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Abstract 

Phenomena of the heat transfer in non-contacting face seals was described by partial differential equation 

of the second order and boundary conditions. In this way, the mathematical model was developed for the sealing 

rings. The distributions of temperature in the structural elements was obtained by the Trefftz method. It is a 

simple method of solving direct and inverse problems described by a homogeneous or an inhomogeneous partial 

differential equation. The main idea of the method is to determine functions satisfying a given differential 

equation (Trefftz functions) and to fit the linear combination of them to the governing boundary conditions. 

Abstrakt 

Jev přenosu tepla v bezkontaktních mechanických těsněních byl popsán parciální diferenciální rovnicí 

druhého řádu s okrajovými podmínkami. Tímto způsobem, byl vyvinut pro těsnicí kroužky matematický model. 

Distribuce teploty v konstrukčních prvcích byla získána metodou Trefftz. Jedná se o jednoduchý způsob řešení 

přímých a inverzních problémů popsaných homogenní nebo nehomogenní parciální diferenciální rovnicí. Hlavní 

myšlenkou této metody je určit funkce, které by splňoval danou diferenciální rovnici (funkce Trefftz) tak,  aby 

jejich lineární kombinace vyhověli okrajovým podmínkám. 
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 1 INTRODUCTION 

In the paper an approximate solution of the inverse problem in the heat transfer is presented. The head 

transfer in the stator was described by partial differential equation of the second order.  The distributions of 

temperature in the stator was obtained by the Trefftz method. In this method, the linear combination of the 

Trefftz functions is used. The concept of using the functions is that they satisfy a given differential equation. 

Additional information about the Trefftz functions can be found in [1],[8],[9],[15]. Many examples of using the 

Trefftz functions to solve invers problems were presented in [2], [3], [11], [5]. It is worth to notice that this 

method can be used for solving various partial differential equations. It was applied for the wave equation and 

thermoelasticity problems in [12], [10], [6], for the equation of a beam and plate vibration in [13], [14] and for 

the nonlinear heat condition problem in [7]. 

 

2 PROBLEM DESCRIPTION 

Mechanical seals are crucial elements of most turbomachines, ensuring their high reliability. They are 

common in pumps, mixers and other industrial equipment. Designed primarily to reduce power loss, they are 

also responsible for preventing leakage of the fluid to the environment. This can be achieved by maintaining a 

proper fluid-filled micro-clearance between the mating sealing rings. Seals of this type are called non-contacting 

face seals. 

The diagram of the non-contacting face seal used in the analysis is shown on Figure 1. The seal consists 

of two rings, one of which is the stator (3) and the other is the flexibly mounted rotor (4), rotating with the shaft 
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(1) of a turbomachine. The main design assumption was to maintain a slight clearance gap between the mating 

rings during the operation of the seal, which is filled with a medium. 

 
Fig. 1 Diagram of the non-contacting face seal: 1 – shaft, 2 – steady pin,  

3 – stator, 4 – rotor, 5 – housing of mechanical seal, 6 – spring, 7 – device housing, 8 - 0-ring. 

 

3 MATHEMATICAL MODEL 

Generally, a model of heat transfer for a non-contacting face seal is a complex system of cross-correlated 

differential equations taking into consideration a number of boundary conditions necessary for the correct 

solution. 

The heat transfer in the stator can be describe by the Laplace equation in cylindrical coordinates: 
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The Laplace equation has been completed by boundary conditions: 
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where: 

0T   – the temperature of the surrounding fluid [ ]C , 

  – the thermal conductivity
W

mK
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Additionally, we assume that the temperature for z = −0.002 is known. The exact solution to this 

problem is given by the following formula: 
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4 THE TREFFTZ METHOD 

The Trefftz method is an approximate method of solving direct and inverse problems which are described 

by a partial differential equation. The unknown solution T of Laplace equation with suitable boundary conditions 

was approximated by the linear combination of the Trefftz functions 
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where: 

nc   – unknown coefficient of the linear combination, 

nV  – the Trefftz functions satisfying the Laplace equation. 

 

The Trefftz functions for the Laplace equation in cylindrical coordinates were presented in [4]. Before 

numerical calculations, the Trefftz functions have to be generated with the recursive formula: 

  0 , 1V r z   (7) 

    1 0, ,V r z z V r z z    (8) 

 

2 2

( 1)

( 1) 2

((2 1) ( , ) ( ) ( , ))
( , )

( 1)

k k

k

k z V r z r z V r z
V r z

k





     



 for 1,2,k    (9) 

Tab. 1 The Tefftz functions from degree 0 to 5. 
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The Trefftz function 

0 1  

1 z  

2 
2 21 1
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z r  

3 
3 21 1
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z zr  

4 
4 2 2 41 1 1

24 8 64
z z r r   

5 
5 3 2 41 1 1

120 24 64
z z r zr   

The coefficients 𝑐𝑛 of the combination are determined in such a way to minimize the functional 

describing the fitting of an approximation to known boundary conditions. The functional for this problem has the 

following form: 
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where: 

0T   – the temperature of the surrounding fluid [ ]C , 

  – the thermal conductivity
W

m K

 
 
 

, 

   – the convection coefficient
2

W

m K

 
 
 

, 

W   – the interpolation polynomial for a given set of data points (thermocouples), 

The necessary condition to minimize functional has a form: 
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Hence the linear system of equations nice to be solved. 

5 RESULTS 

Figure 2 presents the exact solution and its approximation. It depicts the approximation for the 40, 42, 51 

and 62 the Trefftz functions. 

 

 

 

 

 

 

 

 

 

 

 

                                                    

     

 

 

 

                         

 

 

Fig. 2 The temperature distribution on the surface 

of the stator for A – 40, B – 44, C – 51 and D – 62 the Trefftz functions 
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On the basis of the presented results, it can be observed that the greater the number of Trefftz functions 

the better the approximation. The obtained approximations are satisfactory. This results show a remarkable 

efficiency of the Trefftz method for solving these types of problems. 

 

6 CONCLUSIONS 

The presented method is suitable for solving boundary inverse problems. The approximation of the exact 

solution is highly satisfactory. We can observe that when the number of the Trefftz functions was increased the 

results were improved. Moreover, the main advantage of the Trefftz method is its mathematical simplicity. The 

approximate solution is a linear combination of the functions satisfying identically the Laplace equation. Then 

the coefficients of the linear combination are determined by solving a linear system of equations. 
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