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Abstract 

The paper is focused on a numerical simulation of unsteady flow in a pipeline. The special 

attention is paid to a numerical model of an air valve, which has to include all possible regimes: 

critical/subcritical inflow and critical/subcritical outflow of air. Thermodynamic equation of 

subcritical mass flow was simplified to get more friendly shape of relevant equations, which enables 

easier solution of the problem. 

Abstrakt 

Článek je zaměřen na numerickou simulaci nestacionárního proudění v potrubí. Zvláštní 

pozornost je věnována numerickému modelu zavzdušňovacího ventilu, který musí obsáhnout všechny 

možné režimy: kritické/podkritické sání a kritický/podkritický výfuk vzduchu. Termodynamická 

rovnice podkritického proudění plynu byla zjednodušena, takže její tvar je mnohem jednodušší pro 

další řešení. 
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1 INTRODUCTION 

Flow in pipeline systems is a special case of a fluid motion. Axial component of the velocity 

dominates over the radial and tangential one. As various kinds of liquid are, usually, transported by a 

pipeline, it is necessary to pay an attention to this phenomenon. Jeopardy of a sudden velocity change 

has to be treated in each system as it can cause a rupture or a collapse of a pipe wall or can damage 

other components of the system [7]. 

Air valve is one way how to suppress a sudden drop of the pressure, which is connected with 

the transient flow. It is placed on a location, where this event is most likely to occur. It is, usually, on 

tops of the pipeline profile, downstream of an emergency valve and so on. When the pressure goes 

under the atmospheric value, the air valve opens and lets air get into the pipeline. When the pressure 

is greater than the atmospheric one, the air valve allows air to leave the pipeline, but keeps liquid 

inside. 

When air valve is well designed, it makes pressure pulsations lower and protects the hydraulic 

system against impacts of the water hammer (e. g. [8]). To judge an effect of the air valve on the 

system behavior, a designer has to simulate the transient flow with one-dimensional version of 

continuity and momentum equations (1) and (2). 
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where: 

D  – diameter  m , 

gp  – projection of gravity acceleration to pipe axis 







2s

m
, 

K  – bulk modulus  Pa , 

p  – pressure  Pa , 

Q  – flow rate 








s

m3

, 

S  – pipe cross-section  2m , 

t  – time  s , 

x  – space coordinate  m , 

  – friction coefficient  - , 

  – density 







3m

kg
. 

These equations have to be solved together with boundary conditions. Mathematical 

description of the air valve is one of them. 

 2 NUMERICAL SOLUTION 

Equations (1) and (2) are subject to a numerical solution. There are many possibilities. 

Probably, method of characteristic (or general method of characteristic) is the most popular [1], [5], 

[10], but Lax-Wendroff method is used in this paper. The numerical scheme is drawn in the figure 1. 

 

Fig. 1 Lax-Wendroff numerical scheme [3] 

The method is based on the Taylor’s expansion in the time direction and shows a numerical 

viscosity, which makes results more similar to real events than results by the method of characteristic. 

One can find a derivation of the method in [6]. The result is then given by initial conditions, which 

are important at the beginning of computation and then their influence disappears and by boundary 

condition, which control all computation. 



31 

Models of various hydraulic elements serve as boundary conditions and can be very simple 

(e. g. prescribed pressure, flow rate, resistance...) or more complex (surge tank, pump, turbine...), 

see [9]. Adaptation of boundary conditions for Lax-Wendroff method is described in [2]. 

 2.1 Air valve  

Model of the air valve can be understood as an air pocket with a variable mass. When the 

pressure is lower than the atmospheric pressure the mass increases, because air flows into the pipe. 

When the pressure exceeds the atmospheric value, air is being expelled and the mass decreases till no 

air remains in the pipe. 

The state equation of a gas can be written in following form: 

 ,TRmVp   (3) 

where: 

m  – mass of air in the pipe  kg , 

R  – gas constant 








Kkg

J
, 

T  – temperature in pipe  K , 

V  – volume of gas in the pipe  3m . 

Then, derivative of volume with respect to time is: 
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This volumetric change corresponds to a difference between water flowing out of the 

computational node representing the air valve and water flowing in. The time derivative of the mass 

obeys a thermodynamic law for flowing gases and has four possible shapes: 

1. Ratio of the pressure in the pipe and atmospheric pressure is lower than critical value: 
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where: 

rk  – critical ratio  - , 

n  – polytrophic exponent (value in limits 1 to 1.4 for air)  - , 

then the air flow is critical and obeys following equation: 
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 (6)  

where: 

Cin  – inflow coefficient of the valve (value in limits 0 to 1)  - , 

pa  – atmospheric pressure  Pa , 

Sin  – inlet cross-section of the air valve  2m , 

Ta  – temperature outside of pipe  K . 

2. Subsonic inflow starts when ratio of pressures is lower than 1, but greater than rk: 
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 (7)  

3. When the ratio of pressures is greater than 1 but lower than inverse value of rk, 

subsonic outflow of air starts: 
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 (8)  

where: 

Cout  – outflow coefficient of the valve (value in limits 0 to 1)  - , 

Sout  – outlet cross-section of the air valve  2m . 

4. Critical outflow starts when the ratio of pressures is greater than inverse value of rk: 
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Mass flow of air through the air valve can be, then, plotted as a function of pressure or 

pressure ratio, see fig. 2. Of course, when there is no air in the pipe, the flow equals zero. 

 

Fig. 2 Mass flow through the air valve 

But there is one difficulty: subsonic mass flow is quite complicated function and makes 

problems in numerical model, because unknown pressure has the exponent, which is not a whole 

number. So, there is an effort to simplify it. Lee and Leow [4] split subsonic area into intervals and, 

in each interval, replaced the function with a parabola. The more intervals the better accuracy, but 

increased requirements on computational time, because it is necessary to solve all parabolas and look 

for solution lying at a right interval. 
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When one looks at the subsonic inflow (pressure ratio at interval 0.528 to 1.0), the function is 

similar to an ellipse, so it could be possible to use it at the entire interval. Thus, equation (7) is 

replaced by: 
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Equation for subsonic outflow (8) can be replaced in similar way by: 
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Comparison of the original functions (7) and (8) with substituting functions (10) and (11) is 

shown in the fig. 3. Equations (10) and (11) are friendlier for further solution, because contains only 

first and second power of the pressure unlike equations (7) and (8). 

 

Fig. 3 Comparison of substitution with the original function 

The error of substitution depends on the polytrophic exponent and is lower than 3.5% for 

values from 1 to 1.4. When the exponent has value 1.449, the substitution is the most accurate. See 

figure 4. 

Now, the numerical model of the valve can be written in shape (12) using eqns. (4), (5), (6), 

(10) and (11). Function m(t+t)=m(p(t+t)). 
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where: 

Qin  – water flow into the air valve node 








s

2m
, 

Qin  – water flow out of the air valve node 








s

2m
, 
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t  – time step of the computation  s . 

 

Fig. 4 Error of substitution for various values of the polytrophic exponent 

Inflow and outflow come from equation (1) in form: 

         ,2 ttQtpttp
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ttQout 




  (13)  

         ,1 ttQttptp
tK

xS
ttQ nin 




   (14)  

where: 

x  – space step of the computation  m . 

Variables Q2 and Qn-1 are flow rates given by Lax-Wendroff method (one space step 

downstream and one space step upstream the air valve respectively), Q1 and Qn are the same as Qout 

and Qin respectively, see fig. 5. The only unknown is the pressure in the following time step p(t+t), 

when equations (12) to (14) are being solved. 

 

Fig. 5 Numerical scheme of the air valve node 

 2.2 Simulation 

Simple task of a pipeline with an air valve was used to test the proposed numerical model. 

Figure 6 shows a pipeline profile. Air valve is placed five meters from the upstream end, where the 

pipeline becomes horizontal. This place is the most dangerous, because the column separation is most 

likely to appear here. 
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Fig. 6 Pipeline profile 

The flow rate boundary condition at the beginning of pipeline is plotted in the fig. 7. Initial 

flow rate is 0.877 m
3
/s, which is constant for one second. Then, it starts decreasing to zero following 

parabolic function. This is similar to closing a ball valve. Constant pressure 1.1 kPa is the outlet 

boundary condition. Parameters of the air valve were chosen as following: atmospheric pressure 

10
5 
Pa, gas constant 287 J/kg/K, temperature in pipeline 288 K, temperature outside of pipe 298 K, air 

inlet cross-section 10
-3

 m
2
, air outlet cross-section 4.9·10

-5
 m

2
, polytrophic exponent of air 1.4, 

outflow and inflow coefficients of the valve are 1. 

Diameter of pipeline is 0.5 m, roughness 1 mm, wave speed 1000 m/s, density of water 

1000 kg/m
3
 and viscosity 10

-6
 m/s

2
. As the space step is 1 m the time step of computation is 0.001 s. 

 

Fig. 7 Inlet boundary condition 
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Figure 8 shows pressure surge at the beginning of pipe and on the location of the air valve 

(which is not considered in this case). One can see that the top of the highest peak exceeds value 

3.5 kPa and the lowest pressure is more than 0.5 kPa below the absolute zero, what means that a 

cavitation would appear there. (This task would deserve using an appropriate cavitation model, but 

this is not the goal of this paper). 

 

Fig. 8 Pressure pulsations without the air valve 

When the air valve is considered on its location, the pressure pulsations are noticeably lower 

and minimal pressure is only 0.5 kPa below the atmospheric value, thus there is no risk of cavitation, 

see fig. 9. Figure 10 shows volume and mass of an air pocket, which originates when air is sucked 

into the pipe. The difference between frequencies of pulsations in figures 8 and 9 is given by the air 

pocket, which serves as an air vessel with variable capacity. 

 

Fig. 9 Pressure pulsations with the air valve 
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Fig. 10 Volume and mass of the air pocket during the transient event 

 

 3 CONCLUSIONS 

Design of a numerical model of an air valve is described in this paper. Model comes from 

thermodynamic equation for flowing gas and state equation describing behavior of the air in a pipe. 

Since the subsonic flow of the gas is described by quite complicated equation, which makes further 

computation difficult, this function was substituted with a simpler one, which is similar to original 

one. The error of the substitution is low enough to justify this step. 

Then, the final numerical model was tested as a boundary condition in a computation of a 

water hammer in a simple pipeline. 
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