
VŠB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science

Department of Applied Mathematics

Parallelizations of TFETI–1 coarse
problem

Paralelizace hrubého problému
TFETI–1 metody

2016 Jakub Kružík

I would like to express my thanks to the supervisor of my thesis Ing. David Horák, Ph.D. for
his invaluable help, explanations, advices and suggestions that certainly made this thesis much
better.

I am very grateful to Ing. Václav Hapla for all of his helpful advices and explanations.
My thanks also belongs to the entire PERMON team for all their help, and for creating a

working environment that is a joy to be part of.
For the explanation of certain geometrical and physical aspects of the FETI methods, my

thanks belongs to Ing. Alexandros Markopoulos, Ph.D.
Heartfelt thanks goes to my family and friends for their continued support.

I would also like to thank my employer IT4Innovations national supercomputing center, VSB
– Technical University of Ostrava for providing me with the opportunities to learn and to work
on exciting projects.

This work made use of the facilities of ARCHER, the UK’s national high-performance com-
puting service, provided by The Engineering and Physical Sciences Research Council (EPSRC),
The Natural Environment Research Council (NERC), EPCC, Cray Inc. and The University of
Edinburgh.

Abstrakt
Metody založené na FETI, používané pro řešení eliptických parcialních diferencialních rovnic,
představují velmi úspěšnou třídu metod dekompozice oblasti, které se používají pro paralelizaci
dobře známých metod konečných prvků. Původní problém ve FETI methodách je rozdělen na
menší problémy definované na podoblastech. Díky tomu, že se podoblasti nepřekrývají, můžeme
menší problémy nezávisle na sobě řešit paralelně. Počet podoblastí cheme zvyšovat tak, aby se
menší problémy řešily rychleji. To ale zároveň vede k růstu velikosti hrubého problému. Pro
složité problémy je navíc potřeba řešit hrubý problém mnohokrát. Díky tomu je potřeba najít
řešení hrubého problému co nejefektivněji. Tato práce se zabývá paralelnímy strategiemi řešení
hrubého problému TFETI–1 metody.

Klíčová slova: TFETI–1, FETI, hrubý problém, paralelizace, PERMON, PETSc, kvadratické
programování, sdružené gradienty, přímé řešiče, communication avoiding, communication hiding

Abstract
The FETI based methods, used for the solution of elliptical partial differential equations, form a
highly successful class of domain decomposition methods used for parallelization of well known
finite element methods. In the FETI methods we partition the original problem into smaller
problems defined on subdomains. Since the subdomains are non-overlapping we can naturally
solve the smaller problems independently in parallel. We want to increase the number of sub-
domains so that the smaller problems are solved faster. This however leads to the increase in
the size of the coarse problem. Moreover, for complex problems, the number of coarse prob-
lem solutions needed can be very high. Therefore, it is important to find the solution of the
coarse problem efficiently. This thesis deals with parallelization strategies of the TFETI–1 coarse
problem.

Keywords: TFETI–1, FETI, coarse problem, parallelization, PERMON, PETSc, quadratic
programming, conjugate gradients, direct solver, communication avoiding, communication hid-
ing

1

Contents
1 Introduction 6

2 The TFETI Method 7
2.1 Dualization . 8
2.2 Natural Coarse Grid . 9
2.3 Algorithm . 10

3 The TFETI Coarse Problem 11
3.1 The Storage and Assembly of CP Matrices . 11
3.2 CP Solution Strategies . 12

4 Algorithms for Solution of Coarse Problem 14
4.1 LU Factorization . 14

4.1.1 Pivoting . 15
4.1.2 Solution of Triangular Systems . 16
4.1.3 Implementation . 16

4.2 Cholesky Factorization . 16
4.2.1 Implementation . 17

4.3 The Conjugate Gradient Method . 17
4.3.1 The Method of Steepest Descent . 17
4.3.2 Conjugate Directions . 19
4.3.3 Gram-Schmidt A-orthogonalization Process 20
4.3.4 Conjugate Gradient Algorithm . 21
4.3.5 Communication Hiding in the CG Method 22
4.3.6 Implementation . 22

5 Libraries and HPC environment 24
5.1 PETSc . 24
5.2 PERMON . 24

5.2.1 PermonQP . 24
5.2.2 PermonFLLOP . 25
5.2.3 PermonCube . 25

5.3 ARCHER . 25

6 Numerical Experiments 26
6.1 Problem Description . 26
6.2 Results . 26
6.3 Evaluation of CP Strategies . 34

7 Conclusion 37

2

List of Symbols and Abbreviations

CG – Conjugate Gradient
CP – Coarse Problem
DDM – Domain Decomposition Method
FEM – Finite Element Method
FETI – Finite Element Tearing and Interconnecting
HPC – High Performance Computing
KKT – Karush–Kuhn–Tucker
PCG – Preconditioned Conjugate Gradient
PDE – Partial Differential Equation
PipePCG – Pipelined Preconditioned Conjugate Gradient
QP – Quadratic Programming
SPD – Symmetric Positive Definite
TFETI – Total FETI – Total Finite Element Tearing and Interconnecting
∇ – Gradient
I – Identity matrix
K – Krylov subspace
Im – Matrix image
Ker – Matrix kernel (nullspace)
O – Null matrix
o – Null vector
Rn – Real coordinate space of n dimensions

3

List of Figures
1 TFETI illustration . 7
2 Matrix G assembly . 11
3 GGT assembly . 12
4 Quadratic form . 18
5 PCG . 23
6 PipePCG . 23
7 QP transformation chain . 24
8 CP solution for 1000 subdomains – 100 CP appl. 27
9 CP solution for 1000 subdomains – 1000 CP appl. 27
10 CP solution for 4096 subdomains – 100 CP appl. 28
11 CP solution for 4096 subdomains – 1000 CP appl. 29
12 CP solution for 8000 subdomains – 100 CP appl. 30
13 CP solution for 8000 subdomains – 1000 CP appl. 30
14 CP solution for 13824 subdomains – 100 CP appl. 31
15 CP solution for 13824 subdomains – 1000 CP appl. 32
16 CP solution for 27000 subdomains – 100 CP appl. 33
17 CP solution for 27000 subdomains – 1000 CP appl. 33
18 Scaling comparison – 100 CP appl. 34
19 Scaling comparison – 1000 CP appl. 35
20 Scaling comparison – 10000 CP appl. 35
21 Choosing a CP strategy . 36

4

List of Tables
1 Times for 1000 subdomains . 26
2 Times for 4096 subdomains . 28
3 Times for 8000 subdomains . 29
4 Times for 13824 subdomains . 31
5 Times for 27000 subdomains . 32

5

List of Algorithms
1 TFETI algorithmic scheme . 10
2 Steepest descent method . 19
3 CG . 21
4 PCG . 21
5 PipePCG . 23

6

1 Introduction
Many problems in physics can be formulated in terms of partial differential equations (PDEs)
with boundary conditions, commonly known as boundary value problems. For solution of these,
a group of methods known as the finite element methods (FEMs) was developed. For the
parallelization of FEMs, domain decomposition methods (DDMs) were introduced. One of
these methods is known as FETI–1 (or equivalently FETI).

The finite element tearing and interconnecting (FETI) method was introduced in 1991 by
Fahrat and Roux [1] as a method for parallel solution of elliptical PDEs. Main idea of the FETI
based methods is that a discretized domain is partitioned (teared) into several non-overlapping
subdomains and continuity of solution across subdomain interfaces is enforced by the Lagrange
multipliers (interconnecting). Then the problem on each subdomain can be solved independently
in parallel.

The total finite element tearing and interconnecting (TFETI–1, TFETI) method [2] intro-
duced by Dostal, Horak and Kucera is an extension of the original FETI method. Main idea of
TFETI is to make all subdomains floating, that is achieved by tearing away the Dirichlet bound-
ary conditions from the subdomains, and then interconnecting them again with its respective
subdomains using the Lagrange multipliers. This change makes all subdomains floating, and so
we know the kernel of the stiffness matrix a priory. This change leads to an easier implementation
of the method.

The main bottleneck of the TFETI method is solution of the coarse problem (CP). This
thesis examines strategies for solution of CP.

This thesis is divided into following sections. In Section 2 we derive the TFETI method.
Using the dualization theory we transform the original (primal) problem into a dual one, that
has the same structure but is more easily solvable. Then we introduce a projector onto the
natural coarse space to further improve our formulation.

Section 3 explains what is CP. It shows from what objects it is composed and how these
should be stored. In this section we also suggest several strategies for CP solution.

In Section 4 we introduce algorithms employed for solution of CP. We derive the LU and
Cholesky factorizations and the conjugate gradient (CG) method. For the CGs we also briefly
discuss a communication hiding technique known as pipelining.

Libraries and the high performance computing (HPC) infrastructure used for numerical
experiments are overviewed in Section 5.

Finally, in Section 6 we show how the strategies and algorithms for solution of CP perform.

7

2 The TFETI Method
In this section we will follow classical descriptions of the TFETI method as seen in [2] and
followed by others [3, 4].

After finite element discretization (mesh creation) of the given problem, we decompose (tear)
the discretized domain Ω into Ns non-overlapping subdomains Ωs, s ∈ {1, . . . , Ns}. Then we
introduce the Lagrange multipliers (see Section 2.1), these works as gluing forces – enforcing
continuity across the subdomains (interconnecting). Unlike the original FETI method, we tear
away the Dirichlet boundary conditions as well and enforce them again by means of the Lagrange
multipliers. This makes all the subdomains floating. See Figure 1 for illustration.

Ω
Ω

1
Ω

2

Ω
3

Ω
4

λ

λ

λ

H

h

Figure 1: TFETI domain decomposition with outlined discretization

Let us denote for each subdomain Ωs a stiffness matrix Ks, prescribed nodal load vector fs,
displacement vector us and matrix Bs with entries -1,0,1 describing the subdomain intercon-
nectivity.

The problem of finding the reaction (displacement) vector u caused by the force f exerted
on the domain which is represented by its stiffness matrix K can be described by

Ku = f s.t. Bu = c, (2.1)

which can be equivalently written in its energetic formulation as

min
u

1
2uT Ku − uT f s.t. Bu = c, (2.2)

where

K =

⎛⎜⎝K1
. . .

KNs

⎞⎟⎠ , f =

⎛⎜⎝ f1
...

fNs

⎞⎟⎠ , u =

⎛⎜⎝ u1
...

uNs

⎞⎟⎠ , B =
(
B1 · · · BNs

)
,

and the vector c prescribes the Dirichlet boundary conditions. The matrix K is of order Np

(primal dimension), and the matrix B dimension is Nd×Np (where Nd is the number of Lagrange
multipliers – dual dimension, see Section 2.1).

Note that (2.2) represents a quadratic programming problem (QP) where we minimize the
quadratic cost function with respect to the equality constraint.

8

2.1 Dualization

Let us introduce the Lagrangian function associated with the problem (2.2)

L(u, λ) = 1
2uT Ku − uT f + (Bu − c)T λ.

Notice that maximizing λ while minimizing u we are enforcing the equality constraint and
simultaneously solving the minimization part of the problem (2.2). Therefore at the cost of
introducing another variable we can reformulate our problem as

find (ū, λ̄) so that L(ū, λ̄) = sup
λ

inf
u

L(u, λ). (2.3)

See [5, 6] for a proof and an additional discussion of duality.
The necessary conditions for existence of the saddle-point (ū, λ̄) is the equivalence of the

gradients to the null vector

∇uL(u, λ) = Ku − f + BT λ = o, (2.4)
∇λL(u, λ) = Bu − c = o, (2.5)

this is known as the Karush–Kuhn–Tucker (KKT) system, often written in the matrix form as(
K BT

B O

)(
u
λ

)
=
(

f
c

)
. (2.6)

The dual formulation (2.3) is therefore equivalent to finding (ū, λ̄) satisfying the KKT system.
Equation (2.4) has solution if and only if

(f − BT λ) ∈ ImK. (2.7)

Denoting matrix R with columns spanning the null space of K, and observing that KerKT =
ImR is orthogonal to ImK, we can express the previous statement as

RT (f − BT λ) = o. (2.8)

Let us mention that, since all the subdomains are floating, a basis of R can be formed
directly using the subdomain rigid body modes. Assuming a subdomain Ωs is discretized by ns

nodes with coordinates (xi, yi) in 2D or (xi, yi, zi) in 3D, we denote

for i = {1, . . . , ns}

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

in 2D: Ri
s =

(
1 0 −yi

0 1 xi

)

in 3D: Ri
s =

⎛⎜⎜⎝
1 0 0 0 −zi yi

0 1 0 zi 0 −xi

0 0 1 −yi xi 0

⎞⎟⎟⎠

Rs =
(
R1

s · · · Rns
s

)T
, R =

⎛⎜⎝R1
. . .

RNs

⎞⎟⎠ ∈ RNp×Nk , Nk = Np − rank(K).

9

Note that the null space dimension Nk = 3Ns in 2D, respectively Nk = 6Ns in 3D.
Now we try to eliminate the primal variable u from (2.4), assuming λ satisfies (2.7) and

denoting a generalized inverse by K+, such that KK+K = K. Notice that ∀α ∈ RNk : Rα ∈
KerK and therefore KRα = o. Using this, we can rewrite (2.4) as

Ku − f + BT λ = KRα.

Rearranging and multiplying this equation by K+, we get

u = K+(f − BT λ) + Rα (2.9)

and by substituting into (2.5) we arrive at

BK+BT λ − BRα = BK+f − c. (2.10)

By combining (2.8) and (2.10) we obtain linear system for the unknowns λ and α(
BK+BT −BR
−RT BT O

)(
λ
α

)
=
(

BK+f − c
−RT f

)
.

Denoting

F = BK+BT , G = −RT BT ,

d = BK+f − c, e = −RT f ,

we have (
F GT

G O

)(
λ
α

)
=
(

d
e

)
. (2.11)

Now we cloud find the solution (λ̄, ᾱ) ∈ RNd × RNk of the problem (2.11). Formally (2.11)
is the same problem as (2.6), however F is much better conditioned than K and also the size of
the problem is significantly smaller [3]. Note that our solution ū can be easily computed using
(2.9).

2.2 Natural Coarse Grid

To further improve the problem formulation (2.11), let us introduce a projector onto the natural
coarse space [7]. This is a projection onto the subspace orthogonal to a space spanned by the
columns of GT , i.e. onto KerG and is defined by

P = P T = I − GT (GGT)−1G.

Applying P on the first equation of (2.11) and using the orthogonality of P and GT we
obtain

P F λ = P d. (2.12)

We split λ into λIm ∈ ImGT and λKer ∈ KerG so that

λ = λIm + λKer. (2.13)

10

Substituting into the second equation of (2.11) we have

Gλ = G(λIm + λKer) = GλIm + GλKer = GλIm = e.

It can be verified directly that we can obtain λIm as

λIm = GT (GGT)−1e.

Note that by choosing this particular solution λIm we have effectively homogenized the equality
constraint in the KKT system (2.11) [6]. Now we just have to identify λKer. Substituting (2.13)
into (2.12) we get

P F (λIm + λKer) = P d

P F λIm + P F λKer = P d

P F λKer = P (d − F λIm). (2.14)

The equation (2.14) can be solved by the CG method, which is described in Section 4.3. After
obtaining λ we find α from the first equation of (2.11) as

F λ + GT α = d /(GGT)−1G·
(GGT)−1GF λ + (GGT)−1GGT α = (GGT)−1Gd

α = (GGT)−1G(d − F λ). (2.15)

Suppose that the domain Ω is a regular square or cube with the subdomain size H and has
a discretization parameter h (as in Figure 1). Then the following estimate of FETI condition
number proved in [7]

κ (P F |ImP) ≤ const
H

h
, (2.16)

remains also valid for the TFETI method [2]. Note that keeping the mesh size fixed and increas-
ing the number of subdomains (decreasing size of the subdomains – H parameter) decreases this
condition number.

2.3 Algorithm

We can sum up the previous observations in the algorithmic scheme 1, as seen in [3].

Algorithm 1: TFETI algorithmic scheme
1 Set G = −RT BT , d = BK+f − c, and e = −RT f

2 Compute λIm = GT
(
GGT

)−1
e

3 Assemble d̄ = d − F λIm

4 Compute λKer by solving P F λKer = P d̄ on KerG
5 Set λ = λIm + λKer

6 Compute α =
(
GGT

)−1
G (d − F λ)

7 Compute u = K+
(
f − BT λ

)
+ Rα

11

3 The TFETI Coarse Problem
CP solution defined as

GGT x = y (3.1)

or, using the explicit inverse, as
x =

(
GGT

)−1
y (3.2)

is important to obtain efficiently as it features in every iteration of the CG method used for the
solution of (2.14). This is because P F is kept unassembled.

Increasing the number of subdomains for fixed problem size decreases the size of the sub-
domain stiffness matrix. This leads to the acceleration of the subdomain stiffness matrix fac-
torization and the subsequent pseudoinverse applications. Moreover, it improves the condition
number (for regular domains) as shown in (2.16). On the other hand, the dual (Nd) and null
space dimensions (Nk) are increased. This leads to the deceleration of CP solution [4].

3.1 The Storage and Assembly of CP Matrices

Assembly of G = −RT BT ∈ RNk×Nd is very cheap, because the application of the intercon-
necting matrix B should be thought of as an extraction process rather than multiplication [8].
Moreover, the matrices R and B are naturally divided into sparse sequential blocks R[loc] and
B[loc]. That is way no communication is needed for the assembly of G[loc] = −RT

[loc]B
T
[loc] [9].

See Figure 2 for illustration.

Figure 2: Illustration of the matrix G assembly [10]

It is important to consider the distribution of the matrix G, because CP is composed of the
matrices G and GT . The matrix G can be distributed into either horizontal or vertical blocks.
It is better to store the horizontal blocks GT , because then we are operating on vectors with size
of Nk instead of Nd, and the Nd vectors and operations on them can be naturally parallelized
[11].

Our own numerical tests had shown that it is better to assemble GGT ∈ RNk×Nk (illustrated
in Figure 3). This has a drawback that more memory is needed. The advantage is the possibility
to use direct solvers for CP, and it turns out, due to efficient implementation of the matrix type
MPIAIJ in PETSc (see Section 5.1), that the assembly process is fairly cheap.

12

Figure 3: GGT assembly illustration [10]

3.2 CP Solution Strategies

Several methods for solving CP were proposed and tested [3, 4, 9–11]. It is well established
that the fully parallel approach is not justifiable, because the CP dimension is fairly small.
Generally, the best approach is to increase locally owned portion of GGT per processor. This
leads to decrease in the number of messages needed, while keeping the size of the messages for
dot-products constant. For sparse matrix-vector products (neighbour wise communication) it
increases the messages size, but it keeps the amount of data transfered constant, meaning that
less messages are sent. In our current implementation of PermonFLLOP (see Section 5.2.2)
this is achieved by splitting the global communicator into subcommunicators. For this purpose
we use PETSc’s built-in PCREDUNDANT , that creates the subcommunicators and copies and
distributes the whole matrix GGT onto ranks residing on the subcommunicators. Computational
cores are assigned to the subcommunicators contiguously, exploiting data locality – minimizing
distances between ranks and limiting extranode communication as much as possible. In fact, our
employment of the subcommunicators can be viewed as a communication avoiding technique.
Let us denote by Nr the number of subcommunicators and by Nc the number of cores. Then in
each subcommunicator is approximately Nc/Nr cores.

For the strategies introduced bellow we are using both direct (see Sections 4.1.3 and 4.2.1)
and iterative (see Section 4.3.6) parallel solvers.

In this work we are exploring two strategies, namely:
Strategy S1: Obtain a solution of CP by solving the system (3.1). For the direct solvers

this strategy consists of a preprocessing phase where GGT is factorized. Every application of(
GGT

)−1
then consists of the backward and forward substitution, as described in Section 4.1.2.

Note that the factorization and each backward and forward substitution are done on each sub-
communicator independently, the solution vector is then scattered onto the appropriate ranks
in the global communicator (this is again achieved by communicating only in the subcommunic-
ator). This strategy can be used even with iterative solvers, however some form of acceleration
(for CG based method some form of deflation) has to be employed to improve convergence of
the iterative solvers for multiple right hand sides.

Strategy S2: Explicitly compute the inverse
(
GGT

)−1
as in the equation (3.2). This is

done by assigning a contiguous portion of columns of the identity matrix to each subcommunic-
ator. Each subcommunicator has assigned approximately Nk/Nr columns. A parallel solver is
used to compute a columns of

(
GGT

)−1
. Using the symmetry of GGT , these columns are at

the same time the rows of its inverse. These rows are then logically (i.e. without any data move-
ment, communication or computation involved) reassigned from the subcommunicators into the

13

global communicator. The
(
GGT

)−1
is a dense matrix, and so its application consists of a

parallel dense matrix-vector product.
Note that in the strategy S1, the computation is done redundantly. In the current imple-

mentation of PCREDUNDANT the subcommunicators are doing same work in parallel. This
is inefficient from the energy consumption standpoint, but it allows us to scatter the solution
vector to the appropriate ranks in the global communicator using communication only in the
subcommunicators. After the solution vector is scattered, the CG algorithm runs fully in parallel
again.

On the other hand, in the strategy S2, the computation is always fully parallel, because each
portion of the identity matrix (right hand sides) is solved in parallel on the subcommunicator
level, and a parallel solver is used inside the subcommunicators as well.

14

4 Algorithms for Solution of Coarse Problem
In this section, we shall introduce algorithms that were applied as solvers for the CP solution
strategies shown in the previous section.

For the whole section we assume that we have a square matrix A, right hand side vector b
and vector of variables x, all real and of the dimension n. Our goal is to find the solution of the
system of linear equations denoted as

Ax = b. (4.1)

4.1 LU Factorization

LU factorization can be viewed as Gaussian elimination described by a transformation matrix.
Gaussian elimination transforms the matrix A into an upper triangular matrix. The idea behind
the LU factorization is to decompose (hence the other commonly used name – LU decomposition)
the matrix A into a product of the lower and upper triangular matrices, i.e.

A = LU .

We will now describe the Gauss’s zeroing process by a transformation matrix. For a vector
a ∈ Rn where ak ̸= 0 we can zero each ai, i ∈ {k + 1, · · · , n} by multiplying the vector a by the
matrix Lk defined as

Lka =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−lk+1,k 1

... . . .
−ln,k 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ak

ak+1
...

an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

ak

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where li,k = ai
ak

, i ∈ {k + 1, · · · , n} are called multipliers. This can be rewritten as

Lk = I − lkeT
k , lT

k =
(
0 · · · 0 lk+1,k · · · ln,k

)
.

The vector lk is called a Gauss vector. The matrix Lk is referred to as a Gauss transformation
matrix [12].

Applying the Gauss transformations to the matrix A we get the upper triangular matrix U
as

Ln−1Ln−2 · · · L1A = Ln−1Ln−2 · · · L2A(1) = U , (4.2)
assuming that after the application of each transformation matrix Lk, the diagonal component
of the resulting matrix a

(k)
k+1,k+1 ̸= 0.

It is easy to show [13] that
L−1

k = I + lkeT
k ,

and that we can define

L = L−1
1 L−1

2 · · · L−1
n−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1

l2,1 1
l3,1 l3,2 1
...

...
ln,1 ln,2 · · · ln,n−1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

15

Finally, multiplying (4.2) by L we obtain

A = LU .

4.1.1 Pivoting

In the previous section in the derivation of the zeroing process, we required that after each
application of the transformation matrix Lk, the diagonal component of the resulting matrix
a

(k)
k+1,k+1 ̸= 0. This requirement is necessary, because otherwise we would divide by zero in

the next step. Therefore, we could not apply the LU decomposition on some matrices, nor we
would know beforehand whether it is possible to compute the LU factorization, as defined by
the equation (4.2). This problem is enhanced in floating point arithmetics due to the limited
precision and our algorithm becomes unstable. For an in-depth discussion with examples see
[12, 13].

To counter the instability, we define a pivoting process. Reordering rows of an identity matrix
we obtain a permutation matrix P . Multiplying the matrix A from left by the permutation
matrix we reorder the rows of A in the same way as are reordered the rows of P in respect to
the I. For example if n = 3 and

P =

⎛⎜⎝1 0 0
0 0 1
0 1 0

⎞⎟⎠
then P A is equivalent to A with the second and third rows swapped.

One of the pivoting methods, called partial pivoting, in the kth iteration (i.e. zeroing the
components of kth column bellow the diagonal of matrix A(k−1)) finds the largest component of
the kth column bellow and on the diagonal (max

⏐⏐⏐a(k−1)
i,k

⏐⏐⏐, i ≥ k) and then creates a permutation
matrix Pk, applying which swaps rows so that the largest component is on the diagonal [12].

This process modifies (4.2) into

Ln−1Pn−1Ln−2Pn−2 · · · L1P1A = Ln−1Pn−1Ln−2Pn−2 · · · L2P2A(1) = U . (4.3)

Note that for an arbitrary permutation matrix P we have P P T = I. Therefore the previous
equation can be rewritten as

L̄n−1L̄n−2 · · · L̄1P A = U ,

where
L̄k = (Pn−1 · · · Pk+1) Lk (Pk+1 · · · Pn−1) .

It follows that

L̄k = (Pn−1 · · · Pk+1)
(
I − lkeT

k

)
(Pk+1 · · · Pn−1) = I − (Pn−1 · · · Pk+1) lkeT

k = I − l̄keT
k .

This shows that L̄k is a Gauss transformation matrix and that the pivoting process is easily
implementable.

16

4.1.2 Solution of Triangular Systems

We want to find the solution of (4.1). Since we have A = LU , respectively P A = LU it follows
that

Ax = b

P Ax = P b

LUx = P b.

Denoting y = Ux we can solve Ly = P b and then obtain x as the solution of Ux = y. This is
known as the forward and backward substitution [13].

Note that since L and U are respectively lower and upper triangular, the solutions of the
above systems are obtained very cheaply. Moreover, the LU factorization is advantageous for
solving a system with several right hand sides. This is heavily utilized in the Section 3.2.

4.1.3 Implementation

We used SuperLU_DIST [14] for our numerical tests. SuperLU_DIST is an effective imple-
mentation of the above described algorithm, with modifications that ensures effectiveness on
distributed-memory parallel machines. The algorithm used in this solver is called GESP (Gaus-
sian elimination with static pivoting). The difference from our description is a diagonal scaling
that improves the effect of pivoting (that is chosen by a graph theory algorithm), then another
permutation matrix is applied to preserve the sparsity of A. These steps are called static pivot-
ing, since they are done only once before factorization. After these additional steps are done the
LU decomposition, broadly the same as described above, takes place. For detailed information
about SuperLU and the GESP algorithm please refer to [15].

4.2 Cholesky Factorization

For a SPD matrix A it is possible to improve the LU factorization by exploiting the symmetry
of A. It turns out that it is possible to create the following decomposition of A

A = LLT ,

where L is a lower triangular matrix.
Let us now describe how we can obtain the matrix L. Applying Gaussian elimination to

zero the first column of the matrix A we have

A =
(

a11 uT

u K

)
=
(√

a11 oT

u/
√

a11 I

)(
1 uT

o K − uuT /
√

a11

)
.

We can zero the first row

A =
(√

a11 oT

u/
√

a11 I

)(
1 oT

o K − uuT /a11

)(√
a11 uT /

√
a11

o I

)
= L1A(1)LT

1 ,

and so the symmetry is maintained.

17

Now we can repeat the process, zeroing the successive columns and rows. After n steps the
A(n) = I, therefore we have

A = L1L2 · · · Ln
L

LT
n · · · LT

2 LT
1

LT

.

Once we obtain the Cholesky decomposition of A, the system (4.1) can be solved easily in
the same way as described in Section 4.1.2. Note that from the positive definiteness of A it
follows that the algorithm is stable and therefore no pivoting is needed [13]. The number of
floating point operations required by the Cholesky decomposition (≈ n3

3) is reduced by about a
half compared to LU (≈ 2n3

3) [12, 13].

4.2.1 Implementation

MUMPS [16, 17] was used as an efficient implementation of the Cholesky factorization, optimized
for large distributed-memory systems. Similar techniques for the preservation of the sparsity
as described in Section 4.1.3 are used in MUMPS as well. While the Cholesky factorization
algorithm is cheaper then LU and therefore generally MUMPS is faster then SuperLU_DIST,
SuperLU is considered to be better scalable [18].

4.3 The Conjugate Gradient Method

The conjugate gradient (CG) method is one of the basic, but the most successful methods for
solving systems described by a SPD matrix. It was developed independently in the early 1950s
by Hestenes and Stiefel [19].

The equation (4.1) can be equivalently written as a problem of an unconstrained quadratic
minimization

min
x

f(x), where f(x) = 1
2xT Ax − xT b. (4.4)

This is easy to see, because from the necessary condition for extremum we have that x is
minimizer of f(x) if

∇f(x) = Ax − b = o.

The quadratic form f(x) for a SPD matrix A of dimension n = 2 is depicted in Figure 4.
By (4.4), the solution of (4.1) is the minimum of this elliptic paraboloid. This holds true, with
the appropriate generalization, for higher dimensions as well.

4.3.1 The Method of Steepest Descent

We shall first introduce an easier method of steepest descent. This method is based on the line
search procedure that minimizes f(x) along a search direction with a suitable step, giving the
distance along the search direction [20]. Given the point xi approximating solution of (4.4) we
will generate a better approximation by

xi+1 = xi + αivi, (4.5)

where vi is the direction along which we minimize f(xi) and αi is the step length. We will stop
refining our approximations when the error ei = xi − x is sufficiently small.

18

f(x)

x2 x1

x1

x2

Figure 4: Surface and contour plot of f(x) for a SPD matrix of dimension n = 2

As the name suggests, the steepest descent method uses the direction opposite to the gradient
of f(x), because at any point of f(x) the gradient points in the direction of the greatest rate of
increase of the given function. Therefore, we have

vi = −∇f(xi) = b − Axi.

Let us define a residual ri = b − Axi, representing the distance from the solution of (4.4). Note
that from the previous equation it follows that vi = ri. Also notice that ri = −Aei and so we
can use the norm of the residual as a stopping criteria.

We can rewrite (4.5) as
xi+1 = xi + αiri.

Multiplying the previous equation by −A and adding b, we can write the residuals in terms of
the following recurrence

ri+1 = ri − αiAri.

Now that we know the minimization direction, we only need to find out how far along it we
should move before the value of f(xi) starts increasing. Again, using the necessary condition
for extremum, we find a minimum of f(xi), where the only variable in that function is αi and
so we have

d

dαi
f(xi+1) = (∇f(xi+1))T d

dαi
xi+1 = (∇f(xi+1))T ri = −rT

i+1ri = 0. (4.6)

From the previous equation we find αi at a point, where the descent direction ri is orthogonal
to the gradient ∇f(xi+1) = −ri+1. This intuitively makes sense, see [20] for illustration. Using

19

this information, we may find the value of αi as follows

rT
i+1ri = 0

(b − Axi+1)T ri = 0
(b − A (xi + αiri))T ri = 0

(b − Axi)T ri − α (Ari)T ri = 0
rT

i ri = α (Ari)T ri

αi = rT
i ri

(Ari)T ri

= rT
i ri

rT
i Ari

. (4.7)

We can sum up the previous observations in the Algorithm 2. Notice that by defining an
additional vector s = Ari, we need only a single matrix-vector multiplication per iteration.

Algorithm 2: Steepest descent method
Input: A, x0, b, ϵ > 0

1 r0 = b − Ax0
2 i = 0
3 while ||ri|| ≥ ϵ||b||:
4 s = Ari

5 αi =
(
rT

i ri

)
/
(
sT ri

)
6 xi+1 = xi + αiri

7 ri+1 = ri − αis
8 i = i + 1

Output: xi

4.3.2 Conjugate Directions

It turns out that there exist better directions than those of the steepest descent. These directions
are conjugate or A-orthogonal directions [20]. Two vectors pi and pj are conjugate, if

pT
i Apj = 0, (pi ̸= pj) .

It is easy to prove that a set of n of these directions {p0, p1, · · · , pn−1} is a basis of Rn [6].
Therefore, the solution vector x can be found as a linear combination

x = α0p0 + α1p1 + · · · + αn−1pn−1. (4.8)

As in the steepest descent method (equation (4.5)) we will improve the approximation of xi

by
xi+1 = xi + αipi. (4.9)

Again, using the definition of the error term and residual from the steepest descent, and
similarly to (4.6), we have

d

dαi
f(xi+1) = (∇f(xi+1))T d

dαi
xi+1 = −rT

i+1pi = pT
i Aei+1 = 0.

20

We derive αi like in (4.7), so that by using (4.9) and (4.8) we arrive at

αi = −pT
i Aei

pT
i Api

= pT
i ri

pT
i Api

.

For the search direction vectors pi and their respective step lengths αi it is easily proved
[20] that xi defined by the formula (4.9) converges to the solution vector x, and does so in n
steps. Note that this is true only in the exact arithmetic. Therefore, as in the steepest descent
method, we will stop iterating when we get a sufficiently good approximation of the solution.

4.3.3 Gram-Schmidt A-orthogonalization Process

The only thing left to show is how to get the conjugate search directions pi. As it turns out,
it is possible to use the well known Gram-Schmidt orthogonalization process [6], which we will
briefly describe bellow.

Let us assume that we have p0, · · · , pi nonzero conjugate directions and a vector hi /∈
span{p0, · · · , pi}. We can generate a new conjugate direction in the form

pi+1 = hi + β0
i p0 + · · · + βi

ipi

Using the conjugacy, we have

(pj)T Api+1 = (pj)T Ahi + βj
i (pj)T Apj = 0, j = 0, · · · , i.

It follows that

βj
i = − (pj)T Ahi

(pj)T Apj

, j = 0, · · · , i.

Now we could, setting h0 = p0, construct the set of mutually A-conjugate directions p0 · · · pi.
However this would be expensive to compute since the number of βs needed to be computed
grows with the number of vectors against which we orthogonalize. Fortunately we can adapt
the procedure so that it very efficiently generates a conjugate basis of the Krylov subspace [6]

Ki = Ki (A, ro) = span{r0, Ar0, · · · Ai−1r0} = span{r0, r1, · · · ri−1}, i = 1 · · · n.

Note that we can find the residual using following recurrence

ri+1 = Axi+1 − b = A (xi − αipi) − b = (Axi − b) − αiApi = ri − αiApi.

.
Since rT

i x = 0 for any x ∈ Ki, by using the previous equation and assuming pi = ri it turns
out [20] that

βj
i = 0, j = 0, · · · , i − 1.

And so that
βi = βi

i = rT
i ri

rT
i−1ri−1

.

21

4.3.4 Conjugate Gradient Algorithm

Putting together the observations from Sections 4.3.2 and 4.3.3 we get Algorithm 3.
The speed of convergence depends on the spectral properties of A [6, 13]. To improve the

convergence of the CG method we can apply preconditioning [20]. This consists of applying a
preconditioner in form of a SPD matrix M that approximates A as follows

M−1Ax = M−1b.

Note that if M−1 = A−1 then x = M−1b and we have found the solution. Finding the inverse
of A is however costly and so we want to use an approximation that is easy to compute and
apply, and that will improve the spectral properties of A. For an overview of the most widely
used preconditioners see [12].

How to apply the preconditioning, described bellow, was closely inspired by introduction to
the CG methods by Shewchuk [20].

The problem with preconditioner M is that M−1A is not generally a SPD matrix. This
problem can be avoided because for every SPD matrix M there exists a SPD matrix E such
that M = EET . Moreover, E−1AE−T is SPD and has the same eigenvalues as M−1A.

We can transform the system (4.1) into

E−1AE−T x̂ = E−1b, x̂ = ET x,

where we use the CG method to find x̂, and then from the equation above we get x. This
approach, however, has a drawback that E must be computed. Applying the CG method on
the transformed system above, and denoting all the vectors in Algorithm 3 by a hat symbol, we
can with a few substitutions rectify this problem. Then, by setting r̂i = E−1ri and p̂i = ET pi,
and using the identities x̂ = ET x and E−T E−1 = M−1, we get the preconditioned conjugate
gradient (PCG) method shown in Algorithm 4.

Algorithm 3: CG
Input: A, x0, b, ϵ > 0

1 r0 = b − Ax0
2
3 p0 = r0
4 i = 0
5 while ||ri|| ≥ ϵ||b||:
6 s = Api

7 αi =
(
rT

i ri

)
/
(
sT pi

)
8 xi+1 = xi + αipi

9 ri+1 = ri − αis
10

11 βi+1 =
(
rT

i+1ri+1
)

/
(
rT

i ri

)
12 pi+1 = ri+1 + βi+1pi

13 i = i + 1
Output: xi

Algorithm 4: PCG
Input: A, M−1, x0, b, ϵ > 0

1 r0 = b − Ax0
2 u0 = M−1r0
3 p0 = u0
4 i = 0
5 while ||ri|| ≥ ϵ||b||:
6 s = Api

7 αi =
(
rT

i ui

)
/
(
sT pi

)
8 xi+1 = xi + αipi

9 ri+1 = ri − αis
10 ui+1 = M−1ri+1

11 βi+1 =
(
rT

i+1ui+1
)

/
(
rT

i ui

)
12 pi+1 = ui+1 + βi+1pi

13 i = i + 1
Output: xi

Additionally, in both algorithms s = Api, and ui = M−1ri in PCG are computed in order
to apply these matrix-vector multiplications only once per iteration.

22

Note that we have derived the CG method in terms of residuals, but ri = −∇f(xi), as shown
in Section 4.3.1. Therefore we could have just as easily derived the CG algorithm in the terms
of gradients – this is where the method name comes from. The residual notation is widely used
for historic reasons, as it was used in the original paper by Hestenes and Stiefel [19].

4.3.5 Communication Hiding in the CG Method

Recently Ghysels and Vanroose introduced the pipelined conjugate gradient method [21], that
hides the global synchronization latency in the PCG algorithm. This section is based on their
article. Main idea here is that operations requiring global reductions are overlapped with a local
computation.

They examined the PCG method (Algorithm 4) and identified the communication patterns.
Communication wise are important following parts of PCG: the sparse matrix-vector product
(SpMV) Api in line 6, the application of the preconditioner M−1ri+1 in line 10, and the
dot-products sT pi and rT

i+1ui+1 in lines 7 and 11. The SpMV and preconditioner application
requires communication only between neighbouring nodes, and as such they scale well. On the
other hand, the two dot-products are causing two global synchronizations per iteration. Other
operations in the PCG algorithm are purely local – requiring no communication.

In the illustrations, the dot-products are shown in red, the SpMV and the application of
the preconditioner are in orange, and finally the vector plus constant times vector (AXPY)
operations are shown in green.

The preconditioned pipelined CG method (PipePCG), can be found in Algorithm 5. It is
derived from PCG, through Chronopoulos/Gear CG [22] respectively, by some reordering and
introduction of additional AXPY operations.

Algorithms 4 and 5 are mathematically equivalent. The main advantage of the PipePCG
method is that the reductions for the dot-products (lines 6 and 7) are grouped into a single
non-blocking reduction, and can be overlapped by the preconditioner application (line 8) and
the SpMV (line 9). This however comes at the cost of five additional AXPY operations and
vectors that need to be kept in memory. The time spent in the global all-reduce communication
(G), matrix vector product (SpMV) and preconditioner application (PC) is 2G + SpMV + PC
for PCG, max(G, SpMV + PC) for PipePCG.

A chart comparing PCG and PipePCG with respect to both the computational and commu-
nication aspects can be found in Figures 5 and 6.

4.3.6 Implementation

Both the PCG and PipePCG implementations are from PETSc (see Section 5.1). They are
KSPPCG, KSPPIPECG respectively. In KSPCG, an option performing a single reduction for
the dot-products is not used, which is the default behaviour.

23

Algorithm 5: PipePCG
Input: A, M−1, x0, b, ϵ > 0

1 r0 = b − Ax0
2 u0 = M−1r0
3 w0 = Au0
4 i = 0
5 while ||ri|| ≥ ϵ||b||:
6 γi = rT

i ui

7 δ = wT
i ui

8 mi = M−1wi

9 ni = Ami

10 if i > 0:
11 βi = γi/γi−1
12 αi = γi/ (δ − βiγi/αi−1)
13 else:
14 βi = 0
15 αi = γi/δ

16 zi = ni + βizi−1
17 qi = mi + βiqi−1
18 si = wi + βisi−1
19 pi = ui+1 + βi+1pi−1
20 xi+1 = xi + αipi

21 ri+1 = ri − αisi

22 ui+1 = ui − αiqi

23 wi+1 = wi + αizi

24 i = i + 1
Output: xi

+

+

+ +

+

+

SpMV dot-prod axpy preconddot-prod dot-prod axpy

Figure 5: PCG

+

SpMVdot-prod axpypreconddot-prod

+ +

Figure 6: PipePCG

24

5 Libraries and HPC environment

5.1 PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) [23, 24] is a suite of
data structures and routines that provides building blocks for the implementation of large-scale
application codes on parallel computers. Written in C, PETSc uses the MPI standard for all
message-passing communication. The bulding blocks that PETSc provides are for example
parallel vectors and matrices or number of parallel linear and nonlinear solvers. PETSc also has
many nice features like automatic profiling or a possibility to change applications behaviour by
command line options.

The version 3.5.4 of PETSc was used for all the numerical experiments that can be found in
Section 6.

5.2 PERMON

PERMON [25] is set of tools for the Parallel, Efficient, Robust, Modular, Object-oriented,
Numerical simulations. It provides an unique combination of DDM and QP algorithms. Its ap-
plications include elasto-plasticity problems, medical imaging, or modelling of ice-sheet melting.
PERMON is based on/extends PETSc in a way similar to SLEPc or TAO.

5.2.1 PermonQP

PermonQP is the main PERMON module providing an easy to use, massively parallel framework
for the solution of QP problems. After specification of a QP problem we can optionally apply
QP transformations. A QP transformation creates a new QP problem, that should be easier to
solve, and saves it as a node of a doubly linked list. A QP transformation function also inserts
a reconstruction function, so that we can transform the solution of the new QP problem back
into the the solution of the original one. When the QP problem is simple enough, we solve it
using a solver selected automatically or manually. This workflow is illustrated in Figure 7.

Figure 7: QP transformation chain: illustration of the PermonQP workflow [10]

25

5.2.2 PermonFLLOP

PermonFLLOP provides an implementation of the TFETI method. User provides a stiffness
matrix, load vector and domain mapping. PermonFLLOP then computes the kernel R of the
stiffness matrix and the gluing matrix B. Afterwards a series of QP transformations is executed,
most importantly the dualization, homogenization of the equality constraint and its enforcement
by means of the projector onto the natural coarse space.

5.2.3 PermonCube

PermonCube is a benchmark that creates a mesh up to billions of unknowns over a cubical
domain. It assembles the FEM objects associated with the problem. Then it uses PermonFLLOP
to find the problem solution.

5.3 ARCHER

The numerical tests were run on the ARCHER supercomputer [26]. The ARCHER is a Cray
XC30 based supercomputer. It consists of 4920 compute nodes. Each compute node contains
two 2.7 GHz, 12-core Intel E5-2697 v2 (Ivy Bridge) processors and at least 64 GB of memory.
Compute nodes are interconnected by the Aries interconnect using a Dragonfly topology. Ac-
cording to the current (November 2015) TOP500 list [27], the ARCHER is the 41st most powerful
supercomuter with Rmax of 1642.5 TFlop/s in the Linpack benchmark.

As a compiler the cce/8.4.1 (Cray Compiler Environment) was used. A MPI library was
provided by the cray-mpich/7.2.6 module. The libsci/13.2.0 was used as an implementation of
the BLAS, LAPACK and Scalapack routines.

26

6 Numerical Experiments

6.1 Problem Description

The PermonCube (see Section 5.2.3) benchmark was used for the numerical experiments. The
problem generated in each test was a 3D linear elastic cube with the bottom face fixed, and the
top face loaded with a surface force. The loading was f = 465N/mm2, side length 1mm, Young’s
modulus E = 2 · 105 MPa and the Poisson’s ratio µ = 0.33. There were always 64 elements per
subdomain, and the number of subdomains was variable for different test cases. Note that our
results for CP solution do not depend on the number of elements in the subdomains.

6.2 Results

After the initial tests for the 216 subdomains, MUMPS was disregarded as a solver, because
even on a small problem it performed worse (in the strategy S1 by 95%, in the S2 by 12%)
than SuperLU. Moreover, SuperLU should scale better (see Section 4.2.1). It also turned out
that the preconditioner for the CG methods is too expensive to apply. Therefore we denote
unpreconditioned PCG as CG, and PipePCG as PipeCG respectively.

In both strategies, we denote by GGtinv a preprocesing phase that includes the time needed
for the creation of the subcommunicators and copying of the GGT matrix into the subcommu-
nicators. Additionally for the strategy S1, it includes the time needed for the factorization of
GGT , and for the strategy S2 the

(
GGT

)−1
computational time is included. Let us reiterate

that Nr represents the number of subcommunicators epmloyed, and Nc is the number of cores.
Note that number of cores is the same as the number of subdomains (Nc = Ns).

In the following text, you can find tables with a performance given for several numbers of
the subdomains (sizes of CP). Each table shows the time of CP solution and its dependence
upon the number of subcommunicators. Graphs representing these data accompany each table.

Note that for the 13824 subdomains the CG method was disregarded, as was PipeCG for
the 27000 subdomains, because they did not performed as well as SuperLU.

GGtinv + X CP appl.
Nr (Nc/Nr) Solver Strategy GGtinv CP appl. X = 100 X = 100 X = 1000
5 (200) SuperLU S1 0.0191 0.0072 0.7394 7.2219 72.046
10 (100) SuperLU S1 0.0212 0.0043 0.4528 4.3374 43.183
50 (20) SuperLU S1 0.1314 0.0049 0.6231 5.0483 49.300
10 (100) SuperLU S2 3.4010 0.0008 3.4773 4.1642 11.033
50 (20) SuperLU S2 0.7147 0.0008 0.7910 1.4778 8.3464
100 (10) SuperLU S2 3.1202 0.0008 3.1965 3.8834 10.752
10 (100) CG S2 11.130 0.0008 11.206 11.893 18.762
50 (20) CG S2 2.0988 0.0008 2.1751 2.8620 9.7305
100 (10) CG S2 2.1599 0.0008 2.2362 2.9231 9.7916
10 (100) PipeCG S2 5.8369 0.0008 5.9132 6.6001 13.469
50 (20) PipeCG S2 1.3949 0.0008 1.4712 2.1581 9.0266
100 (10) PipeCG S2 2.0276 0.0008 2.1039 2.7908 9.6593

Table 1: 1000 subdomains: Time in seconds for different settings. The best time for the GGtinv
+ a number of CP applications is given in bold.

27

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU
S2 - SuperLU

S2 - CG
S2 - PipeCG

Figure 8: 1000 subdomains: GGtinv + 100 CP applications

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU
S2 - SuperLU

S2 - CG
S2 - PipeCG

Figure 9: 1000 subdomains: GGtinv + 1000 CP applications

28

GGtinv + X CP appl.
Nr (Nc/Nr) Solver Strategy GGtinv CP appl. X = 100 X = 100 X = 1000
32 (128) SuperLU S1 0.9911 0.0095 1.9371 10.450 95.584
64 (64) SuperLU S1 0.1033 0.0110 1.2065 11.136 110.43
128 (32) SuperLU S1 1.3202 0.0115 2.4716 12.835 116.47
192 (21.3) SuperLU S1 2.1806 0.0128 3.4626 15.001 130.38
256 (16) SuperLU S1 3.3994 0.0169 5.0882 20.287 172.28
64 (64) SuperLU S2 5.1644 0.0013 5.2931 6.4514 18.034
128 (32) SuperLU S2 4.0476 0.0013 4.1763 5.3346 16.917
192 (21.3) SuperLU S2 4.1978 0.0013 4.3265 5.4848 17.068
256 (16) SuperLU S2 5.9242 0.0013 6.0529 7.2112 18.794
64 (64) CG S2 13.914 0.0013 14.043 15.201 26.784
128 (32) CG S2 8.6927 0.0013 8.8214 9.9797 21.563
192 (21.3) CG S2 7.1820 0.0013 7.3107 8.4690 20.052
256 (16) CG S2 8.3792 0.0013 8.5079 9.6662 21.250
64 (64) PipeCG S2 9.6049 0.0013 9.7336 10.892 22.475
128 (32) PipeCG S2 7.4454 0.0013 7.5741 8.7324 20.316
192 (21.3) PipeCG S2 6.7212 0.0013 6.8499 8.0082 19.592
256 (16) PipeCG S2 7.9968 0.0013 8.1255 9.2838 20.867

Table 2: 4096 subdomains: Time in seconds for different settings. The best time for the GGtinv
+ a number of CP applications is given in bold.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU
S2 - SuperLU

S2 - CG
S2 - PipeCG

Figure 10: 4096 subdomains: GGtinv + 100 CP applications

29

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 50 100 150 200 250 300

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU
S2 - SuperLU

S2 - CG
S2 - PipeCG

Figure 11: 4096 subdomains: GGtinv + 1000 CP applications

GGtinv + X CP appl.
Nr (Nc/Nr) Solver Strategy GGtinv CP appl. X = 100 X = 100 X = 1000
20 (400) SuperLU S1 0.0497 0.0264 2.6868 26.420 263.76
50 (160) SuperLU S1 0.1222 0.0173 1.8526 17.426 173.16
80 (100) SuperLU S1 0.2038 0.0249 2.6986 25.152 249.69
125 (64) SuperLU S1 0.5049 0.0242 2.9291 24.747 242.93
250 (32) SuperLU S1 2.2229 0.0273 4.9519 29.513 275.12
125 (64) SuperLU S2 11.700 0.0025 11.954 14.243 37.129
250 (32) SuperLU S2 9.2003 0.0025 9.4546 11.743 34.630
320 (25) SuperLU S2 11.106 0.0025 11.360 13.649 36.535
125 (64) CG S2 23.044 0.0025 23.298 25.587 48.473
250 (32) CG S2 20.851 0.0025 21.105 23.394 46.280
320 (25) CG S2 17.978 0.0025 18.232 20.521 43.407
125 (64) PipeCG S2 18.277 0.0025 18.531 20.820 43.706
250 (32) PipeCG S2 16.557 0.0025 16.811 19.100 41.986
320 (25) PipeCG S2 19.443 0.0025 19.697 21.986 44.872

Table 3: 8000 subdomains: Time in seconds for different settings. The best time for the GGtinv
+ a number of CP applications is given in bold.

30

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU
S2 - SuperLU

S2 - CG
S2 - PipeCG

Figure 12: 8000 subdomains: GGtinv + 100 CP applications

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 50 100 150 200 250 300 350

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU
S2 - SuperLU

S2 - CG
S2 - PipeCG

Figure 13: 8000 subdomains: GGtinv + 1000 CP applications

31

GGtinv + X CP appl.
Nr (Nc/Nr) Solver Strategy GGtinv CP appl. X = 100 X = 100 X = 1000
32 (432) SuperLU S1 0.1073 0.0282 2.9244 28.278 281.82
48 (288) SuperLU S1 0.2006 0.0244 2.6373 24.568 243.87
72 (192) SuperLU S1 0.2920 0.0264 2.9301 26.674 264.11
144 (96) SuperLU S1 1.2215 0.0310 4.3248 32.255 311.56
216 (64) SuperLU S2 19.400 0.0049 22.467 26.873 70.936
432 (32) SuperLU S2 19.274 0.0049 19.764 24.170 68.234
576 (24) SuperLU S2 21.977 0.0049 19.890 24.296 68.359
144 (96) PipeCG S2 37.776 0.0049 38.266 42.672 86.735
216 (64) PipeCG S2 37.408 0.0049 37.898 42.304 86.367
432 (32) PipeCG S2 61.530 0.0049 62.020 66.426 110.489
576 (24) PipeCG S2 67.763 0.0049 68.253 72.659 116.722

Table 4: 13824 subdomains: Time in seconds for different settings. The best time for the GGtinv
+ a number of CP applications is given in bold.

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU S2 - SuperLU S2 - PipeCG

Figure 14: 13824 subdomains: GGtinv + 100 CP applications

32

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 100 200 300 400 500 600

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU S2 - SuperLU S2 - PipeCG

Figure 15: 13824 subdomains: GGtinv + 1000 CP applications

GGtinv + X CP appl.
Nr (Nc/Nr) Solver Strategy GGtinv CP appl. X = 100 X = 100 X = 1000
25 (1080) SuperLU S1 0.1165 0.0516 5.2758 51.710 516.05
50 (540) SuperLU S1 0.2089 0.0473 4.9427 47.547 473.59
72 (375) SuperLU S1 0.2823 0.0478 5.0613 48.072 478.18
125 (64) SuperLU S2 48.504 0.0085 49.356 57.025 133.71
250 (32) SuperLU S2 41.063 0.0085 41.915 49.584 126.27
320 (25) SuperLU S2 42.568 0.0085 43.420 51.089 127.77

Table 5: 27000 subdomains: Time in seconds for different settings. The best time for the GGtinv
+ a number of CP applications is given in bold.

33

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU S2 - SuperLU

Figure 16: 27000 subdomains: GGtinv + 100 CP applications

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 0 100 200 300 400 500 600 700 800

T
im

e
 [

s
]

Number of Subcommunicators

S1 - SuperLU S2 - SuperLU

Figure 17: 27000 subdomains: GGtinv + 1000 CP applications

34

6.3 Evaluation of CP Strategies

From the previous section, it is clear that the direct solver SuperLU is best suited for CP
solution. This is true regardless of the strategy chosen.

For the following discussion about apparent patterns in each strategy, we will concern
ourselves with the number of subdomains of 4096 and higher. This is done because in the
smaller cases the results are biased by several influences (like caches), and so they are highly
impractical for the identification of patterns.

The strategy S1 seems to perform optimally with about 50 subcommunicators. Keeping the
number of subcommunicators approximately constant leads to the increase in the number of
cores in the subcommunicators by the same factor as the increase in the number of subdomains.
The time for factorization scales well, but since a single CP application does not scale linearly,
the strategy scales badly because a number of CP applications is needed.

For the strategy S2 it appears that up to the 13824 subdomains it is best to keep the number
of cores per subcommunicator constant at about 32 cores per subcommunicator. This however
does not hold true for the 27000 subdomains case, where we see a shift in favor of the employment
of more cores per the subcommunicators. Increase in the number of subdomains by a certain
factor leads to the increase of a locally owned portion of GGT and also of the number of columns
of the identity matrix (right hand sides) by the same factor. We can see that the time for both
the GGtinv and the application of CP also grows approximately by this factor too. This again
leads to poor weak scalability.

The scalability of both strategies is shown in Figures 18 to 20 for the different numbers of
applications of CP. These graphs nicely illustrate that scalability of the strategy S1 depends on
scalability of CP application, while scalability of the strategy S2 depends on scalability of the
GGtinv.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5000 10000 15000 20000 25000 30000

T
im

e
 [

s
]

Number of Subdomains

Strategy S1 Strategy S2

Figure 18: Weak scaling: GGtinv + 100 CP applications

35

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5000 10000 15000 20000 25000 30000

T
im

e
 [

s
]

Number of Subdomains

Strategy S1 Strategy S2

Figure 19: Weak scaling: GGtinv + 1000 CP applications

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000 30000

T
im

e
 [

s
]

Number of Subdomains

Strategy S1 Strategy S2

Figure 20: Weak scaling: GGtinv + 10000 CP applications

The GGtinv phase of the strategy S1 is very cheap in comparison with the strategy S2.
On the other hand, the strategy S1 has much more expensive CP applications compared with
the strategy S2. So it is no surprise, that for problems with higher number of expected CP
applications, it is better to use the strategy S2. We could already notice that from the scalability

36

graphs in Figures 18 to 20. This is further illustrated in Figure 21, where combinations of the
number of subdomains and expected iterations on the left of (or above) the line performs better
when the strategy S2 is employed, and vice versa the strategy S1 is better on the right of (or
below) the dividing line.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5000 10000 15000 20000 25000 30000

Strategy S2 Strategy S1

N
u
m

b
e
r

o
f

C
P
 a

p
p
li
c
a
ti

o
n
s

Number of Subdomains

Figure 21: Choice of a strategy depends on the number of expected CG iterations and the
number of subdomains

37

7 Conclusion
In this thesis, the most promising strategies for solution of the TFETI coarse problem were
analysed. The analysis dealt with all the important ingredients, including data distribution and
communication, for a massively parallel implementation. The performance measurements were
done from the 1000 up to 27000 subdomains, and a further discussion of the performance trends
was provided.

All programming work is now part of the PERMON library. I have improved the imple-
mentation of the strategy S1 by circumventing a PETSc bug (that is now fixed in the current
development branch), gaining a speedup of 4 to 7 on the ARCHER supercomputer. I have also
rewritten a portion of a PERMON code related to the explicit inverse (strategy S2), so that it
works with newer versions of PETSc and is more efficient.

While these changes lead to a significant improvement in the performance of CP solution
phase, they could not eliminate the bottleneck that the CP is. This bottleneck is an intrinsic
part of the TFETI method. Some methods (like HTFETI [28]) attempts to reduce this problem.
However, to eliminate the bottleneck of CP altogether a novel approach is required.

In future work, I would like to focus on a further research into (and development of) the
FETI based methods. Also, I would like to further participate on the development of the
PERMON toolbox, as the QP approach is very intriguing. In the course of this work I have
become interested in the Krylov subspace methods and a communication avoiding and hiding
techniques as well.

Jakub Kružík

38

References
[1] C. Farhat and F.-X. Roux, “A method of finite element tearing and interconnecting and its

parallel solution algorithm”, International Journal for Numerical Methods in Engineering,
vol. 32, no. 6, pp. 1205–1227, 1991, issn: 1097-0207. doi: 10.1002/nme.1620320604.

[2] Z. Dostál, D. Horák and R. Kučera, “Total FETI – an easier implementable variant of
the FETI method for numerical solution of elliptic PDE”, Communications in Numerical
Methods in Engineering, vol. 22, no. 12, pp. 1155–1162, 2006, issn: 1099-0887. doi: 10.
1002/cnm.881.

[3] T. Kozubek, V. Vondrak, M. Mensik, D. Horak, Z. Dostal, V. Hapla, P. Kabelikova and
M. Cermak, “Total FETI domain decomposition method and its massively parallel im-
plementation”, Advances in Engineering Software, vol. 60-61, pp. 14–22, Jun. 2013, issn:
09659978. doi: 10.1016/j.advengsoft.2013.04.001.

[4] V. Hapla and D. Horak, “A comparison of FETI natural coarse space projector imple-
mentation strategies”, in Proceedings of the Third International Conference on Parallel,
Distributed, Grid and Cloud Computing for Engineering, Stirlingshire, UK: Civil-Comp
Press, 2013, isbn: 9781905088560. doi: 10.4203/ccp.101.6.

[5] D. P. Bertsekas, Nonlinear Programming, 2nd. Athena Scientific, Sep. 1999, isbn: 1886529000.
[6] Z. Dostál, Optimal Quadratic Programming Algorithms: With Applications to Variational

Inequalities, ser. Springer Optimization and Its Applications. Springer US, 2009, vol. 23,
isbn: 9780387848068.

[7] C. Farhat, J. Mandel and F. X. Roux, “Optimal convergence properties of the FETI domain
decomposition method”, Computer Methods in Applied Mechanics and Engineering, vol.
115, no. 3–4, pp. 365–385, 1994, issn: 0045-7825. doi: 10.1016/0045-7825(94)90068-X.

[8] C. Farhat and F.-X. Roux, “An unconventional domain decomposition method for an
efficient parallel solution of large-scale finite element systems”, SIAM Journal on Scientific
and Statistical Computing, vol. 13, no. 1, pp. 379–396, Jan. 1992, issn: 0196-5204. doi:
10.1137/0913020.

[9] T. Kozubek, D. Horak and V. Hapla, “FETI coarse problem parallelization strategies
and their comparison”, PRACE, White Paper. [Online]. Available: http://www.prace-
ri.eu/IMG/pdf/feticoarseproblemparallelization.pdf (visited on 07/04/2016).

[10] V. Hapla, “Massively parallel quadratic programming solvers with applications in mech-
anics”, PhD thesis, VSB – Technical University of Ostrava, 2016.

[11] V. Hapla and D. Horák, “TFETI coarse space projectors parallelization strategies”, in
Parallel Processing and Applied Mathematics - 9th International Conference, PPAM 2011,
Torun, Poland, September 11-14, 2011. Revised Selected Papers, Part I, 2011, pp. 152–
162. doi: 10.1007/978-3-642-31464-3_16.

[12] G. H. Golub and C. F. van Loan, Matrix Computations, Fourth. JHU Press, 2013, isbn:
1421407949 9781421407944.

[13] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997, isbn: 0898713617.
[14] X. S. Li, “An overview of SuperLU: Algorithms, implementation, and user interface”, vol.

31, no. 3, pp. 302–325, Sep. 2005.

http://dx.doi.org/10.1002/nme.1620320604
http://dx.doi.org/10.1002/cnm.881
http://dx.doi.org/10.1002/cnm.881
http://dx.doi.org/10.1016/j.advengsoft.2013.04.001
http://dx.doi.org/10.4203/ccp.101.6
http://dx.doi.org/10.1016/0045-7825(94)90068-X
http://dx.doi.org/10.1137/0913020
http://www.prace-ri.eu/IMG/pdf/feticoarseproblemparallelization.pdf
http://www.prace-ri.eu/IMG/pdf/feticoarseproblemparallelization.pdf
http://dx.doi.org/10.1007/978-3-642-31464-3_16

39

[15] X. S. Li and J. W. Demmel, “Superlu_dist: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems”, ACM Trans. Mathematical Software, vol. 29, no.
2, pp. 110–140, Jun. 2003.

[16] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent, “A fully asynchronous multi-
frontal solver using distributed dynamic scheduling”, SIAM Journal on Matrix Analysis
and Applications, vol. 23, no. 1, pp. 15–41, 2001.

[17] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, “Hybrid scheduling for
the parallel solution of linear systems”, Parallel Computing, vol. 32, no. 2, pp. 136–156,
2006.

[18] P. R. Amestoy, I. S. Duff, J.-Y. L’excellent and X. S. Li, “Analysis and comparison of two
general sparse solvers for distributed memory computers”, ACM Trans. Math. Softw., vol.
27, no. 4, pp. 388–421, Dec. 2001, issn: 0098-3500. doi: 10.1145/504210.504212.

[19] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems”,
Journal of research of the National Bureau of Standards, vol. 49, pp. 409–436, 1952.

[20] J. R. Shewchuk, “An introduction to the conjugate gradient method without the agonizing
pain”, Pittsburgh, PA, USA, Tech. Rep., 1994.

[21] P. Ghysels and W. Vanroose, “Hiding global synchronization latency in the preconditioned
conjugate gradient algorithm”, Parallel Computing, vol. 40, no. 7, pp. 224–238, 2014, 7th
Workshop on Parallel Matrix Algorithms and Applications, issn: 0167-8191. doi: 10 .
1016/j.parco.2013.06.001.

[22] A. Chronopoulos and C. Gear, “S-step iterative methods for symmetric linear systems”,
Journal of Computational and Applied Mathematics, vol. 25, no. 2, pp. 153–168, 1989,
issn: 0377-0427. doi: 10.1016/0377-0427(89)90045-9.

[23] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout,
W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith and
H. Zhang, “PETSc users manual”, Argonne National Laboratory, Tech. Rep. ANL-95/11
- Revision 3.5, 2014.

[24] S. Balay, W. D. Gropp, L. C. McInnes and B. F. Smith, “Efficient management of parallel-
ism in object oriented numerical software libraries”, in Modern Software Tools in Scientific
Computing, E. Arge, A. M. Bruaset and H. P. Langtangen, Eds., Birkhäuser Press, 1997,
pp. 163–202.

[25] PERMON web page, [Online]. Available: http://permon.it4i.eu (visited on 21/04/2016).
[26] ARCHER web page, [Online]. Available: http : / / www . archer . ac . uk/ (visited on

22/04/2016).
[27] TOP500 November 2015 list, [Online]. Available: http://top500.org/list/2015/11/

(visited on 22/04/2016).
[28] T. Brzobohatý, M. Jarošová, T. Kozubek, M. Menšík and A. Markopoulos, “The Hybrid

Total FETI method”, in Proceedings of the Third International Conference on Parallel,
Distributed, Grid and Cloud Computing for Engineering, Stirlingshire, UK: Civil-Comp
Press, 2013, isbn: 9781905088560. doi: 10.4203/ccp.101.2.

http://dx.doi.org/10.1145/504210.504212
http://dx.doi.org/10.1016/j.parco.2013.06.001
http://dx.doi.org/10.1016/j.parco.2013.06.001
http://dx.doi.org/10.1016/0377-0427(89)90045-9
http://permon.it4i.eu
http://www.archer.ac.uk/
http://top500.org/list/2015/11/
http://dx.doi.org/10.4203/ccp.101.2

	Introduction
	The TFETI Method
	Dualization
	Natural Coarse Grid
	Algorithm

	The TFETI Coarse Problem
	The Storage and Assembly of CP Matrices
	CP Solution Strategies

	Algorithms for Solution of Coarse Problem
	LU Factorization
	Pivoting
	Solution of Triangular Systems
	Implementation

	Cholesky Factorization
	Implementation

	The Conjugate Gradient Method
	The Method of Steepest Descent
	Conjugate Directions
	Gram-Schmidt A-orthogonalization Process
	Conjugate Gradient Algorithm
	Communication Hiding in the CG Method
	Implementation

	Libraries and HPC environment
	PETSc
	PERMON
	PermonQP
	PermonFLLOP
	PermonCube

	ARCHER

	Numerical Experiments
	Problem Description
	Results
	Evaluation of CP Strategies

	Conclusion

