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Abstract. This article deals with the construction de-
sign of optical transmitter for indoor Free Space Optic
(FSO) networks. This optical transmitter will be able
to provide the lighting and communication at the same
time. Thanks to special solution in spectral characteris-
tic of transmitted light it is necessary to use two LEDs
radiation sources. The light beams of these LEDs have
to be spatially overlapped in crisscross direction and
then the transmitter can realize both functions. There
1s described a construction of optical transmitter with
plastic optical fibers which merges two LED beams to-
gether and provide lighting and communication at the
same time.
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1. Introduction

The most important parameters of communication for
normal user are high data rate and mobility. Radio
wireless networks could realize these two parameters,
therefore they became so successful. However, user de-
mands on data rate continuously increase; therefore
it is necessary to find other solutions and improve-
ments. In this field optical links begin gradually more
and more establish, because they are able to provide
high data rate and mobility is also possible. Visible
Light Communication (VLC) is a promising example
of optical technology, which could be used in indoor
spaces. VLC holds attention in academia and industry
thanks to large progress in development of LEDs. Cur-
rent LED features are at the level, which enables them
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gradually replace classical illumination sources (incan-
descent light bulbs and fluorescent lamps). Moreover,
LEDs could be modulated at high bit rates in compar-
ison to classical illumination sources. Therefore LED
features directly challenge using them for illumination
and communication at the same time.

The advantage of optical communication is high data
rate, no legislative restriction, no interferences with ra-
dio links, small size, low power consumption and data
safety. On the other side, it is necessary to keep limits
of optical power for human eyes and to square up with
optical noise.

2.  Current Indoor Free Space
Optic Networks

Indoor FSO networks could be divided according to the
line of sight between transmitter and receiver and ac-
cording to directivity of transceivers [I]. The other
classification is according to used optical spectrum,
which is more important and more interesting for this
article. Presently, the infrared (IR) light or visible light
are used for communication indoor [2]. IR transmis-
sion is defined by several standards with different bit
rates. The highest bit rate according to IrDA asso-
ciation is 16 Mb-s™! [I]. Using visible light for com-
munication has several advantages, which have been
mentioned above. Moreover, VLC also provides illu-
mination. Several experiments have been done, when
the bit rate greatly exceeds 100 Mb-s~! [2]. This is sub-
stantially more than IR can provide. This is also the
reason, why using of white light for illumination and IR
for communication is not advantageous. In addition,
stricter optical power limits hold for IR. As expected,
VLC also has a disadvantage. This disadvantage is
white light emitting LED.
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3. Current Visible Light

Communication VLC

White LEDs are key elements for Visible Light Com-
munication VLC. White light creation is not simple
issue, which reflects in VL.C features. Presently, VLC
uses the whole emitted spectrum of white LED for data
transmission.

There exist two main methods, how to create a white
light using LEDs. The first method uses more color
light sources; the other method uses a blue light source
and a suitable wavelength converter, e.g. yellow phos-
phor [3] [4]. The first type of white LED consists of
three light sources (blue, green, red) which are sup-
plied in correct proportion. This method is more com-
plex and more expensive [2], but enables to create any
other color. VLC needs power LEDs for a sufficient
coverage of required space by light. The forward cur-
rent of power LED is up to 700 mA [5]. If power LED
should provide illumination and communication at the
same time, it has to be modulated fast enough. But
quite high forward current can limit the modulation
rate thanks to switching on and off [6].

The other type of white LED consists of a blue light
emitting chip. A portion of blue light excites a yel-
low phosphor (Yttrium Aluminium Garnet Y3Al5015),
which creates yellow light. Mixing of blue and yellow
lights creates a white light. The modulation rate is
limited by slow response of phosphor. This method is
simpler and cheaper.

Thanks these limitations we proposed a new type
of transmitter for indoor FSO networks which uses
only a part of visible spectrum for data transmission.
The part of original spectrum emitted by white LED
is purposely suppressed by optical notch filter. The
suppressed part is then replaced by light from another
LED which will be modulated. Both these LEDs create
together original white light. The advantage is, that
white power LED emits continuously, therefore the dis-
advantages of high current switching or phosphor delay
do not appear. The useful data will be transmitted by
a narrow spectral LED, which replaces the suppressed
part. It will be supplied by lower forward current and
therefore it can be modulated faster. The problem is
how to merge two optical beams from the power LEDs
spatially together. The aim of this article is not a de-
scription of new VLC method, it has been described
in [7] and [8]. The aim is a solution of problem how
to spatially merge two optical beams together into one
beam.

Nowadays, VLC is very interesting area for research,
many calls and project are aimed at improving and
searching new possibilities of VLC.
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4. Spatial Merging of Beams

from LEDs

The one solution of this problem has been found and
presented in [9]. We have thought out, set and mea-
sured still another solution. The basis of beams merg-
ing are again parabolic reflectors [I0], which were set
to the power LEDs and beamsplitter 50T /50R. The
beamsplitter 50T /50R merges two optical beams in
power and spatial properties correctly and it creates
original white light. The disadvantage of beamsplitter
50T /50R is a deflection of a half of optical power. In
[9], a mirror was used to parallel direction of beam.

The basis of this type of optical transmitter is two
plastic optical fibers [ITI]. The plastic optical fibers
were chosen thanks to their large diameter. The di-
ameter of cladding is 10 mm; the diameter of core is
8.6 mm. Other optical properties are summarized in
Tab. The light which passed through beamsplitter
would be very difficult to couple in classical optical
fiber and the loss of optical power would be great.

Tab. 1: Optical properties of plastic optical fiber.

Title Symbol Value
Core Diameter d1 8.6 mm
Outer Diameter do 10 mm
Refractive Index: - 1.492
Core

Refractive Index:

Cladding n2 1.343
Numerical Aperture NA 0.65
Spectral Trans. Range AN 380-750 nm

The first beam from beamsplitter’s output is coupled
into the first plastic fiber; the other beam from other
beamsplitter output is coupled into the other plastic
fiber. For coupling beams into plastic fibers two achro-
matic lenses AC254-030-A-ML [I2] were used. The
lens is achromatic doublets for visible part of spectrum.
The diameter of lens is 25.4 mm; focal length is 30 mm.
All important parameters of achromatic lens are writ-
ten in Tab.

Tab. 2: Important parameters of achromatic lens.
Title Symbol Value
Lens Diameter D 25.4 mm
Focal Lenght f 30.0 mm
Back Focal Lenght v 22.9 mm
Radius of Curvature Ry 20.9 mm
Radius of Curvature Ro -16.7 mm
Radius of Curvature R3 -79.8 mm
Center Thickness tel 12.0 mm
Center Thickness teo 2.0 mm
Edge Thickness te 8.8 mm

When the light is coupled into plastic optical fibers,
the ends of plastic fibers could be suitable located on
the ceiling of room and perform the best light cove-
rage of room. For suitable coverage two fibers will
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not be sufficient, therefore another light dividing into
more fibers is supposed, which ensures required cove-
rage. The ends of fibers will be specially modified for
effective room coverage. In this article the coupling
from beamsplitter into plastic optical fibers is solved.
The scheme of optical transmitter is in Fig.
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Fig. 1: Scheme of optical transmitter.

The construction of this transmitter depends on the
correct placing of plastic fibers inputs for the utmost
light coupling. For this purpose a simulation in soft-
ware LightTools was done and its results were verified
in laboratory on transmitter prototype which was set
from optical components on optical table.

5.  Simulations in LightTools

Software LightTools enables modelling of various opti-
cal systems. Its unique design and analyzing features
combined with its simple way of operation, its support
of a quick design and optimization make obtaining of
results according to the predefined conditions possible.
This software includes a large component library. It is
possible to change many parameters. The results are
very precise [13].

In software LightTools the optical transmitter with
plastic optical fibers was created, as shown in Fig. [
The target of simulation was to find out whether it is
possible to couple the beams from beamsplitter into
plastic fibers. The important element is achromatic
lens which collimates the beam in its focus. Thanks
to the software LightTools it was possible to simulate
how small beam spot the achromatic lens creates and
in what distance from the end of lens it is. In this
place, the inputs of plastic fibers were placed for the
best light coupling.
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Fig. 2: Simulation in LightTools.

In software LightTools a measuring plain was cre-
ated. This measuring plain was placed in distance
18 mm from the end of achromatic lens and the sim-
ulation was run. The evaluative criterion was a Full
Width at Half Maximum (FWHM). A target was to
find such distance in which a beam spot is the narrow-
est. The results calculated by simulation are summa-
rized in Tab. |3} From this table it is obviously that the
narrowest beam spot is in distance 24 mm from the
end of achromatic lens.

Tab. 3: Simulation of the narrowest beam spot.

Distance | FWHM, | FWHM,
[rmm] [mm] frmm]
18 8.59 8.59
19 8.54 8.54
20 8.47 8.48
21 8.41 8.41
22 8.40 8.41
23 8.39 8.39
24 8.37 8.38
25 8.41 8.41
26 8.44 8.43
27 8.49 8.48
28 8.53 8.54
29 8.59 8.59
30 8.66 8.65

Further it was simulated in LightTools how much of
optical power reaches the core of plastic optical fiber
and how much reaches the cladding. The software cal-
culated that 96.6 % of optical power, which passed
through the lens, reaches the core in the first one way,
in the other one way it was 96.4 % of optical power.
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6. Measurement in Laboratory

The simulation in software LightTools showed that it
is possible to set an optical transmitter with plastic
optical fibers. In laboratory on optical table, the op-
tical transmitter was constructed. The scheme is in
Fig. 2l The constructed transmitter is consonant with
transmitter which was created in software LightTools.

It was measured in which distance from the end of
achromatic lens the spot of merged beam is the nar-
rowest. For this purpose a measurement was done, its
aim was to measure the beam spot in several distances
from the end of achromatic lens and to find in such way
the distance in which the beam spot is the narrowest.
Two motorized linear translation stages and powerme-
ter with photodetector were used to measurement.

Beam profiles were measured in several distances
from the end of achromatic lens. The powermeter was
placed in distance 18 mm from the end of achromatic
lens. Powermeter moved in transverse direction with
step 1 mm. In this the beam profiles were measured
in the range from —15 mm to 15 mm. Then the pow-
ermeter was moved in distance 19 mm from the end
of achromatic lens and the beam profile was measured
again. In this way the beam profiles were measured up
to distance 30 mm from the end of achromatic lens. For
each distance a graph of relative optical power was set
to measure FWHM. The measured results are summa-
rized in Tab. [4l It is obviously from this table that the
narrowest beam spot was in distance 24 mm from the
end of achromatic lens. This result is consonant with
the simulation in LightTools which is summarized in
Tab. The profile of beam spot in y-axis direction
was also measured in distance 24 mm. FHWM, was
8.99 mm in this distance.

Tab. 4: Measurement of the narrowest beam spot.

Distance | FWHM,
from] fram]
18 9.42
19 9.35
20 9.25
21 9.18
22 9.13
23 9.11
24 9.04
25 9.13
26 9.18
27 9.25
28 9.35
29 9.54
30 9.73
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7. Conclusion

The simulation and the real measurement of opti-
cal transmitter with plastic optical fibers investigated
above all the coupling of light beams into plastic fibers
by achromatic lenses. The simulation showed that
the beam could be focused to couple into plastic op-
tical fiber, because the beam spot is enough narrow.
The LightTools calculated how much percent of opti-
cal power couples into optical fiber. The measurement
found the position in which the optical power is the
greatest. After that the measurement of beam profiles
behind the achromatic lens was done.

The simulation measured narrower FWHM than the
measurement. It is given by higher precision of simu-
lation in comparison to measurement. The important
is that the narrowest beam spot is in distance 24 mm
from the end of achromatic lens. Simulation and mea-
surement agreed well.

The simulation and the measurement showed that
it is possible to set an optical transmitter with plas-
tic optical fibers. This transmitter is not finished yet,
further it is necessary to deal with distribution of light
coupled into plastic optical fibers.

Other next step is a construction of modulator with
suitable modulation and line code for bit rate testing.
It seems that OOK with Manchester coding should be
interesting for this VLC transmitter.
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