞} for some 𝑝 ≥

1. 

According to many researchers, see among others Rachev et al. (2005), the portfolio 

dimensional problem is strongly related to the estimation of statistical parameters input, which 

describes the dependence structure of the returns. In this setting, aiming to get a good 

                                                           

8  We define the i-th gross return between time 𝑡 and time 𝑡 + 1 as 
1, [ , 1],

,

,
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P

 
, where 

,t iP  is the price 

of the i-th asset at time 𝑡 and 
[ , 1],t t id 

 is the total amount of cash generated by the instrument between 𝑡 and 𝑡 +

 1. 
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approximation of the portfolio risk-reward measures, Papp et al. (2005) and Kondor et al. 

(2007) (among others) have shown that the number of observations should increase with the 

number of assets. Therefore, in order to get a sound approximation of portfolio input measures, 

it is important to find the right tradeoff between the number of historical data and a statistical 

approximation of the historical observations that depend only on a few parameters. Many 

studies illustrate that the problem of parameter uncertainty increases with the number of assets 

(see Kan and Zhou 2007). 

In practice, there are many different ways to reduce the dimensionality dependence of a 

large-scale portfolio selection problem. In this section, we compare parametric and 

nonparametric regression models used to reduce the dimensionality of the large-scale portfolio 

problem. In particular, we reduce the dimensionality of the portfolio problem and we 

approximate the return series through a multifactor model that depends on a proper number (not 

too large) of factors. Toward this end, we perform a principal component analysis (PCA) of the 

correlation matrix of returns in order to identify the main portfolio factors (principal 

components), whose variability is significantly different from zero. According to Ortobelli and 

Tichý (2015), we can determine the principal components applying the PCA to a proper linear 

correlation matrix of returns that is different from the Pearson one when the returns are in the 

domain of attraction of a stable non-Gaussian law. Therefore, in the following subsections we 

define the crucial aspects useful for the proposed dimensionality reduction, which are: 

1) the description of different correlation measures to represent the dependence structure 

between random variables that are used to identify the main factors which account all 

return variability (through a PCA); 

2) the description of alternative (parametric and nonparametric) methodologies to 

approximate the dependence between returns and factors; 

3) An ex-post analysis discusses the impact of the use of different correlation measures and 

approximation methods. 

5.2.1 Correlation measures and principal component analysis 

The measurement of dependency among random variables plays a central role in several 

financial decision-making problems. Therefore, various measures of dependence between 

random variables have been proposed and extensively studied; see among others Scarsini 

(1984), Cherubini et al. (2004) and the literature therein. Since empirical evidence shows that 

Pearson correlation 𝜌𝑃 does not well approximate the dependence structure of returns (see 

Ortobelli and Tichý (2015)), we consider an alternative correlation measure that is suitable for 

heavy tail random variables belonging to 𝐿𝑝(𝛺, ℑ, 𝑃) with 𝑝 ∈ (0,1). In particular, for any 
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𝛼 stable sub-Gaussian vector (with 𝛼 > 1) we can define the following linear correlation 

measure (called stable correlation measure): 

                                 𝜌𝑠(𝑋, 𝑌) =
𝐸((𝑋−𝐸(𝑋))𝑠𝑖𝑔𝑛(𝑌−𝐸(𝑌)))

2𝐸(|𝑋−𝐸(𝑋)|)
+

𝐸((𝑌−𝐸(𝑌))𝑠𝑖𝑔𝑛(𝑋−𝐸(𝑋)))

2𝐸(|𝑌−𝐸(𝑌)|)
.                   (5.1)         

The stable correlation measure and the Pearson linear correlation represent alternative 

measures used to evaluate the returns dependence structure. Moreover, according to Ortobelli 

and Tichý (2015), for any couple of random variables  𝑋1, 𝑋2 we can apply Pearson or stable 

correlation measures (simply indicated as 𝜌) to all the random variables 𝑍i = (𝑋𝑖 − 𝐸(𝑋𝑖|ℑ1)) 

(𝑖 = 1,2) orthogonal to 𝐿2(𝛺, ℑ1, 𝑃) (when we use the scalar product (𝑈, 𝑉) ⟶ 𝐸(𝑈𝑉)) where  

ℑ1 is a proper sub-σ-algebra of ℑ (i.e. ℑ1 ⊂ ℑ) and the random variables 𝑋𝑖 (𝑖 = 1,2) are not 

ℑ1-measurable. Doing so, we obtain the following alternative correlation measures (commonly 

indicated with the same symbol 𝜌 that could be either the Pearson linear correlation or the stable 

one): 

                                                𝛰𝜌,ℑ1
(𝑍1, 𝑍2) = 𝜌(𝑍1, 𝑍2),                                                  (5.2) 

that extend the Pearson correlation measure and the stable one when ℑ1 = {∅; Ω}. Recall that 

the orthogonal projection 𝐸(𝑋|ℑ1) minimizes the expected squared differences 𝐸((𝑋 − 𝑌)2) 

among all ℑ1-measurable random variables 𝑌. In other words, it is the best predictor of X based 

on the information in ℑ1. Besides, we know that 𝐸((𝑋 − 𝐸(𝑋|ℑ1))𝑌)  =  0 for all ℑ1-

measurable random variables 𝑌.9 Generally, we consider linear correlation measures (as (5.2)) 

when we want to reduce the dimensionality of large-scale portfolio selection problems. In this 

case, the sigma algebra  ℑ1 is the sigma algebra generated by a market index, and the measure 

(5.2) identifies the variability of the part of random variables 𝑋 − 𝐸(𝑋| ℑ1), which are 

“uncorrelated” with the market index. 

According to Ortobelli and Tichý (2015), we consider the 𝜎-algebra  ℑ1 generated by the 

so-called upper stochastic bound  𝑚𝑎𝑥𝑖𝑧𝑖. The upper stochastic bound 𝑚𝑎𝑥𝑖𝑧𝑖 satisfies the 

relation 𝑚𝑎𝑥𝑖𝑧𝑖 ≥ 𝑥′𝑧 for all portfolio of weights 𝑥 ∈ 𝑆. Essentially, this choice is based on 

both unambiguous financial evidence and compelling theoretical argument from the probability 

theory. To give a meaningful financial interpretation, we start with this simple consideration; 

every investor wishes to determine ‘today’ the best daily optimal asset that will be the nearest 

to the future maximum, i.e. the upper stochastic bound of the market. Considering correlation 

measure (5.2) with the sigma algebra ℑ1, generated by the upper stochastic bound investors take 

                                                           
9 This result theoretically supported by a well-known Theorem from probability theory, see among others Chung 

(2001). 
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into account the variability of the part of their portfolio uncorrelated with the upper stochastic 

bound. To estimate  𝐸(𝑌|ℑ1) = 𝐸(𝑌|𝑚𝑎𝑥𝑖𝑧𝑖) we can use the Nadaraya-Watson kernel 

estimator: 

𝐸(𝑌|𝑚𝑎𝑥𝑘𝑧𝑘 = 𝑥)  =
∑ 𝑦𝑖𝐾(

𝑥−𝑥𝑖
ℎ(𝑛)

)𝑛
𝑖=1

∑ 𝐾(
𝑥−𝑥𝑖
ℎ(𝑛)

)𝑛
𝑖=1

, 

where the kernel function 𝐾(𝑥) is a density function such that i) 𝐾(𝑥) < 𝐶 < ∞; ii) 

lim
x→±∞

|𝑥𝐾(𝑥)| = 0; and  iii) the positive bandwidth function  ℎ(𝑛) → 0 when 𝑛 → ∞. Several 

studies confirm that the choice of the kernel function is not critical, while the performance of 

the nonparametric regression is more a question of bandwidth choice.10 In the proposed 

analysis, we use the Gaussian kernel univariate estimator with bandwidth  ℎ(𝑛) =

3.5𝑛−1 3⁄ 𝜎𝑚𝑎𝑥𝑖𝑧𝑖
 as suggested by Scott (2015).  

Once we identify the main factors (obtained by a PCA on the proper correlation matrix) 

that summarize the variability of market returns, we have to approximate the relationship 

between the returns and these factors. The return approximation can be described using 

parametric or nonparametric regression models. 

5.2.2 Approximation with parametric and nonparametric regression models  

With parametric regression models, we can replace the original n correlated time series 

{𝑧𝑖}𝑖=1
𝑛 with the n uncorrelated time series {𝑅𝑖}𝑖=1

𝑛   (obtained by the PCA) assuming that each 

𝑧𝑖 is a linear combination of  𝑅𝑖. In particular, the dimensionality reduction is obtained by 

choosing only the first factors that sufficiently summarize a large part of the variability. In this 

setting, we call portfolios factors 𝑓𝑖 the first s principal components 𝑅𝑖 with a significant 

variability, while the remaining 𝑛 − 𝑠 principal components with smaller variability are 

summarized by an error  . Typically, the OLS estimator is widely used to approximate the 

returns through the following linear relation. 

                              0 0

1 1 1

s n s

i i , i , j j i , j j i , i , j j i

j j s j

z b b f b R b b f 
   

        ,  1i ,...,n               (5.3) 

where iz is the gross return for asset i, 0i ,b  is the fixed intercept for asset i, i , jb  is the coefficient 

for the factor jf , s is the number of factors, i  is the error term for asset i and n is the number 

of assets. 

Generally, the OLS estimator is a well-established and very useful procedure for solving 

                                                           
10 For a more complete treatment, from a historical viewpoint, with complete references, and detailed discussion 

of variations that have been suggested, see Scott (2015).  
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regression problems when the returns are normally distributed. However, the returns are 

generally characterized by a heavier tailed distribution (see among others Rachev and Mittnik 

(2000)) and therefore we cannot generally assume that the dependence between returns and the 

principal components is linear. For this reason, we suggest to use the nonparametric regression 

analysis as an alternative to the classical parametric approach (5.3). Typically, in several 

financial models (APT, CAPM, etc.) the returns are assumed to be elliptically distributed, and 

the large-scale portfolio problem is solved approximating the returns with a regression model 

on some uncorrelated market factors. Even in this chapter we reduce the complexity of the large 

portfolio model using a nonparametric regression model where s factors are determined applying 

a PCA to a linear correlation measure and the (𝑠 + 1)-th factor 𝑀𝑠+1 is a market index i.e. 

                                                      𝑧𝑖 = 𝐸(𝑧𝑖|𝑓1, … , 𝑓𝑠, 𝑀𝑠+1) + 휀𝑖
(𝑠)

.                                                 (5.4) 

Clearly, when we regress the returns to the uncorrelated factors obtained by a PCA using 

an OLS estimator we obtain that the variability of the errors decreases increasing the number of 

factors. This aspect is also true for nonparametric estimators as suggested by the following 

theorem.   

Theorem 5.1: Let 𝑾 = (𝑧, 𝑓1, … , 𝑓𝑠) be an s+1-dimensional elliptically distributed 

vector 𝐸𝑙𝑙(𝝁, ∑), where 𝝁 and ∑ are respectively the mean vector and the dispersion matrix. 

Moreover, 𝑓1, … , 𝑓𝑠 are uncorrelated one-dimensional factors. Assume that  𝑾 = 𝝁 + 𝐴𝑮, 

where A is a continuous positive random variable, which is independent from the Gaussian 

vector G that has null mean and variance covariance matrix ∑. Then, it follows that 

                         𝐸(𝑧| 𝑓1, … , 𝑓𝑠) = 𝜇𝑧 + ∑ (𝐸(𝑧|𝑓𝑖) − 𝜇𝑧)𝑆
𝑖=1 ~𝐸𝑙𝑙 (𝜇𝑧, ∑

𝜎𝑧𝑓𝑖
2

𝜎𝑓𝑖
2

𝑠
𝑖=1 ).                (5.5) 

where 𝜎𝑧𝑓𝑖
 is the covariation between z and fi  (component (1,i) o f matrix ∑) and 𝜎𝑓𝑖

2  is 

dispersion of factor fi (component (𝑖, 𝑖) of matrix ∑). 

Proof of Theorem 5.1 

To proof Theorem 5.1 we need to prove the following more general Proposition. 

Proposition 5.1: Let 𝑾 = (𝑿, 𝒀, 𝒁)  be an n-dimensional elliptically distributed 𝐸𝑙𝑙(𝝁, ∑) 

vector, where X, Y and Z are respectively p-dimensional, q-dimensional and n-p-q dimensional 

vectors (𝑛 > 𝑝 > 𝑞 ≥ 1), with dispersion matrix11 ∑ =

                                                           
11  With a little abuse of notation, in this chapter we write the dispersion matrix as 

∑ = [

∑𝑿 ∑𝑿𝒀 ∑𝑿𝒁

∑𝒀𝑿 ∑𝒀 ∑𝒀𝒁

∑𝒁𝑿 ∑𝒁𝒀 ∑𝒁

] = ((∑𝑿, ∑𝑿𝒀, ∑𝑿𝒁), (∑𝒀𝑿, ∑𝒀, ∑𝒀𝒁), (∑𝒁𝒀, ∑𝑿𝒀, ∑𝒁)) 
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((∑𝑿, ∑𝑿𝒀, ∑𝑿𝒁), (∑𝒀𝑿, ∑𝒀, ∑𝒀𝒁), (∑𝒁𝒀, ∑𝑿𝒀, ∑𝒁))  and mean 𝝁 = (𝝁𝑿, 𝝁𝒀, 𝝁𝒁)  such that Y 

and Z are uncorrelated. Moreover, assume that  𝑾 = 𝝁 + 𝐴𝑮, where A is a continuous positive 

random variable, which is independent from the Gaussian vector G that has null mean and 

variance covariance matrix ∑ . Then,  

             𝐸(𝑿|𝒀, 𝒁) = 𝐸(𝑿|𝒀) + 𝐸(𝑿|𝒁) − 𝝁𝑿~𝐸𝑙𝑙(𝝁𝑿, ∑𝑿𝒀∑𝑲
−𝟏∑𝒀𝑿 + ∑𝑿𝒁∑𝑲

−𝟏∑𝒁𝑿).     (5.6) 

Proof: Let be   𝑲 = (𝒀, 𝒁), then ∑𝑲 = ((∑𝒀, 𝟎), (𝟎, ∑𝒁)), because Y and Z are uncorrelated 

(i.e.  ∑𝒀𝒁 = 𝟎). This implies that: 

∑ = [
∑𝑿 ∑𝑿𝑲

∑𝑲𝑿 ∑𝑲
] and  ∑𝑲

−𝟏 = [
∑𝒀

−𝟏 𝟎

𝟎 ∑𝒁
−𝟏], 

where ∑𝑿𝑲 = [∑𝑿𝒀, ∑𝑿𝒁]. According to the Corollary 1 proposed by Ortobelli and Lando 

(2015), we know that: 

𝐸(𝑿|𝑲) = 𝝁𝑿 + ∑𝑿𝑲∑𝑲
−𝟏(𝑲 − 𝝁𝑲)~𝐸𝑙𝑙(𝝁𝑿, ∑𝑿𝑲∑𝑲

−𝟏∑𝑲𝑿), 

from which we get 

𝐸(𝑿|𝒀, 𝒁) = 𝝁𝑿 + ∑𝑿𝒀∑𝒀
−𝟏(𝒀 − 𝝁𝒀) + ∑𝑿𝒁∑𝒁

−𝟏(𝒁 − 𝝁𝒁) = 𝐸(𝑿|𝒀) + 𝐸(𝑿|𝒁) − 𝝁𝑿. 

Thus, the thesis holds.                                                                                                                                  Q.E.D     

The proof of the Theorem 5.1 is a logical consequence of the above Proposition. As a 

matter of fact, we get the proof with two factors, if we assume Y and Z of the previous theorem 

two uncorrelated one-dimensional factors. The general proof follows by induction.              Q.E.D     

Some examples of jointly elliptical distributions that admit the decomposition 𝑾 = 𝝁 +

𝐴𝑮 include 𝛼 stable sub-Gaussian distributions, multivariate t-Student distributions, and all 

distributions used for symmetric Lévy processes where A is the subordinator such as Normal 

Inverse Gaussian (NIG) symmetric vectors, Variance Gamma (VG) symmetric vectors (see 

among others Shoutens (2003) and Samorodnitsky and Taqqu (1994)).  

From Theorem 5.1 we deduce that the dispersion of the random errors  𝜎
𝜀(𝑠)
2  of formula 

(5.4) decreases as the number of factors s increases when returns are elliptical distributed. Thus, 

Theorem 5.1 suggests that nonparametric regression analysis (5.4) maintains important intuitive 

properties of classic parametric regression even for elliptical vectors that do not admit finite 

variance (such as t-Student distribution with freedom of degrees less than 2 or stable sub-

Gaussian vectors). Thus, the nonparametric approximation (5.4) is consistent even with the 

assumption of stable distributed returns.  

5.2.2.1 Multivariate kernel methodology 
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Regression analysis is surely one of the most commonly used statistical techniques in 

economics and finance, as well as in physical sciences. Generally, it explores the relationship 

between a dependent variable and one (or more) explanatory or independent variables.   

                                                      ( | ) ( )z E z F m     f f .                                    (5.7) 

where 𝒇 = (𝑓1, … , 𝑓𝑠) is the vector of uncorrelated factors. Observe that, we can estimate the 

unknown parameters of ( )m f  with several methods (e.g. least squares), if the form of the 

function ( ) ( | )m E z F f f  is known (e.g. polynomial, exponential, etc.). However, when 

the general form of ( )m f  is not known, then it can be approximated with nonparametric 

techniques, as proposed by E. A. Nadaraya (1964) and G. S. Watson (1964). In this case, we 

relax the assumptions on the form of regression function that can be any continuous and smooth 

non-linear function. 

According to Stanton (1997), one potentially serious problem with any parametric model 

is misspecification, particularly when we have no economic reason to prefer one functional 

form to another. The same conclusion reported by Backus et al. (1998) who show that 

misspecification of interest rate models can lead to serious pricing and hedging errors. 

However, in order to avoid the misspecification problems Ait-Sahalia and Lo (1998) show that 

the use of nonparametric techniques often solves the issue.  

A commonly used estimator for 𝑚(∙) of  (5.7) is the multivariate version of the Nadaraya-

Watson kernel estimator, which is given by:  
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, 

where 𝐾(∙) is a suitable multivariate kernel function. For further discussion of nonparametric 

regression analysis, see Härdle (1990) or Härdle and Müller (2000). However, the Nadaraya-

Watson estimator has certain disadvantages. In particular, it corresponds to the local constant 

fit. To overcome these drawbacks, a general class of nonparametric regression estimator based 

on locally weighted least squares has been proposed (see among others Ruppert and Wand 

(1994)). In this context, an estimate of regression function ( )m f  is obtained punctually by the 

optimal �̂�, which minimize the following criterion: 
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                                        𝑚𝑖𝑛𝑎,𝑏  ∑  {𝑧𝑖 − 𝑎 − 𝑏𝑇(𝒇(𝑖) − 𝒇)}
2𝑛

𝑖=1 𝐾𝑯(𝒇(𝑖) − 𝒇),                        (5.9) 

where 𝑯 is 𝑠 × 𝑠 symmetric positive definite matrix depending on the number of observations 

n,  𝒇(𝑖) is the i-th observation of vector f. For deeper discussion about the properties of 

multivariate locally weighted least squares regression, we refer the readers to Ruppert and 

Wand (1994). These authors derive the leading bias and variance terms for general multivariate 

kernel weights using weighted least squares matrix theory. This estimator has nice properties 

and serves as a comparison to the classical parametric estimator (OLS) in the empirical analysis. 

In particular, it is straightforward weighted least squares and has a solution for 𝑎 and b of (5.9) 

given by: 
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where     ( )(1)f nW diag K ,...,K  H Hf f f f and  1

T

nZ z ,...,z . In this context, the 

local least squares regression has a closed solution for 𝑚(𝒇) as:  

                                                   
1

1( ) T T T
f f f f f

ˆ ˆm a e F W F F W Z


 f ,                               (5.10) 

where 1
Te  is a  (𝑠 + 1) −dimensional vector with one in the first entry and zeros in all other 

entries.  

Several researchers have shown that the choice of kernel is not critical, while the 

performance of the smoothed regression function is more a question of bandwidth choice. Fan 

and Gijbels (1996) give a survey on bandwidth selection for univariate local polynomial 

smoothing technique, which contains the Nadaraya-Watson estimator as a special case. 

However, there is little guidance in literature on bandwidth selection for multivariate kernel 

density estimation, which certainly remains an important issue in empirical studies. The most 

widely used bandwidth selection methods are the rule-of-thumb and the plug-in bandwidth 

selection. In particular, the former is the normal reference rule for kernel density estimation 

presented in Bowman and Azzalini (1997). For general multivariate kernel estimators 𝐾𝑯, 

where 𝑯 = 𝑑𝑖𝑎𝑔(ℎ1, … , ℎ𝑠), Scott (2015) suggests the following bandwidth selectors: 

                   Scott’s rule in 𝑅𝑠:   ℎ̂𝑖 = �̂�𝑖 𝑛
−1 (𝑠+4)⁄ ,   𝑖 = 1, … , 𝑠                                 (5.11) 

where �̂�𝑖 is the usual estimate of the standard deviation of each variable 𝑓𝑖, and n is the sample 

size. This method of bandwidth selection has the property that it minimizes the mean integrated 

squared error (MISE) of the estimate. In the following empirical analysis, we use a normal 

kernel function 𝐾𝑯 and we employ the bandwidth selection suggested by Scott (2015).  
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5.2.3  Empirical comparison between parametric and nonparametric estimators 

In this section, we first compare the ex-ante errors we get considering OLS or Ruppert-Wand 

(hereinafter RW) regression return approximation. Secondly, we compare the ex-post wealth 

obtained maximizing the Sharpe ratio of differently approximated return portfolios. 

In the empirical analysis, we use all active stocks on S&P 500 index from January 1, 2008 

to June 10, 2016. The dataset is obtained from Thomson-Reuters DataStream, and it consists of 

2126 daily observations. The choice of this period is not arbitrary; it is characterized by a higher 

variability due to both subprime crisis and European credit risk crisis. 

5.2.3.1 Ex-ante impact of regression errors 

We first examine the impact of two approximation methods considering the portfolio 

dimensionality reduction problems. In particular, starting from January 1, 2008 every month 

(20 trading days) we evaluate the errors obtained using different regression methodologies. 

Thus, as suggested by Ortobelli and Tichý (2015), we first perform a PCA on some correlation 

matrices of the stock returns in order to identify few factors with the highest return variability. 

Then, we compare the errors obtained regressing the returns on these principal components.  

According to Section 5.2.1, we apply the PCA on four different correlation matrices here 

summarized: 

P1: Pearson linear correlation of the gross returns 𝑧𝑖. 

P2: Pearson linear correlation applied to the random variables 𝑧𝑖 − 𝐸(𝑧𝑖| ℑ1) orthogonal 

to (𝛺, ℑ1 , 𝑃), where ℑ1 is the sigma algebra generated by the upper stochastic bound  𝑚𝑎𝑥𝑖𝑧𝑖. 

The estimator used to approximate 𝐸(𝑧𝑖| ℑ1) is given in Section 5.2.1. For simplicity, we refer 

to this correlation matrix as Pearson conditional.   

S1: Stable linear correlation (given by the formula (5.1)) of the gross returns 𝑧𝑖. 

S2: Stable linear correlation applied to the random variables 𝑧𝑖 − 𝐸(𝑧𝑖| ℑ1) orthogonal 

to (Ω, ℑ1 , 𝑃). For simplicity, we refer to this correlation matrix as Stable conditional.  

From the PCA we select the 20 principal components (about 4% of all active assets) with 

the highest return variability (for the four alternative concepts of variability). Then we 

investigate which approximation method (i.e. OLS and RW regression models) gives the lowest 

variability of the errors for every group of factors obtained by the PCA. Thus, we have to 

compare eight (4x2) error approximations 107 times for all asset returns of the S&P500 

components. Thus, every month (20 trading days) we use a moving average window of one 

year (252 trading days) for the PCA computation and regression models.  

Observe that, the residuals of OLS and RW regression models in (5.3) and (5.4) present 
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null mean. Therefore, we test concave dominance among the estimated errors, in order to 

evaluate which residual is “greater”.12 This test allows us to determine those errors with the 

lowest variability.  

This study essentially enables us to make three important comparisons: first between 

parametric estimator (i.e. OLS) and nonparametric estimator (i.e. RW), then between stable 

correlation matrix and the classical linear Pearson correlation, and finally between the 

correlation with conditional expectation (i.e. P2 and S2) and unconditional expectation cases 

(i.e. P1 and S1).  In particular, Table 5.1 reports the average (over the time) of the average 

percentage of regression errors with higher variability (in the sense of concave dominance) of 

the criterion on the raw with respect to the criterion on the column. We point out with 𝑛. 𝑐 (not 

comparable) the elements on the diagonal of Table 5.1. 

Table 5.1: Average percentage of regression errors with higher variability considering two 

regression models (i.e. OLS and RW) applied to few factors obtained by the PCA of four 

alternative correlation matrices (P1, P2, S1, S2). 

 
 

OLS 

Pearson 

OLS 

Pearson 

conditional 

OLS 

Stable 

OLS 

Stable 

conditional 

RW 

Pearson 

RW 

Pearson 

conditional 

RW 

Stable 

RW 

Stable 

conditional 

OLS 

Pearson 

𝑛. 𝑐 0.0058 0.01 0.0097 0.4939 0.5032 0.5041 0.513 

OLS 

Pearson 

conditional 

0.0045 𝑛. 𝑐 0.0096 0.0098 0.4839 0.4977 0.5037 0.507 

OLS 

stable 

0,0468 0,0474 𝑛. 𝑐 0,0045 0.4639 0.4938 0.5014 0.503 

OLS 

Stable 

conditional 

0.0467 0.0473 0.0041 𝑛. 𝑐 0.4589 0.4837 0.4937 0.505 

RW 

Pearson 

0 0 0 0 𝑛. 𝑐 0.337 0.4628 0.4627 

RW 

Pearson 

conditional 

0 0 0 0 0.0689 𝑛. 𝑐 0.4621 0.4625 

RW 

stable 

0 0 0 0 0.0201 0.0205 𝑛. 𝑐 0.2245 

RW 

Stable 

conditional 

0 0 0 0 0.0203 0.0208 0.2023 𝑛. 𝑐 

 

From Table 5.1 we observe that: 

 The errors we get with nonparametric regression analysis (i.e. RW) never present higher 

variability than those obtained with the classical parametric regression analysis (i.e. 

                                                           
12 For more details on stochastic dominance orders and tests see among others Muller and Stoyan (2002), Davidson 

and Jean-Yves (2000). 
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OLS). Moreover, we test that about the 50% of OLS error approximation present higher 

variability (in the sense of concave order) than RW error approximation.  

 When we compare the RW regression errors for different concepts of variability, we 

observe that the same number of the principal components (20) obtained with a PCA on 

a stable type correlation matrix are often able to explain a higher variability than the 

principal components obtained with a PCA on a Pearson type correlation matrix. Indeed, 

we test that about the 45% of RW error approximation based on “Pearson type factors” 

present higher variability of RW regression errors for “Stable type factors”. While we do 

not observe a significant supremacy in terms of higher variability using different 

correlation matrices, when we compare the OLS regression errors using the same number 

of the principal components (20) for different concepts of variability. 

 Finally, comparing the regression errors obtained regressing the returns on conditional 

and unconditional correlation matrices, we observe that the same number of the principal 

components obtained with a PCA on conditional-type correlation matrices are often able 

to explain a higher variability than the principal components obtained with a PCA on 

unconditional-type correlation matrices. From this surprising result, we deduce the 

importance of identifying the right factors representing the explainable variability. 
 

Overall, the best results are obtained when we approximate the return regressing them on 

few factors obtained by a PCA applied to a stable conditional correlation matrix (i.e. S2) using 

the nonparametric RW regression model.  

5.2.3.2 On the ex-post wealth obtained with different return approximating methodologies 

In order to evaluate the impact of different approximation methodologies on large-scale 

portfolio problems, we suggest to compare the ex-post wealth obtained with a classical strategy 

when we approximate in different ways the returns. We use the same database introduced in 

section 5.2.3. In particular, we compare the ex-post wealth obtained maximizing the Sharpe 

ratio,  

a) Either on returns approximated regressing them on few factors, selected using the 

Random Matrix Theory criterion,
13 obtained by a PCA applied to a stable conditional 

correlation matrix (i.e. S2) and using the nonparametric RW regression model.  

b) Or on returns approximated regressing them on few factors obtained by a PCA (i.e. P1) 

                                                           
13 We use as factors the portfolios whose weights are orthonormal eigenvectors of the correlation matrix with 

eigenvalue (i.e. variance of factors) greater than  (1 + √
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
)

2

 see, among others, Coqueret and 

Milhau 2014, Daly et al. (2008) and references therein.  
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and using the OLS regression model (classical strategy used by practitioners). 

The ex-post wealth obtained with the two strategies is also compared with the wealth we 

get with a “take and hold” strategy on the market index S&P 500 (that is the classic benchmark 

of the market.). Let us briefly formalize the portfolio performance measure (Sharpe ratio) used 

in this empirical analysis.  

Sharpe ratio (1994). The Sharpe ratio is used to characterize how well the return of an asset 

compensates the investor for the risk taken. The Sharpe ratio computes the price for unity of 

risk, by subtracting the risk-free rate from the rate of return of the portfolio and then dividing 

the result by the standard deviation of the portfolio returns. Formally: 

0

'

( ' )
( ' )

x z

E x z z
SR x z




 ,                                                          (5.12) 

where, 𝐸(𝑥′𝑧) is the portfolio expected returns, 𝑧0 is the risk-free gross return and 𝜎𝑥′𝑧 is the 

portfolio standard deviation.  

In this analysis the riskless is not allowed, i.e.  𝑧0 = 1. Moreover, we recalibrate the 

portfolio every three months (60 trading day) using a moving average window of one year (252 

trading days) for approximating the returns and computing the optimal portfolios. Starting with 

an initial wealth 𝑊0 = 1 that we invest on January 1, 2008, we evaluate the ex-post wealth 

sample paths obtained from the two compared cases. Thus, at the k-th recalibration time, the 

following steps are performed for Sharpe strategies:  
 

Step 1. On the one hand, apply PCA to Pearson correlation matrix (i.e. P1) and then 

approximate the gross returns by OLS estimator. On the other hand, apply PCA to the stable 

conditional correlation matrix (i.e. S2) and then approximate the gross returns by RW estimator. 

In both cases, we select the number of principal components factors using the Random Matrix 

Theory criterion (see footnote 13). 

Step 2. Determine the market portfolio 
( )k
Mx  that maximizes the performance ratio 

𝜌(𝑥′𝑧) applied to the approximated returns: 

𝑚𝑎𝑥𝑥 𝜌(𝑥′𝑧) 

s.t.  ∑ 𝑥𝑖
(𝑘)𝑛

𝑖=1 = 1,  

                                                              𝑥𝑖
(𝑘)

≥ 0     𝑖 = 1, … , 𝑛                                          (5.13) 

Here the performance measure 𝜌(𝑥′𝑧) is the Sharpe ratio (5.12). The maximization of the Sharpe 

ratio can be solved as a quadratic-type problem (see Stoyanov et al. 2007). 

Step 3. Since we recalibrate the portfolio every 60 trading days, we calculate the ex-post final 

wealth as follows: 
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                                                     ( ) ( )
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'
k expost

t t t M tk k k k
W W t.c. x z

 
  ,                                 (5.14) 

where tk
t.c.  are the proportional transaction costs of 20 basis points and ( )

1

expost
tk

z


 is the vector 

of observed gross returns in the period between kt  and 1kt  , such that 1 60k kt t   . 

We apply the algorithm until the observations are available. The results of this analysis 

are reported in Figure 5.1. 

Figure 5.1: Ex-post wealth obtained by Sharpe ratio either with Pearson correlation matrix 

and OLS regression model (simply SR (OLS)) or with stable conditional correlation and RW 

regression model  (simply SR (RW)), compared to the S&P 500 benchmark. 

 

Figure 5.1 reports the ex-post wealth evolution obtained by the two strategies (i.e. SR 

(RW) and SR (OLS)) and the S&P 500 benchmark. Clearly, the SR (RW) outperforms both the 

strategy based on SR (OLS) and the S&P 500 benchmark. Furthermore, we observe even S&P 

500 benchmark is slightly better than SR (OLS). For further confirmation, we examine the ex-

post log-returns obtained with the three strategies, and we check whether there exist stochastic 

dominance relationships between them. In particular, we test whether a portfolio strategy is 

preferable (with preference relation ≻) to another one from the point of view of different classes 

of investors. In particular, we evaluate the performances for all non-satiable investors (first-

order dominance - FSD), all non-satiable risk-averse investors (second-order dominance - 

SSD), all non-satiable risk-averse investors with preference of positive skewness (third-order 

dominance - TSD) (see, among others, Muller and Stoyan (2002) Davidson and Jean-Yves 

(2000)). The results of this analysis are reported in the following Table.  
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Table 5.2: Dominance relationships among optimal portfolios obtained applying SR (OLS), 

SR (RW) and S&P 500 benchmark. 

 SR (OLS) SR (RW) S&P 500 

SR (OLS) 𝒏. 𝒄 ≺SSD ≺SSD 

SR (RW) ≻SSD 𝒏. 𝒄 ≻SSD 

S&P 500 ≻SSD ≺SSD 𝒏. 𝒄 

 

We do not find First-order stochastic dominance relationships. However, we find that SR 

(RW) dominates both the SR (OLS) and the S&P 500 benchmark in terms of second-order 

stochastic dominance (SSD) (and thus also for the TSD). Moreover, both the SR (RW) and the 

S&P 500 benchmark dominate the SR (OLS) in the SSD sense. Therefore, these results provide 

strong support for the use of the RW regression model in the context of the portfolio theory.  

In Table 5.3, we report eight different statistics of the ex-post log returns obtained with 

the three strategies. In particular, we compute the mean, standard deviation, skewness, 

kurtosis, 𝑉𝑎𝑅𝛼, 𝐶𝑉𝑎𝑅𝛼, Sharpe ratio, and the performance measure 𝑆𝑇𝐴𝑅𝑅𝛼 defined by Martin 

et al. (2003) as follows  

                                                        
( )

( )
( )

E x z
xSTARR

C
z

x zVaR





 


,                                               (5.15) 

with a confidence level 1 − 𝛼 = 95%. STARR ratio allows us to overcome the drawbacks of 

the standard deviation as a risk measure (Artzner et al. (1999)) and focuses on the downside 

risk.14   

Table 5.3: Average of some statistics of the ex-post returns obtained maximizing the Sharpe 

ratio (SR) with two different correlation matrices (Pearson and Stable conditional) and two 

different approximation methods (i.e. OLS and RW). 

 Mean St dev Skewness Kurtosis VaR 5 % CVaR 5 % Final W Sharpe STARR 

SR (OLS) 0.033% 2.015% 3.6586 8.8133 2.655% 4.491% 1.3226 1.628% 0.731% 

SR (RW) 0.041% 1.351% 0.0809 7.3628 2.037% 3.265% 1.9580 3.022% 1.251% 

S&P 500 0.027% 1.380% -0.06366 9.7897 2.087% 3.399% 1.4407 1.936% 0.786% 

          
From Table 5.3, we observe that: 

 The SR (OLS) strategy presents the highest risk (standard deviation, VaR 5%, CVaR 

5%) and the lowest finale wealth, Sharpe (mean/St dev.) and STARR performance.  

                                                           
14 STARR ratio is not a symmetric measure of risk when returns present heavy-tailed distributions; see Martin et al. 

(2003). 
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 The SR (RW) strategy is performing much better, than the other strategies, presenting 

the highest results in terms of the mean, final wealth, Sharpe (mean/St dev.) and the 

STARR performance, and more interestingly the lowest risk (standard deviation, VaR 

5%, CVaR 5%).  

Generally, the worst result is obtained with the SR (OLS) strategy. This is not surprising, 

since it confirms that a better approximation (observed in Section 5.2.3.1) implies better 

choices. In practice, recalibration time period and moving average window, used to compute 

the optimal portfolios, are very important parameter choices that should be accounted for by 

the portfolio manager. For this reason, we enrich our analysis considering some other choices 

of these parameters. The results of this analysis are reported in Table 5.4. For example OLS 

(126-10) stands for the SR (OLS) strategy when: “we use a moving average window of 126 

trading days for the computation of each optimal portfolio and we recalibrate the portfolio every 

10 trading days”. 

Table 5.4: Average of some statistics of the ex-post returns obtained maximizing the SR 

(OLS) and the SR (RW) with different parameter choices of moving average window and 

recalibration time.  

 Mean St dev Skewness Kurtosis VaR 5 % CVaR 5 % Final W Sharpe STARR 

OLS (126-10) -0.006% 1.927% 0.1933 14.579 2.728% 4.819% 0.5873 -0.331% 0.132% 

OLS (126-20) -0.026% 1.967% 0.2853 14.534 2.662% 4.943% 0.3813 -1.317% -0.524% 

OLS (126-60) 0.023% 1.785% -0.6701 7.7633 2.818% 4.598% 1.1525 1.280% 0.497% 

OLS (252-10) -0.001% 1.715% -0.7689 12.168 2.522% 4.379% 0.7051 -0.087% -0.034% 

OLS (252-20) 0.015% 1.467% -0.2461 11.309 2.157% 3.555% 1.0853 1.005% 0.415% 

OLS (252-60) 0.033% 2.015% 3.6586 8.1338 2.655% 4.491% 1.3226 1.628% 0.731% 

OLS (500-60) 0.031% 1.835% 0.2717 6.1445 2.712% 4.326% 1.3501 1.690% 0.717% 

RW (126-10) 0.018% 1.360% -0.0569 10.000 1.942% 3.263% 1.2077 1.341% 0.559% 

RW (126-20) 0.039% 1.386% -0.0100 10.928 1.876% 3.317% 1.8489 2.787% 1.165% 

RW (126-60) 0.034% 1.362% -0.2035 5.8101 2.114% 3.364% 1.6723 2.466% 0.998% 

RW (252-10) 0.013% 1.314% -0.2190 11.664 1.976% 3.180% 1.0916 0.980% 0.405% 

RW (252-20) 0.023% 1.306% -0.3989 7.4001 2.030% 3.284% 1.3567 1.762% 0.701% 

RW (252-60) 0.041% 1.351% 0.0809 7.3628 2.037% 3.265% 1.9580 3.022% 1.251% 

RW (500-60) 0.048% 1.351% -0.0432 4.9902 2.123% 3.307% 2.2814 3.556% 1.453% 

          
 

From Table 5.4, we clearly observe the impact of these parameter choices (i.e. moving 

average window and portfolio recalibration time) on the ex-post wealth obtained by the 

examined strategies. Most importantly, the SR (RW) presents better results than the SR (OLS) 

for the same parameter combination. In particular, the SR (RW) achieves the highest mean, 

final wealth, Sharpe ration, STARR performance, and also the lowest risk (standard deviation, 
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VaR 5%, CVaR 5%). 

 Overall, from Figure 5.1 and Tables 5.1, 5.2, 5.3 and 5.4, we deduce that it is better using: 

a) the stable conditional correlation matrix with respect to the classical Pearson linear 

correlation for determining the main factors, and; b) nonparametric regression approximation 

of the returns rather than the OLS parametric regression. 

5.3 Optimal portfolio choices accounting the heavy tails  

Although the Sharpe ratio is fully compatible with normally distributed returns, it will lead to 

incorrect investment decision when returns present heavy-tailed distribution, see among others 

Biglova et al. (2004). Several alternatives to the Sharpe ratio for optimal portfolio selection 

have been proposed over the years, for an overview see among others Farinelli et al. (2008) and 

Rachev et al. (2008). The common aspect of these alternative reward-risk approaches consists 

in taking into account the expected losses and the expected gains. However, these approaches 

do not consider wholly the losses and the gains and their probability of realization.  

In this context, we propose new performance measures based on the conditional 

expectation that takes into account the portfolio distributional behavior on the tails. More 

specifically, the first suggested performance measure is based on two different σ-algebras (the 

σ-algebra generated by the portfolio losses, and the σ-algebra generated by the portfolio profits). 

While the second performance measure considers σ-algebras generated by the joint losses  and 

by joint gains of all assets in the market. These sigma algebras are approximated using sigma 

algebras generated by proper partitions (of losses or of gains). 

Let us consider the first performance measure based on losses and gains of the return 

portfolio. Formally, for approximating the σ-algebra generated by losses we consider the 

partition {𝐴𝑗}
𝐽=1

𝑑
= {𝐴1, … , 𝐴𝑑}, that accounts the portfolio losses less than (𝑑/100)-percentile 

of portfolio (where 𝑑 is an integer number greater than 1), in 𝑑 subsets as follows: 

 𝐴1 = {𝑥′𝑧 ≤ 𝐹𝑥′𝑧
−1(0.01)}, 

 𝐴ℎ = {𝐹𝑥′𝑧
−1 (

ℎ−1

100
) < 𝑥′𝑧 ≤ 𝐹𝑥′𝑧

−1 (
ℎ

100
)},    for ℎ = 2, … , 𝑑 − 1                                             (5.16) 

 𝐴𝑑 = {𝑥′𝑧 > 𝐹𝑥′𝑧
−1 (

𝑑−1

100
)}. 

Clearly, the sets 𝐴𝑖 depend on the portfolio weights x and thus the σ-algebra generated by 

these sets depends on portfolio weights. We point out the sigma algebra with  ℑ𝐿(𝑥) =

𝜎(𝐴1, … , 𝐴𝑑) that is our approximation of the σ-algebra generated by all the portfolio losses. 

While for approximating the σ-algebra generated by the portfolio profits, we consider the 

following partition {𝐵𝑗}
𝐽=1

𝑢
= {𝐵1, … , 𝐵𝑢}, which accounts the possible portfolio profits greater 
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than ((100 − 𝑢) /100)-percentile of portfolio (where 𝑢 is an integer number greater than 1), in 

subsets as follows: 

 𝐵1 = {𝑥′𝑧 ≥ 𝐹𝑥′𝑧
−1(0.99)}, 

 𝐵ℎ = {𝐹𝑥′𝑧
−1 (

100−ℎ

100
) ≤ 𝑥′𝑧 < 𝐹𝑥′𝑧

−1 (
101−ℎ

100
)},    for ℎ = 2, … , 𝑢 − 1                                    (5.17) 

 𝐵𝑢 = {𝑥′𝑧 < 𝐹𝑥′𝑧
−1 (

101−𝑢

100
)}.         

Thus, we point out with  ℑ𝑃(𝑥) = 𝜎(𝐵1, … , 𝐵𝑢) the σ-algebra generated by the portfolio 

profits. These two σ-algebras contain the information of portfolio losses and gains that must be 

considered entirely in portfolio performance measure. To consider these losses, we calculate 

the portfolio net returns conditional on σ-algebra ℑ𝐿(𝑥) and conditional on σ-algebra ℑ𝑃(𝑥). In 

other words, we approximate the portfolio of net returns (considering the σ-algebras generated 

by profits and losses) as follows 𝑦𝑃 = 𝐸(𝑥′𝑧|ℑ𝑃(𝑥)) − 1 and 𝑦𝐿 = 𝐸(𝑥′𝑧|ℑ𝐿(𝑥)) − 1. These 

random variables give us information of periodic (say daily) portfolio losses and gains. So given 

T historical observations, we can consider the wealth generated by the gains given by 

𝑊𝑃,𝑇 = ∏ (1 + 𝑦𝑃)𝑇
𝑡=1 𝑡

 and the discount we apply if we consider the losses given 

by 𝑊𝐿,𝑇 = ∏ (1 − 𝑦𝐿)𝑇
𝑡=1 𝑡

. Generally, each investor wants to maximize 𝑊𝑃,𝑇 and 

minimize 𝑊𝐿,𝑇. Therefore, we suggest to maximize the following performance ratio:  

                                                           𝑇𝑂𝐾(𝑥′𝑧) =
𝑊𝑃,𝑇

𝑊𝐿,𝑇
 .                                                   (5.18) 

The proposed TOK ratio is a very flexible performance measure that considers the 

expected portfolio returns given the σ-algebra ℑ𝑃(𝑥) generated by the portfolio profits and the 

σ-algebra ℑ𝐿(𝑥) generated by the portfolio losses. The main advantage of the TOK ratio with 

respect  to other performance measures is that we can account of  all the losses and gains 

obtained in a given period (0, 𝑇) maintaining the flexibility in choosing the partition that 

generated the σ-algebras ℑ𝐿 and ℑ𝑃. For example, we could consider σ-algebras ℑ𝑃 and ℑ𝐿 

generated by a limited number of sets.  In the empirical analysis, we consider this performance 

ratio with different parameter choices (e.g. 𝑑 = 𝑢 = 5, 7,10 in formulas (5.16) and (5.17)).  

Moreover, in view of this approach, we propose a second performance measure that 

considers one important feature of the market, which is the joint losses and gains among the 

assets. Let 𝐿𝑖
(𝑞1)

= {𝑧𝑖 ≤ 𝐹𝑧𝑖

−1(𝑞1)} be a set of the losses bigger than Value at Risk (𝑉𝑎𝑅𝑞1
(𝑧𝑖) =

−𝐹𝑧𝑖

−1(𝑞1)) of i-th asset and consider the function that counts the total number of assets which 

are jointly losing more than their 𝑉𝑎𝑅𝑞1
(𝑧𝑖), i.e.,  𝑔(𝜔) = ∑ 𝐼

𝐿𝑖
(𝑞1)

#𝑎𝑠𝑠𝑒𝑡𝑠
𝑖=1 (𝜔) (in this study we 

use 𝑞1 = 0.01). Thus, we know that for larger values of function 𝑔 we are considering the joint 
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risk of loss existing in the market. For this reason, we consider the “bear market 𝜎-algebra” 

ℑ𝐿𝑜𝑠𝑠 generated by the following m sets (where m is an integer number greater than 1): 

 𝐴1 = {𝜔: 𝑔(𝜔) ≥ 𝐹𝑔
−1(0.99)}, 

 𝐴𝑖 = {𝜔: 𝐹𝑔
−1 (

100−𝑖

100
) ≤ 𝑔(𝜔) < 𝐹𝑔

−1 (
101−𝑖

100
)}, for 𝑖 = 2, … , 𝑚– 1,                  (5.19) 

 𝐴𝑚 = {𝜔: 𝑔(𝜔) < 𝐹𝑔
−1 (

101−𝑚

100
)}. 

Observe that in this case the sets Ai do not depend on the portfolio weights. Moreover, 

the σ-algebra ℑ𝐿𝑜𝑠𝑠 = 𝜎(𝐴1, … , 𝐴𝑚) generated by the joint losses take into account the period 

in which the market appears in a ‘‘bear” period. To get some insight, the term “bear market” 

describes the downward trend of stock index or negative stock index returns over a period. 

Analogously, let 𝐺𝑖
(𝑞2)

= {𝑧𝑖 ≥ 𝐹𝑧𝑖

−1(𝑞2)} be the set of the gains bigger than 𝑞2-th 

percentile of the i-th asset.  Then, the function that counts the total number of assets whose 

returns are bigger than their 𝑞2-th percentile is given by: 𝑓(𝜔) = ∑ 𝐼
𝐺𝑖

(𝑞2)
#𝑎𝑠𝑠𝑒𝑡𝑠
𝑖=1 (𝜔) (in this 

study, we use 𝑞2 = 0.99). Thus large values of the function 𝑓 summarize the idea of a ‘‘bull 

market’’ period. The term bull market describes the upward trend of stock index or positive 

stock index returns over a period.  For this reason, we consider the bull market 𝜎-algebra ℑ𝐺 

generated by the following s sets: 

 𝐵1 = {𝜔: 𝑓(𝜔) ≥ 𝐹𝑓
−1(0.99)}, 

 𝐵𝑖 = {𝜔: 𝐹𝑓
−1 (

100−𝑖

100
) ≤ 𝑓(𝜔) < 𝐹𝑓

−1 (
101−𝑖

100
)}, for 𝑖 = 2, … , 𝑠– 1,                        (5.20) 

 𝐵𝑠 = {𝜔: 𝑔(𝜔) ≤ 𝐹𝑓
−1 (

101−𝑠

100
)}. 

Thus, the σ-algebra ℑ𝐺 = 𝜎(𝐵1, … , 𝐵𝑠) generated by the joint profits takes into account 

the period in which the market appears in a ‘‘bull’ period. In this way, we approximate the 

portfolio net returns (considering σ-algebras ℑ𝐿𝑜𝑠𝑠 and ℑ𝐺) as follows 𝑦𝐿𝑜𝑠𝑠 = 𝐸(𝑥′𝑧|ℑ𝐿𝑜𝑠𝑠) −

1 and 𝑦𝐺 = 𝐸(𝑥′𝑧|ℑ𝐺) − 1. These random variables give us information of periodic (say daily) 

market joint losses and gains. Thus, given T historical observations, we can consider the wealth 

generated by the joint gains given by 𝑊𝐺,𝑇 = ∏ (1 + 𝑦𝐺)𝑇
𝑡=1 𝑡

 and the discount we apply if we 

consider the joint losses given by 𝑊𝐿𝑜𝑠𝑠,𝑇 = ∏ (1 − 𝑦𝐿𝑜𝑠𝑠)𝑇
𝑡=1 𝑡

. In this case, each investor aims 

to maximize 𝑊𝐺,𝑇 and minimize 𝑊𝐿𝑜𝑠𝑠,𝑇. Therefore, we maximize the following performance 

ratio:  

                                                              𝐽𝑜𝑖𝑛𝑡_𝑇𝑂𝐾(𝑥′𝑟) =
𝑊𝐺,𝑇

𝑊𝐿𝑜𝑠𝑠,𝑇
 .                                  (5.21) 

This performance measure is, theoretically appealing approach to portfolio selection 
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problems, based on the conditional expectation that takes into account the heavy tails of all 

return jointly. In particular, it considers an important feature of the market that should be 

accounted by the portfolio managers (i.e. the joint losses among the assets). 

The earliest definitions of returns (i.e. 𝑦𝑃 , 𝑦𝐺 , 𝑦𝐿 and 𝑦𝐿𝑜𝑠𝑠) are based on the conditional 

expected value with respect to a given σ-algebra. To evaluate this conditional expected value 

we use an alternative nonparametric approach, called “OLP”, described in Ortobelli et al. 

(2015). This method consider a σ-algebra  ℑ𝑘 = 𝜎(𝐴1, … , 𝐴𝑘) generated by a 

partition 𝐴1, … , 𝐴𝑘. The conditional expected value of a random variable 𝑌 with respect σ-

algebra  ℑ𝑘 is simply given by  𝐸(𝑌|ℑ𝑘)(𝜔) = ∑ 𝐸(𝑌|𝐴𝑗)1𝐴𝑗
(𝜔)k

𝑗=1  a.s. and  1𝐴𝑗
(𝜔) =

{
1   𝜔 ∈ 𝐴𝑗

0   𝜔 ∉ 𝐴𝑗
.  

Therefore, on the one side, given N i.i.d. observations of Y, we get that  
1

𝑛𝐴𝑗

∑ 𝑦𝑦∈𝐴𝑗
 (where 

𝑛𝐴𝑗
 is the number of elements of 𝐴𝑗) is a consistent estimator of 𝐸(𝑌|𝐴𝑗). On the other side, if 

we know that the probability 𝑝𝑖 is the probability of the i-th outcome 𝑦𝑖 of random variable Y, 

we get 𝐸(𝑌|𝐴𝑗) = ∑ 𝑦𝑖𝑝𝑖𝑦𝑖∈𝐴𝑗
𝑃𝑟(𝐴𝑗)⁄ , otherwise, we can give a uniform weight to each 

observation, which yields the following consistent estimator of 𝐸(𝑌|𝐴𝑗)= 
𝟏

𝒏𝑨𝒋

∑ 𝒚𝒊𝒚𝒊∈𝑨𝒋
, where 

𝑛𝐴𝑗
 is the number of elements of 𝐴𝑗 . Therefore, we have a consistent estimator of 𝐸(𝑌|ℑ𝑘). 

5.3.1 An ex-post empirical analysis according to conditional expectation estimation 

In this section, we compare the optimal portfolio approaches solved according to the new 

performance measures (i.e. TOK and Joint_TOK ratios) with different parameter choices 

(e.g. 𝑑 = 𝑢 = 𝑚 = 𝑠 = 5, 7,10 in formulas (5.16), (5.17), (5.19) and (5.20)). The proposed 

empirical analysis allows us to evaluate the ex-post wealth of the optimal portfolios when we 

consider the new performance measures, stable conditional correlation matrix, and different 

approximation methods (i.e. RW and OLP). We use the same database introduced in section 

5.2.3. In particular, we employ the proposed techniques to reduce the dimensionality of large-

scale portfolio problems, see section 5.2. Specifically, we perform PCA on stable conditional 

correlation matrix (i.e. S2) of the returns; then we approximate the portfolio returns using RW 

regression model. Moreover, in order to evaluate the conditional expected value with respect to 

a given σ-algebra, we use the OLP estimator as suggested in Section 5.3.1.  

We recalibrate the portfolio monthly (i.e. every 20 trading days). No short selling is 

allowed (i.e., 𝑥𝑖 ≥ 0) and, in order to guarantee enough diversification for all portfolio 

problems we assume that we cannot invest in more than 20% in a single stock (i.e., 𝑥𝑖 ≤ 0.2). 
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We also consider proportional transaction cost of 20 basis points.  

We use a moving average window of two years (500 trading days) for the computation of 

each optimal portfolio, and we recalibrate the portfolio every month (20 trading days). Starting 

with an initial wealth 𝑊0 = 1 that we invest on January 1, 2008, we evaluate the ex-post wealth 

sample paths obtained maximizing the new performance measures. Therefore, at the k-th 

optimization, three steps are performed to compute the ex-post final wealth:  

Step 1. Apply the PCA to the stable conditional correlation matrix (i.e. S2). Then, approximate 

the portfolio returns as suggested in sections 5.2 (via RW estimator). 

Step 2. Determine the market portfolio 
( )k
Mx  that maximizes the performance ratio 𝜌(𝑥) applied 

to the approximated returns: 

𝑚𝑎𝑥𝑥 𝜌(𝑥′𝑧) 

s.t.  ∑ 𝑥𝑖
(𝑘)𝑛

𝑖=1 = 1,  

                                                         0 ≤ 𝑥𝑖
(𝑘)

≤ 0.2     𝑖 = 1, … , 𝑛                                     (5.22) 

Here the performance measure 𝜌(𝑥′𝑧) is either TOK performance measure (5.18) or Joint_TOK 

ratio (5.21). These optimization problems may have several local optima. In order to overcome 

this limitation, we use as a starting point the optimal solution obtained with Angelelli and 

Ortobelli heuristic algorithm (see Angelelli & Ortobelli (2009)). We then improve this solution 

by applying the heuristic function pattern search implemented in Matlab 2015 to solve global 

optimization problems. 

Step 3. Compute the ex-post final wealth as follows: 

                                                     ( ) ( )

1 1

'
k expost

t t t M tk k k k
W W t.c. x z ,

 
                                   (5.23) 

where tk
t.c.  are the proportional transaction costs of 20 basis points and ( )

1

expost
tk

z


 is the vector 

of observed gross returns in the period between kt  and 1kt  , such that 1 20k kt t   . 

We apply the algorithm until the observations are available. The results of these analyses 

are reported in Figures 5.2 and 5.3. 
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Figure 5.2: Ex-post wealth obtained with TOK performance measure with different parameter 

choices (𝑢 = 𝑑 = 5, 7, 10 for simplicity, we write TOK (5), etc.) compared with S&P 500 

benchmark. 

 

Figure 5.2 reports the sample paths of the ex-post wealth obtained maximizing TOK 

performance measure with three different parameter choices (i.e. (𝑢 = 𝑑 = 5, 7, 10 in formulas 

(5.16) and (5.17)) and the S&P 500 benchmark. Clearly, we observe that all strategies based on 

TOK performance are performing much better than the S&P 500 benchmark. On the one hand, 

the TOK performance with 𝑢 = 𝑑 =  10 (simply TOK (10)) seems the best-performing strategy 

among other strategies. While the strategies TOK (5) and TOK (7) allocate in the second 

position. On the other hand, from Figure 5.2, we clearly observe that TOK performance measure 

is performing much better than the classical Sharpe ratio observed in Figure 1 of section 5. 2.3.  

In Table 5.5, we present summary statistics (mean, standard deviation, skewness, 

kurtosis, VaR 5%, CVaR 5%, final wealth) for the ex-post log returns obtained maximizing the 

TOK ratio with stable conditional correlation matrix, and using two estimators of the 

conditional expectation (i.e. OLP and RW). Furthermore, we compute the Sharpe ratio and the 

performance measure 𝑆𝑇𝐴𝑅𝑅𝛼 (with 𝛼 = 5%). 
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Table 5.5: Average of some statistics of the ex-post returns obtained by maximizing the TOK 

ratio for different parameters 

 Mean St dev Skewness Kurtosis VaR 5 % CVaR 5 % Final W Sharpe STARR 

TOK (5) 0.125% 3.108% -0.1068 5.6820 4.537% 7.368% 5.0636 4.021% 1.696% 

TOK (7) 0.105% 3.004% -0.2494 7.3197 4.382% 7.222% 3.4974 3.479% 1.417% 

TOK (10) 0.145% 3.706%  0.2328 9.4630 5.394% 8.744% 5.0957 3.925% 1.663% 

S&P 500 0.027% 1.380% -0.0636 9.7897 2.087% 3.399% 1.4407 1.936% 0.786% 

          
From Table 5.5, we observe that: 

 The TOK (10) strategy presents the greatest average and final wealth, while the TOK (5) 

strategy achieves the highest Sharpe ratio and STARR performance. However, both 

strategies show the highest risk (standard deviation, VaR 5%, CVaR 5%). 

 The strategies based on TOK performance measure are significantly greater than the S&P 

500 benchmark in terms of the mean, final wealth, Sharpe ratio, and STARR 

performance. Nevertheless, compensating, the S&P 500 index achieves the lowest risk 

(standard deviation, VaR 5%, CVaR 5%) among all strategies. 

 The ex-post returns are strongly leptokurtic for all strategies presented in Table 5.5. In 

addition, all strategies (expect S&P 500 benchmark) show a slight asymmetry, since the 

skewness is different from zero.   

Interestingly, these preliminary results give us a general overview about the TOK 

performance measure using different parameter choices (i.e. 𝑢 = 𝑑 = 5, 7, 10). Moreover, we 

also test if the observed ex-post results can be ordered from the point of view of some classes 

of investors. In particular, we examine the ex-post log-returns obtained with different strategies, 

and we check whether there exist a stochastic dominance relationship between the ex-post log-

returns of the optimal portfolio strategies. Thus, we evaluate and test the dominance for all non-

satiable investors (first-order dominance - FSD), all non-satiable risk-averse investors (second-

order dominance - SSD), all non-satiable risk seeker investors (increasing-convex-order - ICX) 

(see, among others, Muller and Stoyan (2002) Davidson and Jean-Yves (2000)). We test for 

first-order (FSD), second-order (SSD) and increasing-convex-order (ICX) (see, among others, 

Davidson and Jean-Yves (2000)). The ICX ordering (generally less used in financial decision 

problems) accounts for the choice of non-satiable risk-seeking investors according to Muller 

and Stoyan (2002) studies. 
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Table 5.6: Dominance relationships between optimal portfolios obtained applying TOK 

performance measure with three different parameter choices (i.e., 𝒖 = 𝒅 = 𝟓, 𝟕, 𝟏𝟎) and the 

S&P 500 index. 

 TOK (5) TOK (7) TOK (10) S&P 500 

TOK (5) 𝒏. 𝒄 𝑛. 𝑐 ≺ICX ≻ICX 

TOK (7) 𝑛. 𝑐 𝒏. 𝒄 ≺ICX ≻ICX 

TOK (10) ≻ICX ≻ICX 𝒏. 𝒄 ≻ICX 

S&P 500 ≺ICX ≺ICX ≺ICX 𝒏. 𝒄 

 

In this analysis, we never observe a preference for some strategy by all non-satiable risk-

averse investors (i.e. SSD). We always observe that all non-satiable risk seeker investors will 

choose the TOK (10) strategy.  Moreover, as one could expect, all strategies with TOK 

performance dominate the S&P 500 benchmark from the point of view of non-satiable risk 

seeker investors. On the one hand, from Figure 5.2 and Tables 5.5 and 5.6, we conclude that 

TOK performance strategies (especially TOK (10) and TOK (5)) are performing much better 

than S&P 500 benchmark. On the other hand, according to the empirical analysis of section 

5.2.3, we deduce that TOK performance gives a better result than the classical Sharpe ratio. 

Overall, these results confirm and provide strong support for the TOK performance measure 

and to the proposed methodology to reduce the dimensionality of the problem.  

Another important feature of the market, which should be accounted by asset managers, 

is the joint risk of loss that is the basic of the systemic risk. When we consider this important 

aspect using Joint_TOK ratio, as suggested in section 5.3, we report the results in Figure 5.3 

and Table 5.7. 
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Figure 5.3: Ex-post wealth obtained with Joint_TOK performance measure with different 

parameter choices (𝑚 = 𝑠 = 3, 5, 10, simply we write Joint_TOK (5), etc.) compared with 

S&P 500 benchmark. 

 

Figure 5.3 reports the ex-post wealth evolution obtained maximizing Joint_TOK 

performance measure with three different parameter choices (e.g. 𝑚 = 𝑠 = 3, 5, 10 in formulas 

(5.19) and (5.20)) and the S&P 500 benchmark. On the one hand, we clearly observe that the 

Joint_TOK (3) is the best performing strategy among the other strategies. On the other hand, 

all strategies based on the Joint_TOK performance measure are performing better than the S&P 

500 benchmark. Overall, the Joint_TOK performance measure gives promising results while 

considering all possible joint losses and joint gains present in the market.  

Table 5.7 shows summary statistics for the ex-post wealth obtained maximizing 

Joint_TOK ratio with a Stable conditional correlation matrix. In particular, we consider mean, 

standard deviation, skewness, kurtosis, VaR 5%, CVaR 5%, final wealth, Sharpe ratio and 

𝑆𝑇𝐴𝑅𝑅𝛼 performance (with 𝛼 = 5%). 

Table 5.7: Average of some statistics of the ex-post returns obtained by maximizing the 

Joint_TOK ratio with stable conditional correlation matrix and two approximation methods 

(i.e. OLP and RW). 

 Mean St dev Skewness Kurtosis VaR 5 % CVaR 5 % Final W Sharpe STARR 

Joint_TOK (3) 0.092% 2.448% -0.3735 3.5074 4.061% 6.101% 3.7225 3.763% 1.510% 

Joint_TOK (5) 0.068% 2.437% -0.3520 3.7471 3.915% 6.138% 2.2647 2.809% 1.115% 

Joint_TOK (10) 0.067% 2.415%  -0.3083 3.6887 3.879% 6.084% 2.2071 2.671% 1.096% 

S&P 500 0.027% 1.380% -0.06366 9.7897 2.087% 3.399% 1.4407 1.936% 0.786% 
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In Table 5.8, we examine whether there are dominance orderings between the optimal 

portfolios presented in Figures 5.1, 5.2 and 5.3 and the S&P 500 benchmark.  

Table 5.8: Dominance relations between optimal portfolios of all strategies depicted in 

Figures 1, 2 and 3 and the S&P 500 index. 

 SR 

(OLS) 

SR 

(RW) 

S&P 

500 

TOK 

(5) 

TOK 

(7) 

TOK 

(10) 

Joint_TOK 

(3) 

Joint_TOK 

(5) 

Joint_TOK 

(10) 

SR (OLS) 𝒏. 𝒄 ≺SSD ≺SSD 𝑛. 𝑐 𝑛. 𝑐 ≺ICX 𝑛. 𝑐 𝑛. 𝑐 𝑛. 𝑐 

SR (RW) ≻SSD 𝒏. 𝒄 ≻SSD ≺ICX ≺ICX ≺ICX ≺ICX ≺ICX ≺ICX 

S&P 500 ≻SSD ≺SSD 𝒏. 𝒄 ≺ICX ≺ICX ≺ICX ≺ICX ≺ICX ≺ICX 

TOK (5) 𝑛. 𝑐 ≻ICX ≻ICX 𝒏. 𝒄 𝑛. 𝑐 ≺ICX ≻ICX ≻ICX ≻ICX 

TOK (7) 𝑛. 𝑐 ≻ICX ≻ICX 𝑛. 𝑐 𝒏. 𝒄 ≺ICX ≻ICX ≻ICX ≻ICX 

TOK (10) ≻ICX ≻ICX ≻ICX ≻ICX ≻ICX 

 
𝒏. 𝒄 ≻ICX ≻ICX ≻ICX 

Joint_TOK 

(3) 
𝑛. 𝑐 ≻ICX ≻ICX ≺ICX ≺ICX ≺ICX 𝒏. 𝒄 𝑛. 𝑐 𝑛. 𝑐 

Joint_TOK 

(5) 
𝑛. 𝑐 ≻ICX ≻ICX ≺ICX ≺ICX ≺ICX 𝑛. 𝑐 𝒏. 𝒄 𝑛. 𝑐 

Joint_TOK 

(10) 
𝑛. 𝑐 ≻ICX ≻ICX ≺ICX ≺ICX ≺ICX 𝑛. 𝑐 𝑛. 𝑐 𝒏. 𝒄 

 

From these two tables, we deduce the following points. 

 The Joint_TOK (3) strategy presents the greatest average, final wealth, Sharpe ratio and 

STARR performance, but also the highest risk in terms of the standard deviation and 

VaR 5%. 

 The strategies based on Joint_TOK performance are performing much better than S&P 

500 benchmark, which shows the worst results in terms of mean, final wealth, Sharpe 

ratio, and STARR performance. However, in compensation, it achieves the lowest risk 

(standard deviation, VaR 5%, CVaR 5%) among all strategies. 

 The ex-post returns are strongly leptokurtic for all strategies presented in Table 5.7. 

Moreover, all strategies (expect S&P 500 benchmark) show some signs of skewness.  

 All strategies based on TOK and Joint_TOK performance measures dominate the S&P 

500 benchmark and SR (RW) in the ICX sense. While TOK strategies dominate the 

Joint_TOK ones in terms of the ICX sense.  

Comparing Joint_TOK results with the ones obtained with the TOK performance 

measure, we generally observe that the Joint_TOK ratio gives the lowest reward (mean, final 

wealth, Sharpe ratio, and STRR performance), but in compensation, it presents a lower risk. 

This result is not surprising since it accounts for the joint losses among the assets. Therefore, 

considering the joint losses among the assets has important implications for portfolio choices. 
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Interestingly, from these empirical analyses, we deduce that both performance measures (i.e. 

TOK and Joint_TOK) give better results than the classical Sharpe ratio and the S&P 500 

benchmark. Overall, these results confirm and provide strong support for the use of the 

proposed new performance measures.  

5.4 Optimal portfolio choices for different investors preferences  

Portfolio selection problems can be characterized and classified based on the motivations and 

intentions of investors (see Ortobelli et al. (2013)). Thus, it is important to classify the optimal 

choices for any admissible ordering of preferences. Commonly, the consistency of a probability 

function within a given preferences ordering is used to describe and characterize the investor's 

optimal choice coherently with his/her preferences. For this reason, several classifications of 

the reward{risk probability function consistent with different orderings have been proposed in 

the financial literature (see, among others, Szegö (2004), Stoyanov et al. (2007) and Ortobelli 

et al. (2015)). In this context, we use a completely different approach to the portfolio selection 

problem and we show the impact of this new method on the possible choices for the US stock 

market during the period 2003-2015. 

Let us start with this simple consideration: the investor wants his/her wealth at a given 

time to dominate his/her wealth at a previous time with respect to his/her preferences. In other 

words, the investor wishes to determine today the wealth that will be dominant (with respect to 

his/her attitude and preferences) in the near future. Therefore, we suggest a different return 

definition, one that is characterized by a well-known ordering classification used in portfolio 

theory, namely concave ordering, increasing concave ordering, and increasing convex ordering 

(see, among others, Strassen (1965), Shaked and Shanthikumar (1994), and Müller and Stoyan 

(2002)). First, we identify different definitions of returns with respect to the behaviour of non-

satiable investors who could be risk-averse or risk-seeking. We then discuss some portfolio 

strategies that use the new returns definitions. To this end, we must recall the following classic 

results of ordering theory. 

Lemma 5.1 Given two random variables X and Y, the following equivalence relationships hold. 

1) (Martingale property): Every risk-averse investor (i.e. with concave utility function) prefers 

X to Y if and only if there exist two random variables X', Y' defined on the same probability 

space (𝛺, ℑ, 𝛲) that have the same distribution of X and Y such that: 

𝐸(𝑌′|𝑋′) = 𝑋′ 𝑎. 𝑠.. 

2) (Super-martingale property): Every non-satiable risk-averse investor (i.e. with increasing 

concave utility function) prefers X to Y if and only if there exist two random variables X', Y' 



 110  
 

defined on the same probability space (𝛺, ℑ, 𝛲) that have the same distribution of X and Y such 

that: 

𝐸(𝑌′|𝑋′) ≤ 𝑋′𝑎. 𝑠.. 

3) (Sub-martingale property): Every non-satiable risk-seeking investor (i.e. with increasing 

convex utility function) prefers X to Y if and only if there exist two random variables X', Y' 

defined on the same probability space (𝛺, ℑ, 𝛲) that have the same distribution of X and Y such 

that: 

𝐸(𝑌′|𝑋′) ≥ 𝑋′𝑎. 𝑠.. 

The proof of this lemma based on the analysis proposed by Strassen 1965 and is a well-

known result of ordering theory (see also Shaked and Shanthikumar, 1994, Müller and Stoyan 

2002, and the reference therein). 

Following Ortobelli et al. (2015), let 𝑊 = {𝑊𝑡}𝑡∈ℕ be a discrete time wealth process and 

assume that the investor's temporal horizon is T. the main goal of any portfolio investor with a 

temporal horizon T is to determine the portfolio that, starting with an initial wealth 𝑊𝑠−𝑇 at 

time 𝑠 − 𝑇, optimizes the future random wealth 𝑊𝑠. In particular, any non-satiable investors 

prefers 𝑊𝑠 to 𝑊𝑠−𝑇 if 𝑊𝑠 ≥ 𝑊𝑠−𝑇 and for this reason all the non-satiable investors optimizes 

the gross returns 𝑊𝑠/𝑊𝑠−𝑇 that mean the increments of wealth during the period [𝑠 − 𝑇, 𝑠]. 

From Lemma 1, we are able to identify what is preferable for particular classes of investors: 

any non-satiable risk-averse (risk-seeking) investor prefers 𝑊𝑠 to 𝑊𝑠−𝑇 if 𝑊𝑠 ≥ 𝐸(𝑊𝑠−𝑇|𝑊𝑠) 

(𝐸(𝑊𝑠|𝑊𝑠−𝑇) ≥ 𝑊𝑠−𝑇). For this reason, it makes sense to define the wealth increments from 

the point of view of a given class of investors, as 𝑊𝑠/𝐸(𝑊𝑠−𝑇|𝑊𝑠) and 𝐸(𝑊𝑠|𝑊𝑠−𝑇)/𝑊𝑠−𝑇 (for 

non-satiable risk-averse investors and non-satiable risk-seeking investors, respectively). 

According to Rachev et al. (2008), we normally use the average return (for one unit of time of 

the process 𝑊) 

𝑟𝑠 = (
𝑊𝑠

𝑊𝑠−𝑇
)

1/𝑇

− 1, 

in order to consider the aggregate risk of the period [𝑠 − 𝑇, 𝑠]. Clearly, by virtue of Lemma 1, 

we can distinguish different possible returns definitions with respect to the investors' 

preferences, the investors' temporal horizon and the portfolio wealth strategy. 

Definition 5.1 Let us assume that the wealth process of a given portfolio strategy follows a 

discrete stochastic process 𝑊 = {𝑊𝑡}𝒕∈ℕ defined on a filtered probability space. Assume the 

investor has a temporal horizon equal to T (unities of time of the wealth process). Then, for any 

𝑠 > 𝑇, 
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1)  we define the risk-averse returns of the wealth process W for investors with a temporal 

horizon T as: 

    𝑟𝑠
𝑅𝐴 = (

𝑊𝑠

𝐸(𝑊𝑠−𝑇|𝑊𝑠
)

1

𝑇
− 1;        (5.24) 

2)  we define the risk-seeking returns of the wealth process W for investors with temporal 

horizon T as: 

   𝑟𝑠
𝑅𝑆 = (

𝐸(𝑊𝑠|𝑊𝑠−𝑇)

𝑊𝑠−𝑇
)

1

𝑇
− 1;        (5.25) 

Using the new definitions of returns, the increment of the future wealth is defined from 

the point of view of different investors and thus we confirm that these return definitions are 

consistent (coherent) with certain investors’ preferences. Furthermore, any risk measure that is 

consistent with the choice of non-satiable investors (see among others Rachev et al., 2008) 

according to the new definitions of risk-averse and risk-seeking investors’ returns is a measure 

of risk for the respective investors’ preferences. Therefore, these new definitions allows us to 

identify and classify the optimal choices of the investors with respect to their attitude towards 

risk in a better way. In particular, when we use the classical reward-risk portfolio selection 

models, applying risk-averse (risk-seeking) returns, we identify the choices of non-satiable risk-

averse (risk-seeking) investors. 

The portfolio selection problem is typically examined in a reward-risk framework, 

according to which the portfolio choice is made with respect to two criteria – the expected 

portfolio return and the portfolio risk. In particular, one portfolio is preferred to another if it has 

a higher expected return and a lower risk. Markowitz (1952) introduced the first rigorous 

approximating model for the portfolio selection problem, in which the return and risk are 

modelled in terms of portfolio mean and variance. However, a different generalization has been 

proposed in the literature (see, among others, Biglova et al. (2004), Rachev et al. (2008) and 

the references therein). In the following, we suppose that a portfolio contains n assets that we 

have a frictionless market in which no short selling is allowed and that all investors act as price 

takers. Let us briefly formalize another portfolio performance measure (Rachev ratio) that is 

used in the next empirical analysis.  

Rachev ratio. The Rachev ratio (see Biglova et al. (2004)) is the ratio between the average of 

earnings and the mean of losses. i.e.: 

                                                    

 
 

 
b

b

CVaR z x' z
RR x' z, ,

CVaR x' z z





 





                                 (5.26) 
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where the Conditional Value-at-Risk (CVaR) is a coherent risk measure (see Rockafellar and 

Uryasev (2002) and Artzner et al. (1999)) that is defined as: 

   
0

1
qCVaR X VaR X dq,






   

and                    

                   1
q XVaR X F q inf x\ P X x q ,       

is the Value-at-Risk (VaR) of the random return X. If we assume a continuous distribution for 

the probability law of X, then     CVaR X E X | X VaR X     , and therefore CVaR can 

be interpreted as the average loss beyond VaR. Again, many performance measures have been 

proposed and studied in the literature; for an overview see, among others, Farinelli et al. (2008) 

and the references therein. To conclude this section, one important aspect in portfolio 

optimization is the computational complexity. Some recent studies (see Rachev et al. (2008) 

and Stoyanov et al. (2007)) classify the computational complexity of reward-risk portfolio 

selection problems. In particular, Stoyanov et al. (2007) have shown that we can distinguish 

four different cases of reward and risk that admit a unique optimum in myopic strategies. Thus, 

in order to optimize these portfolio selection problems in an acceptable computational time, we 

use a heuristic algorithm for overall optimization, such as the one proposed by Angelelli and 

Ortobelli (2009) for overall portfolio optimization. 

The earlier definitions of returns are based on the conditional expected value of the wealth 

process at a given time with respect to the wealth process at another time. To evaluate the 

conditional expected value we use a nonparametric estimator that allows us to estimate the 

random variable 𝐸(𝑌|𝑋). To contribute to the literature in this context, we propose a new 

multivariate kernel estimator that allows us to find, locally, the optimal bandwidths. We show 

that the new estimator is substantially more precise. To this end, we first present the bandwidth 

selection problem in the multivariate setting, and then we propose the new estimator in more 

detail. 

5.4.1 Bandwidth selection problem 

The bandwidth selection in the nonparametric technique is a very crucial step. Several methods 

have been proposed to select an optimal bandwidth (for a more complete treatment from a 

historical viewpoint, with complete references and a detailed discussion of the variations that 

have been suggested, see, among others, Jones et al. (1996) and Scott (2015)). Most of the 

proposed methods are mainly based on a simple but important rule of balancing bias and 

variance. This bias-variance trade-off works well for many densities, especially in the univariate 
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or bivariate setting. However, as the dimensionality increases, the so-called curse of 

dimensionality becomes important. In particular, the increase in dimensionality has the effect 

of slowing the convergence rate of the MISE, and alters the trade-off between bias and variance. 

Therefore, as the dimensionality increases, larger and larger bandwidths are required to control 

the increased variability and especially the contributions from the tails. In this setting, it is well-

known that the normal reference rules and plug-in approaches come close to the asymptotically 

optimal bandwidth. In particular, the optimal bandwidths  1 2

'

dh = h ,h ,....,h  are proportional to 

the convergence rate 𝑛−1 (𝑑+4)⁄ , for a deeper discussion see Scott (2015). 

In this chapter, we propose an alternative approach to bandwidth selection that uses a 

locally optimal bandwidth choice. To achieve this aim, we first optimize a criterion that allows 

us to find, locally, the optimal convergence rate. Then, using this optimal rate of convergence, 

we are able to determine, locally, the optimal bandwidth. In essence, using this procedure, we 

improve the rate of convergence and we drastically simplify the choice of the bandwidths. 

5.4.2 New alternative multivariate kernel estimator  

In this section, we propose a new kernel-type nonparametric regression estimator in the 

multivariate setting. The estimator we consider uses two well-known methodologies in a refined 

way; these are the multivariate locally weighted least squared regression and the classical 

multivariate version of Nadaraya-Watson estimator. In particular, this estimator fits locally 

without assuming any form of the function. Since choosing suitable bandwidths is a critical step 

in the nonparametric regression, much of our attention it will be devoted to propose a consistent 

estimator that allows us to find, locally, the optimal bandwidths. This method is direct and 

intuitively appealing. Let (𝑦𝑖, 𝒙𝑖), for 1 2i , ,....,n  and  𝒙𝑖 ϵ ℝ𝑑 be a sample of observations 

drawn independently and identically from the distribution with density function 𝑓𝑋,𝑌. The 

solution for the optimal bandwidths and b coefficients is obtained by minimizing the following 

criterion:  

                            Minimize  ∑  {yi − �̂�(𝒙, ℎ) − 𝑏𝑇(𝒙𝑖 − 𝒙)}2𝑛
𝑖=1 𝐾𝑯(𝒙𝑖 − 𝒙),                 (5.27) 

where �̂�(𝒙, ℎ) is the classical kernel estimation of 𝐸(𝑌|𝑋 = 𝒙) and h represents a vector of 

positive optimal bandwidth, which controls the size of the local averaging and satisfies 

( ) 0h n   when n  . The rest of the parameters are the same as locally linear weighted least 

squares given in (5.9). This method allows us to estimate the optimal local bandwidths 

consistently; therefore, we are able to use a multivariate local kernel estimator precisely. Indeed, 

this procedure relaxes one of the greatest drawbacks of the classical Nadaraya -Watson kernel 
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estimator, which is the constant fit. Hence, instead of using local constant approximations or 

even locally linear functions, we fit locally without assuming any form of the function. 

The proposed estimator is new contribution of this chapter and serves as a comparison to 

the classical estimators in the empirical analysis. In particular, it contains as a special case the 

classical locally linear weighted least squares. In fact, if we assume 𝑚(𝒙, ℎ) = 𝛼  we obtain 

(5.9). For more details about the classical locally weighted least squares see Ruppert and Wand 

(1994) and references therein. Higher order of polynomials, such as local cubic fit, can also be 

investigated similarly, but the number of parameters to be estimated increases rapidly, which 

demands a higher computational cost in practice. To conclude this section, we should note that 

the proposed new estimator is a consistent estimator since it is based on two consistent 

estimators. 

5.4.3 Ex-post empirical analysis according to different investors’ preferences  
 

In this section, we first describe the data set and the methodology used to compare the different 

estimators and models. Then, we propose an ex-post comparison among portfolio models based 

on performance measures presented in (5.13) and (5.24). We use all active stocks on S&P 500 

index from March 17, 2003 to February 24, 2015 using the previous 3000 daily observations. 

The data set is taken from Thomson-Reuters DataStream. 

We examine the ex-post impact of different estimators, considering two portfolio 

problems: portfolio dimensionality reduction problems and portfolio performance problems. In 

particular, starting from September 12, 2003 we preselect the 100 stocks with the highest 

Rachev performance ratio (5.24). We preselect using Rachev ratio because the portfolios that 

maximize this reward-risk performance measure generally present higher earnings, a positive 

skewness, and lower losses (see Biglova et al. (2004)). Then, using the preselected stock, we 

reduce the dimensionality of the portfolio problem. Thus, we perform a PCA on the return of 

the selected stocks in order to identify the few factors that represent the highest return 

variability. We apply PCA on the Pearson correlation matrix of returns and then we regress the 

return series on these factors so that we are able to approximate the returns 𝑧 (using either the 

factor model (5.3) or the nonparametric model (5.4)). 

     Since our aim in this section is to investigate the impact of regression analysis on large-

scale portfolio selection problems, we first compare the classical OLS estimator, the Ruppert 

and Wand (hereinafter RW) estimator presented in (5.9) and the new proposed multivariate 

kernel estimator (hereinafter the KOT estimator). In particular, we compare the time evolution 

of the sum of the mean square error (Sum-MSE) for the different return approximations 

obtained by the nonparametric methods (namely the RW and KOT estimators) and the OLS 
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estimator. On the preselected gross returns, we maximize both the Sharpe and the Rachev ratios 

such that the vector of weights x belongs to the simplex: 

                                                      
1

1 0 0 1
n

n
i i i

i

S x R \ x ; x ; x . .


 
     
 

                                         (5.28) 

This means that short sales are not allowed and that we invest no more than 10% in each 

asset. In this empirical analysis, we ignore the transaction costs, we assume a risk-free rate of 

zero, and 𝛼 and 𝛽 in the Rachev ratio are set to 5%.  

We use a moving average window of 125 trading days for the computation of each 

optimal portfolio and we recalibrate the portfolio every month (20 trading days). First, we 

compare the Sum-MSE calculated from all methodologies at each k-th recalibration time. The 

results of this analysis are reported in Figure 5.4. 

Figure 5.4: Sum of the MSE at each k-th recalibration by the OLS, RW and KOT estimators 

 

Figure 5.4 reports the sum-MSE obtained with three methods, namely the classical OLS 

and the nonparametric techniques based on RW and KOT estimators. On the one hand, we 

observe that both KOT and RW estimators are much better than the classical OLS. This means 

that the nonparametric estimators perform much better than the parametric estimators. On the 

other hand, the KOT estimator outperforms the classical OLS and the RW estimators in terms 

of the Sum-MSE. In the following table, we summarize average of some statistics of the Sum-

MSE calculated from each of the methods. 
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Table 5.9: Average of some statistics of the Sum-MSE obtained by different estimators 

 Mean(Sum-MSE) St dev.(Sum-MSE) Total(Sum-MSE) 

KOT  0.0131     0.0184  1.8755 

RW  0.0148     0.0194  2.1162 

OLS  0.0583   0.0769  8.3358 

       
Table 5.9 confirms the previous observations on the difference between the three 

estimators. For further confirmation, we compare the ex-ante errors we get considering OLS or 

KOT regression return approximation (see section 5.2.1). In particular, Table 5.10 reports the 

average (over the time) of the percentage of regression errors with higher variability (in the 

sense of concave dominance) of the criterion on the raw with respect to the criterion on the 

column.  

Table 5.10: Average percentage of regression errors with higher variability considering two 

regression models (i.e. OLS and KOT) applied to few factors obtained by the PCA of four 

alternative correlation matrices (P1, P2, S1, S2) 

 
 

OLS 

Pearson 

OLS 

Pearson 

conditional 

OLS 

Stable 

OLS 

Stable 

conditional 

KOT 

Pearson 

KOT 

Pearson 

conditional 

KOT 

Stable 

KOT 

Stable 

conditional 

OLS 

Pearson 

𝒏. 𝒄. 0.0024 0.0129 0.0143 0.4493 0.4527 0.4978 0.4878 

OLS 

Pearson 

conditional 

0.002 𝒏. 𝒄. 0.0149 0.0143 0.4473 0.4513 0.4967 0.4864 

OLS 

stable 

0.0415 0.0409 𝒏. 𝒄. 0.0048 0.4464 0.4509 0.4951 0.4853 

OLS 

Stable 

conditional 

0.039 0.0374 0.0034 𝒏. 𝒄. 0.4439 0.4504 0.4945 0.4847 

 

From Table 5.10, the errors we get with nonparametric regression analysis (i.e. KOT) 

never present higher variability than those obtained with the classical parametric regression 

analysis (i.e. OLS). Moreover, we test that about the 50% of OLS error approximation present 

higher variability (in the sense of concave order) than KOT error approximation. According to 

this analysis, it makes sense to consider the new approximation method (i.e. KOT) in the 

portfolio selection problems. Thus, we propose the following ex-post empirical analysis. 

We compare the optimal portfolio approaches solved for different investor’s preferences. 

The proposed empirical analysis allows us to evaluate the ex-post impact of the optimal choices 

when we consider the new definitions of returns. For each strategy and for each returns 

definition, we compute the optimal portfolio composition every month (20 trading days). 

Therefore, at the k-th optimization, three steps are performed to compute the ex-post final 

wealth.  
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Step 1. Preselect the first 100 stocks with the highest Rachev ratio. Apply the PCA component 

to the correlation matrix of the preselected stocks. Then, approximate the portfolio returns as 

suggested in sections 5.2 and 5.4 (via KOT estimator). 

Step 2. Determine the market portfolio 
( )k
Mx  that maximizes the performance ratio 𝜌(𝑥) applied 

to the approximated returns and constrained to the new definitions of returns: 

𝑚𝑎𝑥𝑥 𝜌(𝑥) 

s.t.  ∑ 𝑥𝑖
(𝑘)𝑛

𝑖=1 = 1,  

                                                     0 ≤ 𝑥𝑖
(𝑘)

≤ 0.1     𝑖 = 1, … , 𝑛                                         (5.29) 

Here the performance measure 𝜌(𝑥) is either the Sharpe ratio (5.12) or the Rachev performance 

measure (5.26), constrained by different return definitions (5.24) and (5.25). Accordingly, we 

distinguish Sharpe risk-averse (SRA), Sharpe risk-seeking (SRS), Rachev risk-averse (RRA) 

and Rachev risk-seeking (RRS). These optimization problems may have several local optima. 

In order to overcome this limitation, we use as a starting point the optimal solution obtained 

with Angelelli and Ortobelli heuristic algorithm (see Angelelli & Ortobelli (2009)). We then 

improve this solution by applying the heuristic function pattern search implemented in Matlab 

2015 to solve global optimization problems. 

Step 3. Compute the ex-post final wealth as follows: 

                                                ( ) ( )
( )1 1

'
k expost

t t M tk k k
W W x z ,

 

   
 

                                               (5.30) 

where ( )
( )1

expost
tk

z


 is the vector of observed gross returns in the period between kt  and 1kt  , such 

that 1 20k kt t   . 

We apply the three steps until the observations are available. The results of this analysis 

are reported in Figure 5.5. 
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Figure 5.5: Ex-post wealth obtained with SRA, SRS, RRA and RRS type strategies compared 

with S&P 500 benchmark 

 

Figure 5.5 shows the comparison among the ex-post final wealth processes that match 

different investor’s preferences. The strategies of non-satiable risk-seeking investors of RRS 

and SRS give a larger ex-post final wealth than the other strategies.  Furthermore, all proposed 

strategies perform much better than the S&P 500 stock index. Table 5.11 reports the basic 

statistics (mean, standard deviation, skewness, kurtosis, VaR 5%, CVaR 5%, final wealth) of 

the ex-post returns of all strategies of Figure 5.5. 

Table 5.11: Average of some statistics of the ex-post returns plus the final wealth obtained 

by different strategies 

 Mean St dev Skewness  Kurtosis VaR 5 % CVaR 5% Final W 

SRA  0.060% 1.386% -0.1472 8.5657 2.066%     3.333%   4.2926 

SRS  0.065% 1.398% -01337 9.2183 2.029%  3.385% 4.8566 

RRA 0.048% 1.166% -0.3338 15.467 1.628% 2.803% 3.2529 

RRS 0.064% 1.143% 0.2358 16.236 1.505% 2.640% 5.1926 

S&P 500  0.033%      1.232%    -0.0861  11.950 1.810% 3.032% 2.0586 

        
From Table 5.11 and Figure 5.5 we deduce that: 

 RRS presents the best Sharpe (mean/St. dev.) and STARR performance 

(mean/CVaR), and has the lowest risk (standard deviation, VaR 5%, CVaR 5%).   



 119  
 

 SRS presents the highest mean but also the greatest risk (standard deviation, VaR 

5%, CVaR 5%).  

 All the performance strategies always perform better than the S&P500 stock index, 

in addition, they present a slight skewness and a pronounced kurtosis. 

Overall, RRS gives the best result (RR is consistent with the preferences of a non-satiable 

investor who is neither risk seeking nor risk averse see Biglova et al. 2004). A more general 

empirical analysis with further studies and comparisons of the proposed model should be an 

object of future researches. In particular, we examine these new approaches using different 

performance measures that are account for particular investors’ preferences.  

To conclude this section, the experimental analysis suggests that the incorporation of new 

definitions of returns into an optimal portfolio framework leads to remarkable stabilization of 

the optimal portfolio strategy that is consistent with different investor’s preferences. Moreover, 

solving the optimization problems constrained by the new returns definitions leads to better 

understanding of how the wealth evolves over time according to investors’ preferences, namely 

non-satiable risk-averse and non-satiable risk-seeking. 

5.5   Conclusion  

Portfolio selection problems often involve unknown parameters that have to be properly 

approximated from the data. Therefore, in this chapter, we consider the implications of the 

conditional expectation estimators on portfolio theory. In particular, we focus on three financial 

applications, e.g. approximation problems within large-scale portfolio selection problems and 

optimal portfolio choices with consistent estimation of the expected returns. In the first 

application, we discuss and examine the impact of the correlation matrices and approximation 

methods in the portfolio theory. In this context, we suggest to approximate the returns using 

nonparametric regression analysis rather than the classical parametric approach. Using convex 

dominance testing, we find that the nonparametric regression outperforms its parametric 

counterpart. Moreover, we show that the dependence measure used to evaluate the joint 

behavior of returns (stable correlation matrix vs. Pearson correlation matrix) plays a crucial role 

in the dimensionality reduction of large-scale portfolio problems. For this reason, we propose 

to use the stable conditional correlation matrix to determine the few factors on which regress 

the return series and as a regression model the nonparametric ones. 

 In the second application, we suggest new performance measures that account for the 

heavy-tailed distribution of the returns. In this context, using stable conditional correlation 

matrix and the nonparametric techniques, we find that the new suggested methods typically 

yield the best performance, as measured by the Sharpe ratio and new performance measures. In 
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the third application, we propose a new consistent multivariate kernel estimator of the 

conditional expectation and we show that the mean square error in the return approximation is 

generally lower than the mean square error for other estimators used in literature. Moreover, 

we deal with the portfolio selection problem from the point of view of different non-satiable 

investors: namely, risk-averse and risk-seeking. In particular, using a recent returns definition 

based on the conditional expectation we are able to compare the choices of different investor 

categories (according to their risk aversion attitude). Therefore, we propose an empirical 

comparison in which we optimize some classical performances on the returns (according to 

their new definitions). Thus, even this proposed empirical analysis allows us to evaluate the 

optimal choices for different categories of investors by using a conditional expectation 

estimator.  
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Chapter 6 

 

 

 

Conclusion and Future Research  

 

 

Conclusion 

 

Conditional expectation is an important concept in probability and statistics which turn out to 

be extremely useful in financial modeling. It plays a crucial role in portfolio theory and in 

several pricing and risk management problems. We already stressed in the introductory chapters 

the importance of the topic: option market, technical analysis and portfolio theory. The aim of 

this work is to propose theoretical and methodological approaches to cover different portfolio 

managers’ goals. This thesis contributes to such rich and challenging environment in at least 

four ways.  

In chapter 2 we briefly introduce some of the most important concepts from the 

probability theory and financial mathematics that are useful in the financial applications of the 

conditional expectation: we hope that it could represent a useful map for researchers navigating 

through this vast and growing corpus of resources. 

In chapter 3, we provide some theoretical motivations behind the use of the moving 

average rule as one of the most popular trading tools among practitioners. In particular, we 

examine the conditional probability of the price increments and we study how this probability 

changes over time. We find that under some assumptions the probability of up-trend is greater 

than the probability of down trend. For this reason, we propose to use moving average rules to 

predict periods of systemic risk. In this context, we suggest a methodology that incorporate 

moving average rules as alarm rules to predict potential fails of the market. Thus, we examine 

the impact of the moving average rules on the U.S. stock market. Firstly, a comparison among 

different moving average trading rules with and without alarms of losses is performed. 

Secondly, we compare the ex post wealth obtained with the best performing systemic risk rule 

used as trading strategy with the wealth obtained maximizing two different portfolio 

performances. From the comparison among different strategies and stochastic dominance tests, 
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we deduce that the best use of the moving average rules is obtained to predict periods of market 

distress. These empirical analyses suggest that the moving average rules are much more 

effective and performing when used to detect the presence of systemic risk. 

Further research could involve theoretical and empirical studies. On the one hand, 

investors may employ complex versions of the moving average rules. On the other hand, the 

impact of calendar periods such as the weekend effect, the turn-of-the-month effect, the holiday 

effect and the January effect. Future research will investigate this aspects. Another promising 

direction for future research is to consider other technical indicators, which may be easier to 

detect algorithmically, to examine whether or not such indicators are able to predict the 

presence of systemic risk. 

In chapter 4, we present alternative approaches to evaluate the presence of the arbitrage 

opportunities in the option market. In particular, we empirically investigate the well-known put-

call parity no-arbitrage relation and the SPD. First, we measure the violation of the put-call 

parity as the difference in implied volatilities between call and put options that have the same 

strike price, the same expiration date and the same underlying asset. Then, we discuss the 

usefulness of the nonnegativity of the SPD. We evaluate the effectiveness of the proposed 

approaches by an empirical analysis on S&P 500 index options data. Moreover, we propose 

alternative approaches to estimate the SPD under the classical hypothesis of the BS model. To 

this end, we first examine the real mean return function using local polynomial smoothing 

technique. Then, we estimate the conditional expectation under real probability density. Under 

the hypothesis of BS model, we are able to derive a closed formula for approximating the 

conditional expectation under risk neutral probability.  

We use the classical nonparametric estimator based on kernel and a recent alternative the 

so called OLP estimator that uses a different approach to evaluate the conditional expectation 

consistently. This analysis allows us extrapolating arbitrage opportunities and relevant 

information from different markets (futures and options) consistently with the analysis of the 

underlying. Future research will focus on the extension of those concepts analyzing other 

possible development and uses of the conditional expectation estimators. 

In chapter 5, we examine the use of the conditional expectation in portfolio theory. In 

particular, we propose three alternative financial applications based on the conditional 

expectation and a new conditional expectation estimator. 

Firstly, we discuss and examine the impact of the correlation matrices and approximation 

methods in the portfolio theory. In this context, we suggest to approximate the returns using 

nonparametric regression analysis rather than the classical parametric approach. Using convex 
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dominance testing, we find that the nonparametric regression outperforms its parametric 

counterpart. Moreover, we show that the dependence measure used to evaluate the joint 

behavior of returns (stable correlation matrix vs. Pearson correlation matrix) plays a crucial role 

in the dimensionality reduction of large-scale portfolio problems. For this reason, we propose 

to use the stable conditional correlation matrix to determine the few factors on which regress 

the return series and as a regression model the nonparametric ones. 

 Secondly, we suggest new performance measures that account for the heavy-tailed 

distribution of the returns. In this context, using stable conditional correlation matrix and the 

nonparametric techniques, we find that the new suggested methods typically yield the best 

performance, as measured by the Sharpe ratio and new performance measures.  

Finally, we propose a new consistent multivariate kernel estimator of the conditional 

expectation and we show that the mean square error in the return approximation is generally 

lower than the mean square error for other estimators used in literature. Moreover, we deal with 

the portfolio selection problem from the point of view of different non-satiable investors: 

namely, risk-averse and risk-seeking. In particular, using a recent returns definition based on 

the conditional expectation we are able to compare the choices of different investor categories 

(according to their risk aversion attitude). Therefore, we propose an empirical comparison in 

which we optimize some classical performances on the returns (according to their new 

definitions). Thus, even this proposed empirical analysis allows us to evaluate the optimal 

choices for different categories of investors by using a conditional expectation estimator.  

Overall, the thesis contributes the literature in several ways and achieves the general aim. 

In particular, it allows us to assess the impact and usefulness of the conditional expectation on 

different financial applications, e.g. arbitrage opportunities, large-scale portfolio selection 

problems, and optimal portfolio choices.  
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Appendix A 

 

 

 

 

 

Gaussian and Alpha Stable Distributions  

In this Appendix, we review two main principal distributions that are used throughout this 

dissertation.  

 

Gaussian distribution  

The class of normal distributions, or Gaussian distributions, is certainly one of the most 

important probability distributions in statistics and, due to some of its appealing properties, also 

the class that is used in most applications in finance (e.g. BS model, mean-variance framework, 

CAPM etc.). Here we introduce some of its basic properties. 

The random variable X is said to be normally distributed with parameters 𝜇 and 𝜎, simply 

abbreviated by 𝑋 ∼ 𝑁(𝜇, 𝜎), if density function of the random variable is given by the 

following formula: 

                                             𝑓(𝑋) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 {−

(𝑥−𝜇)2

2𝜎2
}.                                           (A.1) 

The parameter 𝜇 is called a location parameter because the middle of the distribution 

equals 𝜇 and 𝜎 is called a shape parameter or a scale parameter. If  𝜇 = 0 and 𝜎 = 1, then X is 

said to have a standard normal distribution. For small values of 𝜎, the density function becomes 

more narrow and peaked whereas for larger values of 𝜎 the shape of the density widens. These 

observations lead to the name shape parameter or scale parameter for 𝜎. An important property 

of the normal distribution is the location-scale invariance of the normal distribution. Another 

interesting and important property of normal distributions is their summation stability. 

The last important property that is often misinterpreted to justify the nearly exclusive use 

of normal distributions in financial modeling is the fact that the normal distribution possesses 

a domain of attraction. A mathematical result called the central limit theorem states that under 

certain technical conditions the distribution of a large sum of random variables behaves 

necessarily like a normal distribution. In the eyes of many, the normal distribution is the unique 
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class of probability distributions having this property. This is wrong and actually it is the class 

of stable distributions (containing the normal distributions) that is unique in the sense that a 

large sum of random variables can only converge to a stable distribution. In the sequel, we 

discuss the stable distribution. 

Alpha Stable Distribution 

The class of the stable distributions is defined by means of their characteristic functions. With 

very few exception, no closed-form expressions are known for their densities and distribution 

functions. Research on stable distributions in the field of finance has a long history (for a more 

complete treatment, from a historical viewpoint, with complete references, and detailed 

discussion see among others Samorodnitsky and Taqqu, 1994 and Rachev and Mittnik, 2000). 

In 1963, the mathematician Benoit Mandelbrot first used the stable distribution to model 

empirical distributions that have skewness and fat tails.  

To distinguish between Gaussian and non-Gaussian stable distributions, the latter are 

generally referred to as stable Paretian, Levy stable, or 𝛼-stable distributions. Stable Paretian 

tails decay more slowly than the tails of the normal distribution and therefore better describe 

the extreme events present in the data (Rachev et al., 2011). Like the Student's t-distribution, 

stable Paretian distributions have a parameter responsible for the tail behavior, called tail index 

or index of stability. 

It is possible to define the stable Paretian distribution in two ways. The first one 

establishes the stable distribution as having a domain of attraction. That is, (properly 

normalized) sums of IID random variables are distributed with the 𝛼-stable distribution as the 

number of summands n goes to infinity. Formally, let 𝑌1, 𝑌2, … , 𝑌𝑛 be an IID random variable 

and 𝑎𝑛and 𝑏𝑛be sequences of real and positive numbers, respectively. A variable X is said to 

have the stable Paretian distribution if 

                                                               
∑ 𝑌𝑖−𝑎𝑛

𝑛
𝑖=1

𝑏𝑛
 

𝑑
→ 𝑋                                                        (A.2) 

The density function of the stable Paretian distribution is not available in a closed form 

expression in the general case. Therefore, the distribution of a stable random variable X is 

alternatively defined through its characteristic function. The density function can be obtained 

through a numerical method. The characteristic function of the 𝛼-stable distribution is given by 

𝜑𝑋(𝑡\𝛼, 𝜎, 𝛽, 𝜇) = 𝐸[𝑒𝑖𝑡𝑋] = {
exp (𝑖𝜇𝑡 − |𝜎𝑡|𝛼(1 − 𝛽(𝑠𝑖𝑔𝑛 𝑡)𝑡𝑎𝑛(𝜋𝛼 2⁄ ))) ,      𝛼 ≠ 1

exp(𝑖𝜇𝑡 − 𝜎|𝑡|(1 − 𝛽(2 𝜋⁄ )(𝑠𝑖𝑔𝑛 𝑡)𝑙𝑛|𝑡|))  ,          𝛼 = 1
 

(A.3) 
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where,                                           𝑠𝑖𝑔𝑛 𝑡 = {
1     𝑡 > 0
0     𝑡 = 0

−1   𝑡 < 0 
                                                  (A.4) 

The four parameters appearing in equation (A.3) are the following: 

 𝛼 ∈ (0,2) is  the index of stability or the tail exponent   

 𝛽 ∈ [−1, +1]  is a skewness parameter.  

 𝜎 ∈ (0, +∞) is a scale parameter. 

 𝜇 ∈ (−∞, +∞) is a location parameter.  

The parameter 𝛼 determines how heavy the tails of the distribution are. That is why the 

α-stable distribution is highly flexible and suitable for modeling non-symmetric, highly 

kurtosis, and heavy-tailed data. Since stable are uniquely determined by the four parameters, 

the common notation is 𝑆𝛼(𝜎, 𝛽, 𝜇). The three special cases where there is a closed-form 

solution for the densities are the Gaussian case (𝛼 = 2), the Cauchy case (𝛼 = 1, 𝛽 = 0) and 

the Lévy case (𝛼 =
1

2
, 𝛽 ± 1). 

Apart from the appealing feature that the probabilistic properties of only the stable 

distributions are close to probabilistic properties of sums of i.i.d. random variables, there is 

another important characteristic which is the stability property. According to stability property, 

appropriately centered and normalized sums of i.i.d. 𝛼-stable random variables is again 𝛼-

stable. This property is unique to the class of stable law.  
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Appendix B 

 

 

 

 

 

Stochastic Dominance and increasing convex order  

The stochastic dominance is one of the fundamental concepts of the decision theory; see among 

others Levy (1992). It introduces a partial order in the space of real random variables. The first-

order dominance (Quirk and Saposnik 1962) assumes non-satiation (nondecreasing utility 

functions), the second-order dominance (Hadar and Russel 1969) assumes also risk aversion 

(concave nondecreasing utility functions), and the third-order dominance (Whitmore 1970) 

adopts as well decreasing risk aversion (concave nondecreasing utility functions that have a 

non-negative third derivative). In portfolio theory, stochastic dominance rules have been widely 

used to justify the reward risk approaches (see Ortobelli et al., 2009 and the reference therein). 

In this context, several theoretical formulations and empirical application have been proposed 

in the last decades (Post and Kopa, 2013; Ortobelli et al., 2009; Rachev et al., 2008; Dentcheva 

and Ruszczynski, 2006; De Giorgi, 2005; Fong et al., 2005; Post and Levy, 2005; Post, 2003). 

We consider the space 𝐿1(𝛺, ℑ, 𝑃) of integrable random variables defined in a probability 

space (𝛺, ℑ, 𝑃). The right-continuous cumulative distribution function 𝐹𝑋(𝜂) of 𝑋 is defined as 

follows: 

                                                     𝐹𝑋(𝜂) = 𝑃(𝑋 ≤ 𝜂)   𝑓𝑜𝑟  𝜂 ∈ ℝ                                               (B.1) 

Definition B.1. A random return X is said to be stochastically dominate another random return 

Y in the first order stochastic dominance sense, denoted 𝑋 ≻
−

𝐹𝑆𝐷  𝑌, if  

                                                      𝐹𝑋(𝜂) ≤ 𝐹𝑌(𝜂)    𝑓𝑜𝑟  𝜂 ∈ ℝ                                          (B.2) 

The usual first-order definition of stochastic dominance (FSD) gives a partial order in the 

space of real random variables (Kopa and Post, 2009; Levy, 1992; Bawa, 1978). More important 

from the portfolio point of view is the notion of the second-order dominance (SSD), which is 

also defined as a partial order. It is one of the most debated topics in the financial portfolio 

selection, due to its connection to the theory of risk-averse investor behavior and tail 
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minimization (De Giorgi and Post, 2008; Ortobelli, 2001; Bawa, 1975). The integrated 

distribution function 𝐹2(𝑍; 𝜂) is defined as follows: 

                                                𝐹𝑋
(2)(𝜂) = ∫ 𝐹𝑋(𝑡)𝑑𝑡

𝜂

−∞
      𝑓𝑜𝑟  𝜂 ∈ ℝ.                                (B.3) 

Accordingly, the weak relation of the SSD is defined as:  

Definition B.2. A random return X stochastically dominates another random return Y in the 

second order stochastic dominance sense, denoted 𝑋 ≻
−

𝑆𝑆𝐷  𝑌, if 

                                                     𝐹𝑋
(2)(𝜂) ≤ 𝐹𝑌

(2)(𝜂)      𝑓𝑜𝑟  𝜂 ∈ ℝ                                   (B.4) 

It is equivalent to this statement: a random variable 𝑋 dominates the random variable 𝑌 if 

𝐸[𝑢(𝑋 )]  ≥ 𝐸[𝑢(𝑌)] for all non-decreasing concave functions  𝑢(∙) for which these expected 

values are finite. Thus, no risk-averse decision maker will prefer a portfolio with return rate 𝑌 

over a portfolio with return rate 𝑋 (Ortobelli et al. 2013). Changing the order of integration, the 

ordering 𝑋 ≻
−

𝑆𝑆𝐷  𝑌 is equivalent to the expected shortfall (Ortobelli et al., 2013; Ogryczak and 

Ruszczynski, 1999): 

                                            𝐹𝑋
(2)(𝜂) = 𝐸[(𝜂 − 𝑋)+]      𝑓𝑜𝑟  𝜂 ∈ ℝ                                    (B.5) 

where (𝜂 − 𝑋)+ = 𝑚𝑎𝑥(𝜂 − 𝑋, 0). In this case, the function 𝐹𝑋
(2)(𝑡) is continuous, convex, 

nonnegative and non-decreasing. It is well defined for all random variables X with finite 

expected value.  

Similarly, a condition which called third-order stochastic dominance (TSD) is considered; 

see Whitmore (1970). TSD is a less restrictive form than SSD since it considers preference 

ordering only for those risk-averse investors who exhibit decreasing risk aversion, see among 

others Post and Kopa (2016). The economic meaning of the TSD can be explained as follows. 

Denote 𝒰3 the set of all utility functions that are non-decreasing, concave and have a non-

negative third derivative. Thus, 𝒰3 represents the class of non-satiable, risk-averse investors 

(with decreasing risk aversion) who prefer positive to negative skewness.  

Definition B.3. We say that a random return X dominates another random return Y in the 

TSD sense, denoted X ≻
−

𝑇𝑆𝐷Y, if  

                                                𝐹𝑋
(3)

(𝜂) ≤ 𝐹𝑌
(3)

(𝜂)  𝑓𝑜𝑟  𝜂 ∈ ℝ,                                  (B.6) 

where 𝐹𝑋
(3)(𝜂) = ∫ 𝐹𝑋

(2)(𝑡)𝑑𝑡
𝜂

−∞
    𝑓𝑜𝑟  𝜂 ∈ ℝ.  

Equivalently, X ≻
−

𝑇𝑆𝐷Y, if 𝐸𝑢(𝑋) ≥ 𝐸𝑢(𝑌), ∀ 𝑢 𝜖 𝒰3.  

The set of utility function 𝒰3 is contained in the set of nondecreasing concave utilities, 

𝒰3 ⊂ 𝒰2, therefore, the condition (B.4) for SSD is only sufficient in the case of TSD 



 141  
 

                                                       𝑋 ≻
−

𝑆𝑆𝐷  𝑌 ⇒  𝑋 ≻
−

𝑇𝑆𝐷  𝑌                                    (B.7) 

The condition that characterizes the TSD can be derived as follows, 

                            𝑋 ≻
−

𝑇𝑆𝐷  𝑌 ⇔ 𝐸[(𝑋 − 𝜂)+
2 ] ≤ 𝐸[(𝑌 − 𝜂)+

2 ]     𝑓𝑜𝑟 𝜂 ∈ ℝ             (B.8) 

where (𝑥 − 𝜂)+
2   notation means the maximum between 𝑥 − 𝜂 and zero raised to the second 

power, (𝑥 − 𝜂)+
2 = (𝑚𝑎𝑥(𝑥 − 𝜂, 0))

2
. The quantity (𝑋 − 𝜂)+

2  is known as the second lower 

partial moment of the random variable X. It gauges the variability of X below a target payoff 

level 𝜂. Assume that X and Y have the same mean and variance but different skewness. If X has 

a positive skewness and Y has a negative skewness, then the variability of X below any target 

payoff level 𝜂 will be smaller than the variability of Y below the same target payoff level, for 

deeper discussion see, among others, Rachev et al. (2008) and Whitmore (1970). 

This method can be generalized to the n-th order stochastic dominance. Denote by 𝒰𝑛 the 

set of all utility functions, the derivatives of which satisfy the inequalities (−1)𝑘+1𝑢(𝑘)(𝑥) ≥

0, 𝑘 = 1,2, … , 𝑛 where 𝑢(𝑘)(𝑥) denotes the k-th derivatives of 𝑢(𝑥). Assume that the absolute 

moments 𝐸|𝑋|𝑘 and 𝐸|𝑌|𝑘, 𝑘 = 1,2, … , 𝑛 of the random variables 𝑋 and 𝑌 are finite. We say 

that a random variable 𝑋 dominates a random variable 𝑌 with respect to the n-th order stochastic 

dominance, 𝑛 = 1, 2, … , denoted 𝑋 ≻
−

𝑛  𝑌, if  

                                              𝑋 ≻
−

𝑛  𝑌 if 𝐸𝑢(𝑋) ≥ 𝐸𝑢(𝑌), ∀ 𝑢 𝜖 𝒰𝑛.                                  (B.9) 

Therefore, the first-order, second-order, and third-order stochastic dominance can be seen as 

special cases from the n-th order stochastic dominance when 𝑛 = 1, 2, 3 respectively. 

There exists an equivalent way to define the n-th order stochastic dominance in terms of 

the CDFs. The condition is as follows   

                              𝑋 ≻
−

𝑛  𝑌          ⟺       𝐹𝑋
(𝑛)(𝜂) ≤ 𝐹𝑌

(𝑛)(𝜂)      𝑓𝑜𝑟  𝜂 ∈ ℝ                    (B.10) 

where 𝐹𝑋
(𝑛)(𝜂) denotes the n-th integral of the CDF of X, which can be defined recursively as  

                                          𝐹𝑋
(𝑛)(𝜂) = ∫  𝐹𝑋

(𝑛−1)(𝑡)𝑑𝑡
𝜂

−∞
      𝑓𝑜𝑟  𝜂 ∈ ℝ                             (B.11) 

Equivalently a condition that characterizes n-th stochastic dominance can be derived as follows 

                        𝑋 ≻
−

𝑛  𝑌          ⟺  𝐸[(𝜂 − 𝑋)+
𝑛−1] ≤ 𝐸[(𝜂 − 𝑌)+

𝑛−1]     𝑓𝑜𝑟  𝜂 ∈ ℝ          (B.12) 

(𝜂 − 𝑥)+
𝑛−1 = (𝑚𝑎𝑥(𝜂 − 𝑥, 0))

𝑛−1
. This condition clarifies why it is necessary to assume that 

all absolute moments until order n are finite. Since, in the n-th order stochastic dominance, we 

provide the conditions on the utility function as n increases, the following relation holds, 

                                     𝑋 ≻
−

1  𝑌     ⇒       𝑋 ≻
−

2  𝑌     ⇒ …  ⇒        𝑋 ≻
−

𝑛  𝑌                     (B.13) 
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which generalizes the relationship between FSD, SSD and TSD.  

To conclude, it is possible to extend the n-th order stochastic dominance to the 𝛼 order 

stochastic dominance in which 𝛼 ≥ 1 is a real number and instead of the ordinary integrals of 

the CDFs, fractional integrals are involved. Generally speaking, 𝑋 dominates 𝑌 with respect to 

the 𝛼 stochastic dominance order 𝑋 ≻
−

𝛼 𝑌 (with 𝛼 ≥ 1) if and only if 𝐸[𝑢(𝑋 )]  ≥ 𝐸[𝑢(𝑌)] for 

all 𝑢 belonging to a given class 𝒰α of utility functions (Ortobelli et al., 2009). 

Increasing convex order  

One of the main problems of mathematical finance is the comparison of risks; see Muller and 

Stoyan (2002). In this context, stochastic order is too restrictive and it does not capture the 

important notion that risk should also depend on variability. For this reason alternative notions 

of partial order for distributions have been investigated extensively, and the increasing convex 

order (ICX) has turned out to play a major role in this application area.  

Definition B.4. Given two random variables X and Y with respective distribution functions F 

and G, X is said to be smaller than Y in the increasing convex order, denoted 𝑌 ≻
−

𝑖𝑐𝑥  𝑋, if 

𝐸[𝑣(𝑌)]  ≥ 𝐸[𝑣(𝑋)], 

 for all increasing convex function 𝑣, provided the expectations exists. Equivalently, if  

𝐸[(𝑋 − 𝑡)+] ≤ 𝐸[(𝑌 − 𝑡)+]            for all 𝑡 ≥ 0, 

see, for example, Theorem 1.5.7 in Muller and Stoyan (2002).  

Many properties and applications of this order can be found in the books by Muller and 

Stoyan (2002), Denuit et al. (2005), Shaked and Shanthikumar (2007). For example, the ICX is 

characterized in terms of the tail value-at –risk as follows: 

𝑌 ≻
−

𝑖𝑐𝑥  𝑋 if and only if  𝑇𝑉𝑎𝑅𝑝(𝑋) ≤   𝑇𝑉𝑎𝑅𝑝(𝑌), for all 𝑝 ∈ (0,1) 

where  𝑇𝑉𝑎𝑅𝑝(𝑋) =
1

1−𝑝
∫ 𝐹−1(𝑡)𝑑𝑡

1

𝑝
, 𝑝 ∈ (0,1). Therefore, for continuous random variables, 

we have  

𝑌 ≻
−

𝑖𝑐𝑥  𝑋 if and only if  𝐶𝑉𝑎𝑅𝑝(𝑋) ≤   𝐶𝑉𝑎𝑅𝑝(𝑌), for all 𝑝 ∈ (0,1). 

From definitions B.2 and B.4, we clearly observe that the SSD relation ICX relation are 

connected as follows   

𝑌 ≻
−

𝑖𝑐𝑥 𝑋        ⟺        −𝑋 ≻
−

𝑆𝑆𝐷− 𝑌 

The ICX ordering (generally less used in financial decision problems) accounts for the 

choice of non-satiable risk-seeking investors according to Muller and Stoyan (2002) studies. 
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Abbreviation of the terms used in this dissertation 

Terms  

 

a.s.                                              almost surely 

BS                                               Black and Scholes 

cdf                                              cumulative distribution function 

CVAR                                        Conditional Value-at-Risk 

pdf                                              probability density function  

FTAP                                           Fundamental Theorem of asset pricing 

FSD                                             First-order stochastic dominance 

GBM                                           Geometric Brownian motion  

ICX                                             Increasing convex dominance  

IV                                                Implied volatility  

IVS                                             Implied volatility surface 

IVSD                                          Implied volatility surface differences 

MA                                              Moving average 

MSE                                            mean square error  

NYSE                                          New York Stock Exchange  

OLP                                             Ortobelli Lando and Petronio  

OLS                                             Ordinary least squares  

OTC                                            Over-the-counter  

KOT                                            Kouaissah Ortobelli and Tichý 

MAD                                           Mean-Absolute Deviation 

PCA                                            principal components analysis  

TOK                                            Tichý Ortobelli and Kouaissah  

TSD                                             Third-order stochastic dominance 

SPD                                             State Price Density  

SSD                                             Second-order stochastic dominance  

RR                                               Rachev ratio 

RW                                              Ruppert and Wand 

SR                                               Sharpe ratio 

S&P 500                                      Standard & Poor’s 500 

VS                                               Volatility spread 

VAR                                            Value-at-Risk 
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