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Abstract. The paper deals with the design of H-∞ ro-
bust controller, particularly with mixed sensitivity prob-
lem for elevation control. It briefly introduces basic
mathematical background concerning robust control ap-
proach, which is then applied for typical example of
MIMO system, that is a helicopter model. The obtained
results are verified on real educational physical model
CE 150 by Humusoft, ltd.
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1. Introduction

The objective of the robust control is to design a
dynamic control system operating in a real environ-
ment. The changes to the surrounding conditions can
be caused by the following factors according to [15]:

• component aging,

• temperature effect,

• effect of the working environment.

The control system must not only be resistant to
the aforementioned factors but it also must eliminate
inaccuracy of the model, i.e. robustness is the relevant
ability of the control system to accept changes. The
required output value will be reached even when the
changes in the properties of the controlled system are
limited and constant disturbance signals are operating.
From the mathematical point of view, the robust con-
troller is not only suitable for one particular system
but for a set of systems [15].

In other words, robustness plays a significant role
in the design of control systems as real systems are
prone to external disturbances and measurement noise.
Moreover, there are often differences between the pro-
posed mathematical models and actual real systems.
A typical example is the design of a controller that
will stabilize the system even if it is originally unsta-
ble and accept a particular level of performance at the
presence of disturbance signals, noises, hard-to-model
process dynamic characteristics or process parameter
variables. Such tasks are best solved by a feedback
control mechanism as they bring along a whole range
of problems according to [4]:

• high price (e.g. use of sensors),

• system complexity (e.g. possibilities of implemen-
tation and reliability),

• system stability (e.g. requirement for internal sta-
bility and stabilizing controllers).

The need and significance of robustness as a part
of control system designs have been developing since
1980s. Robustness in the standard SISO control is
provided by a suitable gain margin and phase mar-
gin. When the first design techniques for multi-variable
systems developed in 1960s, emphasis was laid on the
achievement of good performance, not robustness. The
methods that use multivariables were based on the
linear–quadratic criterion and Gaussian disturbances.
It was demonstrated that they can be successfully used
in a whole range of aviation applications where it is
possible to set up precise mathematical models, in-
cluding the descriptions of external disturbance signals
or noises. However, the application of these meth-
ods, called LQG methods (linear-quadratic Gaussian
control), in other industrial branches evidently showed
their bad properties from the point of robustness which
led to the effort to develop a theory that would explic-
itly deal with the issue of robustness in the control
feedback design. The pioneering work on the devel-
opment of the theory, today known as the theory of
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optimal control in H-∞, was introduced at the begin-
ning of 1980s by Georg Zames and Bruce A. Francis.
The H-∞ approach first specified the model of system
uncertainty, i.e. additive perturbation and/or output
disturbances. In most cases, it is enough to find a suit-
able controller so that the closed loop achieves some
robust stability. The performance is also a part of the
optimization loss (objective) function. The elegant for-
mulations of the solution are based on the solutions of
Riccati equations, e.g. in MATLAB [4].

If we design a controller for a particular interval of
parameters, then the control circuit is robustly stable.
Another important parameter of robust controllers is
their performance, meeting the requirements for pa-
rameters according to [15]:

• control,

• disturbance,

• speed of response (settling time).

The problem of the design of the robust controller
is based on the feedback circuit (closed loop) which
enables working with the sensitivity and elimination of
the disturbance. On one side, the feedback of a non-
stable system stabilizes it; on the other side, it may
destabilize a stable system [15]. Consider the standard
control diagram according to Fig. 1.

Fig. 1: Classical control scheme with the definition of circuit
signals.

Description of the signals in the control circuit:

• W (s): Laplace transform of the the reference sig-
nal,

• E (s): Laplace transform of the control error sig-
nal,

• U (s): Laplace transform of the manipulated value
signal,

• V1 (s): Laplace transform of the disturbance: low-
frequency known and unknown disturbances; the
system must eliminate them,

• V2 (s): Laplace transform of the disturbance: sen-
sors or measurement, high-frequency character
with insignificant effect.

We use the rules of block algebra to define the mathe-
matical relations within the control circuit, i.e. accord-
ing to [15], [9]:

• for the open-loop transfer function:

L (s) = K (s)G (s) , (1)

• for the transfer function of the control error - the
sensitivity function:

GE (s) =
E (s)

W (s)
=

1

1 + L (s)
= S (s) , (2)

• for the closed-loop transfer function - the comple-
mentary sensitivity function:

GW (s) =
Y (s)

W (s)
=

L (s)

1 + L (s)
= T (s) , (3)

• limiting condition applies to the sum of the sen-
sitivity function and complementary sensitivity
function:

S (s) + T (s) =
1

1 + L (s)
+

L (s)

1 + L (s)
= 1. (4)

Consider the requirements for the sensitivity func-
tion and complementary function according to [15]:

• at v1 (t) = v2 (t) = 0, the effect of the control ac-
tion predominates and so the sensitivity function
ĜE (s) = S (s) must be small and the complemen-
tary function GW (s) = T (s) will be large,

• the entire control circuit carries out the elimina-
tion of the low-frequency noise v1 (t), and so again,
the effect of the control action predominates: the
sensitivity function GE (s) = S (s) must be small
and the complementary function GW (s) = T (s)
will be large,

• the entire control circuit must not affect the elimi-
nation of the high-frequency noise v2 (t) and so we
eliminate the effects of the control action and con-
trol error, i.e. the sensitivity function GE (s) =
S (s) must be small and the complementary sensi-
tivity function GW (s) = T (s) will also be small.

As the aforementioned opposing requirements can-
not be met by one controller, it is necessary to find a
compromise between the sizes of the sensitivity func-
tion and the complementary sensitivity function [15],
see Fig. 2.
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Fig. 2: Logarithmic amplitude frequency characteristics for the
sensitivity function (on the left) and complementary
sensitivity function (on the right).

2. Robust Controller Design

2.1. Robust Design Methods

The methods of the state space in the time domain
allowed to avoid the problems with transfer function
matrices and also provided means of the analysis and
design of MIMO systems with more inputs and out-
puts. Approximately at the same time when the meth-
ods of optimal control were being developed, research
focused on the extensions of means of MIMO system
standard control was conducted. The robust design is
based on the finding of such a controller so that the
resulting system in the closed loop is also robust. Ro-
bustness became the main standpoint in the field of
control, therefore specifications and methods followed
shortly, i.e. according to [15], [5]:

• H∞ method,

• H2 method,

• LTR method (loop transfer recovery),

• µ: synthesis,

• QFT method (quantitative feedback theory),

• Kharitonov theorem for the examination of robust
stability,

• specification of the small-gain theorem,

• specification of structured singular values.

The following presentation will only focus on theH∞
method.

2.2. H∞ Method

A control system is robust if it stays stable and meets
particular behavioral criteria at the presence of possi-
ble uncertainties. The H∞ optimization method, de-
veloped since 1980s, has proved to be a very efficient
and potent design method for robust control in the field
of linear, time-invariant control systems [15], [11], [3].

H∞ controllers have their own terminology, notation
and conception. This method leads to a set of suit-
able stable transfer functions that are physically viable.
Similarly to LQR and LQG controllers, we expect op-
timization of the objective function that will compare
different transfer functions and select the most suitable
one from the set. The requirements for the closed loop
are the following, i.e. according to [15]:

• Physical viability: The order of the transfer func-
tion denominator must be higher or equal to the
order of the transfer numerator.

• Stability: The transfer poles must lie in the left
half plane of the Gaussian plane or in the area of
the Laplace transform convergence (provided that
the control straight line and imaginary axis are
identical).

The basic prerequisite of the H∞ method is the
knowledge of the transfer function of the given system,
evaluating ∞-norm according Fig. 5 according to [15],
[1]:

‖G‖∞ = supω {|G (jω)|} . (5)

The norm can be graphically represented as the max-
imum of the Bode diagram provided that the transfer
function is definite and has no imaginary poles, while
its objective is to minimize it in the ∞-norm. It de-
creases the apex of the Bode diagram, which increases
the robust stability margin [15].

2.3. Mixed Sensitivity Problem

Usually, practical industrial applications do not only
use one objective function but a combination of several
functions like that, e.g. accomplishment of the good
performance of tracking the reference signal at limited
energy of the reference signal. Then we solve the mixed
sensitivity task, or the ’S over KS’ problem defined by
a general relation (for the SISO system) according to
[8], [12]:

minKst

∥∥∥∥ S (s)
K (s)S (s)

∥∥∥∥
∞

=

= minKst

∥∥∥∥ [1 + L (s)]
−1

K (s) [1 + L (s)]
−1

∥∥∥∥
∞
. (6)

The Eq. 6 can also be expressed by the requirements
of the design concerning the additive perturbation, e.g.
nominal behavior, good performance of tracking the
reference signal or the elimination of disturbance sig-
nals and robust stability [4].

Figure 3 shows the standard block diagram of the
H∞ configuration using the linear fractal transforma-
tion (LFT) with specification of the individual external
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Fig. 3: Standard block diagram at the H∞ configuration.

inputs, external outputs, inputs into the controller and
its outputs, see [1] (p. 438). The control circuit con-
tains a robust controller with transfer function K (s)
and a perturbed (also extended or generalized) system
with transfer function P (s) that has two inputs and
two outputs according to [15]:

• ~w (t) input reference signal vector; external input
signals,

• ~v (t) output manipulated signal vector; output
control signals from the controller.

The main difference between the vectors is that the
controller does not affect the inputs. The input refer-
ence signal vector ~w (t) includes an external noise, noise
from the sensors and tracking (reference) signals. To
the contrary, the outputs from the system are divided
into two groups according to [15]:

• ~y (t) output signal vector; measured outputs,

• ~z (t) controlled outputs; minimized or penalized
outputs.

The task is then defined so that the internally sta-
bilizing controller K (s) is searched for in the control
circuit of the robust control for the given generalized
system P (s) that minimizes or penalizes the controlled
output vector ~z (t). In other words, we minimize the
maximal norm of the transfer function between ~w (t)
and ~z (t) by the given relation according to [4]:

~z =
{
P11 (s) + P12 (s)K (s) I−1PKP21 (s)

}
~w, (7)

where:
IPK = I − P22 (s)K (s) , (8)

we get a linear fractal transformation after the adjust-
ment:

~z = F l [P (s) ,K (s)] ~w. (9)

Then, the H∞ optimization problem can be ex-
pressed by a relation, i.e. according to [4]:

min
Kst

‖Fl [P (s) ,K (s)]‖∞ . (10)

Fig. 4: Standard block diagram of the mixed sensitivity prob-
lem: controller and perturbed system containing nomi-
nal system, control error and manipulated value weight-
ing filters.

Figure 4 shows the standard block diagram of the
mixed sensitivity problem and it is basically a more
detailed illustration of Fig. 3, where it is easy to deduce
the following relations, i.e.:

• for external input signals:

~w (t) = r (t) , (11)

• for output control signals from the controller:

~u (t) = u (t) , (12)

• for measured outputs:

~y (t) = e (t) , (13)

• for minimized or penalized outputs:

~z = [z1 (t) , z2 (t)]
T

=

= [W1 (s) e (t) , W2 (s)u (t)]
T
. (14)

The following applies to the generalized system con-
taining weighting filters according to [4]:

P (s) =

[
P11 (s) P12 (s)
P21 (s) P22 (s)

]
, (15)

while:

P11 (s) = W1 (s) [I, 0]
T

= [W1 (s) , 0]
T
, (16)

P12 (s) = [−W1 (s)G (s) ,W2 (s) I]
T
, (17)

P21 (s) = [I]
T

= I, (18)

P22 (s) = [−G (s)]
T

= −G (s) . (19)

The weighting filters W1 (s) and W2 (s) are com-
monly used in practice; in such case, the Eg. 6 can
be formally adjusted into the form describing a objec-
tive function, i.e. (for the SISO system) according to
[4]:

min
Kst

∥∥∥∥ W1 (s)S (s)
W2 (s)K (s)S (s)

∥∥∥∥
∞
. (20)
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3. Controller Design for
Helicopter Elevation

On the basis of the aforementioned theoretical findings
from the field of the H∞ robust control, we can design
a robust controller according to the selected conception
when we deal with the question of the autonomy of the
control and the problem of mixed sensitivity and also
consider the input signals. Derived mathematical mod-
els in elevation and azimuth are crucial for the design
of controllers, when we design the controller for both
the mathematical model and real model. However, this
paper only focuses on elevation, due to the extent of
the task. Finally, both responses are compared to one
another.

The mathematical description of helicopter model is
taken from official manual, see [6]. The design of eleva-
tion controller particularly comes out from Figs. 2.1,
2.2 stated on pages 8, 15 of this manual.

3.1. Autonomy Requirement

The main problem of this MIMO system namely in-
cludes the elimination of the elevation-azimuth cou-
pling. All in all, we naturally want to eliminate both
relations but we know that the azimuth-elevation rela-
tion is not as significant. The conception is thus based
on the assumption of designing two independent con-
trollers, i.e. an elevation controller and an azimuth
controller.

The definition of autonomy says that the reference
signal ~w (t) must only affect just one corresponding
output signal ~y (t), [7].

Autonomy also requires that the transfer matrix of
the open loop is diagonal, the elements of the matrix
are only located on the main diagonal. A priori, diago-
nality is required in the control matrix. With respect to
the explicitly written sign, the transfer function of the
correction term is given by the general relation based
on the theory of matrix determinants (Laplace comple-
ment) according to [2]:

Ri,j (s) = (−1)
j+1

Rj,j (s)

∣∣G∗j,i (s)
∣∣∣∣G∗j,j (s)
∣∣ , (21)

where i is matrix line index, j is matrix column in-
dex, (−1)

j+1 is Laplace (algebraic) complement,
∣∣G∗j,i∣∣

is matrix determinant G∗j,i (s) and
∣∣G∗j,j∣∣ is matrix de-

terminant G∗j,j (s).

The relation Eq. (21) rather has a theoretical char-
acter. Directly derived conditions of autonomy pay
off at a small amount of regulated signals (in our case
there are two signals) rather than having to exactly
remember its content and avoid making a mistake in

the algebraic complement. The situation is depicted in
Fig. 5, directly modified for the helicopter model.
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Fig. 5: Block diagram for the elimination of the elevation-
azimuth coupling; the azimuth-elevation coupling is ne-
glected.

If the manipulated value expressed by voltage UM
induces an undesirable response in the output of the az-
imuth mechanical part described by the Laplace trans-
form G21 (s)UM (s), then it can be completely com-
pensated by the correction term R21 (s) under the con-
dition according to [2]:

G21 (s)UM (s) +G22 (s)R21 (s )UM (s) = 0

⇒ R21 (s) = −G21(s)
G22(s)

. (22)

The transfer function of the second correction term
can be either written directly with the use of the prin-
ciple of cyclical substitution of indexes or a conditional
equation can be set up again Eq. (23), i.e. according
to [2]:

G12 (s)UT (s) +G11 (s)R12 (s)UT (s) = 0

⇒ R12 (s) = −G12(s)

Ĝ11(s)

. (23)

The relation Eq. (23) describes the azimuth-
elevation coupling that, however, is not significant, and
thus can be written according to [2]:

R12 (s) = G12 (s) = 0. (24)

The diagram in Fig. 5 can also be interpreted in the
following way: the internal physical coupling between
the elevation and azimuth in the form of transfer func-
tion G21 (s) cannot be eliminated without the basic
(constructive) interference into the system. However,
we can quite easily implement an external connection
between the inputs of the helicopter set by the cor-
rection term R21 (s) that will ensure the same as the
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unfeasible elimination of the cross-coupling inside the
MIMO system transfer matrix, decomposition of the
model into two models that seemingly do not influence
one another. Their control can then be ensured by two
control loops independent of one another [2].

If we substitute in the relation Eq. (23), we will re-
ceive transfer function of the correction term, Eq. (25):

R21 (s) = −Tr2s
2 + Tr1s+ 1

B (s)

arUMs+ br
a2UT s+ b2

A (s) , (25)

where A (s) =
(
T2s

2 + 1
)2, B (s) =

(
T1s

2 + 1
)2. The

relation (Eq. 25) clearly shows that the transfer func-
tion in this form does not meet the condition of phys-
ical viability as the numerator order is higher than
the denominator order. Thus we define two inertias
with conditions ξ1 � Tr1 and ξ2 � Tr2 . The phys-
ically feasible correction transfer function eliminating
the elevation-azimuth coupling is given by the relation
Eq. (26):

R21 (s) = −Tr2s
2 + Tr1s+ 1

ξ2s2 + ξ1s+ 1

ar0.55s+ br
a20.2s+ b2

A (s)

B (s)
. (26)

3.2. Controller Conception

The conception of the helicopter model robust con-
trol design was partially explained in the requirements
for the autonomy of the elevation and azimuth con-
trol. The second part concerns the H∞ robust control,
namely the modification of the mixed sensitivity prob-
lem (MSP) where we also penalize the group of external
output signals in addition to the control error ~e (t) and
manipulated value ~u (t):

• ~d1 (t) = r (t) = ~w (t) reference or external control
signal,

• ~d2 (t) low-frequency signal (disturbance),

• ~d3 (t) high-frequency disturbance signal (noise).

We use weighting transfer functions or also called
weighting filters to penalize signals incoming and out-
going from the extended system in the elevation or az-
imuth. The whole block diagram of the control circuit
with extended system is shown in Fig. 6.

There are many different ways for the extension of
the nominal system. However, the more external in-
puts and penalized (error) outputs there are, the more
difficult it is to select the weighting filters. The weight-
ing filters are generally stable transfer functions (not
necessarily proper rational functions) of a particular
order. Thus, the more we add, the higher the order
the resulting system will have. Such an interconnected
system can be then used to express the state descrip-
tion, or the transfer function of the H∞ optimal, or
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e

W (s)
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2

d t( )
3
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+ +
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+

+
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d ( )t
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d ( )t
2

d ( )t
3

e( )t

u( )t

Fig. 6: Block diagram of the connection of the H∞ robust con-
troller, nominal system and weighting filters for the he-
licopter model.

suboptimal robust controller K (s) with one degree of
freedom (1DOF configuration).

The meaning of the individual blocks is as follows
according to [10]:

• Wcmd (s): this weighting transfer function takes
care of the reference tracking. A normalized signal
appears at the input and the signal at the output
is in relevant physical units,

• Wd (s): this weighting transfer function adjusts
the frequency and amplitude characteristics of ex-
ternal low-frequency disturbance signals affecting
the nominal system,

• Wnoise (s): this weighting transfer function rep-
resents the models of noises of sensors in the fre-
quency domain. It tries to detect a particular piece
of information in the control derived from labo-
ratory experiments or production measurements.
Naturally, the noise shows a high-frequency char-
acter,

• We (s): this weighting transfer function penalizes
the control signal from the robust controller and
thus the control error. It determines the inverted
value of the expected form of the output signal.
The signal that appears at the input of the filter
is in relevant physical units and it is normalized
at the output,

• Wu (s): this weighting transfer function penalizes
the control signal from the robust controller and
thus the manipulated value signal. It determines
the inverted value of the expected form of the out-
put signal. The signal that appears at the input
of the filter is in relevant physical units and it is
normalized at the output,
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The complete calculation of both the transfer func-
tion of the H∞ robust controller and the key H∞ norm
is executed in MATLAB. The calculation algorithm
is based on the correct interconnection of the nomi-
nal system with the weighting filters in correspondence
with Fig. 6. The program solution in the M-file appears
as follows, i.e.:

systemnames = ’G Wcmd Wd Wnoise We Wu’;
inputvar = ’[d1; d2; d3; u]’;
outputvar = ’[We; Wu; Wcmd-G-Wnoise]’;
input_to_Wcmd = ’[d1]’;
input_to_Wd = ’[d2]’;
input_to_Wnoise = ’[d3]’;
input_to_G = ’[u]’;
input_to_We = ’[Wcmd-G-Wnoise]’;
input_to_Wu = ’[u]’;
cleanupsysic = ’yes’;
P = sysic
NControl = 1;
NMeasure = 1;
r = [NControl NMeasure];
[K,CL,gopt] = hinfsyn(P,NMeasure,NControl);

First of all, we define what systems we will in-
terconnect, the variable systemnames. Then we de-
fine the input signal vector (external control signals
and control signal from the controller), the variable
inputvar. The output is represented by the vari-
able outputvar containing the penalization of the con-
trol error (We), manipulated value (Wu) and the mea-
sured output (Wcmd-G-Wnoise). Subsequently, we con-
nect all the inputs to the weighting filters. By the
cleanupsysic command with the attribute value set
to yes we confirm that we want to remove the vari-
ables systemnames, inputvar and outputvar from the
MATLAB work environment (Workspace) immediately
after the creation of the system interconnection.

The variable P represents the extended system or sys-
tem interconnection (sysic, System Interconnection).
To complete the enumeration of parameters for the cal-
culation, we have to define the number of control out-
puts from the control (NControl) and the number of
measured outputs (NMeasure). We will obtain the cal-
culation of the H∞ controller (K), closed loop transfer
(CL) and maximum closed loop transfer norm (gopt)
by activating the hinfsyn function with the following
parameters: P, NMeasure and NControl.

The activation of the hinfsyn function can also be
extended by more input and output parameters; in this
actual case according to [10]:

• two algebraic Riccati equations are solved,

• γ ∈ (0,+∞),

• the closed-loop transfer functions is calculated
with the use of the linear fractal transformation
CL = F {P (s) ,K (s)},

• γ0 = ‖CL‖∞ = ‖F {P (s) ,K (s)}‖∞.

MATLAB, namely the Robust Control Toolbox, con-
tains other functions that can be used to solve the issue
of the design of a continuous or discreteH∞ robust con-
troller. For completeness, we only give the prototype of
the function focused on the standard mixed sensitivity
problem:

[K, CL, gopt, INFO] = mixsyn(G, W1, W2, W3)

The problem of the mixsyn function is the number
of the weighting filters and their character as they only
penalize the control error (W1), manipulated value (W2)
and measured output (W3). With regard to the selected
design conception, it would not be possible to penalize
inputs with this function.

3.3. Elevation Controller for
Mathematical Model

The transfer function of the dynamics of the mathe-
matical model in elevation is given by the relation ac-
cording to the relation Eq. (27):

Gψ (s) =
Ψ (s)

UM (s)
=

=
7.3315s+ 1.1883

3s4+23s3+116s2+519s+ 1000
. (27)

The amplitude and phase frequency characteristics
are shown in Fig. 7 which also clearly show that it con-
tains the highest value under the following conditions:

• frequency: ωMAX = 4.9448
[
rad · s−1

]
,

• transfer function module:

|Gψ (jω)|MAX =

= −16.05 [dB] ∼= 0.1576 [−] . (28)

The system is of the fourth order and contains four
stable poles, out of which two are complex conjugate
and one is a double pole:

p1 = −0.2105 + j4.9448, (29)

p2 = p1 = −0.2105− j4.9448, (30)

p3 = p4 = −4. (31)

The maximum norm of the given system is (in accor-
dance with the maximum value of the transfer function
module):

‖Gψ (s)‖∞ = 0.1577 [−] . (32)

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 494



CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

-200

-150

-100

-50

0

10
-2

10
-1

10
0

10
1

10
2

10
3

-270

-180

-90

0

90

Frequency  (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
)

P
h

a
s
e

 (
d

e
g

)

Fig. 7: Amplitude frequency characteristic and phase frequency
characteristic of the given transfer function of the math-
ematical model in elevation.

The forms of the weighting filters for the given sys-
tem are as follows, i.e.:

• weighting transfer function for reference signal:

Wcmd (s) =
1

0.25s+ 1
, (33)

• weighting transfer function for low-frequency dis-
turbance signal:

Wd (s) =
0.5

0.1s+ 1
, (34)

• weighting transfer function for high-frequency dis-
turbance signal (noise):

Wnoise (s) =
0.01s+ 1

s+ 1
, (35)

• weighting transfer function for control error signal:

We (s) = Ke

1
Me
s+ ωbe

s+ ωbeεe
= 0.001

s+ 0.5

s+ 0.0005
, (36)

• weighting transfer function for manipulated value
signal:

Ŵu (s) = Ku

s+ ωbu

Mu

εus+ ωbu
= 10−7

s+ 1

0.01s+ 2
. (37)

The weighting filters for the control error and manip-
ulated signal have a prescribed transfer function form
according to [14], the transfer always contains the same
numerator and denominator order as to ensure the sta-
bility of the inverted transfer functions. The filter for
the control error is low-pass and for the manipulated
value it is high-pass. The graphic dependences of the
sensitivity functions and inverted transfer functions for
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Fig. 8: Amplitude and frequency characteristics of the low-
pass weighting filter We (s) (upper part) and high-
pass weighting filter Wu (s) (lower part): mathematical
model in elevation.
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Fig. 9: Amplitude frequency characteristic of the sensitiv-
ity function S (s), complementary sensitivity func-
tion T (s), inverted transfer functions 1/We (s) and
1/Wu (s): mathematical model in elevation.
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the mathematical model in elevation are as stated in
Fig. 8.

One of the general requirements for the amplitude
frequency characteristics of the sensitivity function
S (s) and the inverted transfer function 1/We (s) de-
fines robust behavior:

∀ ω ∈ R : |S (jω)| ≤ |1/We (jω)| =
= 1/ |We (jω)| ⇔ ‖We (s)S (s)‖∞ ≤ 1.

(38)

Figure 9 implies that the relation Eq. (38) is fully
met. Similarly, it is also possible to define the ampli-
tude frequency characteristics for the inverted transfer
function 1/Wu (s) and the product of the controller
transfer and the sensitivity function K (s)S (s):

∀ ω ∈ R : |K (jω)S (jω)| ≤ |1/Wu (jω)| ⇔
⇔ ‖Wu (s)K (s)S (s)‖∞ ≤ 1.

(39)
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Fig. 10: Amplitude frequency characteristics of the sensi-
tivity function S (s), product of transfer functions
K (s)S (s), inverted transfer functions 1/We (s) and
1/Wu (s): mathematical model in elevation.

Figure 10 implies that the relation Eq. (39) is fully
met. For completeness, we give the values of the key
H∞ norms, i.e.:

• optimal H∞ norm:

γ = 5.752010−4, (40)

• closed loop H∞ norm:

‖F {P (s) ,K (s)}‖∞ = 4.783710−4 < γ, (41)

• sensitivity function H∞ norm:

‖S (s)‖∞ = 1.5357, (42)

• complementary sensitivity function H∞ norm:

‖T (s)‖∞ = 0.9997. (43)

The order of the designed H∞ controller for the
mathematical elevation model corresponds with the to-
tal of the orders of the individual elements of the ex-
tended system, the nominal system is of the fourth or-
der at the most and all five weighting systems are in
the first order at the most. The aforementioned implies
that the controller will be a system of the ninth order
at the most. Its frequency characteristics are shown in
Fig. 11.
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Fig. 11: Amplitude frequency characteristic and phase fre-
quency characteristic of the H∞ controller for mathe-
matical model in elevation.

According to Fig. 6, a model of the H∞ controller
and the extended system was created in Simulink. The
configuration of the group of external input signals is
as follows:

• reference:

d1 (t = 0) = r (t = 0) = −0.25 [−]

for t ∈ (0; 20〉 , (44)

d1 (t) = r (t = 20) = −0.05 [−]

for t ∈ (20; 100〉 , (45)

• LF disturbance: not included in the model,

• HF disturbance: band-limited white noise with
power of 0.00001 [W] .

The response of the modeled elevation system to ref-
erence ~d1 (t) is as shown in Fig. 12. Thanks to the
balanced ratio of the sensitivity function and the com-
plementary sensitivity function, the elimination of the
noise and disturbance will be effective.

3.4. Elevation Controller for Real
Model

We will use the transfer function from the mathemat-
ical model for the design of the controller for a real
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Fig. 12: Dependence of the output elevation angle yψ on time
t in the mathematical elevation model; yψ = f (t).

model as the controller is created on the basis of the
transfer functions of the nominal system and weighting
filters. The forms of the weighting filters for the given
system are as follows, i.e.:

• weighting transfer function for reference signal:

Wcmd (s) =
1

0.25s+ 1
, (46)

• weighting transfer function for low-frequency dis-
turbance signal:

Wd (s) =
0.5

0.1s+ 1
, (47)

• weighting transfer function for high-frequency dis-
turbance signal (noise):

Wnoise (s) =
0.01s+ 1

s+ 1
, (48)

• weighting transfer function for control controller:

We (s) = 0.003
0.1s+ 0.75

2.25s+ 0.065
, (49)

• weight transfer for manipulated value:

Wu (s) =
0.75s+ 1

s+ 2500
=

0.75s+ 1

s+ 1
4·10−4

. (50)

When compared to the mathematical elevation
model, the same penalization of the group of external
input signals is used but the weighting filters for the
penalization of error outputs were adjusted to the real
model. However, their character remained unchanged.

The graphic dependences of the sensitivity functions
and inverted transfer functions for the real elevation
model are as shown in Fig. 13 and Fig. 14.

Figure 15 clearly implies that the amplitude fre-
quency characteristic of the sensitivity function S (s)
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Fig. 13: Amplitude and phase frequency characteristics of low-
pass filter We (s), real model in elevation.
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and the inverted transfer function 1/We (s) meet the
condition stated in the Eq. (38).

Figure 16 clearly shows that the amplitude frequency
characteristic of the product of Laplace transforms
K (s)S (s) and the inverted transfer function 1/Wu (s)
meet the condition stated in the Eq. (39). For com-
pleteness, we give the values of the key H∞ norms,
i.e.:

• optimal H∞ norm:

γ = 0.0512, (51)

• closed loop H∞ norm:

‖F {P (s) ,K (s)}‖∞ = 0.0487 < γ, (52)

• matrix H∞ norm:∥∥∥∥ We (s)S (s)
Wu (s)K (s)S (s)

∥∥∥∥
∞

= 0.0344 < γ, (53)

• sensitivity function H∞ norm:

‖S (s)‖∞ = 1.0028, (54)

• complementary sens. fun. H∞ norm:

‖T (s)‖∞ = 0.0073, (55)

• control sensitivity H∞ norm:

‖R (s)‖∞ = 6.6069, (56)

• open loop H∞ norm:

‖L (s)‖∞ = 0.0074, (57)

• controller H∞ norm:

‖K (s)‖∞ = 6.6557. (58)

The numerical interpretation of H∞ norms shows
that it is a suboptimal solution. The controller is in
the ninth order at the most, just like in the mathemat-
ical model. Its frequency characteristics are shown in
Fig. 17.

The block diagram in Simulink is formally the same
as in the mathematical model in elevation; the only dif-
ference is thus the nominal system represented by the
real model of a helicopter. The configuration of the in-
puts also does not differ from the mathematical model
as we want to compare the responses. The response
of the modelled elevation system to reference d1 (t) in
Fig. 18. Figure 18 implies that the elimination of noise
will not be sufficiently effective due to the prevailing
sensitivity function.
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Fig. 16: Amplitude frequency characteristic of the sensitiv-
ity function S (s), product of transfer functions
K (s)S (s), inverted transfer functions 1/We (s) and
1/Wu (s), real model in elevation.
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Fig. 17: Amplitude frequency characteristic and phase fre-
quency characteristic of the H-∞ controller for real
model in elevation.

Fig. 18: Dependence of the output elevation angle yψ on time
t in real elevation model; yψ = f (t).
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4. Conclusion

The paper focused on the problem of design of mixed-
sensitivity H-∞ robust controller, the simulation of
control circuit and verification of the results on edu-
cational model CE150, representing physical model of
helicopter. It gives an analysis and synthesis of the ro-
bust controller of elevation of helicopter model, both
for its mathematical model and for real system.

The results were verified by implementing the algo-
rithms on two different platforms:

• Matlab&Simulink + Real Time Toolbox +
MF624: Real Time Toolbox together with mea-
suring card MF624 provide a very elegant way of
fast rapid prototyping for real physical educational
models, using the powerful computational environ-
ment of Matlab&Simulink.

• REX Control System + WinPAC-8000: The REX
control system is an advanced tool for design and
implementation of complex algorithms for auto-
matic control. The algorithms are composed from
individual function blocks, which are available in
extensive function block libraries [13]. It supports
a wide variety of hardware platforms, including
programmable automation controllers (PAC) by
ICPDAS, particularly WinPAC-8000 which was
used for implementation of design control algo-
rithms.
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