
VSB-TECHNICAL UNIVERSITY OF OSTRAVA

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER

SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

P H D T H E S I S

Study branch : Computer Science

Named Entity Recognition and
Text Compression

Author : Vu Nguyen Hong

Supervisor : Prof. RNDr. Václav Snášel

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/84396421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

This thesis is the result of research carried out during my PhD program at VSB-
Technical University of Ostrava, Czech Republic. It is my pleasure to thank all
those who have helped me.

First, I would like to express my deep appreciation to my academic and the-
sis supervisor, Professor Václav Snášel, who has been vigorously supervising my
studies, supporting my research, and has been constantly involved in guiding me
towards my goal. This thesis would not have been possible without his academic
and insightful advice. It is priceless to me to have him as my supervisor. I would
like to thank him for the consecutive trips to Vietnam to guide me so that I was
able to achieve my goal of completing my research and this thesis project. I will
never forget everything he has done for me since I arrived in the Czech Republic.

I am really grateful to Dr. Hien Nguyen Thanh, my second thesis supervisor, for
his guidance, feedback, and comments during my research. He has given me advice
and guided me how to approach and explore new challenges and how to divide
an overwhelming task into smaller, more manageable tasks that are more readily
accomplished. This allowed me to take my first steps in the world of research.
During my research, he has always encouraged me, pushed me, and shared with me
his experience, knowledge, and anything that he thinks will be valuable to me. I
know that he spent a lot of his time with me and I wish to express my gratitude to
him.

I am thankful to Dr. Phan Dao, Director of the European Cooperation Center
of Ton Duc Thang University, Ho Chi Minh City, Vietnam, for giving me the
opportunity to take part in the Sandwich Program. He has advised me on what to
do and how can I achieve my goals during my research. I will never forget everything
he did for me the first time I went to the Czech Republic; he and his family were
so kind to help me arrange my accommodations, develop my itinerary, and choose
some places to visit during my trip.

I am also thankful to my companion, Mr. Hieu Duong Ngoc, for his advice,
support, and encouragement.

I would like to thank all of my colleagues, my friends, and my classmates in the
Sandwich Program.

Finally, I wish to express my heartfelt gratitude to my family for their love,
encouragement, and support; especially my beloved Phuong Pham.

ii

Abstract

In recent years, social networks have become very popular. It is easy for users
to share their data using online social networks. Since data on social networks is
idiomatic, irregular, brief, and includes acronyms and spelling errors, dealing with
such data is more challenging than that of news or formal texts. With the huge
volume of posts each day, effective extraction and processing of these data will bring
great benefit to information extraction applications.

This thesis proposes a method to normalize Vietnamese informal text in so-
cial networks. This method has the ability to identify and normalize informal text
based on the structure of Vietnamese words, Vietnamese syllable rules, and a tri-
gram model. After normalization, the data will be processed by a named entity
recognition (NER) model to identify and classify the named entities in these data.
In our NER model, we use six different types of features to recognize named en-
tities categorized in three predefined classes: Person (PER), Location (LOC), and
Organization (ORG).

When viewing social network data, we found that the size of these data are very
large and increase daily. This raises the challenge of how to decrease this size. Due
to the size of the data to be normalized, we use a trigram dictionary that is quite
big, therefore we also need to decrease its size. To deal with this challenge, in this
thesis, we propose three methods to compress text files, especially in Vietnamese
text. The first method is a syllable-based method relying on the structure of
Vietnamese morphosyllables, consonants, syllables and vowels. The second method
is trigram-based Vietnamese text compression based on a trigram dictionary. The
last method is based on an n-gram slide window, in which we use five dictionaries
for unigrams, bigrams, trigrams, four-grams and five-grams. This method achieves
a promising compression ratio of around 90% and can be used for any size of text file.

Keywords: text normalization, named entity recognition, text compression.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis objective and scope . 3
1.3 Thesis organization . 3

2 Background and related work 5
2.1 Vietnamese language processing resources 5

2.1.1 Structure of Vietnamese word 5
2.1.2 Typing methods . 6
2.1.3 Standard morphosyllables dictionary 6

2.2 Text compression . 7
2.2.1 Introduction to text compression 7
2.2.2 Text compression techniques 8
2.2.3 Related work . 8

2.3 Named entity recognition . 9
2.3.1 Introduction . 9
2.3.2 NER techniques . 11
2.3.3 Related work . 12

3 Vietnamese text compression 15
3.1 Introduction . 15
3.2 A syllable-based method for Vietnamese text compression 16

3.2.1 Dictionary . 16
3.2.2 Morphosyllable rules . 18
3.2.3 SBV text compression . 19
3.2.4 SBV text decompression . 22
3.2.5 Compression ratio . 23
3.2.6 Example . 23
3.2.7 Experiments . 28

3.3 Trigram-based Vietnamese text compression 31
3.3.1 Dictionary . 31
3.3.2 TGV text compression . 32
3.3.3 TGV text decompression . 33
3.3.4 Example . 34
3.3.5 Experiments . 36

3.4 N-gram based text compression . 39
3.4.1 Dictionaries . 39
3.4.2 N-gram based text compression 41
3.4.3 N-gram based text decompression 43
3.4.4 Example . 45

Contents iv

3.4.5 Experiments . 49
3.5 Summary . 53

4 Normalization of Vietnamese informal text 54
4.1 Introduction . 54
4.2 Related Work . 55
4.3 Normalization of Vietnamese informal text 56

4.3.1 Preprocessing . 57
4.3.2 Spelling errors detection . 57
4.3.3 Error correction . 58

4.4 Experiments and results . 61
4.5 Summary . 62

5 Named entity recognition in Vietnamese informal text 63
5.1 Context . 63
5.2 Proposed method . 64

5.2.1 Normalization . 64
5.2.2 Capitalization classifier . 65
5.2.3 Word segmentation and part of speech (POS) tagging 66
5.2.4 Extraction of features . 67

5.3 NER training set . 70
5.4 Experiments . 72
5.5 Summary . 73

6 Conclusions 74
6.1 Thesis contributions . 74
6.2 Perspectives . 76
6.3 Publications . 76

Bibliography 78

Chapter 1

Introduction

Contents

1.1 Motivation . 1
1.2 Thesis objective and scope . 3
1.3 Thesis organization . 3

1.1 Motivation

In recent decades, along with the development of computer science and technology,
the internet was also developed. Today, the internet has become one of the most
popular channels for storing and transferring human information. The invention of
the World Wide Web (the “Web”) and its rapid development created a convenient
opportunity for the distributing and sharing of information over internet. It led
to the explosion of information in terms of quantity, quality, and subject. Two
decades ago, the capacity of information was usually measured in MB or GB. How-
ever, in recent years, along with the appearance of big data theory, the common
measurement units are now GB, TB, and PB. Almost all information on the web
has been presented in natural language under the format of the HTML language.
This language lacks the capability to express the semantics of concepts and objects
presented on the web. Therefore, the majority of current information on the web is
only suitable for humans to read and understand. From the objectives of effective
mining of information resources from web, several applications to extract documents
automatically were developed, such as information extraction systems, information
retrieval systems, machine translations, text summarization, and question answer-
ing systems, etc. for computers to understand the semantics of sections of a text,
instead of trying to understand the entire semantics of text. Some approaches have
been proposed so that we can understand main entities and concepts appearing in
the text based on source knowledge of entities and concepts in the real world.

Named entity recognition (NER) is a subtask of information extraction and one
of the important parts of Natural Language Processing (NLP). NER is the task of
detecting named entities in documents and categorizing them to predefined classes.
Common classes of NER systems are person (PER), location (LOC), organization
(ORG), date (DATE), time (TIME), currency (CUR), etc. For example, let us
consider the following sentence:

1.1. Motivation 2

On April 13, 2016, Mr. Hien Nguyen Thanh attended a meeting with CSC
corporation in Ton Duc Thang University

In this sentence, an NER system would recognize and classify four named entities
as follows:

• April 13, 2016 is a date

• Hien Nguyen Thanh is a person

• CSC corporation is an organization

• Ton Duc Thang University is an organization

After the named entity has been recognized, it can be used for different im-
portant tasks. For example, it can be used for named entity linking and machine
translation, such as we have on an iPhone device app, which takes a photo of a
dish name on a menu, recognizes this name as an entity of dish names and foods,
maps it to a knowledge source about entities and concepts in the real world, such
as Wikipedia1. The app then translates it to the user’s language. Normally, from
the recognized entities, other mining systems can be built to mine new classes of
knowledge and get a better result than the raw text.

Many approaches have been proposed for NER from the first conference, the 6th
Message Understanding Conference (MUC-6) in 1995. In this conference, the NER
task was first introduced and was subsequently discussed at the next conference,
the Conference on Computational Natural Language Learning (CoNLL) in 2002
and 2003. Most of them focused on English, Spanish, Dutch, German, and Chinese
according to the data set from conferences and the popularity of these languages.
In the domain of Vietnamese, several approaches have been proposed and were
presented detail in 2.3.3. However, none apply to Vietnamese informal text.

In this dissertation, we propose a method to fill that gap. We started research on
NER for Vietnamese informal texts in the middle of 2014, and specifically focused
on Vietnamese tweets on Twitter. When studying Vietnamese tweets, we found
that they contained many spelling errors, typing errors, which created a significant
challenge for NER. To overcome this challenge, we studied the Vietnamese language,
normalization techniques, and proposed a method to normalize Vietnamese tweets
in [Nguyen 2015b]. After we normalized these tweets, we proposed a method to
recognize name entities in [Nguyen 2015a].

According to statistics from 2011, the number of tweets was up to 140 million
per day2. With such a huge number of tweets being posted every day, it raised a
storage challenge. Regarding this challenge, in [Nguyen 2015b], we used a trigram
language model, which size is rather large compared with other methods. Therefore,
we want to save its storage too. When researching this challenge, we found that

1http://www.wikipedia.org
2https://blog.twitter.com/2011/numbers

1.2. Thesis objective and scope 3

there have not been any text compression methods proposed for Vietnamese. Af-
ter studying several methods for text compression, we proposed the first approach
for Vietnamese text compression based on syllable and structure of Vietnamese in
[Nguyen 2016a]. In this approach, the compression ratio is converged to around
73%. It is still low when compared with other methods and especially, this method
has a high compression ratio for a small text file. From this disadvantage, we
continued researching and proposed a method based on trigram in [Nguyen 2016b],
and the compression ratio of this method shows significant improvement when com-
pared with the previous method. Its compression ratio is around 82%, and it is still
not the best. In the next approach, we propose a method based on the n-gram
slide window and achieve an encouraging compression ratio of around 90%. This
is higher than the two previous methods and with other methods. One important
significance of this method, however, is that it can apply to any size of text file.

1.2 Thesis objective and scope

The objectives of this thesis are briefly summarized as follows.

1. To suggest a method to compress Vietnamese text based on Vietnamese mor-
phosyllable structure, such as syllables, consonants, vowels, and marks; Viet-
namese dictionary of syllables with their marks; Vietnamese dictionary of
consonants, vowels, etc.

2. To propose a method to compress Vietnamese text based on the trigram
language model.

3. To propose a method to compress text based on n-gram sliding windows.

4. To propose a method to detect Vietnamese errors in informal text, especially
focused on Vietnamese tweets on Twitter, and to normalize them based on a
dictionary of Vietnamese morphosyllables, Vietnamese morphosyllable struc-
tures, and Vietnamese syllable rules in the combination with language model.

5. To propose an NER model to recognize named entities in Vietnamese informal
text, especially focused on Vietnamese tweets on Twitter.

1.3 Thesis organization

The rest of the dissertation is structured as follows.
Chapter 2 describes the background and related work. In this chapter, we

present the structure of Vietnamese words, and the typing methods to compose
Vietnamese words. We also present the theory of text compression, text compression
techniques, some NER techniques, and some related work involving to our research.

In Chapter 3, we present some techniques for Vietnamese text compression.
They are a syllable-based method, a trigram-based method, and finally an n-gram
based method.

1.3. Thesis organization 4

In Chapter 4, we offer a model and technique to normalize Vietnamese error
informal text based on Vietnamese morphosyllable structure, syllable rules, and a
trigram dictionary. We also propose a method to improve the Dice coefficient in
[Dice 1945].

In Chapter 5, we propose a model and technique to recognize named entities in
Vietnamese informal text focusing on Vietnamese tweets on Twitter. In our model,
we recognize three categories of named entities including person, organization, and
location.

Finally, Chapter 6 is our conclusions and future work.

Chapter 2

Background and related work

Contents

2.1 Vietnamese language processing resources 5
2.1.1 Structure of Vietnamese word 5
2.1.2 Typing methods . 6
2.1.3 Standard morphosyllables dictionary 6

2.2 Text compression . 7
2.2.1 Introduction to text compression 7
2.2.2 Text compression techniques 8
2.2.3 Related work . 8

2.3 Named entity recognition . 9
2.3.1 Introduction . 9
2.3.2 NER techniques . 11
2.3.3 Related work . 12

2.1 Vietnamese language processing resources

2.1.1 Structure of Vietnamese word

Currently, there are several viewpoints on what is a Vietnamese word. However,
in order to meet the goals of automatic error detection, normalization and clas-
sification, we followed the viewpoint in [Thao 2007], i.e., “A Vietnamese word is
composed of special linguistic units called Vietnamese morphosyllable.” Normally,
it has from one to four morphosyllables. A morphosyllable may be a morpheme, a
word, or neither of them [Tran 2007]. For example, in a sample Vietnamese sen-
tence “Sinh viên Trường Đại học Tôn Đức Thắng rất thông minh,” there are eleven
morphosyllables, i.e., “Sinh,” “viên,” “Trường,” “Đại,” “học,” “Tôn,” “Đức,” “Thắng,”
“rất,” “thông,” and “minh.”

According to the syllable dictionary of Hoang Phe [Phe 2011], a morphosyllable
has two basic parts, i.e., consonant and syllable with mark, or one part, i.e., syllable
with mark. We describe more detail for these parts in followings:

• Consonant: The Vietnamese has 27 consonants, i.e., “b,” “ch,” “c,” “d,” “đ,”
“gi,” “gh,” “g,” “h,” “kh,” “k,” “l,” “m,” “ngh,” “ng,” “nh,” “n,” “ph,” “q,” “r,”

2.1. Vietnamese language processing resources 6

“s,” “th,” “tr,” “t,” “v,” “x,” and “p.” In those consonants, there are eight tail
consonants, i.e., “c,” “ch,” “n,” “nh,” “ng,” “m,” “p,” and “t.”

• Syllable: A syllable may be a vowel, a combination of vowels, or a combination
of vowels and tail consonants. According to the syllable dictionary of Hoang
Phe, the Vietnamese language has 158 syllables, and the vowels in these sylla-
bles do not occur consecutively more than once, except for the syllables “ooc”
and “oong.”

• Vowel: The Vietnamese has 12 vowels, i.e., “a,” “ă,” “â,” “e,” “ê,” “i,” “o,” “ô,”
“ơ,” “u,” “ư,” and “y.”

• Mark: The Vietnamese has six marks, i.e., not marked (none) (“a”), acute
accent (“á”), grave accent (“à”), hook above (“ả”), tilde accent (“ã”), and dot
bellow (“ạ”), which are marked above or below a certain vowel of each syllable.

2.1.2 Typing methods

There are two popular typing methods used to compose Vietnamese, i.e., Telex
typing and VNI typing. Each method combines letters to form Vietnamese mor-
phosyllables. Vietnamese characters have some extra vowels that do not exist in
Latin characters, i.e., â, ă, ê, ô, ơ, ư, one more consonant, đ; Vietnamese has six
types of marks as mention above. The combination of vowels and marks forms the
Vietnamese language its own identity.

• When using Telex typing, we have the combination of characters to form
Vietnamese vowels, such as aa for â, aw for ă, ee for ê, oo for ô, ow for ơ, and
uw for ư. Also we have one consonant, dd for đ. For forming marks, we have
s for acute accent, f for grave accent, r for hook above, x for tilde accent, and
j for dot below.

• Similar to Telex typing, we have the combination of characters in VNI typing,
such as a6 for â, a8 for ă, e6 for ê, o6 for ô, o7 for ơ, u7 for ư, and d9 for đ.
To form marks, we have: 1 for acute accent, 2 for grave accent, 3 for hook
accent, 4 for tilde accent, and 5 for heavy accent.

For example, to compose morphosyllable trường, the normal Telex typing combines
sequence of these letters truwowngf, sometimes we can change the order of these
letter such as truowngf, truwowfng, truwfowng. The normal VNI typing combines
sequence of these letters tru7o7ng2, sometimes we can change the order of these
letter such as truo7ng2, truo72ng, tru72o7ng.

2.1.3 Standard morphosyllables dictionary

We synthesize a standard morphosyllables dictionary of Vietnamese by combining
all consonants, syllables, and marks. This dictionary includes 7,353 morphosyllables
in lowercase and the size is around 51 KB.

2.2. Text compression 7

2.2 Text compression

2.2.1 Introduction to text compression

According to [Salomon 2010], data compression is the process of converting an input
data stream (the source stream or the original raw data) into another data stream
(the output, the bitstream, or the compressed stream) that has a smaller size. A
stream can be a file, a buffer in memory, or individual bits sent on a communications
channel. The main objectives of data compression are to reduce the size of input
stream and increase the transfer rate as well as save storage space. Figure 2.1 shows
the general model of data compression. In this model, the input data stream X will
be encoded to compress stream Y, which has a smaller size than X. Data stream Z
is the stream recovered from compressed stream Y.

X

Original data

Y

Z

Decompressed data

C
o

m
p

re
ss

e
d

D
e

co
m

p
re

sse
d

Figure 2.1: Data compression model

Data compression techniques are classified into two classes, i.e., lossless and
lossy compression. Using the lossless compression technique, after encoding, a user
can completely recover the original data stream from a compressed stream, whereas
with lossy compression, a user cannot retrieve exactly the original data stream, as
the retrieved file will have some bits lost. According to Figure 2.1, if the compression
technique is lossless, the data stream Z is the same as input stream X; otherwise, if
the compression technique is lossy, the data stream Z is different from input stream
X. Based on the property of compression classification, lossy compression techniques
archive a higher compression ratio than lossless. Normally, lossy compression tech-
niques achieve a compression ratio from 100:1 to 200:1, while lossless compression
techniques achieve a compression ratio from 2:1 to 8:1. The compression ratio of
both lossy and lossless compression techniques depend on the type of data stream
being compressed.

Based on the purposes of the compression task, the user will have a suitable
choice for compression technique. If they can accept that the decompression data
stream will be different from the input data stream, they can choose the lossy

2.2. Text compression 8

compression technique to save on storage. In the case that the decompression data
stream and its input need to be the same, the user must use lossless compression
technique.

Text compression is a field of data compression, which uses the lossless compres-
sion technique to convert an input file (sometimes called the source file) to another
form of data file (normally called the compressed file). It cannot use the lossy
compression technique because it needs to recover the exact original file from the
compressed file. If it uses lossy, the meaning of the input file and the file recovered
from the compressed file will be different. Several techniques have been proposed
for text compression in recent years. Most of them are based on the same principle
of removing or reducing the redundancy from the original input text file. The re-
dundancy can appear at character, syllable, or word level. This principle proposed
a mechanism for text compression by assigning short codes to common parts, i.e.,
characters, syllables, words, or sentences, and long codes to rare parts.

2.2.2 Text compression techniques

There are several techniques developed for text compression. These techniques can
be further classified into four major types, i.e., substitution, statistical, dictionary,
and context-based. The substitution text compression techniques replace a certain
longer repeating of characters with a shorter one. A technique that is represen-
tative of these techniques is run length encoding [Robinson 1967]. The statistical
techniques usually calculate the probability of characters to generate the shortest av-
erage code length, such as Shannon-Fano coding [Shannon 1948, Fano 1949], Huff-
man coding [Huffman 1952] and and arithmetic coding [Witten 1987, Howard 1994].
The next type is dictionary techniques, such as Lempel-Ziv-Welch (LZW), which
involves substitution of a sub-string of text by indices or pointer code relating to a
position in dictionary of the substring [Ziv 1977, Ziv 1978, Welch 1984]. The last
type is context-based techniques, which involve the use of minimal prior assump-
tions about the statistics of the text. Instead, they use the context of the text being
encoded and the past history of the text to provide more efficient compression. Rep-
resentatives for this type are prediction by partial matching (PPM) [Cleary 1984]
and Burrow–Wheeler transform (BWT) [Burrows 1994]. Every method has its own
strengths, weaknesses, and is applied to a specific field, and none of the above
methods has been able to achieve the best results in terms of compression ratio.

2.2.3 Related work

In recent years, most text compression techniques have been based on dictionary,
word level, character level, syllable-based, or BWT. [Al-Bahadili 2008] proposed
a method to convert the characters in the source file to a binary code, where
the most common characters in the file have the shortest binary codes, and the
least common have the longest. The binary codes are generated based on the esti-
mated probability of the character within the file and are compressed using 8-bit

2.3. Named entity recognition 9

character word length. [Kalajdzic 2015] proposed a technique to compress short
text messages based on two phases. In the first phase, it converts the input text
consisting of letters, numbers, spaces, and punctuation marks commonly used in
English writing to a format which can be compressed in the second phase. In the
second phase, it proposes a transformation which reduces the size of the message
by a fixed fraction of its original size. In [Platos 2008a], the authors proposed a
word-based compression variant based on the LZ77 algorithm, and proposed and
implemented various ways of sliding windows and various possibilities of output
encoding. In a comparison with other word-based methods, their proposed method
is the best. In these studies, they do not consider the structure of words or mor-
phemes in the text. In [Lansky 2005], Lansky and his colleagues were the first to
propose a method for syllable-based text compression techniques. In their paper,
they focused on specification of syllables, methods for decomposition of words into
syllables, and using syllable-based compression in combination of the principles of
LZW and Huffman coding. Recently, [Akman 2011] presented a new lossless text
compression technique which utilizes syllable-based morphology of multi-syllabic
languages. The proposed method is designed to partition words into its syllables
and then to produce their shorter bit representations for compression. The num-
ber of bits in coding syllables depends on the number of entries in the dictionary
file. In [Platoš 2008b], the authors first proposed a method for small text file com-
pression based on the Burrow–Wheeler transformation. This method combines the
Burrow–Wheeler transform with the Boolean minimization at the same time.

Unfortunately, most of the proposed methods are applied to language other
than Vietnamese. For Vietnamese text, according to our best knowledge, no text
compression has been proposed.

2.3 Named entity recognition

2.3.1 Introduction

Named entity recognition task was first introduced at MUC-6 in 1995. In this
conference, NER consists of three subtasks. The first task is ENAMEX, which
detects and classifies proper names and acronyms which are categorized via the
three types as follows:

• ORGANIZATION: named of corporate, governmental, or other organizational
entity such as “Ton Duc Thang University”, “CSC Corporation”, “Gia Dinh
hospital”.

• PERSON: named person or family such as “Phuong Pham Thi Minh”, “Han
Nguyen Vu Gia”.

• LOCATION: name of politically or geographically defined location (cities,
provinces, countries, international regions, bodies of water, mountains, etc.)
such as “Ho Chi Minh City”, “New York”.

2.3. Named entity recognition 10

The second task is TIMEX, which detects and classifies of temporal expressions
which are categorized in two types as follows:

• DATE: complete or partial date expression such as “April 2016”, “April 24,
2016”.

• TIME: complete or partial expression of time of day such as “six p.m.”, “1h30
a.m.”.

The last task is NUMEX, which detects and classifies of numeric expressions,
monetary expressions and percentages which are categorized in two types as follows:

• MONEY: monetary expression such as “9,000 VND”, “10,000 USD”.

• PERCENT: percentage such as “20%”, “ten percent”.

The example below, cited from [Grishman 1996], shows a sample sentence with
named entity annotations. In this example, “Dooner” was annotated as a person,
“Ammirati & Puris” was annotated as an organization, and “$400 million” was
annotated as money, etc.

Mr. <ENAMEX TYPE= “PERSON”>Dooner</ENAMEX> met with
<ENAMEX TYPE= “PERSON”> Martin Puris </ENAMEX>, president and
chief executive officer of <ENAMEX TYPE= “ORGANIZATION”> Ammirati
& Puris </ENAMEX>, about <ENAMEX TYPE= “ORGANIZATION”> Mc-
Cann </ENAMEX>‘s acquiring the agency with billings of <NUMEX TYPE
=”MONEY”> $400 million </NUMEX>, but nothing has materialized.

In CoNLL 20021 and CoNLL 20032, the shared task concerned language in-
dependent NER. In these two conferences, they concentrate on four types of named
entities: persons, locations, organizations, and names of miscellaneous entities that
do not belong to the previous three groups. The participants of the shared task
have been offered training and test data for two European languages: Spanish
and Dutch in CoNLL 2002 [Tjong Kim Sang 2002] and for two other European
languages: English and German in CoNLL 2003 [Tjong Kim Sang 2003].

In recent years, because of the development of social networks, several ap-
proaches have been proposed for NER in social networks. One approach was shown
at the Shared Tasks of the 2015 Workshop on Noisy User-generated Text: Twit-
ter Lexical Normalization and Named Entity Recognition. This workshop has two
parts, the first is Twitter lexical normalization and the second is NER over Twit-
ter [Baldwin 2015]. In this shared task, the participants concentrate on ten types
of named entities such as company, facility, geo-loc, movie, music artist, person,
sportsteam, product, tvshow, and other. The training and test data include 1,795
annotated tweets for training and 599 as a development set.

1http://www.cnts.ua.ac.be/conll2002/ner/
2http://www.cnts.ua.ac.be/conll2003/ner/

2.3. Named entity recognition 11

2.3.2 NER techniques

Currently, there are several techniques developed for NER. Based on the proper-
ties of the proposed techniques, they can be categorized in four types, including
i) knowledge-based or rule-based technique, ii) statistical technique, iii) machine
learning technique, and iv) hybrid technique.

Knowledge-based systems normally are based on rules [Humphreys 1998,
Mikheev 1998, Cunningham 1999, Nguyen 2007a]. Rules in these systems were
created by humans and sometimes are considered as hand-crafted deterministic
rule-based systems. These rules can be built from dictionaries, regular expressions,
or context-free grammar. Dictionaries of named entities in the NER system are
often called Gazetteers. It is difficult to build a full gazetteer. Therefore, these
methods that use gazetteers usually combine with other methods to have a more
complex system. The system with rules created from context-free grammar often
depends on a particular domain or a specific language; it is not a portable system.
Therefore, when we want to apply it to a new field or a new language, we must
modify rules. These tasks require a lot of time and money. It requires that the
authors have expert knowledge in this field and this language.

Machine learning systems can be categorized in three main classes including
supervised learning, semi-supervised learning, and unsupervised learning. Several
techniques have been proposed for supervised learning, including Hidden Markov
Models [Bikel 1997], Support Vector Machines [Asahara 2003], Maximum Entropy
[Borthwick 1998], and Conditional Random Fields [McCallum 2003]. These tech-
niques were used to create rules automatically from training set as presented in
[Tjong Kim Sang 2002, Tjong Kim Sang 2003]. Normally, these methods are more
flexible and robust than rule-based methods. When we need to apply a method of
machine learning to a new field, the machine learning method needed to be trained
on new training set to be suitable with the new field. Moreover, there are some rules
that are missing when building a rule set, which can be determined and generated
by machine learning methods. Although flexible and robust, the supervised learning
method has a limit that it requires a data set, in which the named entities are an-
notated, large enough, and high quality. Therefore, it requires more effort to build
a training set. To overcome these limitations, semi-supervised learning techniques
have been proposed. Semi-supervised learning [Riloff 1999] requires a training set in
which the named entities were annotated, having a small size. These named entities
are then used to find patterns or contexts around them. New named entities are
then found using these patterns and contexts. This process is then iterated and the
new named entities are always used as patterns for the next step. Therefore, this
method is often called bootstrapping. Besides the learning techniques mentioned
above, unsupervised learning techniques [Collins 1999, Etzioni 2005] also have been
proposed. This technique does not require any training set to recognize named
entities. They are typically based on clustering. The clustering methods can use
contexts, patterns etc., and rely on a large corporation.

The hybrid methods [Mikheev 1999, Mikheev 1998] typically combine between

2.3. Named entity recognition 12

two or three methods from above to achieve a better result.

2.3.3 Related work

a. NER

NER has been studied extensively on formal texts, such as news and authorized
web content. Several approaches have been proposed using different learning mod-
els, such as Condition Random Fields (CRF), Maximum Entropy Model (MEM),
Hidden Markov Model (HMM), and Support Vector Machines (SVM). In particu-
lar, [Mayfield 2003] used SVM to estimate lattice transition probabilities for NER.
[McCallum 2003] applied a feature induction method for CRF to recognize named
entities. A combination of a CRF model and latent semantics to recognize named
entities was proposed in [Konkol 2015]. A method using soft-constrained inference
for NER was proposed in [Fersini 2014]. In [Curran 2003] and [Zhou 2002], the
authors proposed a maximum entropy tagger and an HMM-based chunk tagger to
recognize named entities. Unfortunately, those methods gave poor performance on
tweets, as pointed out in [Liu 2011].

b. Vietnamese NER

In the domain of Vietnamese texts, various approaches have been proposed using
various learning models, such as SVM [Tran 2007], classifier voting [Thao 2007]
and CRF [Le 2011, Tu 2005]. Some other authors have proposed other meth-
ods for NER, such as a rule-based method [Nguyen 2010, Nguyen 2007b], labeled
propagation [Le 2013a], the use of a bootstrapping algorithm and a rule-based
model [Trung 2014], and combined linguistically-motivated and ontological features
[Nguyen 2012b]. [Pham 2015] proposed an online learning algorithm, i.e., MIRA
[Crammer 2003] in combination with CRF and bootstrapping. [Sam 2011] used the
idea of Liao and Veeramachaneni in [Liao 2009] based on CRF and expanded it by
combining proper name co-references and named ambiguity heuristics with a pow-
erful sequential learning model. [Le 2013b] proposed a feature selection approach
for named entity recognition using a genetic algorithm. To calculate the accuracy of
the recognition of the named entity, this paper used KNN and CRF. [Nguyen 2012a]
proposed a systematic approach to avoid the conflict between rules when a new rule
was added to the set of rules for NER. [Le 2015] proposed some strategies to reduce
the running time of genetic algorithms used in a feature selection task for NER.
These strategies included reducing the size of the population during the evolution
process of the genetic algorithm, reducing the fitness computation time of individ-
uals in the genetic algorithm by using progressive sampling for finding the (near)
optimal sample size of the training data, and parallelization of individual fitness
computation in each generation.

2.3. Named entity recognition 13

Table 2.1: Result of several previous works in Vietnamese NER

System Entity Types Precision Recall F1

[Le 2011] PER 84% % 82.56% 83.39%

[Nguyen 2010] PER, ORG, LOC, NA, FA,
RE

92% 76% 83%

[Nguyen 2007b] PER, ORG, LOC 86.05% 81.11% 83.51%

[Sam 2011] PER, ORG, LOC 93.13% 88.15% 79.35%

[Thao 2007] PER, ORG, LOC, CUR,
NUM, PERC, TIME

86.44% 85.86% 89.12%

[Tran 2007] PER, ORG, LOC, CUR,
NUM, PERC, TIME

89.05% 86.49% 87.75%

[Tu 2005] PER, ORG, LOC, CUR,
NUM, PERC, TIME,
MISC

83.69% 87.41% 85.51%

However, there have been no approaches that focused on NER in Vietnamese
tweets or (short) informal Vietnamese texts.

In order to better collocate our results with other existing Vietnamese NER
systems that used other techniques, we report the performances of other Vietnamese
NER systems in Table 2.1. The meanings of the abbreviations in Table 2.1 are listed
here: PER: Person, ORG: Organization, LOC: Location, CUR: Currency, NUM:
Number, PERC: Percent, TIME: Time, NA: Nationality, FA: Facility, RE: Region,
MISC: Miscellaneous.

c. NER in tweets

Regarding microblog texts written in English and other languages, several ap-
proaches have been proposed for NER. Among them, [Ritter 2011] proposed a NER
system for tweets, called T-NER, which employed a CRF model for training and
Labled-LDA. [Ramage 2009] proposed an external knowledge base, i.e., Freebase2

for NER. A hybrid approach to NER on tweets was presented in [Liu 2011] in which
a KNN-based classifier and a CRF model were used. A combination of heuristics
and MEM was proposed in [Jung 2012]. In [Tran 2015], a semi-supervised learning
approach that combined the CRF model with a classifier based on the co-occurrence
coefficient of the feature words surrounding the proper noun was proposed for NER
on Twitter. [Li 2015a] proposed non-standard word (NSW) detection and decided
a word is out of vocabulary (OOV) based on the dictionary, and then applied the
normalization system of [Li 2014] to normalize OOV words. The results from NSW

2http://www.freebase.com

2.3. Named entity recognition 14

detection was used for NER based on the pipeline strategy or the joint decoding
fashion method. In [Liu 2013b], a named entity was recognized using three steps,
i.e., 1) each tweet is pre-labeled using a sequential labeler based on the linear Con-
ditional Random Fields (CRFs) model; 2) tweets are clustered to put those that
have similar content into the same group; and 3) each cluster refines the labels
of each tweet using an enhanced CRF model that incorporates the cluster-level
information. [Liu 2012b] proposed jointly conducting NER and Named Entity Nor-
malization (NEN) for multiple tweets using a factor graph, which leverages redun-
dancy in tweets to make up for the dearth of information in a single tweet and
allows these two tasks to inform each other. [Liu 2013a] proposed a novel method
for NER consisting of three core elements, i.e., normalization of tweets, combina-
tion of a KNN classifier with a linear CRF model, and a semi-supervised learning
framework. [Nguyen 2012c] presented a method for incorporating global features
in NER using re-ranking techniques that used two kinds of features, i.e., flat and
structured features and a combination of CRF and SVM. In [Zirikly 2015], a CRF
model without being focused on Gazetteers was used for NER for Arabic social
media.

Recently, [Baldwin 2015] presented the results of Shared Tasks of the 2015 Work-
shop on Noisy User-generated Text: Twitter Lexical Normalization and Named En-
tity Recognition. According to this paper, most of researchers used CRF. However,
several researchers in this workshop described new methods, such as [Godin 2015]],
which used absolutely no hand-engineered features and relied entirely on embed-
ded words and a feed-forward, neural-network (FFNN) architecture; [Cherry 2015]
developed a semi-Markov MIRA trained tagger; [Yamada 2015] used entity-linking-
based features, and other researchers used CRFs.

Since some of the specific features of Vietnamese were presented in [Tran 2007],
one cannot apply those methods directly to Vietnamese tweets.

Chapter 3

Vietnamese text compression

Contents

3.1 Introduction . 15
3.2 A syllable-based method for Vietnamese text compression 16

3.2.1 Dictionary . 16
3.2.2 Morphosyllable rules . 18
3.2.3 SBV text compression . 19
3.2.4 SBV text decompression . 22
3.2.5 Compression ratio . 23
3.2.6 Example . 23
3.2.7 Experiments . 28

3.3 Trigram-based Vietnamese text compression 31
3.3.1 Dictionary . 31
3.3.2 TGV text compression . 32
3.3.3 TGV text decompression . 33
3.3.4 Example . 34
3.3.5 Experiments . 36

3.4 N-gram based text compression 39
3.4.1 Dictionaries . 39
3.4.2 N-gram based text compression 41
3.4.3 N-gram based text decompression 43
3.4.4 Example . 45
3.4.5 Experiments . 49

3.5 Summary . 53

3.1 Introduction

In 2012, every day 2.5 EB of data were created and in 2015, every minute we have
nearly 1,750 TB of data being transferred over the internet, according to a report
from IBM1 and the forecast of Cisco2, respectively. Reducing the size of data is an
effective solution to increasing the data’s transfer rate and saving storage space.

1http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
2http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-

generation-network/white_paper_c11-481360.html

3.2. A syllable-based method for Vietnamese text compression 16

As mentioned in 2.2, there are several methods proposed for text compression.
However, all of them are focused on languages other than Vietnamese. Therefore,
in this chapter, we propose some methods for Vietnamese text compression. The
first method is based on syllables, marks, and syllable dictionaries. This method
builds several dictionaries to store all syllables of the Vietnamese language. Each
dictionary has been built based on the structure of syllables and marks. Because
the total number of Vietnamese syllables is 158, we use 8 bits to represent all
syllables of each dictionary above. In the compression phase, each morphosyllable
will be split into a consonant and a syllable, and then they will be processed and
analyzed to select the appropriate dictionary to get the corresponding index. This
index will be replaced for the consonant and syllable in the text file. Depending
on the structure of the morphosyllable, we encode it using two or three bytes. To
decompress the encoded morphosyllable, we read the first byte and analyze it to
decide how many bytes need to be read next. Finally, we will decode it to get the
original morphosyllable. The second method is based on the trigram dictionary of
the Vietnamese language. This method first splits the input sequence to trigrams
then encodes them based on the trigrams dictionary. With each trigram, it uses
four bytes to encode. The last method proposes a method for Vietnamese text
compression based on n-gram. In this method, it first splits Vietnamese text to
n-grams, then encodes them based on the n-grams dictionaries. In the encoding
phase, we use a sliding window that has a size from bi-gram to five-gram to slide
the input sequence to have the best encoding stream. With each n-gram, it uses
two to four bytes to encode according to its corresponding dictionary.

This chapter presents the first attempt at Vietnamese text compression. The
rest of this chapter is organized as follows. In section 3.2, 3.3, and 3.4, we give
a detailed description of the syllable-based method, trigram-based method, and
n-gram-based method, respectively. Finally, we present our summaries in Section
3.5.

3.2 A syllable-based method for Vietnamese text com-

pression

In this section, we present a syllable-based method for Vietnamese (SBV) text
compression. This method has two main phases. The first phase is SBV text
compression and the second phase is SBV text decompression. Figure 3.1 describes
our method model. In our model, we use dictionaries and morphosyllable rules for
both two phases. We will describe more details about it in following subsections.

3.2.1 Dictionary

In our method, we use several dictionaries for both compression and decompression
phases. These dictionaries have been built based on the combination between the
syllables and marks. Because the total number of syllables and consonants is less

3.2. A syllable-based method for Vietnamese text compression 17

than 256, for each dictionary we use the maximum 8 bits to represent. Table 3.1
describes the structure and number of entries of each dictionary.

Source text

Syllables parser Morphosyllable

rules

Dictionaries
Compression unit

Compressed text

SBV text compression

Compressed text

Code reading unit

Decompression unit

Source text

SBV text decompression

Figure 3.1: a syllable-based Vietnamese text compression model

Table 3.1: Dictionaries structure

No. Index Dictionary Number of Entries Number of bits

1 0 Acute accent 178 8

2 1 Dot below 176 8

3 2 None 158 8

4 5 Tilde accent 114 7

5 6 Grave accent 112 7

6 7 Hook above 111 7

7 Consonants 27 5

8 Special characters 42 6

There may appear to be cases where there are multiple capital letters for all
characters of morphosyllable or capital letters of the first character of a syllable,
non-standard word, e.g., email-id, or web link. We will handle this case by case and
discuss more details in the following subsections.

3.2. A syllable-based method for Vietnamese text compression 18

3.2.2 Morphosyllable rules

a. Identifying consonant and syllable

According to section 2.1.1, Vietnamese morphosyllable has two basic parts: con-
sonant and syllable with mark. In this section, we propose a rule to split the
consonant and the syllable with mark. According section 2.1.1, we will build a ta-
ble of consonants, including 27 consonants, as in Table 3.2. To split the consonant
and syllable, we search the value of each consonant in the consonants dictionary
Table 3.2 with morphosyllable. If it is found, then we can split the morphosyllable
to the consonant and syllable with mark based on the length of the consonant in
the consonants dictionary.

Table 3.2: Consonants dictionary

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value ngh ng gi gh kh nh ph th tr k g h l m

index 14 15 16 17 18 19 20 21 22 23 24 24 26

value n q r s t v x p b ch c d đ

For example, we have the morphosyllable “nguyễn”. To split the consonant and
syllable with mark of this morphosyllable, we search each value of consonants dic-
tionary refer from Table 3.2 from index zero with morphosyllable. In this example,
it is found that the value “ng” occurred in this morphosyllable, and the index of
value “ng” in the consonants dictionary is 1. The length of “ng” is two; therefore,
we can split this morphosyllable from the letter, of which the position in the mor-
phosyllable is two. Notice that the position begins from zero. In this case, the
morphosyllable, “nguyễn”, can be split into the consonant, “ng”, and the syllable
with mark, “uyễn”.

b. Identifying mark

According to section 2.1.1, Vietnamese has six types of marks. Because we split a
morphosyllable into a consonant and syllable with mark, we must know what the
mark of this syllable is to map it with the mark to find the correct syllable with
mark in the dictionary. To do that, we built a table of 12 vowels and six marks.
Refer to Table 3.3.

3.2. A syllable-based method for Vietnamese text compression 19

Table 3.3: Vietnamese vowels and their marks

mark index 0 1 2 3 4 5 6 7 8 9 10 11

acute accent 0 á ấ ắ é ế í ó ớ ố ú ứ ý

dot below 1 ạ ậ ặ ẹ ệ ị ọ ợ ộ ụ ự ỵ

none 2 a â ă e ê i o ơ ô u ư y

tilde accent 5 ã ẫ ẵ ẽ ễ ĩ õ ỡ ỗ ũ ữ ỹ

grave accent 6 à ầ ằ è ề ì ò ờ ồ ù ừ ỳ

hook above 7 ả ẩ ẳ ẻ ể ỉ ỏ ở ổ ủ ử ỷ

Every syllable just has one mark. So, to identify the mark of the syllable, we
can search each value of Vietnamese vowels and their marks in Table 3.3, starting
from column index zero and acute accent row with vowel. The return result is the
value of the index column corresponding to the value of the index column of Table
3.1, for example, with syllable “uyễn”. The system will search values of Vietnamese
vowels and their marks in Table 3.3. According to this case, the system found that
the value “ễ” appears in syllable “uyễn”, the value of the index corresponding to this
vowel is five. This means that the mark of this syllable is the tilde accent.

c. Identifying capital letter

To identity the capital letter in consonant and syllable, we use a capitals dictionary
to store all the capital letters of single consonants and vowels with their marks,
similarly to vowels in Table 3.3, but in capital form. To identify capital letters of
consonants, step by step we search each single consonant of this consonant in the
capitals dictionary. If it is found in the capitals dictionary, we record the position
of this single consonant in the consonant. We use the same method to identify the
capital letters of the syllable.

3.2.3 SBV text compression

According to Figure 3.1, the SBV text compression phase has two main parts, the
first part is the syllables parser and the second is the compression unit. In the
following subsections, we will focus on the details.

a. Syllables parser

The syllables parser has been used to separate morphosyllables in the input se-
quences, splitting morphosyllables into consonants and syllables. It is also used to
classify each syllable to the corresponding dictionary and detect the capitalization
of characters in consonants and syllables.

3.2. A syllable-based method for Vietnamese text compression 20

We separate morphosyllables based on the spaces character. In this stage, we
also classify the morphosyllable to a standard morphosyllable or non-standard
morphosyllable based on the Vietnamese dictionary of standard morphosyllables
from section 2.1.3. A morphosyllable will be classified as non-standard if it does
not appear in this dictionary. Before classifying a morphosyllable as a standard or
non-standard morphosyllable, we must convert all characters of morphosyllable to
lowercase.

Parse for standard morphosyllables
With each standard morphosyllable received from the separating morphosyllable
task, the syllables parser splits it into consonant and syllable, assigns the capital
property for them, and classifies them to the corresponding dictionary. This task
can be described as follows:

1. Splitting morphosyllables to consonant and syllable is based on the structure
of Vietnamese morphosyllable and morphosyllable rules.

2. Adding a position attribute for uppercase characters of consonant and syllable:

• Because the number of characters in consonants is less than or equal to
three, we use three bits to represent the position of capital letters of con-
sonants and call it consonant property. If the character of consonants is
a capital character, the value of its bit is 1, or 0 for a lowercase charac-
ter. For example, we have some consonants and corresponding consonant
property of them: NGH - 111, ngH - 001, nGH - 011.

• In the case of syllables, because the number characters of the syllables
are less than four characters, we use four bits to represent the position
of capital characters of syllables and call it syllable property. Similarity
to a consonant, if the character of the syllable is a capital character, the
value of its bit is 1, or 0 for a lowercase character. For example, we
have some syllables and the corresponding syllable property for them:
ƯỜNG - 1111, ưỜNG - 0111, ƯờNG - 1011.

3. Classifying the syllable into the corresponding dictionary is based on identi-
fying mark rules.

Parse for non-standard morphosyllables
With non-standard morphosyllables, we classify them to one of two classes as fol-
lows:

1. Special characters: if one of their characters appears in the special character
dictionary.

2. Other: the character does not appear in the special character dictionary.

3.2. A syllable-based method for Vietnamese text compression 21

b. Compression unit

The compression unit uses the results from the syllables parser, detecting con-
sonants and syllables in dictionaries to find their corresponding code. Based on
the structure of the syllable, consonant, and property of the character, if it has a
capital letter or not. We will use two or three bytes to encode a morphosyllable.
The compression task can be summarized as follows:

Two bytes encoding
A morphosyllable will be encoded by two bytes in these following cases:

1. A morphosyllable does not have capital letter in it and mark of the syllable
is different from a tilde.

2. A special character occurs in the special character dictionary.

The two bytes encoding has a structure like below:
0 B

6
1
B

5
1
B

4
1
B

3
1
B

2
1
B

1
1
B

0
1
B

7
2
B

6
2
B

5
2
B

4
2
B

3
2
B

2
2
B

1
2
B

0
2

Where:

• 0: two bytes encoding.

• B
6
1
B

5
1
B

4
1
B

3
1
B

2
1
:Encode for the index of the consonant in consonants dictio-

nary. We use five bits because the number entry of the consonants dictionary
is 27 (refer to Table 3.2).

• B
1
1
B

0
1
B

7
2
: Encode for the index of the syllable mark in the dictionary from

Table 3.1. We use three bits because we have six marks, but we move the
tilde to three bytes encoding, so, we only have five marks. According to Table
3.1, the number of entries of acute accent, heavy accent, and none in the
dictionary is greater than 128. So, we just use B

1
1
B

0
1

to encode for the index
of these dictionaries in Table 3.1, we move B

7
2

to the next part to encode for
the position of the syllable in dictionary. When the mark is a grave accent
or a hook accent, we use all three bits B

1
1
B

0
1
B

7
2

which value is 110 and
111 corresponding to the index of these marks in the dictionary in Table 3.1,
respectively.

• B
7
2
B

6
2
B

5
2
B

4
2
B

3
2
B

2
2
B

1
2
B

0
2
: Encode for the position of the syllable in the

dictionary. As presented above, B7
2

is used in the case the mark is an acute
accent, dot below, or none.

• In the case of a special character, we will set all bits of B6
1
B

5
1
B

4
1
B

3
1
B

2
1
B

1
1

B
0
1

to 1, B7
2
B

6
2
B

5
2
B

4
2
B

3
2
B

2
2
B

1
2
B

0
2

will present for the position of special
character in its corresponding dictionary.

Three bytes encoding
A morphosyllable will be encoded with three bytes when it is a standard morpho-
syllable and it has at least one capital letter or the mark of the syllable is a tilde.

3.2. A syllable-based method for Vietnamese text compression 22

The three bytes encoding has a structure like below:
1 B

6
1
B

5
1
B

4
1
B

3
1
B

2
1
B

1
1
B

0
1
B

7
2
B

6
2
B

5
2
B

4
2
B

3
2
B

2
2
B

1
2
B

0
2
B

7
3
B

6
3
B

5
3
B

4
3
B

3
3
B

2
3
B

1
3

B
0
3

Where:

• B
6
1
B

5
1
B

4
1
B

3
1
B

2
1
: Encode for the position of the consonant in the dictionary.

• B
1
1
B

0
1
B

7
2
: Encode for the capital characters of the consonant. We use three

bits because the number characters of a consonant are less than or equal to
three.

• B
6
2
B

5
2
B

4
2
: Encode for mark.

• B
7
3
B

6
3
B

5
3
B

4
3
B

3
3
B

2
3
B

1
3
B

0
3
: Encode for the position of the syllable in the

dictionary.

• B
3
2
B

2
2
B

1
2
B

0
2
: Encode for the capital characters of the syllable. We use

four bits because the number characters of a syllable are less than or equal
to four.

Other cases: unknown number of bytes
In the case of a non-standard morphosyllable and it is not a special character, we
will encode it with the entire non-standard morphosyllable. To distinguish from
the two cases above, we add two more bytes. The first byte has a value of 255 to
designate it is a special case of non-standard word. The value of the second byte is
the length of a non-standard morphosyllable.

3.2.4 SBV text decompression

SBV text decompression is the inversion of the SBV text compression phase. The
SBV text decompression phase is undergone in two steps and can be summarized
as follows:

• Code reading unit: This unit is used to read output sequence from the
compression result as their input sequence separates it byte by byte.

• Decompression unit:
This unit is used to decode morphosyllables one by one. To do that, it reads
one byte from the output sequence of the code reading unit. It analyzes this
byte and decides how many bytes will be read more based on the first bit of
this byte. There are two cases for this situation.

– If the first bit of the first byte is 0, the decompression unit will read
one byte more from the output sequence of the code reading unit and
decodes it. This task is the inversion of two bytes encoding.

– If the first bit of the first byte is 1:

3.2. A syllable-based method for Vietnamese text compression 23

∗ If all remaining bits of the first byte is not equal to 1, the decom-
pression unit reads two bytes more from the output sequence of the
code reading unit and decodes it. This task is the inversion of three
bytes encoding.
∗ If all bits of the first byte are 1: the decompression unit reads one

byte more to decide how many bytes will be read more based on the
value of this byte. This task is the inversion of the special case of
non-morphosyllable encoding.

After finishing the decoding for one morphosyllable, it will read the next byte,
repeat the decompression task to decode another morphosyllable until it has
read all the way to the last byte.

3.2.5 Compression ratio

Compression ratio is used to measure the efficiency of compression method, the
higher the compression ratio the higher quality of compression method. Normally,
we use unicode encoding to present Vietnamese text. Every character in Unicode
is stored in two bytes. The compression ratio can be calculated by equation 3.1.

CR =

(

1−
compressed_file_size

original_file_size

)

× 100 (3.1)

Where:

• original_file_size = (total number of characters in original file) x 2

• compressed_file_size = total number of bytes in compressed file

3.2.6 Example

Assuming that we use the following dictionaries for this example, e.g., the conso-
nants dictionary shown in Table 3.2, the syllable dictionaries shown in Table 3.4:

Table 3.4: syllable dictionaries

acute accent grave accent heavy accent none

index 0 1 2 0 0 1 0 1 2 3

value ất ắng ức ường ại ọc iên inh ôn ông

a. SBV text compression

Assuming that we want to compress the input sequence Sinh viên Trường Đại học
TÔN ĐỨC THẮNG rất thông minh (students of TON DUC THANG University
are very intelligent), this input sequence has 11 morphosyllables.

3.2. A syllable-based method for Vietnamese text compression 24

Syllables parser

The syllables parser first separates all morphosyllables in this input sequence to 11
morphosyllables like that: Sinh, viên, Trường, Đại, học, TÔN, ĐỨC, THẮNG, rất,
thông, minh. Then, based on the dictionary of standard Vietnamese morphosylla-
bles in section 2.1.3, it classifies these morphosyllables to standard morphosyllables.
Because all morphosyllables are standard morphosyllables, the syllables parser will
parse them for the standard morphosyllables case. The syllable parser encounters

Table 3.5: output of syllables parser

No Morphosyllable Consonant PCLC Syllable PCLS IOM

1 Sinh S 100 inh 0000 2

2 viên v 000 iên 0000 2

3 Trường Tr 100 ường 0000 6

4 Đại Đ 100 ại 0000 1

5 học h 000 ọc 0000 1

6 TÔN T 100 ÔN 1100 2

7 ĐỨC Đ 100 ỨC 1100 0

8 THẮNG TH 110 ẮNG 1110 0

9 rất r 000 ất 0000 0

10 thông th 000 ông 0000 2

11 minh m 000 inh 0000 2

the first morphosyllable of eleven morphosyllables, Sinh, and splits this morphosyl-
lable into consonant and syllable based on the identifying consonant and syllable
rules. After this step, it receives consonant S and syllable inh. To identify the cap-
ital letter attribute of the consonant and syllable, it uses identifying capital letter
rules. According to these rules, S is a capital letter; therefore, the value of three
bits presents that the capital letter positions of the consonant will be 100. When
applying these rules to syllable inh, it realizes that this syllable does not have any
capital letters in it; therefore, the value of four bits present for the capital letter
positions of the syllable will be 0000. To identify the dictionary for syllables with
marks, it uses the identifying mark rules. In this case, it receives result two after
using the identifying mark rules. Therefore, the index value for the dictionary of
syllables with marks is two. It repeats this step until it reaches the last morphosyl-
lable. Table 3.5 presents the results of the syllable parser with the input sequence
mentioned above. In this table, we have some abbreviations and meanings as fol-
lows: IOM: index of mark of syllable in Table 3.3, PCLC: position of capital letters

3.2. A syllable-based method for Vietnamese text compression 25

of the consonant, PCLS: position of capital letters of the syllable. In Table 3.5, the
morphosyllable THẮNG has a consonant of TH and its syllable is ẮNG. Both T
and H are capital letters; therefore, the consonant capital letter property of this
consonant is 110. Similarly to syllable ẮNG, it has three capital letters; therefore,
the value of the syllable capital letter property is 1110. In the syllable ẮNG, there
is an acute accent, so the corresponding index of this mark in the dictionary in
Table 3.3 is zero.

Compression unit

The compression unit uses results from the syllables parser as its input. With the
first morphosyllable, Sinh, it has a capital letter. Therefore, the compression unit
uses three-byte encoding to encode for this morphosyllable. According to three-
bytes encoding, the morphosyllable Sinh will be compressed as follows:

• Encode for the index of the consonant in the consonants dictionary. The
compression unit searches the consonant s in the consonant dictionary from
Table 3.2. The index of this consonant is 17. It is presented in binary by the
sequence 10001.

• Encode for the position of the capital letters of the consonant. According to
the result from the syllables parser, the encoding sequence is 100

• Encode for the index of the syllable mark from Table 3.1. According to the
result from the syllables parser, the index value is 2. Therefore, the encoding
sequence in binary is 010.

• Encode for the index of the syllable in the syllables dictionary. According to
Table 3.4, the index of this syllable is one, so the encoding sequence for the
index of the syllable in binary is 00000001.

• Encode for the position of capital letters in the syllable. According to the
result from the syllables parser, the encoding sequence in binary is 0000.

• Finally, the result of the encoding sequence of the morphosyllable Sinh is
110001100010000000010000. The first bit of this sequence is 1, meaning that
it is three-byte encoding.

Next, the syllables parser compresses for the next morphosyllable, viên, which does
not have a capital letter; therefore, it uses two-byte encoding to encode for this
morphosyllable. According to two-bytes encoding, the morphosyllable viên will be
compressed as follows:

• Encode for the index of the consonant in the consonant dictionary. The com-
pression unit searches the consonant v in the consonant dictionary from Table
3.2. The index of this consonant is 19. It is presented in binary by the se-
quence 10011.

3.2. A syllable-based method for Vietnamese text compression 26

Table 3.6: Compression result

No MPS ICCD PCLC IOM ISIM PCLS Encoded sequence

1 Sinh 10001 100 010 00000001 0000 110001100010000000010000

2 viên 10011 10 00000000 0100111000000000

3 Trường 01000 100 110 00000000 0000 101000100110000000000000

4 Đại 11010 100 001 00000000 0000 011010100001000000000000

5 học 01011 01 00000001 0010110100000001

6 TÔN 10010 100 010 00000010 1100 110010100010000000101100

7 ĐỨC 11010 100 000 00000010 1100 111010100000000000101100

8 THẮNG 00111 110 000 00000001 1110 100111110000000000011110

9 rất 10000 00 00000000 0100000000000000

10 thông 00111 10 00000011 0001111000000011

11 minh 01101 10 00000001 0011011000000001

• Encode for the index of the syllable’s mark in Table 3.1. According to the
result from the syllables parser, the index value is two. Therefore, the encod-
ing sequence in binary is 10. Notice that in this case we just use two bits to
present.

• Encode for the index of the syllable in the marks dictionary. According to
Table 3.4, the index of this syllable is zero, so the encoding sequence for the
index of this syllable in binary is 00000000.

• Finally, the result of the encoding sequence of the morphosyllable viên is
0100111000000000. The first bit of this sequence is 0, meaning that it is
two-byte encoding.

These steps will be repeated until the last morphosyllable is reached. Table 3.6
shows the compression result of all morphosyllables of the input sequence. In this
table, we have some abbreviations and meanings as follows: MPS: morphosyllable,
ICCD: index of consonant in the consonant dictionary, PCLC: position of capital
letters of consonants, IOM: index of mark of syllables in Table 3.3, PCLS: position
of capital letters of the syllable, ISIM: index of the syllable in the marks dictionary.

The final encoder output sequence is the result of concatenation of all encoding
output sequences from steps one to eleven in Table 3.6. The final encoder output
sequence is:
110001100010000000010000|0100111000000000|101000100110000000000000|01101
0100001000000000000|0010110100000001|110010100010000000101100|1110101000

3.2. A syllable-based method for Vietnamese text compression 27

00000000101100|100111110000000000011110|0100000000000000|00011110000000
11|0011011000000001

b. SBV text decompression

In this section, we will take the output sequence from SBV text compression
and decode it using the SBV text decompression. The output sequence from the
previous part is:
110001100010000000010000|0100111000000000|101000100110000000000000|01101
0100001000000000000|0010110100000001|110010100010000000101100|1110101000
00000000101100|100111110000000000011110|0100000000000000|00011110000000
11|0011011000000001

First, the code reading unit reads the output sequence from the SBV text com-
pression as its input. It separates this input byte by byte. Then, the decompression
unit decodes for each morphosyllable, one by one according to the output of code
reading unit.

To decode for the first morphosyllable, the decompression unit reads the first
byte of the input sequence, the content of this first byte being 11000110, the first bit
of this byte is 1, and all remaining bits of this byte are different from 1. Therefore,
it reads the next two bytes and decodes this morphosyllable based on these three
bytes, so the value of these three bytes is 110001100010000000010000. The decode
of this morphosyllable can be described as follows:

• Decode for the consonant. First, the decompression unit calculates the index
of the consonant to identify the consonant in the consonant dictionary, Table
3.2. To do that, it reads five bits from the second position to six of the three-
byte input, giving this five bit a binary of 10001, and a value of 17. Therefore,
the index of the consonant in the consonant dictionary is 17. The value of
this index in the consonant dictionary is s. Next, it finds the positions of the
capital letter in the consonant. It reads the next three bits of the three bytes
input, and the three bits is 100. The decompression unit realizes that the first
bit of this three bits is 1, the next two bits is 0. Therefore, the first letter of
the consonant is capitalized, and the consonant will become S.

• Decode for syllable. First, it calculates the index of the mark of the syllable to
identify the syllable dictionary, Table 3.4. To do that, it reads next three bits
of three bytes input, where the three bits is 010, and the value of the three
bits is two. Therefore, the index of the syllable’s mark is two, corresponding
to none dictionary in Table 3.4. Then, it calculates the index of the syllable
in the syllables dictionary based on the next eight bits, where these eight
bits are 00000001 and their value is one. The value of this index in none
dictionary in Table 3.4 is inh. Next, it finds the positions of the capital letter
in the syllable. The decompression unit reads the next four bits of three bytes
input, and those four bits are 0000. It realizes that all of four bits are 0,
meaning that they do not have any capital letters in the syllable.

3.2. A syllable-based method for Vietnamese text compression 28

• The decoded morphosyllable is the concatenation of the encoder consonant
and syllable. The value of the morphosyllable is Sinh. It is the same as the
first morphosyllable of input sequence.

The decompression unit will repeat the decoding steps above to decode for all
remaining morphosyllables and will get the same sequence as the input sequence.

c. Compression ratio

According to the input sequence, total number of characters in this sequence is 53,
so the size of this sequence is 53 x 2 bytes and the size of the compressed sequence
according to Table 3.6 is 28 bytes. According to equation 3.1, we have:

CR =
(

1− 28

53×2

)

× 100 = 73.59%

From the compression ratio above, we found that the size of the compressed result
decreases to 73.59%.

3.2.7 Experiments

We conduct experimens to evaluate our method. We present our experiment results
in Table 3.7 and Table 3.8. We also compress these input files using WinRAR
version 5.213 (the software combines LZSS [Storer 1982] and Prediction by Partial
Matching [Cleary 1984]) and WinZIP version 19.54 (the software combines LZ77
[Ziv 1978] and Huffman coding) to have a comparison. Table 3.7 shows the results
of our method in 10 cases with different sizes and content of input files. The size of
text files that we use in Table 3.7 is smaller than 15 KB. According to the results
of Table 3.7 and Figure 3.2, our compression ratio is better than WinRAR and
WinZIP. In these cases, our compression ratio is around 73%. In Table 3.7 and
3.8, Figure 3.2 and 3.3, we have some abbreviations and meanings as follows: OFS:
original file size, CFS: compressed file size, CR: compression ratio.

3http://www.rarlab.com/download.htm
4http://www.winzip.com/win/en/index.htm

3.2. A syllable-based method for Vietnamese text compression 29

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

488 708 1,292 1,898 2,698 5,520 7,422 11,472 13,920 14,858

OI
T

A
R

N
OI

S
S

E
R

P
M

O
C

ORIGINAL FILE SIZE (BYTE)

COMPRESSION RATIO OF THREE METHODS

CR of our method CR of WinRAR CR of WinZIP

Figure 3.2: Compression ratios for file size smaller than 15 KB

Table 3.7: Experimental results for file size smaller than 15 KB

No OFS
(Byte)

CFSM
(Byte)

CRM CFSR
(Byte)

CRR CFSZ
(Byte)

CRZ

1 488 134 72.55% 353 27.67% 409 16.19%

2 708 186 73.73% 421 40.54% 484 31.25%

3 1,292 335 74.08% 666 48.45% 722 44.12%

4 1,898 511 73.08% 829 56.33% 886 53.32%

5 2,698 708 73.76% 1,008 62.64% 1,061 60.68%

6 5,520 1,445 73.83% 1,816 67.10% 1,870 66.13%

7 7,422 2,012 72.90% 2,323 68.71% 2,385 67.87%

8 11,472 3,020 73.68% 3,273 71.47% 3,316 71.10%

9 13,920 3,676 73.60% 3,802 72.69% 3,836 72.45%

10 14,858 4,045 72.78% 4,124 72.25% 4,189 71.81%

In Table 3.8, we show that the result of our method in 10 cases with the size
of text files is lager than 15 KB. According to the results, our compression ratio is
lower than WinRAR and WinZIP.

3.2. A syllable-based method for Vietnamese text compression 30

69.00%

70.00%

71.00%

72.00%

73.00%

74.00%

75.00%

76.00%

77.00%

78.00%

79.00%

80.00%

1 6 , 2 9 4 2 0 , 7 0 4 2 5 , 4 7 0 3 2 , 2 9 0 4 1 , 6 5 0 5 3 , 3 7 4 6 6 , 4 8 4 7 8 , 8 8 8 1 0 2 , 0 1 4 1 5 1 , 9 8 4

OI
T

A
R

N
OI

S
S

E
R

P
M

O
C

ORIGINAL FILE SIZE (BYTE)

COMPRESSION RATIO OF THREE METHODS

CR of our method CR of WinRAR CR of WinZIP

Figure 3.3: Compression ratios for file size larger than 15 KB

Table 3.8: Experimental results for file size larger than 15 KB

No OFS
(Byte)

CFSM
(Byte)

CRM CFSR
(Byte)

CRR CFSZ
(Byte)

CRZ

11 16,294 4,434 72.79% 4,404 73.08% 4,436 72.78%

12 20,704 5,493 73.47% 5,361 74.11% 5,346 74.18%

13 25,470 6,804 73.29% 6,475 74.58% 6,429 74.76%

14 32,290 8,565 73.48% 7,636 76.36% 7,567 76.57%

15 41,650 11,189 73.14% 9,629 76.89% 9,467 77.28%

16 53,374 13,921 73.92% 11,721 78.04% 11,530 78.40%

17 66,484 17,997 72.94% 15,128 77.25% 14,920 77.56%

18 78,888 20,969 73.42% 17,259 78.13% 17,120 78.30%

19 102,014 27,236 73.30% 21,879 78.55% 21,835 78.60%

20 151,984 40,552 73.32% 31,865 79.04% 32,002 78.95%

According to all results of our experiments, our method achieves a higher com-
pression ratio when the file size is smaller than 15 KB. Especially, when the file size
is smaller than 2.5 KB, the compression ratio of our method is more efficient than

3.3. Trigram-based Vietnamese text compression 31

WinRAR and WinZIP. In these cases, in comparison with WinRAR and WinZIP,
the compression ratio of our method is higher than 10%. Therefore, this method
can apply efficiency to compress for Vietnamese short text such as SMS messages
and text messages on social networks.

3.3 Trigram-based Vietnamese text compression

Although the compression ratio of the syllable-based method is very high, it con-
verges to a ratio around 73%. Because of the structure of Vietnamese morphosylla-
bles, it is very hard to improve this ratio if we still use this method. Therefore, in this
section, we propose a new method for Vietnamese text compression called Trigram-
based Vietnamese (TGV) text compression. Figure 3.4 describes our method model.
In our model, we use a trigrams dictionary for both compression and decompression.

Source text

Tri-gram parser

Trigrams
Dictionary

Compression unit

Compressed text

TGV text compression

Compressed text

Code reading unit

Decompression unit

Source text

TGV text decompression

Figure 3.4: Trigram-based Vietnamese Text Compression

3.3.1 Dictionary

In our method, we build two trigrams dictionaries with different sizes to evaluate the
effects of dictionary size with our method. Each dictionary has two columns, one
contains trigrams and one contains the index for these trigrams. These dictionaries
were built based on a text corpus collected from open access databases. The size of
the text corpus for the dictionary one is around 800 MB and for dictionary two is
around 2.5 GB. We use SRILM to generate the trigram data for these dictionaries.
The trigrams data after using SRILM for dictionary one is around 761 MB with
more than 40,514,000 trigrams and for dictionary two is around 1,586 MB with more
than 84,000,000 trigrams. To reduce the search time in dictionaries, we arranged

3.3. Trigram-based Vietnamese text compression 32

them according to the alphabet. Table 3.9 describes the size and number of trigrams
of each dictionary.

Table 3.9: Dictionaries

Dictionary Number of tri-grams Size (MB)

one 40,514,822 761

two 84,003,322 1,586

3.3.2 TGV text compression

According to Figure 3.4, the compression phase has two main parts, the first part is
a trigrams parser and the second is a compression unit. In the following subsections,
we will explain them more in detail.

a. Tri-grams parser

The trigrams parser is used to read the source text file, separate it into sentences
based on newline and splits all sentence text into trigrams. In the case of the last
trigram, maybe it just has a unigram or bigram. Therefore, we must assign an
attribute to it to distinguish the trigram from the unigram and bigram. In Table
3.11, the value of this attribute is one.

b. Compression unit

The compression unit uses the results from the trigram parser, and detects each
trigram in the dictionary to find the corresponding index for standard trigrams. If
a trigram occurs in dictionary, we encode it using four bytes, otherwise we encode
it with exactly the number of characters that it has. The compression task can be
summarized as follows.

Encoding for tri-grams in the dictionary
Compression unit searches the trigram in the trigrams dictionary to get the index
of trigrams if found, otherwise return 0. When a trigram occurs in the dictionary,
we use four bytes to encode it. To distinguish with trigrams that do not occur
in the dictionary and bigram and unigram, the compression unit sets the most
significant bit of the first byte to zero. So, the four bytes encoding has the following
structure:
0 B

6
0
B

5
0
B

4
0
B

3
0
B

2
0
B

1
0
B

0
0
B

7
1
B

6
1
B

5
1
B

4
1
B

3
1
B

2
1
B

1
1
B

0
1
B

7
2
B

6
2
B

5
2
B

4
2
B

3
2
B

2
2

B
1
2
B

0
2
B

7
3
B

6
3
B

5
3
B

4
3
B

3
3
B

2
3
B

1
3
B

0
3

Where:

• The most significant bit of the first byte is 0 : Encode for a trigram which
occurs in the dictionary.

3.3. Trigram-based Vietnamese text compression 33

• B
6
0
B

5
0
B

4
0
B

3
0
B

2
0
B

1
0
B

0
0
B

7
1
B

6
1
B

5
1
B

4
1
B

3
1
B

2
1
B

1
1
B

0
1
B

7
2
B

6
2
B

5
2
B

4
2
B

3
2
B

2
2

B
1
2
B

0
2
B

7
3
B

6
3
B

5
3
B

4
3
B

3
3
B

2
3
B

1
3
B

0
3
: Encode for the index of the trigram in

the dictionary.

Encoding for trigrams do not occur in the dictionary and for other cases
When a trigram does not occur in the dictionary and for other cases, e.g., unigram
and bigram, the compression unit encodes it using exactly number of characters
that it has. In this case, it sets the most significant bit of the first byte to one. The
next seven bits of this byte will present the number of bytes of this trigram and
other cases in Unicode encoding because the Vietnamese language was presented in
Unicode encoding. So, the encoding structure of this case was described as follows.
1 B

6
0
B

5
0
B

4
0
B

3
0
B

2
0
B

1
0
B

0
0
B

7

i
B

6

i
B

5

i
B

4

i
B

3

i
B

2

i
B

1

i
B

0

i

Where:

• The most significant bit of the first byte is 1 : Encode for a tri-gram which
does not occur in the dictionary and for other cases.

• B
6
0
B

5
0
B

4
0
B

3
0
B

2
0
B

1
0
B

0
0
: Number of bytes of this trigram or other cases in

Unicode encoding.

• B
7

i
B

6

i
B

5

i
B

4

i
B

3

i
B

2

i
B

1

i
B

0

i
: Encoded bytes of trigram characters that do

not occur in the dictionary and other cases. For our testing data, we use
the Vietnamese language and normally it is presented by Unicode encoding.
In the encoding stream, we use Unicode encoding. So, the value of i is the
number of bytes that Unicode encoding uses to encode this trigram or other
cases.

• We set all values of B6
0
B

5
0
B

4
0
B

3
0
B

2
0
B

1
0
B

0
0

to 1 to encode for a newline.
Therefore, to encode for a newline we just use one byte.

3.3.3 TGV text decompression

TGV text compression is the inversion of TGV compression phase. The TGV
text decompression process has undergone in two steps and can be summarized as
follows.

• Code reading unit: this unit reads the encoding sequence from TGV text
compression, and separates it byte by byte.

• Decompression unit: this unit uses the output sequence from the code reading
unit as its input. It decodes one by one trigram or other cases, e.g., where
unigram, bigram or trigram does not occur in the dictionary. The decompres-
sion unit decides to decode the trigram or other cases based on the first bit
of the first byte of the input sequence at each step it decodes for new trigram
or other cases. If the first bit is 0, it decodes the trigram that occurred in the
dictionary. Otherwise, it decodes for other cases. We describe the detail of
the decompression unit as follows.

3.3. Trigram-based Vietnamese text compression 34

– The most significant bit of first byte is 0; it decodes for trigram that
occurred in the dictionary. The decompression unit reads the next three
bytes, calculates the index of this trigram, searches the trigram corre-
sponding to this index. This task is the inversion of trigram occurred in
dictionary encoding.

– The most significant bit of first byte is 1, it decodes for other cases.

∗ If all remaining bits of the first byte are not equal to 1, then the
decompression unit calculates the value of the remaining bits of first
byte. This value is the number of bytes that it needs to read more
from the input sequence. It decodes for these bytes based on Unicode
decoding.
∗ If all remaining bits of first byte are 1, then this is the encoded

newline. The compression unit decodes a newline for it.

After finishing the decoding for one trigram or other cases, it reads the next
byte, and repeats the decompression task to decode for other trigrams or other
cases until it reads to the last byte.

3.3.4 Example

Assuming that we use the dictionary in Table 3.10 for this example. According to
this dictionary, it has three standard trigrams.

Table 3.10: Trigrams dictionary

Index Tri-gram

0 Tôi là sinh

1 viên Trường Đại

2 học Tôn Đức

a. TGV text compression

Assume that we want to compress this sequence Tôi là sinh viên Trường Đại học
Tôn Đức Thắng. In the first stage, the trigrams parser splits all text of this input
sequence to trigrams. This input sequence has three standard trigrams and one
unigram. The trigrams parser results for this input are presented in Table 3.11.

3.3. Trigram-based Vietnamese text compression 35

Table 3.11: Trigram parser results

No. Tri-gram Attribute

1 Tôi là sinh 0

2 viên Trường Đại 0

3 học Tôn Đức 0

4 Thắng 1

After parsing for all trigrams, the output of this step is sent to the compression
unit to encode. First, the compression unit encodes for the first trigram Tôi là
sinh. It searches this trigram in the trigrams dictionary, Table 3.10. This trigram
occurs in this dictionary and its index is zero. So, it sets the first bit of encoding
sequence to 0. The next 31 bits are the binary string of the trigram index in this
dictionary, which in this case is zero. Therefore, the encoding sequence of this
trigram is 000000000000000000000000000000000. Then, it repeats this task to the
last trigrams or other cases.

Table 3.12: TGV text compression results

No. tri-grams or other
cases

Encoded sequence

1 Tôi là sinh 00000000000000000000000000000000

2 viên Trường Đại 00000000000000000000000000000001

3 học Tôn Đức 00000000000000000000000000000010

4 Thắng 10000111010101000110100011100001
10111010101011110110111001100111

The last trigram of the input sequence is a non-standard trigram, specifically,
it is an unigram which value is Thắng. The encoding of this unigram can described
in detail as follows.

• It sets the first bit of the encoding sequence to 1 to refer that encoding for a
trigram does not occur in the dictionary.

• Encoding for the number of bytes of this unigram is presented in Unicode
encoding. The next seven bits are the number of bytes of this unigram in
Unicode encoding; in this case, it was presented by seven bytes. So, the value
of these seven bits is 0000111.

• Encoding of this unigram. According to Unicode encoding, the encoding

3.3. Trigram-based Vietnamese text compression 36

sequence of this unigram is:
01010100|01101000|111000011011101010101111|01101110|01100111

• The final encoding sequence of this unigram is:
10000111|01010100|01101000|111000011011101010101111|01101110|01100111

Table 3.12 shows the compression result of all trigrams and other cases. The final
encoder output sequence is:
00000000000000000000000000000000|00000000000000000000000000000001|0000000
0000000000000000000000010|10000111_01010100_01101000_111000011011101010
101111_01101110_01100111

b. TGV text decompression

In this part, the TGV text decompression takes the output se-
quence form TGV text compression and decodes it. Its input is:
00000000000000000000000000000000|00000000000000000000000000000001|0000000
0000000000000000000000010|10000111_01010100_01101000_111000011011101010
101111_01101110_01100111
The code reading unit reads the input sequence, and separates it byte to byte.
The decompression unit receives this result as its input. First, it reads the
first byte of the input sequence 00000000, and the value of the first bit of this
byte is zero. Therefore, it is decoded for a standard trigram. It reads the next
three bytes 000000000000000000000000 and calculates the index of this trigram
in the trigrams dictionary. In this case, the value of this index is zero, so the
decompression unit goes to Table 3.10 to find the value according to this index.
The value is Tôi là sinh. The decompression unit repeats these steps to decompress
all trigrams and other cases. The input sequence is the concatenation of these
decoded.

3.3.5 Experiments

We conduct experiments to evaluate our method, using a data set that is a random-
ized collection from Vietnamese text and online newspapers. The data set includes
10 files completely different in size and content.

In order to evaluate the effects of trigrams in the dictionary (the size of dic-
tionary), we conducted two experiments with dictionary one and dictionary two
according to Table 3.9. We show the results of the two experiments in Table 3.13.
Compression ratio was calculated according to Equation 3.1. According the Table
3.13, we found that the compression ratio from dictionary two is higher than the
compression ratio from dictionary one. If we have a dictionary of all trigrams, the
compression ratio will be better.

In Table 3.13 and Table 3.14, Figure 3.5 and 3.6, we have some abbreviations
and meanings as follows: OFS: original file size, CFS: compressed file size, CR:
compression ratio, D1: dictionary one, D2: Dictionary two, SB: Syllable-based
method.

3.3. Trigram-based Vietnamese text compression 37

Table 3.13: Compression ratio of the dictionary one and the dictionary two

No. OFS CFS-D2 CR of D2 CFS-D1 CR of D1
Byte Byte Byte

1 1,166 185 84.13% 305 73.84%

2 2,240 359 83.97% 719 67.90%

3 6,628 1,710 74.20% 2,404 63.73%

4 12,224 2,057 83.17% 3,321 72.83%

5 22,692 3,702 83.69% 7,469 67.09%

6 49,428 7,870 84.08% 15,872 67.89%

7 96,994 17,723 81.73% 27,161 72.00%

8 156,516 27,434 82.47% 41,228 73.66%

9 269,000 49,902 81.45% 70,105 73.94%

10 489,530 92,739 81.06% 135,639 72.29%

In Figure 3.5, the compression ratio when we use the dictionary two is higher
than the compression ratio of the dictionary one.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

OI
T

A
R

N
OI

S
S

E
R

P
M

O
C

ORIGINAL FILE SIZE (BYTE)

COMPRESSION RATIO USING D1 AND D2

CR-D2 CR-D1

Figure 3.5: Comparison between the dictionary one and the dictionary two

3.3. Trigram-based Vietnamese text compression 38

Table 3.14: Compression ratio of current method and syllable-based method

No. OFS CFS CR CFS-SB CR-SB

1 1,166 185 84.13% 345 70.41%

2 2,240 359 83.97% 599 73.26%

3 6,628 1,710 74.20% 1,803 72.80%

4 12,224 2,057 83.17% 3,495 71.41%

5 22,692 3,702 83.69% 6,418 71.72%

6 49,428 7,870 84.08% 13,881 71.92%

7 96,994 17,723 81.73% 26,772 72.40%

8 156,516 27,434 82.47% 43,701 72.08%

9 269,000 49,902 81.45% 74,504 72.30%

10 489,530 92,739 81.06% 139,985 76.25%

In order to evaluate our improvement method with the previous method, we
compressed the input files using the syllable-based method in the previous section.
In Table 3.14 and Figure 3.6, we show the result of our method in 10 cases above
in comparison with the syllable-based method. Our improvement method achieves
a higher compression ratio than the syllable-based method.

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

OI
T

A
R

N
OI

S
S

E
R

P
M

O
C

ORIGINAL FILE SIZE (BYTE)

COMPRESSION RATIO OF CURRENT METHOD AND

SYLLABLE-BASED METHOD

Syllable-based Current method

Figure 3.6: Comparison between current method and syllable-based method

3.4. N-gram based text compression 39

3.4 N-gram based text compression

Source text

N-grams parser

N-gram

Dictionaries
Compression unit

Compressed text

N-gram based text compression

Compressed text

Code reading unit

Decompression unit

Source text

N-gram based text decompression

Figure 3.7: Ngram-based Vietnamese text compression model

In the previous sections we proposed Vietnamese text compression methods that
are syllable-based and trigram-based. With the syllable-based method, it on the
structure of the syllable and the structure of the Vietnamese morphosyllable and
converges to a compression ratio around 73%. In the trigram-based method, the
compression ratio is better than that of the syllable-based and normally it converges
to around 82%. However, in this method, it just focuses on the trigram, and does not
care about unigram, bigram, four-gram and five-gram. In this section, we present a
method for Vietnamese text compression using n-gram dictionaries. This model has
two main modules. The first module is used for text compression and the second
module performs decompression. Figure 3.7 describes our text compression model.
In our model, we use n-gram dictionaries for both compression and decompression.
We will describe the model in detail in the following subsections.

3.4.1 Dictionaries

Since we focus on Vietnamese, we build five different Vietnamese dictionaries of
unigram, bigram, trigram, four-gram and five-gram corresponding to the number of
grams compressed. Table 1 shows these dictionaries with their number of n-grams
and size. These dictionaries have been built based on a text corpus collected from
the Internet. The size of the text corpus is around 2.5 GB. We use SRILM5 to
generate n-grams for these dictionaries. To increase the speed of searching in these

5http://www.speech.sri.com/projects/srilm/

3.4. N-gram based text compression 40

dictionaries, we arranged them according to the alphabet. Table 3.15 describes the
size and number of n-grams in each dictionary.

Table 3.15: n-grams dictionaries

n-gram dictionary Number of n-grams Size (MB)

1 7,353 0.05

2 20,498,455 474

3 84,003,322 1,586

4 169,916,000 4,155

5 225,203,959 6,800

Algorithm 1: Pseudo-code of the compression phase
input : The source text file
output: The encoded stream

1 inputstring = read source text file
2 count = number of grams in the inputstring
3 while count >= 5 do
4 st5 = get first five grams of the inputstring
5 index = find(st5, five_gram_dict)
6 if index>=0 then
7 force_four_gram_compression(st4)
8 outputstring += compress(index, 5)
9 delete first five grams of the inputstring

10 count -= 5
11 end
12 else
13 st4 += get first gram of the inputstring
14 delete first gram of the inputstring
15 count -= 1
16 if number of grams of st4 = 4 then
17 four_gram_compression(st4)
18 end
19 end
20 end
21 if count > 0 then
22 four_gram_compression(inputstring)
23 end

3.4. N-gram based text compression 41

3.4.2 N-gram based text compression

As presented in Figure 3.7, the compression module takes a source text as an in-
put, and then pass the text through two sub-modules, i.e., N-grams parser and
Compression unit, to compress it. In following subsections, we explain in details.

a. N-grams parser

N-gram parser has been used to read a source text file, splits it to sentences based
on newline and reads the number of grams in the combination with the result of
the compression unit. In n-gram parser, we use five kinds of n-gram to store for
unigram, bigram, trigram, four-gram and five-gram. Based on the result of the
compression unit, the n-gram parser decides how many grams will be read next.
Algorithm 1 shows the pseudo-code of this phase. If five-gram was found in the
five-gram dictionary, i.e., index > 0, the force_four_gram_compression function
would be called to encode all previous n-grams (unigram, bigram, trigram and four-
gram), then the compress function would be called to encode this five-gram. Next,
the n-gram parser reads next five grams in the input string. Otherwise, it would
split one leftmost gram of five-gram for four-gram and read one gram more from
the input string for five-gram. When the number of grams of four-gram was 4, it
calls the four_gram_compression function.

Algorithm 2: Pseudo-code of the four_gram_compression
input : The four-gram string, in this case is st4
output: The encoded stream

1 index = find(st4, four_gram_dict)
2 if index >= 0 then
3 force_trigram_compression(st3)
4 outputstring += compress(index, 4)
5 delete content of st4
6 end
7 else
8 st3 += first gram of st4
9 delete first gram of st4

10 if number of grams of st3 = 3 then
11 trigram_compression(st3)
12 end
13 end

Algorithm 2 shows the pseudo-code of the four_gram_compression func-
tion. This function is used to compress four-gram if it occurs in four-gram
dictionary. Otherwise, it splits one leftmost gram of the four-gram vari-
able for the trigram variable. Similar to this function, we have the tri-
gram_compression, the bigram_compression and the unigram_compression func-

3.4. N-gram based text compression 42

tion. The force_four_gram_compression is called to encode all four-gram, tri-
gram, bigram and unigram when five-gram variable is found in the five-gram dic-
tionary. Similar to this function, we have the force_trigram_compression, the
force_bigram_compression and the force_unigram_compression function.

Algorithm 3: Pseudo-code of the force_four_gram_compression
input : The four-gram string, in this case is st4
output: The encoded stream

1 while number of grams of st4 > 0 do
2 st3 += first gram of st4
3 delete first gram of st4
4 if number of grams of st3 = 3 then
5 trigram_compression(st3)
6 end
7 end
8 force_trigram_compression(st3)

b. Compression unit

The compression unit uses the result from the n-gram parser to decide how many
grams will be compressed and what kind of n-gram dictionaries should be used.
Based on the number of n-grams in each dictionary, we will construct the number
of bytes to encode for each n-gram corresponding to the dictionary. Table 3.16
describes the number of bytes used to encode for each n-gram of each dictionary.

Table 3.16: number of encoded bytes for each n-gram of each dictionary

N-gram dictionary Number of n-grams Number of bytes

1 7,353 2

2 20,498,455 4

3 84,003,322 4

4 169,916,000 4

5 225,203,959 4

To classify the dictionary that was used to encode each n-gram and the other
cases, we use three most significant bits (MSB) of the first byte of each encoded
byte. Table 3.17 describes the value of these bits corresponding to each dictionary.

The index of each n-gram corresponding to each dictionary is encoded in the
bits after the first three bits of the first byte. As seen in Table 3.17, there are
two special cases for the n-gram dictionary: a newline and a unigram that doesn’t

3.4. N-gram based text compression 43

appear in the unigram dictionary corresponding to a value of “newline” and “others”.
In these cases, the compression unit will encode as follows:

• When the result received from the n-gram parser is the newline, the compres-
sion unit will encode the value “110” for the first three bits of MSB, and the
next five bits of this byte will have the value “00000”.

• When the result is the others, the three MSB of the first byte are “111” and
the next five bits of this byte present the number of bytes which were used to
encode this gram.

Table 3.17: value of three MSB and number of bytes

N-gram
dictionary

Value of three
MSB

Number of bytes is read more

1 0 0 1 1

2 0 1 0 3

3 0 1 1 3

4 1 0 0 3

5 1 0 1 3

newline 1 1 0 0

others 1 1 1 value of five bits after three
first bits of current byte

3.4.3 N-gram based text decompression

As seen in Figure 3.7, the decompression module takes an compressed text as an
input, and then pass the text through two sub-modules, i.e., Code reading unit and
Decompression unit, to decompress it. We explain in detail in following subsections.

a. Code reading unit

First, this unit reads the compressed text from the compression phase. This result
becomes the input sequence of the code reading unit. The code reading unit splits
this input sequence byte to byte. Then, it reads the first byte of the input sequence,
splits and analyzes the first three bits of this byte to classify the dictionary to which
this n-gram belongs. Based on this result, this unit will read more bytes from the
input sequence. Table 3.17 shows the number of bytes that the code reading unit
reads after the first byte according to the classification of the dictionary. After
reading more bytes, it transfers them to the decompression unit and repeats its
work until the input sequence is null.

3.4. N-gram based text compression 44

b. Decompression unit

This unit receives the results from the code reading unit. It decodes these results
according to the classification of the dictionary as follows.

Algorithm 4: Pseudo-code of the decompression phase
input : The encoded stream
output: The decoded stream

1 inputstring ← encodedstream

2 while length of inputstring > 0 do
3 firstbyte = read first byte from the inputstring
4 delete first byte of the the inputstring
5 dict = get value of three bits of firstbyte
6 if dict <= 5 then
7 number = getnumberbytereadmore(dict)
8 bytereadmore = read number byte more from the inputstring
9 delete number byte of the inputstring

10 indexstring = get last five bits of the firstbyte + the bytereadmore
11 indexvalue = get value of the the indexstring
12 output += decompress(indexvalue, dict)
13 end
14 else if dict = 6 then
15 output += newline
16 end
17 else
18 number = value of five last bits of the firstbyte
19 bytereadmore = read number byte more from the inputstring
20 output += decode for the bytereadmore
21 end
22 end

• Decode for n-grams occurring in dictionaries

– Identifying the dictionary: based on the classification dictionary from
the code reading unit.

– Identifying the index of an n-gram in the dictionary: based on the value
calculated from bytes that were read by the code reading unit.

– Decode for n-gram: when the classification of the dictionary has a value
from one to five, the decompression unit decodes the n-gram in the dic-
tionary based on the index of the n-gram.

• Decode for n-grams that don’t occur in dictionaries

3.4. N-gram based text compression 45

– Decode for newline: when the classification of dictionary is a “newline”,
it means that the value of the first three bits is 110. The decompression
unit decodes a newline for this n-gram.

– Decode for others: when the classification of the dictionary is an “others”,
based on the value of the remaining bits of the first byte, the decompres-
sion unit will decode for all bytes after the first byte.

After finishing the decoding for one n-gram or other cases, the decompression
unit reads the next result from the code reading unit and repeats the decompres-
sion tasks to decode for other n-grams or other cases until it reads the last byte.
Algorithm 4 shows the pseudo-code of the decompression phase.

3.4.4 Example

a. Compression phase

Let us encode the following sequence using the n-gram approach.
Nén dữ liệu nhằm giảm kích thước dữ liệu để tăng tốc độ truyền cũng như tiết

kiệm không gian lưu trữ
Assume that we have five dictionaries for unigram, bigram, trigram, four-gram

and five-gram, as seen in Table 3.18.

Table 3.18: Five dictionaries

Index entry Index Entry Index Entry
1 nhằm 1 cũng như 1 Nén dữ liệu
2 lưu
3 trữ

1. uni-gram dictionary 2. bi-gram dictionary 3. tri-gram dictionary

Index Entry Index Entry
1 tiết kiệm không gian 1 giảm kích thước dữ liệu

2 để tăng tốc độ truyền

4. four-gram dictionary 5. five-gram dictionary

The n-gram parser first encounters the first five-gram Nén dữ liệu nhằm giảm
and copies it to the five-gram variable. This pattern isn’t in the five-gram dic-
tionary, so it splits the first gram of this pattern for the four-gram variable and
concatenates the next gram of the input sequence to the five-gram variable. The
content of the five-gram and four-gram variables become dữ liệu nhằm giảm kích
and Nén, respectively. Then, it checks the number of grams in the four-gram vari-
able, which is one at this time. In this case, the value is less than four, it bypasses
the four_gram_compression and turns back to the five-gram variable. Because this

3.4. N-gram based text compression 46

pattern isn’t in the five-gram dictionary, similar to the first case, it splits the first
gram of this five-gram to the four-gram variable and concatenates the next gram
of the input sequence to the five-gram variable. The content of the five-gram and
four-gram variables shall become liệu nhằm giảm kích thước and Nén dữ, respec-
tively.

Table 3.19: all steps and values of n-grams

step five-gram variable four-gram
variable

trigram
variable

bigram
variable

1 Nén dữ liệu nhằm giảm

2 dữ liệu nhằm giảm kích Nén

3 liệu nhằm giảm kích thước Nén dữ

4 nhằm giảm kích thước dữ Nén dữ liệu

5 giảm kích thước dữ liệu dữ liệu nhằm Nén

6.1 giảm kích thước dữ liệu liệu nhằm Nén dữ

6.2 giảm kích thước dữ liệu nhằm

6.3 giảm kích thước dữ liệu

6.4 để tăng tốc độ truyền

7 cũng như tiết kiệm không

8 như tiết kiệm không gian cũng

9 tiết kiệm không gian lưu cũng như

10 kiệm không gian lưu trữ cũng như tiết

11 không gian lưu trữ như tiết kiệm cũng

12 gian lưu trữ tiết kiệm không cũng như

13.1 lưu trữ tiết kiệm không gian

13.2 lưu trữ

13.3 trữ

13.4

Then, it checks the number of grams in the four-gram variable, which is two
now. This value is less than four, similar to the first case, it turns back to five-
gram variable. It repeats these operations until the content of the five-gram vari-
able is nhằm giảm kích thước dữ and the four-gram variable is Nén dữ liệu. This
five-gram pattern isn’t in five-gram dictionary, so it splits the first gram of this

3.4. N-gram based text compression 47

pattern for the four-gram variable and concatenates the next gram of the input
sequence to the five-gram variable. The content of the five-gram and four-gram
variables shall become giảm kích thước dữ liệu and Nén dữ liệu nhằm, respec-
tively. It checks the number of grams in the four-gram variable, which is four
now. It calls the four_gram_compression as presented in Algorithm 2. The
four_gram_compression searches the four-gram pattern in the four-gram dictio-
nary, which isn’t found in the four-gram dictionary. It splits the first gram of this
pattern into the trigram variable. The content of the four-gram and the trigram
variable become dữ liệu nhằm and Nén, respectively. Then, it checks the number
of grams in the trigram variable, which is one at this time. So, it bypasses the tri-
gram_compression, exits the four_gram_compression and turns back to five-gram
variable in Algorithm 1. The first five steps as seen in Table 3.19 show the content
of the five-gram, four-gram, and trigram variables throughout these steps.

At Step six, first, the n-gram parser checks the value of the five-gram variable
in the five-gram dictionary. This pattern is in the dictionary, therefore, it calls the
compression unit to encode all bigram, trigram, and four-gram. Then, it encodes
for the five-gram. When the compression unit is finished, the n-gram parser reads
the next five grams from the input sequence. In Table 3.19, Steps 6.1 to 6.4 show
all sub-steps of Step 6 and in Table 3.20, Steps 6.2 to 6.4 show the encoder output
sequence.

Table 3.20: Encoder output sequence

step encoding of dictionary encoded sequence

6.2 011 00000000000000000000000000001

6.3 001 0000000000001

6.4 101 00000000000000000000000000001

7 101 00000000000000000000000000010

13.1 010 00000000000000000000000000001

13.2 100 00000000000000000000000000001

13.3 001 0000000000010

13.4 001 0000000000011

As seen in Table 3.19, at Step 6.1, the n-gram parser splits the first gram of
the four-gram variable for the trigram variable, and the content of the four-gram
and trigram variable shall become liệu nhằm and Nén dữ, respectively. Then, it
checks the number of grams in the trigram variable, which is two at this time.
So, it bypasses the trigram_compression and moves to Step 6.2. At Step 6.2, it
continues splitting the first gram of the four-gram variable for the trigram variable.

3.4. N-gram based text compression 48

The content of the four-gram and trigram variables shall become nhằm and Nén dữ
liệu, respectively. Next, it checks the number of grams in the trigram variable, which
is three at this time. It then searches for this trigram in the trigram dictionary.
Because this trigram is in the trigram dictionary, it calls the compression unit to
encode for bigram in the bigram variable. In this case, the bigram variable is null.
It calls the compression unit to encode for the trigram in the trigram variable and
moves to the next sub-step. The encoded sequence of this trigram is shown in Table
3.20 at Step 6.2. The first three bits of this encoded sequence which have value
011 refer to trigram dictionary as seen in Table 3.17 and all remaining bits refer
to the index of this trigram in the trigram dictionary. At Step 6.3, the bigram and
trigram variables are null, it counts the number of grams in the four-gram variable,
which is 1 in this case, then it copies this gram to the unigram and searches for this
unigram in the unigram dictionary. This unigram is in dictionary so it calls the
compression unit to encode for this unigram. The encoder output sequence of this
unigram is shown in Table 3.20 at Step 6.3. At Step 6.4, it calls the compression
unit to encode for the five-gram in the five-gram variable, and the encoder output
sequence of this five-gram is shown in Table 3.20 at Step 6.4. Then it reads the
next five-gram in the input sequence to the five-gram variable. At this time, the
content of the five-gram variable is để tăng tốc độ truyền.

The n-gram parser and the compression unit will process similar to previous
cases for all remaining grams of the input sequence. The results of these steps are
shown in Table 3.19 from Step 7 to Step 13.4. The encoder output sequences are
shown in Table 3.20 from Step 7 to Step 13.4. The final encoder output sequence
is the result of concatenation of all encoder output sequences from Step 6.1 to 13.4
in Table 3.20. The final encoder output sequence is:
01100000000000000000000000000001|0010000000000001|1010000000000000000000
0000000001|10100000000000000000000000000010|0100000000000000000000000000
0001|10000000000000000000000000000001|0010000000000010|0010000000000011.

b. Decompression phase

In this section, the encoder output sequence from the previous example is taken
and is decoded using the decompression unit. The encoder output sequence in the
previous example was:
01100000000000000000000000000001|0010000000000001|1010000000000000000000
0000000001|10100000000000000000000000000010|0100000000000000000000000000
0001|10000000000000000000000000000001|0010000000000010|0010000000000011.

The decompression unit uses the same dictionaries as the compression unit as
seen in Table 3.18. It reads the first byte of the input sequence, the content of this
first byte is 01100000. The first three bits are split, and the value of these three
bits is 011. It finds the corresponding n-gram dictionary of these three bits and
the number of bytes that is read more as presented in Table 3.17. In this case, the
n-gram dictionary is the trigram dictionary and the number of byte that is read
more is 3. The decoder reads the next three bytes from the input sequence. The

3.4. N-gram based text compression 49

index of the entry was calculated based on the value of all remaining bits after the
first three bits and the three bytes that is read more. The entry is determined based
on this index. The decoder repeats these steps until it reads the last byte of the
input sequence. Table 3.21 shows all steps and results of the decompression phase.

The final decoder output sequence is the result of concatenation of all decoder
output sequences from Step 1 to Step 8 as presented in Table 3.21. With each
decoder output sequence from Step 1 to Step 7, we add one space character before
the concatenation. The final encoder output sequence is Nén dữ liệu nhằm giảm
kích thước dữ liệu để tăng tốc độ truyền cũng như tiết kiệm không gian lưu trữ

Table 3.21: All steps and the results of the decompression phases

step first
byte

dict. nbm bits to calculate index index
value

decoder out-
put
sequence

1 01100000 011 3 00000000000000000000000000001 1 Nén dữ liệu

2 00100000 001 1 0000000000001 1 nhằm

3 10100000 101 3 00000000000000000000000000001 1 giảm kích
thước dữ liệu

4 10100000 101 3 00000000000000000000000000010 2 để tăng tốc độ
truyền

5 01000000 010 3 00000000000000000000000000001 1 cũng như

6 10000000 100 3 00000000000000000000000000001 1 tiết kiệm
không gian

7 00100000 001 1 0000000000010 2 lưu

8 00100000 001 1 0000000000011 3 trữ

3.4.5 Experiments

We conducted an experiment to evaluate our method, using a data set that is
randomized collection from some Vietnamese news agencies. The data set includes
10 files completely different in size and content.

In order to evaluate the effects of a combination of various n-gram dictionaries,
we conducted three experiments with three kinds of systems. In the first case, we
build a system with unigram, bigram, and trigram dictionaries. Next, we extend
the first one with four-gram dictionary. Lastly, we extend the second one with five-
gram dictionary. The results of the three experiments is shown in Table 3.22. As
presented in Table 3.22, we find out that the compression ratio from the third case
is the best, follow-up is the second case, and the last one comes from the first case.
The compression ratio in this section was used according to Equation 3.1. In Table

3.4. N-gram based text compression 50

3.22, 3.23, 3.24, Figure 3.8, 3.9, 3.10, we have some abbreviations and meanings
as follows: OFS: original file size in byte; CFS: compressed file size in byte; CR:
compression ratio; C1, C2, C3: three cases above, respectively; O: our method, S:
syllable-based method, T: trigram-based method, RAR: WinRAR, ZIP: WinZIP.

Table 3.22: Compression ratio of three experience cases

No. OFS CFS-
C1

CR-C1 CFS-
C2

CR-C2 CFS-
C3

CR-C3

1 1,166 210 81.99% 166 85.76% 136 88.34%

2 2,240 362 83.84% 274 87.77% 222 90.09%

3 6,628 1,245 81.22% 999 84.93% 887 86.62%

4 12,224 1,954 84.02% 1,503 87.70% 1,179 90.36%

5 22,692 3,565 84.29% 2,652 88.31% 2,180 90.39%

6 49,428 7,638 84.55% 5,712 88.44% 4,538 90.82%

7 96,994 15,636 83.88% 12,359 87.26% 10,416 89.26%

8 156,516 24,974 84.04% 19,188 87.74% 15,889 89.85%

9 269,000 43,887 83.69% 34,182 87.29% 28,937 89.24%

10 489,530 80,685 83.52% 63,472 87.03% 54,117 88.95%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

OI
T

A
R

N
OI

S
S

E
R

P
M

O
C

ORIGINAL FILE SIZE (BYTE)

COMPRESSION RATIO OF THREE CASES

CR-C1 CR-C2 CR-C3

Figure 3.8: Comparison between the three cases

3.4. N-gram based text compression 51

Table 3.23: Compression ratio of the current method with the two previous methods

No. OFS CFS-S CR-S CFS-T CR-T CFS-O CR-O

1 1,166 345 70.41% 185 84.13% 136 88.34%

2 2,240 599 73.26% 359 83.97% 222 90.09%

3 6,628 1,803 72.80% 1,710 74.20% 887 86.62%

4 12,224 3,495 71.41% 2,057 83.17% 1,179 90.36%

5 22,692 6,418 71.72% 3,702 83.69% 2,180 90.39%

6 49,428 13,881 71.92% 7,870 84.08% 4,538 90.82%

7 96,994 26,772 72.40% 17,723 81.73% 10,416 89.26%

8 156,516 43,701 72.08% 27,434 82.47% 15,889 89.85%

9 269,000 74,504 72.30% 49,902 81.45% 28,937 89.24%

10 489,530 139,985 71.40% 92,739 81.06% 54,117 88.95%

In Figure 3.8, the compression ratio when we combine all five dictionaries is the
highest.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

OI
T

A
R

N
OI

S
S

E
R

P
M

O
C

ORIGINAL FILE SIZE (BYTE)

COMPRESSION RATIO OF THREE METHODS

CR-S CR-T CR-O

Figure 3.9: Comparison of compression ratio of three methods

In order to evaluate our method with the two previous methods, we compress
the input files using these methods. In Table 3.23, we show the results of the current

3.4. N-gram based text compression 52

method in 10 cases above in comparison to the syllable-based and trigram-based
methods. As seen in Table 3.23 and Figure 3.9, the compression ratio of this method
is better than the two previous methods for any size of text in our test cases.

Table 3.24: Compression ratio of our method, WinRAR and WinZIP

No. OFS CFS-O CR-O CFS-
RAR

CR-
RAR

CFS-
ZIP

CR-
ZIP

1 1,166 136 88.34% 617 47.08% 676 42.02%

2 2,240 222 90.09% 887 60.40% 946 57.77%

3 6,628 887 86.62% 2,052 69.04% 2,111 68.15%

4 12,224 1,179 90.36% 3,378 72.37% 3,442 71.84%

5 22,692 2,180 90.39% 6,162 72.85% 6,150 72.90%

6 49,428 4,538 90.82% 12,504 74.70% 12,286 75.14%

7 96,994 10,416 89.26% 21,389 77.95% 21,321 78.02%

8 156,516 15,889 89.85% 34,162 78.17% 34,362 78.05%

9 269,000 28,937 89.24% 56,152 79.13% 57,671 78.56%

10 489,530 54,117 88.95% 101,269 79.31% 108,175 77.90%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

OI
T

A
R

N
OI

S
S

E
R

P
M

O
C

ORIGINAL FILE SIZE (BYTE)

COMPRESSION RATIO OF THREE METHODS

CR of our method CR of WinRAR CR of WinZIP

Figure 3.10: Compression ratio of our method, WinRAR and WinZIP

3.5. Summary 53

Table 3.24 and Figure 3.10 show the results of our method in comparison with
those of other methods, such as WinZIP version 19.56, the software combines LZ77
[Ziv 1978] and Huffman coding, and WinRAR version 5.217, the software combines
LZSS [Storer 1982] and Prediction by Partial Matching [Cleary 1984]. The experi-
mental results show that our method achieves the highest compression ratio on the
same testing set.

3.5 Summary

In this chapter, we presented some methods to Vietnamese text compression. Each
method has its own strengths and weaknesses. The application of each method
depends on the purpose of the users. The syllable-based method uses a small
dictionary of all Vietnamese morphosyllables with more than 7,300 morphosyllables,
and the compression ratio of this method converges to 73%. This method is useful
when applied to small files, personal systems, or systems that focus more on the
speed of compression. The trigram- and n-gram-based methods are suitable for
systems that need a high compression ratio, however.

6http://www.winzip.com/win/en/index.htm
7http://www.rarlab.com/download.htm

Chapter 4

Normalization of Vietnamese

informal text

Contents

4.1 Introduction . 54
4.2 Related Work . 55
4.3 Normalization of Vietnamese informal text 56

4.3.1 Preprocessing . 57
4.3.2 Spelling errors detection . 57
4.3.3 Error correction . 58

4.4 Experiments and results . 61
4.5 Summary . 62

4.1 Introduction

As mentioned in 1.1, the Vietnamese informal texts contain many spelling er-
rors, creating a significant challenge for NER. In this chapter, we propose a
method to normalize the Vietnamese informal text focusing on Vietnamese tweets
by detecting non-standard words as well as spelling errors and correcting them.
The method helps improve the performance of NER as well as other infor-
mal text analysis applications. There have been many methods proposed for
text normalization. Most of them are to normalize texts written in English
[Banko 2001, Carlson 2007, Duan 2012, Golding 1999, Habash 2011, Pennell 2014,
Sonmez 2014, Sproat 2001, Yang 2013] and some other languages such as Chinese
[Huang 2014, Wu 2010, Yeh 2013] or Arabic [Hassan 2014, Shaalan 2012]. We also
found several methods proposed for Vietnamese spell checking in literature. How-
ever, those methods did not take informal text postings, especially in online social
networks, into account.

In this chapter, we propose a system to normalize Vietnamese informal text. It
consists of three steps: 1) preprocessing Vietnamese tweets; 2) detect non-standard
words and misspellings due to typos; and 3) normalize and correct those errors.
Table 4.1 shows an example of normalization of Vietnamese tweets according to
these three steps. In Table 4.1, VNT means Vietnamese tweets, NSW means non-
standard words, and MSW means misspelled words.

4.2. Related Work 55

Table 4.1: An example of Vietnamese tweets normalization

Original tweet Step 1: VNT
preprocessing

Step 2: Detect
NSW & MSW

Step 3:
Normalize

Trời ddang mưa
http://t.co/SfMgc

Trời ddang mưa Trời ddang mưa Trời đang mưa
It is raining

ngày maii là Têt rồi
http://t.co/bvgc1

ngày maii là Têt rồi ngày maii là Têt rồi ngày mai là Tết rồi
tomorrow is our
Tet’s holiday

Anh yêuuu emm-
mmm

Anh yêu em Anh yêu em anh yêu em
I love you

In this chapter, we also propose a method to improve the similarity coefficient of
two morphosyllables according to the Dice coefficient [Dice 1945]. When applying
our improved method, the similarity coefficient increases significantly.

The rest of this chapter is organized as follows. In section 4.2 we briefly review
the normalization methods. Then, we give a detailed description of our proposed
method in Section 4.3. In Section 4.4, we demonstrate the experimental results
for the proposed method based on the analysis of performance of our method with
several other methods. Finally, we present my summaries in Section 4.5.

4.2 Related Work

Currently, there are many studies on spelling error detection and normalization.
Normally, each study focuses on a specific language. For example, in the domain
of English, most earlier work on automatic error correction addressed spelling er-
rors and built models of correct usage based on native English data ([Golding 1999]
[Carlson 2007] [Banko 2001]). In [Sproat 2001], to normalize nonstandard words,
they developed a taxonomy of non-standard words and then they investigated the
application of several general techniques, including n-gram language models, deci-
sion trees, and weighted finite-state transducers to the entire range of non-standard
word types. In ([Habash 2011] and [Duan 2012]), they used the discriminative
model to propose a mechanism for error detection and error correction at word-level,
respectively. In [Sonmez 2014], they proposed a graph-based text normalization
method that utilizes both contextual and grammatical features of text. A log-linear
model was used in [Yang 2013] to characterize the relationship between standard
and non-standard tokens. In [Pennell 2014], they proposed a two character-level
method for the abbreviation modeling aspect of the noisy channel model, including
a statistical classifier using language-based features to decide whether a character is
likely to be removed from a word, and a character-level machine translation model.
With Chinese language, the majority of studies used model language processing

4.3. Normalization of Vietnamese informal text 56

([Wu 2010] [Yeh 2013] [Huang 2014]) and [Chen 2014] used an unsupervised model
and discriminative re-ranking. With the Arabic language, recent studies used su-
pervised learning [Hassan 2014], a character-based language model [Shaalan 2012].
Considering the Vietnamese language, we had several studies involved analyzing
the word, phrase, sentence analysis, handling ambiguity, construction dictionary
(VLSP2 [Hai 1999] [Duy 2004]) and most recently, studies using the n-gram lan-
guage model ([Quang 2012] [Huong 2015]).

In the field of informal texts and social networks, several researchers have fo-
cused on languages other than Vietnamese. For example, [Bo 2011, Han 2013] pro-
posed a method to detect and handle errors based on the morphophonemic simi-
larity. [Choi 2014] detected and handled many non-standard words in online social
networks by using a diverse coefficient method, such as Dice, Jaccard, and Ochiai.
[Hassan 2013] used random walks on a contextual similarity bipartite graph con-
structed from n-gram sequences on large unlabeled text corpus to normalize social
text. [Sproat 2001] developed a novel method for normalizing and morphologically
analyzing Japanese noisy text by generating both character-level and word-level
normalization candidates and using discriminative methods to formulate a cost
function. An approach to normalize Twitter messages in Malay based on corpus-
driven analysis was proposed in [Saloot 2014]. [Cotelo 2015] proposed a modular
approach for lexical normalization that was applied to Spanish tweets, in which
the system proposed including the detection of modules and candidates for correc-
tion for each out-of-vocabulary word and ranking the candidates to select the best
one. [Liu 2012a] proposed a normalization system for short message service (SMS)
and Twitter data based on a broad-coverage normalization system by integrating
three human perspectives, i.e., enhanced letter transformation, visual priming, and
string/phonetic similarity.

Recently, in the Shared Tasks of the 2015 Workshop on Noisy User-generated
Text: Twitter Lexical Normalization and Named Entity Recognition, several meth-
ods were proposed for the normalization of Twitter lexical usages. According to the
summary of results in [Baldwin 2015], the common approaches were lexicon-based
methods, CRF, and neural network-based methods. Among the constrained sys-
tems, neural networks achieved strong results. In contrast, CRF and lexicon-based
approaches were shown to be effective in the unconstrained category. Considering
the Vietnamese language specifically, we have not found any research work that has
been undertaken for informal text.

4.3 Normalization of Vietnamese informal text

In this section, we present our method for normalization of Vietnamese informal
text, focused on Vietnamese tweets. This method has three main parts, preprocess-
ing Vietnamese tweets, detecting spelling errors, and error correction. Figure 4.1
describes our model. We describe more detail in the following subsections.

2http://vlsp.vietlp.org:8080/demo/

4.3. Normalization of Vietnamese informal text 57

a Vietnamese tweet

Preprocessing

- Clean up noisy symbols

- Clean up repeated characters

Spelling error detection

- Typing error detection

- Spelling error detection

Dictionary

Error correction

- Vocabulary structures

- Syllable rules

- Tri-gram language model

a Vietnamese tweet after

normalization

Figure 4.1: Normalization model for Vietnamese tweets

4.3.1 Preprocessing

a. Clean up noisy symbols

The original tweet can contain various noisy content, such as emotion sym-
bols, e.g., ¤¤; the hashtag symbol, e.g., #news,#movie; link urls, e.g.,
https://t.co/b02RI2yXrp, https://t.co/7qod8hyIZC; etc. Those noisy symbols can
affect the accuracy of the system. Therefore, in our system, first, we clean up those
noisy symbols. For example, we have the tweet Clinton hits Sanders on gun control,
sharpens attacks https://t.co/b02RI2yXrp. After clean-up of noisy symbols, it will
become Clinton hits Sanders on gun control, sharpens attacks.

b. Clean up repeated characters

Many tweets have repeated characters, e.g., Anh yêuuuuuuuu emmmm nhiềuuuuuu-
uuuu lắmmmmmmmmmm, to express the user’s feelings. These repeated characters
do not have meaning and affect the accuracy of the system. Therefore, we also need
to clean up these tweets. For example, with the previous tweet, after cleaning, it
will become Anh yêu em nhiều lắm (I love you so much). We can clean those tweets
based on features and properties of vowels and consonants in the Vietnamese lan-
guage. Normally, Vietnamese vowels do not appear more than once except for the
vowel “o”, which occurs two times in the syllables “ooc” and “oong”. Vietnamese
consonants just appear once.

4.3.2 Spelling errors detection

Spelling errors are a big problem for any information extraction system and NER
is not an exception. There are several methods to detect spelling errors. In our
method, a morphosyllable in a tweet will be identified as an error if it does not
appear in the standard morphosyllables dictionary in section 2.1.3. After a mor-
phosyllable in a tweet is identified as an error, it will be analyzed to classify the

4.3. Normalization of Vietnamese informal text 58

error and process it. Normally, Vietnamese morphosyllables in tweets include two
kind of errors, i.e., typing errors and spelling errors. We will describe in detail the
two kinds of errors in the following subsections.

a. Typing error

As we mentioned in section 2.1.2, Vietnamese uses Telex typing and VNI typing
to compose Vietnamese tweets. Each method has its own combination to forming
syllables and their marks. Tweets are very short and are prepared quickly, so typing
speed can cause errors. For example:

• With the morphosyllable, “Nguyễn,” we could have typing errors such as
“nguyeenx,” “nguyênx,” or “nguyeenxx” with Telex typing, and “nguye6n4,”
“nguyên4,” or “nguye6n44” with VNI typing.

• With the morphosyllable, “người”, we could type the followings: “ngươif,”
“ngươfi,” “nguowfi,” “nguowif,” “nguofwi,” “nguofiw,” “nguoifw,” “nguoiwf,” or
“nguowff” with Telex typing, and “nguwowi2,” “ngươ2i,” “nguo72i,” “nguo7i2,”
“nguo27i,” “nguo2i7,” “nguoi27,” or “nguoi72” with VNI typing.

To handle this issue, we built a set of syllable rules with their marks and a set of
rules to map these syllables to their errors, as shown in the following examples:

• “án”: “asn,” “ans,” “a1n,” or “an1”

• “àn”: “afn,” “anf,” “a2n,” or “an2”

• “ản”: “arn,” “anr,” “a3n,” or “an3”

• “ãn”: “axn,” “anx,” “a4n,” or “an4”

• “ạn”: “ajn,” “anj,” “a5n,” or “an5”

b. Spelling errors

Spelling errors occur frequently in Vietnamese tweets. Normally, they occur due to
mistakes in pronunciation. Some examples of spelling errors follow:

• Error due to using the wrong mark: “quyển sách” (book) to “quyễn sách”

• Initial consonant error: “bóng chuyền” (volleyball) to “bóng truyền”

• End consonant errror: “bài hát” (song) to “bài hác”

• Region error: “tìm kiếm” (find) to “tìm kím”

4.3.3 Error correction

For the detected typing and spelling errors, first, the system uses vocabulary struc-
tures and the set of syllable rules to normalize them. Then the system uses tri-grams
dictionary to normalize these results based on the degree of similarity between them.

4.3. Normalization of Vietnamese informal text 59

a. Similarity of two morphosyllables

To measure the similarity of two morphosyllables, we used the results in the re-
search of Dice [Dice 1945] with some improvements we made. To use Dice’s re-
search, we split all the characters of the morphosyllable to bigrams. Assuming
that we have two morphosyllables, i.e., “nguyen” and “nguye,” the bigrams of these
morphosyllables can be represented as follows: bigramnguyn={ng, gu, uy, yn}, and
bigramnguyen={ng, gu, uy,ye,en}.

Dice Coefficient:

The Dice coefficient, developed by Lee Raymond Dice [Dice 1945], is a statisti-
cal approach for comparing the similarity of two samples. The Dice coefficient of
the two morphosyllables, wi and wj, according to bigram can be calculated using
equation 1:

Dice(wi, wj) =
2× | bigramwi

⋂

bigramwj |

| bigramwi | + | bigramwj |
(4.1)

where:

• | bigramwi | and | bigramwj | are the total bigrams of wi and wj

• | bigramwi |
⋂

| bigramwj | are the number of bigrams which appear in wi

and wj at the same time.

If two morphosyllables are the same, the Dice coefficient is 1. The higher of the
Dice coefficient, the higher the degree of similarity and vice versa.

Proposed method to improve the Dice Coefficient:

As observed from the experimental data using the Dice coefficient, we found that,
the above method will be accurate with misspelled morphosyllables that have the
misspelled character at the end. When misspelled characters occur close to the
last character, at least we will lose the similarity of the last two grams. For a
morphosyllable that has three characters, the degree of similarity is 0. For example:
Dice(“rất”, “rát”) = 0; Dice(“gân”, “gần”) = 0;

From the above problem, we proposed a method to improve the Dice coefficient.
The improvement of coefficient was performed by combining the first character with
the last character of the two morphosyllables to form a new pair of bigrams. If the
two members of this pair are different, the system will use the coefficients as shown
in equation (1). In contrast, we use equation (2) as below:

iDice(wi, wj) =
2× (| bigramwi

⋂

bigramwj | + 1)

| bigramwi | + | bigramwj | + 2
(4.2)

Let fbigramw be an additional bigram of w. Each fbigram is the pair of the first
and the last character of w. We can express the formula for improving the Dice

4.3. Normalization of Vietnamese informal text 60

coefficient as equation (3):

fDice(wi, wj) =

{

Dice(wi, wj) : if fbigramwi is different from fbigramwj

iDice(wi, wj) : Otherwise
(4.3)

To illustrate the improvement of the Dice coefficient, we assumed that we have
two morphosyllables to measure the degree of similarity, i.e., “nguyen” and “nguyn,”
as presented in the previous section, thus we have | bigramwi

⋂

bigramwj |= 3.
Combining the first and the last characters of the two morphosyllables we have the
new pair of bigram, which has the same result, i.e., “nn.” So, using the improvement
of the Dice coefficient, we have fDice(“nguyen,” “nguyn”) = 0.727. If we use the
normal coefficient of Dice we have Dice(“nguyen,” “nguyn”) = 0.667.

Table 4.2 shows the results of measuring the similarity of two morphosyllables
with the Dice coefficient and the improved Dice coefficient methods. With the
improved method, the similarities are obviously improved.

Table 4.2: The results of measuring the similarity of two morphosyllables with the
Dice coefficient and the improved of Dice coefficient methods.

Error morphosyllable Correct morphosyllable Dice fDice

rat rất 0 0.333

rat rác 0 0

Nguễn Nguyễn 0.667 0.727

Nguễn Nguy 0.571 0.571

Tượg Tượng 0.571 0.667

Tượg Tương 0.286 0.444

b. Similarity of two sentences

Assume that we need to measure the similarity of two sentences, i.e., S1 =

w1, w2, w3, · · · , wn and S2 = w′

1, w
′

2, w
′

3, · · · , w
′

n. We compare the similarity of
each pair of morphosyllables according to the improved Dice coefficient. Then,
we compute the similarity of the two sentences by Equation 4.4:

Sim (S1, S2) =
Σn
i=1fDice (wi, w

′

i)

n
(4.4)

where:

• wi and w′

i are the corresponding morphosyllables of S1 and S2.

• n is the number of morphosyllables

4.4. Experiments and results 61

If two sentences are the same, their degree of similarity (Sim) is 1. The higher the
Sim coefficent, the higher the degree of similarity becomes, and vice versa. Table
4.3 shows the results of the normalization of Vietnamese tweets that have spelling
errors.

Table 4.3: tweets with spelling errors and their normalization.

Spelling error tweets Normalized tweets

xe đón hồ ngọc hà
gây tai nạn kinhh
hoàng: sẽ khởi tố tài xế
http://fb.me/2MwvznBbj

xe đón hồ ngọc hà gây tai nạn kinh hoàng:
sẽ khởi tố tài xế (the car picked up ho ngoc
ha caused a terrible accident: the driver will
be prosecuted)

hôm nay, siinh viên
ddaijj học tôn dduwcss

thắng được nghỉ học

hôm nay, sinh viên đại học tôn đức thắng
được nghỉ học (today, students of ton duc
thang university were allowed to absent)

4.4 Experiments and results

To evaluate our method, we used a data set which randomizes collected Vietnamese
tweets. The data set includes 1,360 tweets that are completely different from each
other.

In order to make comparisons of the impact of the data set in the language
model, we ran the test two times with the language model built from two input
data sets: The first set includes 130 MB randomized data from 1,045 MB of data
set mention above and the second set includes entire 1,045 MB data. The trigram
model with a frequency of more than 5 times the first set is about 8 MB. In this
case, we use the improved Dice coefficient to measure the similarity of the two
sentences. In this test, we use the precision metric to evaluate our method.

• Precision (P): number of correctly fixed errors divided by the total number of
errors detected.

The results of this test was shown in Table 4.4. From Table 4.4, the results of
the trigram model with data from the second set achieved a higher accuracy than
the results of the trigram model with data from the first set.

4.5. Summary 62

Table 4.4: The results using fDice with two data sets in the trigram model

Data set Total
error

Detected
error

Correct
fixed

Wrong
fixed

Precision

1 1,360 1,342 1,072 270 79.88%

2 1,360 1,342 1,207 135 89.94%

To evaluate the improvement Dice coefficient with normal Dice coefficient. We
ran the test with trigram model built from entire data set, i.e., the data set of 1,045
MB, using Dice and fDice to measure the similarity of two sentences. In this test,
we use two more metrics Recall and Balance F-Measure with the precision metric
mention above to evaluate our method.

• Recall (R): number of correctly fixed errors divided by the total error.

• Balance F-measure (F1): F1 = 2∗P∗R
p+R

Table 4.5 shows the results of this test. The table shows that the combination of
our improved Dice coefficient and the tri-gram model achieved better performance
than the normal Dice coefficient with the tri-gram model.

Table 4.5: The results use fDice and Dice with tri-gram language model

Method Precision Recall F-Measure

Dice 84.8% 83.68% 84.23%

fDice 89.94% 88.75% 89.34%

4.5 Summary

In this chapter, we presented the first attempt to normalize Vietnamese informal
text focused on tweets on Twitter. Our proposed method combines a language
model with dictionaries and Vietnamese vocabulary structures. We also extended
the original Dice coefficient to improve performance of the similarity measure be-
tween two morphosyllables. To evaluate the proposed method, we built a dataset
including 1,360 Vietnamese tweets. The experiment results show that our pro-
posed method achieves relative high performance with precision approximating to
90%, recall over 88.7%, and FMeasure over 89%. Moreover, our improvement on
measuring the similarity of the two morphosyllables based on the Dice coefficient
outperforms the original Dice coefficient.

Chapter 5

Named entity recognition in

Vietnamese informal text

Contents

5.1 Context . 63
5.2 Proposed method . 64

5.2.1 Normalization . 64
5.2.2 Capitalization classifier . 65
5.2.3 Word segmentation and part of speech (POS) tagging 66
5.2.4 Extraction of features . 67

5.3 NER training set . 70
5.4 Experiments . 72
5.5 Summary . 73

5.1 Context

In recent years, social networks have become very popular. It is easy for users to
share their data using online social networks. Currently, Twitter is one of the most
popular social networks. According to statistics from 2011, the number of tweets
was up to 140 million per day1. With such a huge number of tweets being posted
every day, effective extraction and processing of those data will be very beneficial,
especially to information extraction applications.

Twitter provides an interactive environment that allows users to create their
own content through tweets. Since each tweet consists of only 140 characters,
users tend to use acronyms, non-standard words, and social tokens. Therefore,
the tweets contain many spelling errors, and this creates a significant challenge
for NER. I recommended a method to deal with this issue in chapter 4. Several
recognition methods for named entities have been proposed for tweets in English and
other languages [Liu 2011, Ritter 2011, Li 2015b, Bandyopadhyay 2014, Jung 2012].
Although there have been many approaches proposed for NER in the Vietnamese
formal text, none is available for Vietnamese informal text. Thus, in this chapter,
we propose a method for NER in informal text focused on Vietnamese tweets to

1https://blog.twitter.com/2011/numbers

5.2. Proposed method 64

fill the gap. The system consists of three steps, i.e., 1) normalization of the tweets
using the proposed method in chapter 4; 2) the use of a capitalization classifier; and
3) recognition of named entities. Table 5.1 shows an example of NER according to
these three steps.

Table 5.1: An example of named entity recognition

Original tweet xe đón hồ ngọc hà gây tai nạn kinhh hoàng: sẽ
khởi tố tài xế http://fb.me/2MwvznBbj

Step 1:
Normalization

xe đón hồ ngọc hà gây tai nạn kinh hoàng: sẽ
khởi tố tài xế

Step 2:
Capitalization

Xe đón Hồ Ngọc Hà gây tai nạn kinh hoàng:
sẽ khởi tố tài xế

Step 3:
NEs recognition

Xe đón <PER>Hồ Ngọc Hà</PER> gây tai
nạn kinh hoàng: sẽ khởi tố tài xế

In Table 5.1, step 1, the original tweet will be normalized based on the proposed
method in chapter 4. In this step, first it will remove the link url, then it will identify
the spelling error morphosyllables. In this case, this tweet has one spelling error
morphosyllabe “kinhh.” Next, the method uses syllable rules to correct for this error.
In step 2, the tweets after normalization will be put to the capitalization classifier,
which was presented in 5.2.2, to identify and capitalize suitable characters. The
result of this step will be put to the NER system to recognize named entities in this
tweet.

In this chapter, we present the first attempt to provide NER capability in Viet-
namese informal text focused on Vietnamese tweets. The rest of this chapter is
organized as follows. Section 5.2 presents earlier work related to this effort. Our
proposed method is presented in Section 5.3, and the experiments and their results
are provided in Section 5.4. Our summaries are presented in Section 5.5.

5.2 Proposed method

In this section, we present our method for NER in Vietnamese tweets. This model
has two main parts, i.e., one for training and one for recognizing. Figure 5.1 de-
scribes our model. In our model, the gazetteers are used for both training and
recognizing. We will provide more detail in the following subsections.

5.2.1 Normalization

As presented in chapter 4, Vietnamese tweets on Twitter are noisy, irregular, brief
and consist of acronyms and spelling errors. Therefore, we must normalize them
before using NER.

5.2. Proposed method 65

Support Vector Machine

learning Algorithm

Trained model

the Vietnamese tweet with

named entities tagged

a Vietnamese tweet

Normalization

Capitalization classifier

Word segmentation

and POS tagging

Feature extraction

Gazetteers

Training set

Feature extraction

Named Entity

Recognition

Figure 5.1: NER model in Vietnamese tweets

5.2.2 Capitalization classifier

Capitalization is a key orthographic feature for recognizing named entities
[Florian 2002, Downey 2007]. Unfortunately, in tweets, capitalization is much less
reliable than in edited texts. Users usually compose and reply to messages quickly,
and they do not care much about capitalization. According to [Chu 2010], a letter
is capitalized in the following cases:

1. Capitalize the first letter of the first syllable of a complete sentence, after
punctuation (.), question mark (?), exclamation point (!), ellipsis (...) and
new line.

2. Capitalize the name of people, locations, and organizations.

3. Other cases of capitalization include, e.g., medal name, position name, days
of the week, months of the year, holidays, names of books, and names of
magazines.

Because our method focuses on three types of entities, i.e., person, organization,
and location, in the capitalization classifier, we take the first and the second cases
into account. For the first case, we detect the structure of the sentence and correct

5.2. Proposed method 66

incorrect capitalization. In the second case, we use gazetteers of persons, locations,
and organizations. Table 5.2 shows the results of the capitalization classifier of
Vietnamese tweets.

Table 5.2: Some results of capitalization classifier of Vietnamese tweets.

Tweets before capitalization Tweets after capitalization classifier

xe đón hồ ngọc hà gây tai nạn
kinh hoàng: sẽ khởi tố tài xế

Xe đón Hồ Ngọc Hà gây tai nạn kinh
hoàng: sẽ khởi tố tài xế (the car picked
up Ho Ngoc Ha caused a terrible accident:
the driver will be prosecuted)

hôm nay, sinh viên đại học tôn
đức thắng được nghỉ học

Hôm nay, sinh viên Đại học Tôn Đức
Thắng được nghỉ học (today, students of
Ton Duc Thang university were allowed to
absent)

5.2.3 Word segmentation and part of speech (POS) tagging

a. Word segmentation

Vietnamese is different from English and other languages in word segmentation. In
English and other languages, words can be separated based on the space character.
However, Vietnamese is not like that. As presented in 2.1.1, a Vietnamese word is
composed of special linguistic units called Vietnamese morphosyllable. Normally, a
word has from one to four morphosyllables. For example, we consider the sentence
Sinh viên Trường Đại học Tôn Đức Thắng. In this sentence, we can separate it to
these following cases:

1. Sinh_viên Trường Đại_học Tôn_Đức_Thắng : in this case, we separate the
sentence to four words.

2. Sinh_viên Trường_Đại_học Tôn_Đức_Thắng : in this case it has three
words.

3. Sinh_viên Trường Đại_học_Tôn_Đức_Thắng : in this case, it also has three
words but it is different from the previous case.

The first requirement for any NER system is word segmentation. Therefore, this
system is not an exception. The quality of word segmentation has an important
role to the result of NER system. In our method, we used vnTokenizer2 of [Le 2008]
for word segmentation.

2http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnTokenizer

5.2. Proposed method 67

b. POS tagging

After performing word segmentation, we apply POS tagging to give more informa-
tion to the next phase. POS tagging was used to identify the characteristics of the
word to enhance the accuracy of the NER system. In this stage, a word will be
assigned a label according to [Le-Hong 2010], such as Np for proper noun, N for
common noun, V for verb, etc.

For example, we apply POS tagging for the sentence result of word segmentation
above: Sinh_viên Trường Đại_học_Tôn_Đức_Thắng. The result of this tagging
is Sinh_viên/N Trường/N Đại_học_Tôn_Đức_Thắng/Np

In order for POS tagging to normalize tweets after word segmentation, we used
VnTagger3 of [Le-Hong 2010] for POS tagging.

5.2.4 Extraction of features

The aim of this phase is to convert each word to a vector of feature values. Our
system uses the IOB model to annotate and assign label to data in the training and
classification phases. IOB is expressed as follows:

• I: current morphosyllable is inside of a named entity (NE).

• O: current morphosyllable is outside of a NE.

• B: current morphosyllable is the beginning of a NE

Table 5.3: The characteristic value of labels according to the IOB model.

Label Value Meaning

O 1 Outside a named entity

B-PER 2 Beginning morphosyllable of a NE belongs to a Person
class

I-PER 3 Inside morphosyllable of a NE belongs to Person class

B-LOC 4 Beginning morphosyllable of a NE belongs to Loca-
tion class

I-LOC 5 Inside morphosyllable of a NE belongs to Location
class

B-ORG 6 Beginning morphosyllable of a NE belongs to Orga-
nization class

I-ORG 7 Inside morphosyllable of a NE belongs to Organiza-
tion class

3http://mim.hus.vnu.edu.vn/phuonglh/softwares/vnTagger

5.2. Proposed method 68

Table 5.3 shows the characteristic value of labels according to the IOB model
with four classes, i.e., PER, LOC, ORG, and O. For example, we want to assign a
label to a sentence after word segmentation from the previous section: Sinh_viên
Trường Đại_học Tôn_Đức_Thắng. The result of this task can be described as
follows.

• Trường: B-ORG

• Đại_học: I-ORG

• Tôn_Đức_Thắng: I-ORG

The selection of specific attributes from the training set has a key role in iden-
tifying the type of entity. Since the nature of the Vietnamese language is different
from English, we used the most appropriate and reasonable features in order to
achieve optimum accuracy for the system. Our system uses the following features:

1. Word position: the position of word in a sentence. For example, with
the sentence above, Sinh_viên Trường Đại_học_Tôn_Đức_Thắng, the word
Sinh_viên has word position value 1, the word Trường has word position 2
and Đại_học_Tôn_Đức_Thắng has word position 3.

2. POS: POS tag of the current word as presented in Table 5.4 according to
[Le-Hong 2010].

Table 5.4: POS categories

Category Value Description
Np 1 Proper noun
Nc 2 Classifier
Nu 3 Unit noun
N 4 Common noun
V 5 Verb
A 6 Adjective
P 7 Pronoun
R 8 Adverb
L 9 Determiner
M 10 Numeral
E 11 Preposition
C 12 Subordinating conjunction

CC 13 Coordinating conjunction
I 14 Interjection
T 15 Auxiliary, modal words
Y 16 Abbreviation
Z 17 Bound morpheme
X 18 Unknown

5.2. Proposed method 69

3. Orthographic (ORT): There are several ways to write a word in Vietnamese
and it depends on the writer. For example, the word sinh_viên can be written
as sinh_viên, Sinh_viên, Sinh_Viên or SINH_VIÊN, etc. Therefore, in this
feature, we focused on several cases of orthographics, such as capitalization of
the first character of first morphosyllable, capitalization of first character of
each morphosyllable, capitalization of all letters, lowercase, punctuation and
numbers. The detail of categories and corresponding value of this feature was
presented in Table 5.5.

Table 5.5: Orthographic categories

Label Value Description
I_Cap 1 Capitalization of first letter
A_Cap 2 capitalization of all letters
L_Case 3 lowercase of all letters
AF_Cap 4 capitalization of first letter of each morphosyllable

Punctuation 5 Punctuation
Digit 6 Number

4. Gazetteer: This feature was built based on a Gazetteer which consists of
several dictionaries. Each dictionary contains words in specific types of cate-
gories such as person name, organization name, location name, prefixes, etc.
These dictionaries can be updated during the process of manually annotating
the corpus. When considering this feature, the system looks up the current
word in these dictionaries and gets a return value to identify if this word ex-
ists in these dictionaries or not. If this word exists in these dictionaries, it
will decide what kind of entity it belongs to. The detail of categories and
corresponding value of Gazetteer features was presented in Table 5.6

In this system, we built several gazetteer lists, such as person, location, orga-
nization, and prefixes. These gazetteer lists consist of more than 50,000 names
of people, nearly 12,000 names of locations, and more than 7,000 names of
organizations.

Table 5.6: Gazetteer categories

Category Value Description
PER 1 The entity is name of person
ORG 2 The entity is name of organization
LOC 3 The entity is name of location

O 4 The name entity is different from above

5. Prefix, Suffix: the first and the second character; the last and the next to

5.3. NER training set 70

the last character of the current word.

6. POS Prefix, POS Suffix: POS tags of two previous words and POS tags
of two following words of the current word.

5.3 NER training set

In Figure 5.1, before performing feature extraction, we perform word segmentation,
POS tagging, and assigning labels in Table 5.3 for each word in the training set.
Then, the system extracts features of the words and represents each of those words
as a feature vector. A support vector machine learning algorithm was used to train
the model using the training set.

In particular, we assigned labels for words in the training set by using a semi-
automatic program, meaning that we assigned labels to those words with a program
we wrote and checked in hand. In our self-written program, we considered the noun
phrase obtained after the tagging step with a list of dictionary of text files to label
for those words. The text files of the dictionary contain:

• The noun prefix for people such as you, sister, uncle, and president

• The noun prefix for organizations such as company, firm, and corporation

• The noun prefix for locations such as province, city, and district

• List of dictionary for states, provinces of Vietnam, and others

Table 5.7 shows the results of assigning labels to words of two Vietnamese tweets.
The total number of entities to which we assigned labels in this phase is presented
in Table 5.10.

Table 5.7: The results of assigning labels to words of two Vietnamese tweets.

Tweets Tweets after assigning labels

xe đón Hồ Ngọc Hà gây
tai nạn kinh hoàng: sẽ
khởi tố tài xế

Xe đón <PER> Hồ_Ngọc_Hà </PER>
gây tai_nạn kinh_hoàng: sẽ khởi_tố
tài_xế (the car picked up Ho Ngoc Ha
caused a terrible accident: the driver will
be prosecuted)

hôm nay, sinh viên Đại
học Tôn Đức Thắng được
nghỉ học

hôm_nay, sinh_viên <ORG> Đại_học
Tôn_Đức_Thắng </ORG> được
nghỉ_học (today, students of Ton Duc
Thang university were allowed to absent)

After assigning labels for words in Vietnamese tweets, we analyzed these tweets
to build feature vectors for those words. The structure of a feature vector includes:

5.3. NER training set 71

<label> <index1>:<value1> <index2>:<value2> <index3>:<value3> and other
pairs, where:

• <label>: value from 1 to 7 according to 7 labels (O, B-PER, I-PER, B-LOC,
I-LOC, B-ORG, I-ORG).

• <index>:<value>: order of feature and value corresponding to feature of
a word, respectively.

To understand the process of preparation data for SVM format, we consider the
following example with sentence after word segmentation above Sinh_viên Trường
Đại_học Tôn_Đức_Thắng with four basic features: word position, POS, ortho-
graphic, and Gazetteer. Assuming that, we use the IOB model in Table 5.3, POS
feature in Table 5.4, orthographic feature in Table 5.5, and Gazetteer feature in
Table 5.6. The result of this process was presented in Table 5.8.

Table 5.8: The result of the process of preparation data for SVM format

Word
IOB POS ORT Gazetteer

label value label value label value label value
Sinh_viên O 1 N 4 I_Cap 1 O 4
Trường B-ORG 6 N 4 I_Cap 1 O 4
Đại_học I-ORG 7 N 4 I_Cap 1 O 4
Tôn_Đức_Thắng I-ORG 7 Np 1 AF_Cap 4 PER 1

In this sentence, Sinh_viên Trường Đại_học Tôn_Đức_Thắng, the position
of Sinh_viên is 1, position of Trường is 2, position of Đại_học is 3, position of
Tôn_Đức_Thắng is 4. Assuming that the order of features is word position, POS,
ORT, and Gazetteer, the feature vectors of the words in the sentence above are
presented in Table 5.9.

Table 5.9: The result of feature vectors

Word Feature vector

Sinh_viên 1 1:1 2:4 3:1 4:4

Trường 6 1:2 2:4 3:1 4:4

Đại_học 7 1:3 2:4 3:1 4:4

Tôn_Đức_Thắng 7 1:4 2:1 3:4 4:1

After representing words in the training set as feature vectors, we used libSVM4

to train the model.
4https://www.csie.ntu.edu.tw/ cjlin/libsvm/

5.4. Experiments 72

Table 5.10: Total number of named entities in the training set

Entity type Number of named entities

PER 10,842

LOC 19,037

ORG 12,311

5.4 Experiments

We conducted experiments with a test set including 1,668 Vietnamese tweets. To
evaluate the NER method and make a comparison of the impact of the normaliza-
tion of the test set, we conducted two experiments, i.e., one without normalization
and capitalization classifier of tweets (Case 1) and one with normalization and cap-
italization classifier of tweets (Case 2). Table 5.11 shows our experimental results.
In this case, we also used three metrics to evaluate our method, i.e., the precision,
the recall, and the Balance F-Measure.

• Precision (P): the number of correctly recognized named entities divided by
the total number of named entities recognized by the NER system.

• Recall (R): the number of correctly recognized named entities divided by the
total number of named entities in the test set.

• Balance F-Measure (F1): F1 = 2∗P∗R
p+R

Table 5.11: Experimental results of case 1 and case 2

Case # NEs
in

testing
set

rec-
ognized

NEs

#
correctly
recog-
nized
NEs

wrong
recog-
nized
NEs

P R F1

1 2,446 1,915 1,601 314 83.6% 65.45% 73.42%

2 2,446 2,266 1,939 327 85.57% 79.27% 82.3%

According to Table 5.11, when we applied the normalization to the test set, the
precision, recall and balance F-Measure of this test were higher than the case of the
test set without the application of normalization.

5.5. Summary 73

We re-implemented the state-of-the-art method proposed in [Tran 2007] and
compared its performance with the performance of our method. The results of this
comparison are shown in Table 5.12.

Table 5.12: Comparison performance of our method with that of [Tran 2007]

System Precision Recall F1

Our system 85.57% 79.27% 82.3%

System of [Tran 2007] 83.20% 76.20% 79.55%

5.5 Summary

In this chapter, we presented the first attempt to use NER in Vietnamese informal
text focused on Vietnamese tweets on Twitter. We proposed a learning model based
on SVM to recognize named entities using six different types of features. In our
method, we also proposed a method to capitalize for suitable characters in tweets to
enhance the accuracy of the system. To evaluate the method, we built a training set
of more than 40,000 named entities and a testing set of 2,446 named entities. The
experimental results showed that our system achieved encouraging performance,
with an 82.3% F1 score.

Chapter 6

Conclusions

In the first part of this thesis, in chapter 3, we presented our achievements in
text compression. Section 3.2 proposed a method for Vietnamese text compression
that focused on Vietnamese morphosyllables structure, a syllable structure used
to compress Vietnamese text. In section 3.3, we proposed another method for
Vietnamese text compression based on trigram. The last method that we pointed
out in chapter 3 was an n-gram based. This method achieves the best compression
ratio when compared with the two previous methods and it can apply to any size of
text file. In the next part, in chapter 5, we presented our achievements in Named
Entity Recognition (NER) for Vietnamese informal text on social networks, focused
on Twitter. We also presented a method to normalize Vietnamese informal text in
chapter 4 in combination with the NER model to achieve higher precision. In the
next section we present in detail the main achievements of this thesis.

6.1 Thesis contributions

The contributions of this thesis can be classified in three categories.

Contributions to text compression

In this field, we present the first attempt at Vietnamese text compression. We
present three methods and achieved some encouraging results based on compres-
sion ratio. In these methods, the last method achieves the best result in terms of
compression ratio.

1. First we proposed a method for Vietnamese text compression based on Viet-
namese morphosyllable structure, Vietnamese syllables, consonants, and vow-
els. To identify syllables and their marks, we built six dictionaries correspond-
ing to six types of marks. We also proposed a method to recognize marks and
capital letters. Our method gives a new approach to classifying capital letters
and compressing them.

2. Next, we presented a method for Vietnamese text compression based on the
trigram model. This method splits input sequences into trigrams and com-
presses them based on a trigrams dictionary.

3. The last method we proposed for text compression is n-gram based. In this
method, we used five dictionaries from uni-gramunigram to five-gram. We

6.1. Thesis contributions 75

used a slide windows to identify the n-gram from input sequences and com-
pressed them corresponding to an n-gram dictionary. This method achieved a
the highest compression ratio when compared with the two previous methods.
It can apply to text files with of any size and is easy to configure to compress
other languages. To configure, we just collect a text corpus and build five
corresponding dictionaries.

Contribution to Vietnamese informal text normalization

There are several approaches proposed to normalize for Vietnamese formal text.
However, none of them proposed and applied to informal text. In this research, we
proposed a method to fill the gap. This method was based on structure of Viet-
namese morphosyllable, Vietnamese typing methods, syllable rules and trigrams
dictionary to normalize for error morphosyllables, to identify error morphosylla-
bles, we use a Vietnamese dictionary of standard morphosyllable was proposed in
2.1.3. In this research, we also proposed a method to improve Dice coefficient in
[Dice 1945]. Our proposed method achieves a better result in the term of precision
when compared with the origin method.

Table 6.1: Contributions and their publications

Contributions Proposed method Publication

Text compression
Syllable based method [3]
Tri-gram based method [4]
N-gram based method [6]

Vietnamese informal
text normalization

Based on Vietnamese morphosylla-
ble structure, syllable rules, tri-grams
dictionary

[2]

NER for Vietnamese
informal text

combination with Vietnamese informal
text normalization to normalize input data
first, then using SVMs model with six dif-
ferent types of features to identify and clas-
sify named entities

[1], [5]

Contributions to NER in Vietnamese informal text

In this field, we present the first attempt to use NER for Vietnamese informal
text focused on Twitter. To enhance the precision of the results, we combine the
previous results with Vietnamese informal text normalization. Our contributions
in this field can be briefly described as follows.

1. Integrate the normalization of Vietnamese informal text into NER model to
normalize the input data first.

2. Propose a learning model for NER in Vietnamese informal text, focused on
Vietnamese tweets, based on SVM models with six different types of features.

6.2. Perspectives 76

3. Build a training set of more than 40,000 named entities and a testing set of
2,446 named entities to evaluate the NER system of Vietnamese informal text,
focused on Vietnamese tweets.

Table 6.1 shows our contributions, our proposed method, and publications in
this dissertation.

6.2 Perspectives

Text compression: Text compression has an important significance on saving
storage space and increasing the transfer rate. In this thesis, we have proposed
three methods for text compression. Most methods have an encouraging com-
pression ratio, especially with the n-gram based method. To achieve the best
compression ratio, we must collect more text to build the n-grams dictionaries.
However, when the size of the n-grams dictionaries increase, this method will face
a new challenge that is the time to identify an n-gram in the n-grams dictionary.
Finding the n-gram will take more time. Therefore, we need to find a method to
store and index n-grams dictionaries that are easy and that will quickly identify if
an n-gram occurs in the n-grams dictionaries. In the compression techniques, we
can combine the current technique with an adaptive dictionary such as LZW to
improve the compression ratio.

Vietnamese informal text normalization: In the normalization for Vietnamese
informal text tasks, the result is quite good. However, we think we can improve it
by using an n-gram slide window based on the n-grams dictionaries.

NER for Vietnamese informal text: The process of identification and
classification of named entities in Vietnamese informal text plays an important
role in several other systems, such as question and answering systems, machine
translation systems, information retrieval systems, and more. The precision of the
NER task is the main factor affecting the results of these systems. As mentioned in
previous sections, the results of our method depend on the training set. Therefore,
we should collect the data required to increase the number of named entities in the
training set as well as to expand the dictionaries so that we can increase the NER
performance of our system.

6.3 Publications

In this dissertation, we proposed methods to deal with the tasks in the thesis ob-
jective and scope. The result of these methods has been published in high-quality
international conferences and journals. The publications are listed as follows.

1. Vu H Nguyen, Hien T Nguyen and Vaclav Snasel. Named Entity Recogni-
tion in Vietnamese Tweets. In The 4th International Conference on Com-

6.3. Publications 77

putational Social Networks, ISBN 978-3-319-21785-7, pages 205–215, China,
August 2015. Springer. It was indexed in Scopus and WoS.

2. Vu H Nguyen, Hien T Nguyen and Vaclav Snasel. Normalization of vietnamese
tweets on twitter. In Proceedings of the Second Euro-China Conference on
Intelligent Data Analysis and Applications, ISBN 978-3-319- 21205-0, pages
179–189, Czech Republic, June 2015. Springer. It was indexed in Scopus and
WoS.

3. Vu H Nguyen, Hien T Nguyen, Hieu N Duong and Vaclav Snasel. A syllable-
based method for Vietnamese text compression. In Proceedings of ACM In-
ternational Conference on Ubiquitous Information Management and Commu-
nication, ISBN 978-1-4503-4142-4, 6 pages, Vietnam, January 2016. ACM. It
was indexed in Scopus.

4. Vu H Nguyen, Hien T Nguyen, Hieu N Duong and Vaclav Snasel. Trigram-
Based Vietnamese Text Compression. In 8th Asian Conference on Intelligent
Information and Database Systems, ISBN 978-3-319-31276- 7, pages 297–307,
Vietnam, March 2016. Springer. It was indexed in WoS.

5. Vu H Nguyen, Hien T Nguyen and Vaclav Snasel. Text Normalization for
Named Entity Recognition in Vietnamese tweets. Computational Social Net-
works, ISSN 2197-4314, 2016. (accepted with minor revision)

6. Vu H Nguyen, Hien T Nguyen and Vaclav Snasel. N-gram-based text compres-
sion. Computational Intelligence and Neuroscience, ISSN 1687-5273, 2016. It
was indexed in Scopus and WoS. (accepted with minor revision)

Bibliography

[Akman 2011] Ibrahim Akman, Hakan Bayindir, Serkan Ozleme, Zehra Akin and
Sanjay Misra. A lossless text compression technique using syllable based
morphology. Int. Arab J. Inf. Technol., vol. 8, no. 1, pages 66–74, 2011.
(Cited on page 9.)

[Al-Bahadili 2008] Hussein Al-Bahadili and Shakir M Hussain. An adaptive charac-
ter wordlength algorithm for data compression. Computers & Mathematics
with Applications, vol. 55, no. 6, pages 1250–1256, 2008. (Cited on page 8.)

[Asahara 2003] Masayuki Asahara and Yuji Matsumoto. Japanese named entity ex-
traction with redundant morphological analysis. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Compu-
tational Linguistics on Human Language Technology-Volume 1, pages 8–15.
Association for Computational Linguistics, 2003. (Cited on page 11.)

[Baldwin 2015] Timothy Baldwin, Marie Catherine de Marneffe, Bo Hanet al.
Shared Tasks of the 2015 Workshop on Noisy User-generated Text: Twit-
ter Lexical Normalization and Named Entity Recognition. In ACL-IJCNLP
2015, pages 126–135, 2015. (Cited on pages 10, 14 and 56.)

[Bandyopadhyay 2014] Ayan Bandyopadhyay, Dwaipayan Roy, Mandar Mitra and
Sanjoy Saha. Named Entity Recognition from Tweets. In Proceedings of the
16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, Septem-
ber 8-10, 2014., pages 218–225, 2014. (Cited on page 63.)

[Banko 2001] Banko, Michele and Eric Brill. Scaling to very very large corpora for
natural language disambiguation. In Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, pages 26–33, 2001. (Cited on
pages 54 and 55.)

[Bikel 1997] Daniel M Bikel, Scott Miller, Richard Schwartz and Ralph Weischedel.
Nymble: a high-performance learning name-finder. In Proceedings of the
fifth conference on Applied natural language processing, pages 194–201. As-
sociation for Computational Linguistics, 1997. (Cited on page 11.)

[Bo 2011] Han Bo and Timothy Baldwin. Lexical normalisation of short text mes-
sages: Makn sens a# twitter. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, page 368–378, 2011. (Cited on page 56.)

[Borthwick 1998] Andrew Borthwick, John Sterling, Eugene Agichtein and Ralph
Grishman. Exploiting diverse knowledge sources via maximum entropy in
named entity recognition. In Proc. of the Sixth Workshop on Very Large
Corpora, volume 182, 1998. (Cited on page 11.)

Bibliography 79

[Burrows 1994] Michael Burrows and David Wheeler. A block-sorting lossless data
compression algorithm. In DIGITAL SRC RESEARCH REPORT. Citeseer,
1994. (Cited on page 8.)

[Carlson 2007] Carlson, Andrew and Ian Fette. Memory-based context-sensitive
spelling correction at web scale. In Proceedings of the Sixth International
Conference on Machine Learning and Applications, pages 166–171, 2007.
(Cited on pages 54 and 55.)

[Chen 2014] Li Chen and Yang Liu. Improving Text Normalization via Unsuper-
vised Model and Discriminative Reranking. In Proceedings of the ACL 2014
Student Research Workshop, pages 86–93. Association for Computational
Linguistics, 2014. (Cited on page 56.)

[Cherry 2015] Colin Cherry, Hongyu Guo and Chengbi Dai. NRC: Infused Phrase
Vectors for Named Entity Recognition in Twitter. In ACL-IJCNLP 2015,
pages 54–60, 2015. (Cited on page 14.)

[Choi 2014] Choi, Kimet al. A Method for Normalizing Non-standard Words in
Online Social Network Services: A Case Study on Twitter. In Context-Aware
Systems and Applications Second International Conference, ICCASA 2013,
pages 359–368, 2014. (Cited on page 56.)

[Chu 2010] Mai Ngoc Chu, Vu Duc Nghieu and Hoang Trong Phien. Basis of
linguistics and vietnamese. Vietnam educational publisher, 2010. (Cited on
page 65.)

[Cleary 1984] Cleary, John G., and Ian H. Witten. Data compression using adaptive
coding and partial string matching. Communications, IEEE Transactions,
vol. 32, no. 4, pages 396–402, 1984. (Cited on pages 8, 28 and 53.)

[Collins 1999] Michael Collins and Yoram Singer. Unsupervised models for named
entity classification. In Proceedings of the joint SIGDAT conference on
empirical methods in natural language processing and very large corpora,
pages 100–110. Citeseer, 1999. (Cited on page 11.)

[Cotelo 2015] Juan M Cotelo, Fermín L Cruz, JA Troyano and F Javier Ortega. A
modular approach for lexical normalization applied to Spanish tweets. Expert
Systems with Applications, vol. 42, no. 10, pages 4743–4754, 2015. (Cited
on page 56.)

[Crammer 2003] Koby Crammer and Yoram Singer. Ultraconservative Online Al-
gorithms for Multiclass Problems. Journal of Machine Learning Research,
vol. 3, pages 951–991, 2003. (Cited on page 12.)

[Cunningham 1999] Hamish Cunningham, Diana Maynard and Valentin Tablan.
JAPE: a Java annotation patterns engine. 1999. (Cited on page 11.)

Bibliography 80

[Curran 2003] James R. Curran and Stephen Clark. Language Independent NER
using a Maximum Entropy Tagger. In Proceedings of the Seventh Conference
on Natural Language Learning, CoNLL 2003, Held in cooperation with HLT-
NAACL 2003, Edmonton, Canada, May 31 - June 1, 2003, pages 164–167,
2003. (Cited on page 12.)

[Dice 1945] Dice and Lee R. Measures of the amount of ecologic association between
species. Ecology, vol. 26, no. 3, pages 297–302, 1945. (Cited on pages 4, 55,
59 and 75.)

[Downey 2007] Doug Downey, Matthew Broadhead and Oren Etzioni. Locating
Complex Named Entities in Web Text. In IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, January 6-12, 2007, pages 2733–2739, 2007. (Cited on page 65.)

[Duan 2012] Duan, Huizhonget al. A discriminative model for query spelling correc-
tion with latent structural SVM. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 1511–1521, 2012. (Cited on pages 54
and 55.)

[Duy 2004] Duy, N.T.N.et al. An approach in Vietnamese spell checking. In: Viet-
namese, 2004. (Cited on page 56.)

[Etzioni 2005] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S Weld and Alexander Yates. Unsu-
pervised named-entity extraction from the web: An experimental study. Ar-
tificial intelligence, vol. 165, no. 1, pages 91–134, 2005. (Cited on page 11.)

[Fano 1949] Robert M. Fano. The transmission of information. Technical report,
Massachusetts Institute of Technology, Research Laboratory of Electronics,
1949. (Cited on page 8.)

[Fersini 2014] Elisabetta Fersini, Enza Messina, G. Felici and D. Roth. Soft-
constrained inference for Named Entity Recognition. Inf. Process. Manage.,
vol. 50, no. 5, pages 807–819, 2014. (Cited on page 12.)

[Florian 2002] Radu Florian. Named Entity Recognition as a House of Cards: Clas-
sifier Stacking. In Proceedings of the 6th Conference on Natural Language
Learning, CoNLL 2002, Held in cooperation with COLING 2002, Taipei,
Taiwan, 2002, 2002. (Cited on page 65.)

[Godin 2015] Frederic Godin, Baptist Vandersmissen, Wesley De Neve and Rik Van
de Walle. Multimedia Lab @ ACL W-NUT NER Shared Task: Named Entity
Recognition for Twitter Microposts using Distributed Word Representations.
In ACL-IJCNLP 2015, pages 146–153, 2015. (Cited on page 14.)

Bibliography 81

[Golding 1999] Golding, Andrew R. and Dan Roth. A winnow-based approach to
context-sensitive spelling correction. Machine learning, vol. 34.1-3, pages
107–130, 1999. (Cited on pages 54 and 55.)

[Grishman 1996] Ralph Grishman and Beth Sundheim. Message Understanding
Conference-6: A Brief History. In COLING, volume 96, pages 466–471,
1996. (Cited on page 10.)

[Habash 2011] Habash, Nizar and Ryan M. Roth. Using deep morphology to im-
prove automatic error detection in Arabic handwriting recognition. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 875–884, 2011.
(Cited on pages 54 and 55.)

[Hai 1999] Hai, N.D.et al. Syntactic parser in Vietnamese sentences and its appli-
cation in spell checking. In: Vietnamese, 1999. (Cited on page 56.)

[Han 2013] Bo Hanet al. Lexical normalization for social media text. ACM Transac-
tions on Intelligent Systems and Technology, vol. 4.1, pages 621–633, 2013.
(Cited on page 56.)

[Hassan 2013] Hany Hassan and Arul Menezes. Social Text Normalization using
Contextual Graph Random Walks. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics, page 1577–1586. As-
sociation for Computational Linguistics, 2013. (Cited on page 56.)

[Hassan 2014] Hassan, Youssefet al. Arabic Spelling Correction using Supervised
Learning. In Proceedings of the EMNLP 2014 Workshop on Arabic Nat-
ural Language Processing, pages 121–126. Association for Computational
Linguistics, 2014. (Cited on pages 54 and 56.)

[Howard 1994] Paul G Howard and Jeffrey Scott Vitter. Arithmetic coding for data
compression. Proceedings of the IEEE, vol. 82, no. 6, pages 857–865, 1994.
(Cited on page 8.)

[Huang 2014] Huang, Qianget al. Chinese Spelling Check System Based on Tri-
gram Model. In Proceedings of The Third CIPS-SIGHAN Joint Conference
on Chinese Language Processing, pages 173–178, 2014. (Cited on pages 54
and 56.)

[Huffman 1952] David A. Huffman. A method for the construction of minimum
redundancy codes. In Proceedings of the IRE, volume 40.9, pages 1098–
1101, 1952. (Cited on page 8.)

[Humphreys 1998] Kevin Humphreys, Robert Gaizauskas, Saliha Azzam, Chris
Huyck, Brian Mitchell, Hamish Cunningham and Yorick Wilks. Univer-
sity of Sheffield: Description of the LaSIE-II system as used for MUC-7. In

Bibliography 82

Proceedings of the Seventh Message Understanding Conferences (MUC-7).
Citeseer, 1998. (Cited on page 11.)

[Huong 2015] Nguyen Thi Xuan Huonget al. Using Large N-gram for Vietnamese
Spell Checking. In Proceedings of Sixth International Conference KSE 2014,
pages 617–627. Springer International Publishing, 2015. (Cited on page 56.)

[Jung 2012] Jason J. Jung. Online named entity recognition method for microtexts
in social networking services: A case study of twitter. Expert Syst. Appl.,
vol. 39, no. 9, pages 8066–8070, 2012. (Cited on pages 13 and 63.)

[Kalajdzic 2015] Kenan Kalajdzic, Samaher Hussein Ali and Ahmed Patel. Rapid
lossless compression of short text messages. Computer Standards & Inter-
faces, vol. 37, pages 53–59, 2015. (Cited on page 9.)

[Konkol 2015] Michal Konkol, Tomas Brychcin and Miloslav Konopík. Latent se-
mantics in Named Entity Recognition. Expert Syst. Appl., vol. 42, no. 7,
pages 3470–3479, 2015. (Cited on page 12.)

[Lansky 2005] Jan Lansky and Michal Zemlicka. Text Compression: Syllables.
In Proceedings of the Dateso 2005 Annual International Workshop on
DAtabases, TExts, Specifications and Objects, Desna, Czech Republic, April
13-15, pages 32–45, 2005. (Cited on page 9.)

[Le-Hong 2010] Phuong Le-Hong, Azim Roussanalyet al. An empirical study of
maximum entropy approach for part-of-speech tagging of Vietnamese texts.
In Traitement Automatique des Langues Naturelles-TALN 2010, 2010.
(Cited on pages 67 and 68.)

[Le 2008] Hong Phuong Le, Nguyên Thi Minh Huyên, Azim Roussanaly and
Hô Tuòng Vinh. A Hybrid Approach to Word Segmentation of Vietnamese
Texts. In Language and Automata Theory and Applications, Second In-
ternational Conference, LATA 2008, Tarragona, Spain, March 13-19, 2008.
Revised Papers, pages 240–249, 2008. (Cited on page 66.)

[Le 2011] Hoang-Quynh Le, Mai-Vu Tran, Nhat-Nam Bui, Nguyen-Cuong Phan
and Quang-Thuy Ha. An Integrated Approach Using Conditional Random
Fields for Named Entity Recognition and Person Property Extraction in
Vietnamese Text. In International Conference on Asian Language Process-
ing, IALP 2011, Penang, Malaysia, 15-17 November, 2011, pages 115–118,
2011. (Cited on pages 12 and 13.)

[Le 2013a] Huong Thanh Le, Rathany Chan Sam, Hoan Cong Nguyen and
Thuy Thanh Nguyen. Named entity recognition in vietnamese text using
label propagation. In 2013 International Conference on Soft Computing and
Pattern Recognition, SoCPaR 2013, Hanoi, Vietnam, December 15-18, 2013,
pages 366–370, 2013. (Cited on page 12.)

Bibliography 83

[Le 2013b] Huong Thanh Le and Luan Van Tran. Automatic feature selection for
named entity recognition using genetic algorithm. In 4th International Sym-
posium on Information and Communication Technology, SoICT ’13, Danang,
Viet Nam - December 05 - 06, 2013, pages 81–87, 2013. (Cited on page 12.)

[Le 2015] Huong Thanh Le, Luan Van Tran, Xuan Hoai Nguyen and Thi Hien
Nguyen. Optimizing Genetic Algorithm in Feature Selection for Named En-
tity Recognition. In Proceedings of the Sixth International Symposium on
Information and Communication Technology, Hue City, Vietnam, December
3-4, 2015, page 5, 2015. (Cited on page 12.)

[Li 2014] Chen Li and Yang Liu. Improving Text Normalization via Unsupervised
Model and Discriminative Reranking. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, ACL 2014, June
22-27, 2014, Baltimore, MD, USA, Student Research Workshop, pages 86–
93, 2014. (Cited on page 13.)

[Li 2015a] Chen Li and Yang Liu. Improving Named Entity Recognition in Tweets
via Detecting Non-Standard Words. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing of the Asian Feder-
ation of Natural Language Processing,ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers, pages 929–938, 2015. (Cited on page 13.)

[Li 2015b] Chenliang Li, Aixin Sun, Jianshu Weng and Qi He. Tweet Segmentation
and Its Application to Named Entity Recognition. IEEE Trans. Knowl. Data
Eng., vol. 27, no. 2, pages 558–570, 2015. (Cited on page 63.)

[Liao 2009] Wenhui Liao and Sriharsha Veeramachaneni. A Simple Semi-supervised
Algorithm for Named Entity Recognition. In Proceedings of the NAACL HLT
Workshop on Semisupervised Learning for Natural Language Processing,
pages 28–36, 2009. (Cited on page 12.)

[Liu 2011] Xiaohua Liu, Shaodian Zhang, Furu Wei and Ming Zhou. Recognizing
Named Entities in Tweets. In The 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, Proceedings
of the Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 359–367,
2011. (Cited on pages 12, 13 and 63.)

[Liu 2012a] Fei Liu, Fuliang Weng and Xiao Jiang. A Broad-Coverage Normaliza-
tion System for Social Media Language. In The 50th Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Confer-
ence, July 8-14, 2012, Jeju Island, Korea - Volume 1: Long Papers, pages
1035–1044, 2012. (Cited on page 56.)

[Liu 2012b] Xiaohua Liu, Ming Zhou, Xiangyang Zhou, Zhongyang Fu and Furu
Wei. Joint Inference of Named Entity Recognition and Normalization for

Bibliography 84

Tweets. In The 50th Annual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, July 8-14, 2012, Jeju Island,
Korea - Volume 1: Long Papers, pages 526–535, 2012. (Cited on page 14.)

[Liu 2013a] Xiaohua Liu, Furu Wei, Shaodian Zhang and Ming Zhou. Named entity
recognition for tweets. ACM TIST, vol. 4, no. 1, page 3, 2013. (Cited on
page 14.)

[Liu 2013b] Xiaohua Liu and Ming Zhou. Two-stage NER for tweets with cluster-
ing. Inf. Process. Manage., vol. 49, no. 1, pages 264–273, 2013. (Cited on
page 14.)

[Mayfield 2003] James Mayfield, Paul McNamee and Christine D. Piatko. Named
Entity Recognition using Hundreds of Thousands of Features. In Proceedings
of the Seventh Conference on Natural Language Learning, CoNLL 2003,
Held in cooperation with HLT-NAACL 2003, Edmonton, Canada, May 31 -
June 1, 2003, pages 184–187, 2003. (Cited on page 12.)

[McCallum 2003] Andrew McCallum and Wei Li. Early results for named en-
tity recognition with conditional random fields, feature induction and web-
enhanced lexicons. In Proceedings of the seventh conference on Natural lan-
guage learning at HLT-NAACL 2003-Volume 4, pages 188–191. Association
for Computational Linguistics, 2003. (Cited on pages 11 and 12.)

[Mikheev 1998] Andrei Mikheev, Claire Grover and Marc Moens. Description of the
LTG system used for MUC-7. In Proceedings of 7th Message Understanding
Conference (MUC-7), pages 1–12. Fairfax, VA, 1998. (Cited on page 11.)

[Mikheev 1999] Andrei Mikheev, Marc Moens and Claire Grover. Named entity
recognition without gazetteers. In Proceedings of the ninth conference on
European chapter of the Association for Computational Linguistics, pages
1–8. Association for Computational Linguistics, 1999. (Cited on page 11.)

[Nguyen 2007a] Truc-Vien T Nguyen and Tru H Cao. Vn-kim ie: Automatic extrac-
tion of vietnamese named-entities on the web. New Generation Computing,
vol. 25, no. 3, pages 277–292, 2007. (Cited on page 11.)

[Nguyen 2007b] Truc-Vien T. Nguyen and Tru H. Cao. VN-KIM IE: Automatic Ex-
traction of Vietnamese Named-Entities on the Web. New Generation Com-
put., vol. 25, no. 3, pages 277–292, 2007. (Cited on pages 12 and 13.)

[Nguyen 2010] Dat Ba Nguyen, Son Huu Hoang, Son Bao Pham and Thai Phuong
Nguyen. Named Entity Recognition for Vietnamese. In Intelligent Infor-
mation and Database Systems, Second International Conference, ACIIDS,
Hue City, Vietnam, March 24-26, 2010. Proceedings, Part II, pages 205–214,
2010. (Cited on pages 12 and 13.)

Bibliography 85

[Nguyen 2012a] Dat Ba Nguyen and Son Bao Pham. Ripple Down Rules for Viet-
namese Named Entity Recognition. In Computational Collective Intelligence.
Technologies and Applications - 4th International Conference, ICCCI 2012,
Ho Chi Minh City, Vietnam, November 28-30, 2012, Proceedings, Part I,
pages 354–363, 2012. (Cited on page 12.)

[Nguyen 2012b] Truc-Vien T. Nguyen and Tru H. Cao. Linguistically Motivated
and Ontological Features for Vietnamese Named Entity Recognition. In
2012 IEEE RIVF International Conference on Computing & Communica-
tion Technologies, Research, Innovation, and Vision for the Future (RIVF),
Ho Chi Minh City, Vietnam, February 27 - March 1, 2012, pages 1–6, 2012.
(Cited on page 12.)

[Nguyen 2012c] Truc-Vien T. Nguyen and Alessandro Moschitti. Structural rerank-
ing models for named entity recognition. Intelligenza Artificiale, vol. 6, no. 2,
pages 177–190, 2012. (Cited on page 14.)

[Nguyen 2015a] Vu H Nguyen, Hien T Nguyen and Vaclav Snasel. Named Entity
Recognition in Vietnamese Tweets. In The 5th International Conference on
Computational Social Networks, ISBN 978-3-319-21785-7, pages 205–215,
China, August 2015. Springer. (Cited on page 2.)

[Nguyen 2015b] Vu H Nguyen, Hien T Nguyen and Vaclav Snasel. Normalization
of vietnamese tweets on twitter. In Proceedings of the Second Euro-China
Conference on Intelligent Data Analysis and Applications, ISBN 978-3-319-
21205-0, pages 179–189, Czech Republic, June 2015. Springer. (Cited on
page 2.)

[Nguyen 2016a] Vu H Nguyen, Hien T Nguyen, Hieu N Duong and Vaclav Snasel.
A syllable-based method for Vietnamese text compression. In Proceedings
of ACM International Conference on Ubiquitous Information Management
and Communication, ISBN 978-1-4503-4142-4, 6 pages, Vietnam, January
2016. ACM. (Cited on page 3.)

[Nguyen 2016b] Vu H Nguyen, Hien T Nguyen, Hieu N Duong and Vaclav Snasel.
Trigram-Based Vietnamese Text Compression. In 8th Asian Conference
on Intelligent Information and Database Systems, ISBN 978-3-319-31276-
7, pages 297–307, Vietnam, March 2016. Springer. (Cited on page 3.)

[Pennell 2014] Deana L Pennell and Yang Liu. Normalization of informal text.
Computer Speech & Language, vol. 28, no. 1, pages 256–277, 2014. (Cited
on pages 54 and 55.)

[Pham 2015] Quang H. Pham, Minh-Le Nguyen, Binh T. Nguyen and Nguyen Viet
Cuong. Semi-supervised Learning for Vietnamese Named Entity Recognition
using Online Conditional Random Fields. In Proceedings of NEWS 2015 The
Fifth Named Entities Workshop, pages 53–58, 2015. (Cited on page 12.)

Bibliography 86

[Phe 2011] Hoang Phe. syllable dictionary. Dictionary center, Hanoi encyclopedia
Publishers, fifth édition, 2011. (Cited on page 5.)

[Platos 2008a] Jan Platos and Jiri Dvorský. Word-Based Text Compression. CoRR,
vol. abs/0804.3680, 2008. (Cited on page 9.)

[Platoš 2008b] Jan Platoš, Václav Snášel and Eyas El-Qawasmeh. Compression
of small text files. Advanced engineering informatics, vol. 22, no. 3, pages
410–417, 2008. (Cited on page 9.)

[Quang 2012] N.H.T. Quang. Language model and word segmentation in Viet-
namese Spell checking. In: Vietnamese, 2012. (Cited on page 56.)

[Ramage 2009] Daniel Ramage, David Leo Wright Hall, Ramesh Nallapati and
Christopher D. Manning. Labeled LDA: A supervised topic model for credit
attribution in multi-labeled corpora. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing, pages 248–256, 2009.
(Cited on page 13.)

[Riloff 1999] Ellen Riloff, Rosie Joneset al. Learning dictionaries for information
extraction by multi-level bootstrapping. In AAAI/IAAI, pages 474–479, 1999.
(Cited on page 11.)

[Ritter 2011] Alan Ritter, Sam Clark, Mausam and Oren Etzioni. Named Entity
Recognition in Tweets: An Experimental Study. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing, EMNLP
2011, 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1524–1534,
2011. (Cited on pages 13 and 63.)

[Robinson 1967] AH Robinson and Colin Cherry. Results of a prototype television
bandwidth compression scheme. Proceedings of the IEEE, vol. 55, no. 3,
pages 356–364, 1967. (Cited on page 8.)

[Salomon 2010] David Salomon and Giovanni Motta. Data compression - the com-
plete reference. Springer, 5 édition, 2010. (Cited on page 7.)

[Saloot 2014] Saloot, Mohammad Arshiet al. An architecture for Malay Tweet nor-
malization. Information Processing & Management, vol. 50.5, pages 621–633,
2014. (Cited on page 56.)

[Sam 2011] Rathany Chan Sam, Huong Thanh Le, Thuy Thanh Nguyen and
Thien Huu Nguyen. Combining Proper Name-Coreference with Condi-
tional Random Fields for Semi-supervised Named Entity Recognition in Viet-
namese Text. In Advances in Knowledge Discovery and Data Mining - 15th
Pacific-Asia Conference, PAKDD 2011, Shenzhen, China, May 24-27, 2011,
Proceedings, Part I, pages 512–524, 2011. (Cited on pages 12 and 13.)

Bibliography 87

[Shaalan 2012] Shaalan, Khaled F.et al. Arabic Word Generation and Modelling for
Spell Checking. In Proceedings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12). European Language Resources
Associations, 2012. (Cited on pages 54 and 56.)

[Shannon 1948] Claude E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, vol. 27, no. 3, pages 379 – 423, 1948. (Cited
on page 8.)

[Sonmez 2014] Cagil Sonmez and Arzucan Ozgur. A Graph-based Approach for
Contextual Text Normalization. In EMNLP, pages 313–324. Association for
Computational Linguistics, 2014. (Cited on pages 54 and 55.)

[Sproat 2001] Richard Sproat, Alan W Black, Stanley Chen, Shankar Kumar, Mari
Ostendorf and Christopher Richards. Normalization of non-standard words.
Computer Speech & Language, vol. 15, no. 3, pages 287–333, 2001. (Cited
on pages 54, 55 and 56.)

[Storer 1982] Storer, James A. and Thomas G. Szymanski. Data compression via
textual substitution. Journal of the ACM, vol. 29, no. 4, pages 928–951, 1982.
(Cited on pages 28 and 53.)

[Thao 2007] Pham Thi Xuan Thao, Tran Quoc Tri, Dinh Dien and Nigel Collier.
Named entity recognition in Vietnamese using classifier voting. ACM Trans.
Asian Lang. Inf. Process., vol. 6, no. 4, 2007. (Cited on pages 5, 12 and 13.)

[Tjong Kim Sang 2002] Erik F Tjong Kim Sang. Introduction to the CoNLL-2002
Shared Task: Language-Independent Named Entity Recognition. In Proceed-
ings of the 6th Conference on Natural Language Learning, CoNLL 2002,
Held in cooperation with COLING 2002, Taipei, Taiwan, 2002, 2002. (Cited
on pages 10 and 11.)

[Tjong Kim Sang 2003] Erik F Tjong Kim Sang and Fien De Meulder. Introduc-
tion to the CoNLL-2003 shared task: Language-independent named entity
recognition. In Proceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, pages 142–147. Association for
Computational Linguistics, 2003. (Cited on pages 10 and 11.)

[Tran 2007] Q Tri Tran, TX Thao Pham, Q Hung Ngo, Dien Dinh and Nigel Collier.
Named entity recognition in Vietnamese documents. Progress in Informatics
Journal, vol. 5, pages 14–17, 2007. (Cited on pages 5, 12, 13, 14 and 73.)

[Tran 2015] Van Cuong Tran, Dosam Hwang and Jason J. Jung. Semi-supervised
approach based on co-occurrence coefficient for named entity recognition on
Twitte. In Information and Computer Science (NICS), 2015 2nd National
Foundation for Science and Technology Development Conference on. IEEE,
pages 141–146, 2015. (Cited on page 13.)

Bibliography 88

[Trung 2014] Hieu Le Trung, Vu Le Anh and Kien Le Trung. Bootstrapping and
Rule-Based Model for Recognizing Vietnamese Named Entity. In Intelligent
Information and Database Systems - 6th Asian Conference, ACIIDS 2014,
Bangkok, Thailand, April 7-9, 2014, Proceedings, Part II, pages 167–176,
2014. (Cited on page 12.)

[Tu 2005] Tu, Nguyen Camet al. Named entity recognition in vietnamese free-text
and web documents using conditional random fields. In The 8th Conference
on Some selection problems of Information Technology and Telecommunica-
tion, 2005. (Cited on pages 12 and 13.)

[Welch 1984] Terry A. Welch. A Technique for High-Performance Data Compres-
sion. IEEE Computer, vol. 17, no. 6, pages 8–19, 1984. (Cited on page 8.)

[Witten 1987] Ian H Witten, Radford M Neal and John G Cleary. Arithmetic coding
for data compression. Communications of the ACM, vol. 30, no. 6, pages
520–540, 1987. (Cited on page 8.)

[Wu 2010] Wu, Shih-Hunget al. Reducing the false alarm rate of Chinese charac-
ter error detection and correction. In Proceedings of CIPS-SIGHAN Joint
Conference on Chinese Language Processing (CLP 2010), pages 54–61, 2010.
(Cited on pages 54 and 56.)

[Yamada 2015] Ikuya Yamada, Hideaki Takeda and Yoshiyasu Takefuji. Enhancing
Named Entity Recognition in Twitter Messages Using Entity Linking. In
ACL-IJCNLP 2015, pages 136–140, 2015. (Cited on page 14.)

[Yang 2013] Yi Yang and Jacob Eisenstein. A Log-Linear Model for Unsupervised
Text Normalization. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing - EMNLP, pages 61–72. Associa-
tion for Computational Linguistics, 2013. (Cited on pages 54 and 55.)

[Yeh 2013] Yeh, Jui-Fenget al. Chinese Word Spelling Correction Based on N-
gram Ranked Inverted Index List. In Proceedings of the Seventh SIGHAN
Workshop on Chinese Language Processing (SIGHAN-7), pages 43–48, 2013.
(Cited on pages 54 and 56.)

[Zhou 2002] Guodong Zhou and Jian Su. Named Entity Recognition using an HMM-
based Chunk Tagger. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA., pages 473–480, 2002. (Cited on page 12.)

[Zirikly 2015] Ayah Zirikly and Mona Diab. Named Entity Recognition for Arabic
Social Media. In Proceedings of NAACL-HLT 2015, pages 176–185, 2015.
(Cited on page 14.)

Bibliography 89

[Ziv 1977] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory, vol. 23, no. 3,
pages 337–343, 1977. (Cited on page 8.)

[Ziv 1978] Jacob Ziv and Abraham Lempel. Compression of individual sequences
via variable-rate coding. IEEE Transactions on Information Theory, vol. 24,
no. 5, pages 530–536, 1978. (Cited on pages 8, 28 and 53.)

	Introduction
	Motivation
	Thesis objective and scope
	Thesis organization

	Background and related work
	Vietnamese language processing resources
	Structure of Vietnamese word
	Typing methods
	Standard morphosyllables dictionary

	Text compression
	Introduction to text compression
	Text compression techniques
	Related work

	Named entity recognition
	Introduction
	NER techniques
	Related work

	Vietnamese text compression
	Introduction
	A syllable-based method for Vietnamese text compression
	Dictionary
	Morphosyllable rules
	SBV text compression
	SBV text decompression
	Compression ratio
	Example
	Experiments

	Trigram-based Vietnamese text compression
	Dictionary
	TGV text compression
	TGV text decompression
	Example
	Experiments

	N-gram based text compression
	Dictionaries
	N-gram based text compression
	N-gram based text decompression
	Example
	Experiments

	Summary

	Normalization of Vietnamese informal text
	Introduction
	Related Work
	Normalization of Vietnamese informal text
	Preprocessing
	Spelling errors detection
	Error correction

	Experiments and results
	Summary

	Named entity recognition in Vietnamese informal text
	Context
	Proposed method
	Normalization
	Capitalization classifier
	Word segmentation and part of speech (POS) tagging
	Extraction of features

	NER training set
	Experiments
	Summary

	Conclusions
	Thesis contributions
	Perspectives
	Publications

	Bibliography

