VŠB – Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra telekomunikační techniky

Elektronické filtry a oscilátory realizované pomocí proudových aktivních prvků

Electronic Filters and Oscillators Realized Using Current Active Elements

Bc. Jiří Linhart

VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra telekomunikační techniky

Zadání diplomové práce

Student:

Studijní program:

Studijní obor:

Téma:

N2647 Informační a komunikační technologie

Bc. Jiří Linhart

2601T013 Telekomunikační technika

Elektronické filtry a oscilátory realizované pomocí proudových aktivních prvků Electronic Filters and Oscillators Realized Using Current Active Elements

Jazyk vypracování:

čeština

Zásady pro vypracování:

1. Vypracujte přehled obvodových řešení, modelů a parametrů komerčně dostupných aktivních proudových prvků.

2. Analyzujte a upravte obvodová řešení univerzálních ARC bikvadů typu KHN a TT pro realizaci multifunkčních filtrů 2. řádu pomocí těchto aktivních prvků.

3. Analyzujte vliv podkritické kladné zpětné vazby při realizaci pásmových propustí a oscilátorů harmonického signálu s proudovými aktivními prvky.

4. Parametry navržených zapojení experimentálně ověřte.

Seznam doporučené odborné literatury:

[1]DOSTÁL, Tomáš, AXMAN, Vladimír. *Elektrické filtry*. Brno : FEKT VUT, 2002. 343 s. ISBN REL 002.

[2]PUNČOCHÁŘ, Josef. *Operační zesilovače - historie a současnost*. 1. vyd. Praha : BEN - technická literatura, 2002. 68 s. ISBN 80-7300-047-4.

Vlastní literární rešerše k řešené problematice.

Formální náležitosti a rozsah diplomové práce stanoví pokyny pro vypracování zveřejněné na webových stránkách fakulty.

Vedoucí diplomové práce: Ing. Zdeněk Tesař

Datum zadání: 01.09.2015 Datum odevzdání: 29.04.2016 doc. Ing. Miroslav Vozňák, Ph.D. vedoucí katedry

Prohlášení studenta

Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

V Ostravě dne: 25. dubna 2016

Linhard podpis studenta

Poděkování

Rád bych poděkoval Ing. Zdeňku Tesařovi za odbornou pomoc a konzultaci při vytváření této diplomové práce.

Abstrakt

Diplomová práce se zabývá popisem komerčně dostupných aktivních proudových prvků typu proudový konvejor, návrhem a podrobnou analýzou filtrů typu pásmová propust, elektronických oscilátorů a univerzálních filtrů KHN a TT. Pro realizaci elektronických filtrů a oscilátorů jsou použity transimpedanční operační zesilovače AD844, které v sobě obsahují pozitivní proudové konvejory druhé generace (CCII+). Charakteristiky pásmových propustí byly experimentálně ověřeny měřením frekvenčních charakteristik. Funkce oscilátorů byla ověřena zobrazením časového průběhu a frekvenčního spektra generovaného signálu.

Klíčová slova

Proudový konvejor; CCII+; filtr; oscilátor; AD844; OPA860; OPA861; frekvenční charakteristika; impulzní charakteristika; frekvenční spektrum; podkritická kladná zpětná vazba

Abstract

This master's thesis describes commercially available current active elements such as current conveyor, design and detailed analysis of band-pass filters, electronic oscillators and universal KHN and TT filters. For the realization of electronic filters and oscillators are used transimpedance operational amplifiers AD844, which contain the positive second generation current conveyors (CCII+). Bandpass characteristics were experimentally verified by measuring the frequency characteristics. Function of oscillators was verified by displaying time waveform and frequency spectrum of the generated signal.

Key words

Current conveyor; CCII+; filter; oscillator; AD844; OPA860; OPA861; frequency characteristic; pulse characteristic; frequency spectrum; subcritical positive feedback

Obsah

Seznam použitých symbolů 10 -						
Seznam použitých zkratek 11 -						
Sez	Seznam ilustrací a seznam tabulek 12 -					
Úvo	Úvod 16 -					
1	Komer	čně dos	tupné aktivní proudové prvky	17 -		
	1.1	Tran	simpedanční operační zesilovač AD844	17 -		
	1.2	Tran	skonduktanční operační zesilovač OPA860/OPA861	19 -		
2	Analýz	a pásm	ových propustí	21 -		
	2.1	Pásm	nová propust se zpětnou vazbou	21 -		
	2.2	Pásm	nová propust realizovaná aktivním prvkem CCII+	23 -		
		2.2.1	Návrh součástek pro pásmovou propust	27 -		
		2.2.2	Frekvenční charakteristiky zapojení	28 -		
	2.3	Pásm	nová propust realizovaná CCII+ s podkritickou kladnou zpětnou vazbo	u-29-		
		2.3.1	Návrh součástek pro pásmovou propust se zpětnou vazbou	30 -		
		2.3.2	Frekvenční charakteristiky zapojení	32 -		
	2.4	RLC	modifikovaná pásmová propust s podkritickou kladnou zpětnou vazbo	ou- 33 -		
		2.4.1	Návrh součástek pro RLC modifikovanou propust	35 -		
		2.4.2	Frekvenční charakteristiky zapojení	37 -		
	2.5	Pásm	nová propust realizovaná 3 aktivními prvky	37 -		
		2.5.1	Návrh součástek PP realizované 3 aktivními prvky	38 -		
		2.5.2	Frekvenční charakteristiky zapojení	39 -		
	2.6	Pásm	nová propust realizovaná dvěma CCII+ s podkritickou kladnou ZV	40 -		
		2.6.1	Návrh součástek pro pásmovou propust	41 -		
		2.6.2	Frekvenční charakteristiky zapojení	42 -		
3	Analýz	a oscilá	itorů	44 -		
	3.1	1. mo	odifikace RC oscilátoru	44 -		
		3.1.1	Návrh součástek pro RC oscilátor	46 -		
		3.1.2	Frekvenční a impulzní charakteristika zapojení	47 -		
	3.2	2. m	odifikace RC oscilátoru	48 -		
3.2.1 Návrh součástek pro RC oscilátor				48 -		
		3.2.2	Frekvenční a impulzní charakteristika zapojení	49 -		

	3.3	3. modifikace RC oscilátoru s proudovým výstupem	- 50 -
		3.3.1 Návrh součástek pro RC oscilátor	- 51 -
		3.3.2 Frekvenční a impulzní charakteristika zapojení	- 52 -
	3.4	4. modifikace RC oscilátoru	- 53 -
		3.4.1 Návrh součástek pro RC oscilátor	- 55 -
		3.4.2 Frekvenční a impulzní charakteristika zapojení	- 56 -
	3.5	5. modifikace RC oscilátoru s proudovým výstupem	- 57 -
		3.5.1 Návrh součástek pro RC oscilátor	- 58 -
		3.5.2 Frekvenční a impulzní charakteristika zapojení	- 59 -
	3.6	6. modifikace RC oscilátoru	- 60 -
		3.6.1 Návrh součástek pro RC oscilátor:	- 61 -
		3.6.2 Frekvenční a impulzní charakteristika zapojení	- 62 -
4	Analýz	za ARC bikvadů KHN a TT	- 64 -
	4.1	KHN filtr realizovaný třemi CCII+	- 64 -
		4.1.1 Návrh součástek pro KHN filtr	- 65 -
		4.1.2 Amplitudové frekvenční charakteristiky zapojení	- 66 -
	4.2	TT filtr realizovaný dvěma CCII+	- 67 -
		4.2.1 Návrh součástek pro TT filtr	- 68 -
		4.2.2 Amplitudové frekvenční charakteristiky zapojení	- 69 -
5	Experi	mentální ověření	- 71 -
	5.1	Pásmová propust realizovaná aktivním prvkem CCII+	- 71 -
	5.2	Pásmová propust realizovaná CCII+ s podkritickou kladnou zpětnou vazbou	- 72 -
	5.3	Pásmová propust se syntetickým induktorem s podkritickou kladnou ZV	- 72 -
	5.4	KHN filtr realizovaný třemi CCII+	- 73 -
	5.5	TT filtr realizovaný dvěma CCII+	- 75 -
	5.6	1. modifikace RC oscilátoru	- 76 -
	5.7	2. modifikace RC oscilátoru	- 77 -
	5.8	6. modifikace RC oscilátoru	- 79 -
Záv	věr		- 81 -
Ροι	Použitá literatura 82		
Sez	znam pří	loh	- 83 -

Symbol	Jednotky	Význam symbolu
В	Hz	Šířka pásma
С	F	Kondenzátor
<i>F(p)</i>	_	Přenosová funkce
K	_	Přenos středního kmitočtu
L	Н	Cívka
Q	_	Činitel jakosti
R	Ω	Rezistor
Ζ	Ω	Impedance
f_0	Hz	Mezní kmitočet
i	А	Proud
m	—	Pomocná veličina
n	—	Pomocná veličina
и	V	Napětí
β	—	Přenos zpětné vazby
ω_0	Hz	Střední kmitočet

Seznam použitých symbolů

Zkratka	Význam
AD844	Transimpedanční operační zesilovač
ARC	Aktivní filtry RC
CCII+	Proudový konvejor druhé generace pozitivní
DP	Dolní propust
HP	Horní propust
KHN	Univerzální filtr
OPA820	Širokopásmový operační zesilovač
OPA860	Transkonduktanční operační zesilovač
OPA861	Transkonduktanční operační zesilovač
PP	Pásmová propust
ТТ	Univerzální filtr
VCA810	Napěťový zesilovač

Seznam použitých zkratek

Číslo ilustrace	Název ilustrace	Číslo stránky
1.1	Model první úrovně AD844	17
1.2	Model druhé úrovně AD844	17
1.3	Model třetí úrovně AD844	17
1.4	Vnitřní zjednodušené zapojení transimpedančního OZ AD844	18
1.5	Model první úrovně OPA860	19
1.6	Model druhé úrovně OPA860	19
1.7	Model třetí úrovně OPA860	19
1.8	Vnitřní zjednodušené zapojení transkonduktančního OZ OPA861	20
2.1	Pásmová propust se zpětnou vazbou	21
2.2	Zjednodušení obvodu pomocí superpozice	21
2.3	Zjednodušení obvodu pomocí superpozice	22
2.4	Pásmová propust s aktivním prvkem CCII+	23
2.5	Pásmová propust nahrazená impedancemi	24
2.6	1. varianta zapojení pásmové propusti	28
2.7	2. varianta zapojení pásmové propusti	28
2.8	Amplitudová frekvenční charakteristika pásmové propusti	29
2.9	Fázová frekvenční charakteristika pásmové propusti	29
2.10	Pásmová propust realizovaná aktivním prvkem CCII+ se zpětnou vazbou	30
2.11	1. varianta zapojení	31
2.12	2. varianta zapojení	32
2.13	Amplitudové frekvenční charakteristiky pásmové propusti	32
2.14	Fázové frekvenční charakteristiky pásmové propusti	33
2.15	RLC modifikovaná pásmová propust se zpětnou vazbou	33
2.16	RLC zapojení nahrazeno impedancemi	34
2.17	Nahrazení cívky a rezistoru syntetickým induktorem	35

Seznam ilustrací a seznam tabulek

2.18	Zapojení pásmové propusti s navrhnutými součástkami	36
2.19	Amplitudové frekvenční charakteristiky pásmové propusti	37
2.20	Fázové frekvenční charakteristiky pásmové propusti	37
2.21	Pásmová propust realizovaná 3 aktivními prvky	38
2.22	Zapojení s navrhnutými součástkami	39
2.23	Amplitudová frekvenční charakteristika pásmové propusti	40
2.24	Fázová frekvenční charakteristika pásmové propusti	40
2.25	Pásmová propust realizovaná 2 CCII+ s podkritickou kladnou ZV	41
2.26	Zapojení pásmové propusti s navrhnutými součástkami	42
2.27	Amplitudové frekvenční charakteristiky pásmové propusti	43
2.28	Fázové frekvenční charakteristiky pásmové propusti	43
3.1	Zapojení RC oscilátoru	44
3.2	Zapojení s navrhnutými součástkami	46
3.3	Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru	47
3.4	Impulzní charakteristika oscilátoru	47
3.5	Zapojení RC oscilátoru	48
3.6	Zapojení s navrhnutými součástkami	49
3.7	Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru	50
3.8	Impulzní charakteristika oscilátoru	50
3.9	Zapojení RC oscilátoru s proudovým výstupem	51
3.10	Zapojení s navrhnutými součástkami	52
3.11	Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru	53
3.12	Impulzní charakteristika oscilátoru	53
3.13	Zapojení RC oscilátoru	54
3.14	Zapojení s navrhnutými součástkami	56
3.15	Amplitudová frekvenční charakteristika autonomního	56

	obvodu oscilátoru	
3.16	Impulzní charakteristika oscilátoru	57
3.17	Zapojení RC oscilátoru s proudovým výstupem	57
3.18	Zapojení s navrhnutými součástkami	58
3.19	Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru	59
3.20	Impulzní charakteristika oscilátoru	59
3.21	Zapojení RC oscilátoru	60
3.22	Zapojení s navrhnutými součástkami	61
3.23	1. varianta zesilovače řízeného výstupním signálem	62
3.24	2. varianta zesilovače řízeného výstupním signálem	62
3.25	Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru	63
3.26	Impulzní charakteristika oscilátoru	63
4.1	Zapojení KHN filtru s operačními zesilovači	64
4.2	Zapojení KHN filtru s proudovými konvejory CCII+ 64	
4.3	Zapojení KHN filtru s navrhnutými součástkami	66
4.4	Amplitudové frekvenční charakteristiky KHN filtru pro Q = 0,707	66
4.5	Amplitudové frekvenční charakteristiky KHN filtru pro Q = 5	67
4.6	Amplitudové frekvenční charakteristiky KHN filtru pro Q = 10	67
4.7	Zapojení filtru TT s proudovými konvejory CCII+	68
4.8	Zapojení filtru TT s navrhnutými součástkami	69
4.9	Amplitudové frekvenční charakteristiky pásmové propusti TT filtru	69
4.10	Amplitudové frekvenční charakteristiky dolní propusti TT filtru	70
5.1	Realizované zapojené pásmové propusti	71
5.2	Amplitudová frekvenční charakteristika pásmové propusti	71
5.3	Realizované zapojení pásmové propusti s podkritickou kladnou ZV pro $Q = 10$	72

5.4	Amplitudové frekvenční charakteristiky pásmové propusti	72
5.5	Realizované zapojení pásmové propusti se syntetickým induktorem pro $Q = 11$	73
5.6	Amplitudové frekvenční charakteristiky pásmové propusti	73
5.7	Realizované zapojení filtru KHN pro Q = 0,707	74
5.8	Amplitudové frekvenční charakteristiky KHN filtru pro Q = 0,707	74
5.9	Amplitudové frekvenční charakteristiky KHN filtru pro Q = 5	74
5.10	Realizované zapojení TT filtru pro Q = 0,707	75
5.11	Amplitudové frekvenční charakteristiky TT filtru pro Q = $0,707$	75
5.12	Amplitudové frekvenční charakteristiky TT filtru pro Q = 5	76
5.13	Realizované zapojení oscilátoru	76
5.14	Časový průběh výstupního signálu oscilátoru	77
5.15	Frekvenční spektrum generovaného signálu oscilátorem	77
5.16	Realizované zapojení oscilátoru	78
5.17	Časový průběh výstupního signálu oscilátoru	78
5.18	Frekvenční spektrum generovaného signálu oscilátorem	78
5.19	Realizované zapojení oscilátoru	79
5.20	Časový průběh výstupních signálů oscilátoru	79
5.21	Frekvenční spektrum generovaného signálu oscilátorem	80

Číslo tabulky	Název tabulky	Číslo stránky
1.1	Parametry zesilovače AD844	18
1.2	Parametry zesilovače OPA860	20

Úvod

Cílem této diplomové práce je navrhnout, analyzovat a ověřit funkčnost různých zapojení elektronických filtrů a oscilátorů. Stavební prvek pro elektronické filtry a oscilátory byl použit proudový aktivní prvek CCII+. Hlavním důvodem volby tohoto aktivního proudového prvku namísto klasických operačních zesilovačů jsou lepší dynamické vlastnosti pro vysoké kmitočty. Někdy se také označuje obchodním názvem diamantový tranzistor s napěťovým, vysokoimpedančním vstupem značeným B (u CCII+ je značen Y), proudovým, nízkoimpedančním vstupem značeným E (X) a proudovým, vysokoimpedančním výstupem označeným C (Z). Jelikož se CCII+ nikdy samostatně nevyráběl, je nutné sáhnout po univerzálních komerčně dostupných integrovaných obvodech např. AD844, OPA860 nebo OPA861, ve kterých je tento proudový aktivní prvek obsažen. Pro realizaci elektronických filtrů a oscilátorů jsem si vybral transimpedanční operační zesilovač AD844.

První kapitola se věnuje komerčně dostupným aktivním proudovým prvkům AD844, OPA860 a OPA861, které realizují pozitivní proudový konvejor druhé generace CCII+. Každý komerčně dostupný aktivní proudový prvek je popsán, dále jsou zde uvedeny tři úrovně modelů, jejich vnitřní zjednodušená zapojení, parametry a vlastnosti.

V druhé kapitole se zabývám vlivem podkritické kladné zpětné vazby na parametry elektronických filtrů typu pásmová propust. Nejdříve je stručně popsán princip filtru typu pásmová propust. Následuje zapojení základní pásmové propusti s podkritickou kladnou napěťovou zpětnou vazbou, kde je odvozen vztah pro přenos a činitel jakosti, pomocí kterého se volili hodnoty zpětnovazebních rezistorů. Dále byla navrhnuta a analyzována 4 zapojení pásmových propustí s podkritckou napěťovou zpětnou vazbou a 1 zapojení bez zpětné vazby.

Třetí kapitola se zabývá elektronickými oscilátory harmonického signálu. Nejprve je popsán princip oscilátoru a podmínky oscilací. Dále jsou zde uvedená navržená a analyzovaná zapojení elektronických oscilátorů s nadkritickou kladnou napěťovou zpětnou vazbou.

Čtvrtá kapitola se zaobírá univerzálními elektronickými filtry KHN a TT. Jejich univerzálnost spočívá v realizaci více typů filtrů. Filtr KHN realizuje pásmovou, dolní a horní propust a filtr TT realizuje pouze dolní a pásmovou propust. V práci je uvedeno jedno navrhnuté a analyzované zapojení filtru KHN a jedno zapojení filtru TT.

V poslední kapitole se zabývám měřením navržených zapojení a porovnáním se simulovanými výsledky.

1 Komerčně dostupné aktivní proudové prvky

1.1 Transimpedanční operační zesilovač AD844

AD844 vyráběný společností Analog Devices je vysokorychlostní monolitický operační zesilovač s proudovou zpětnou vazbou. Vyznačuje se vysokou šířkou pásma (60MHz se ziskem -1 a 33MHz s nastaveným ziskem -10), rychlou odezvou signálu, nízkým zkreslením, nízkým šumem, vysokou rychlostí přeběhu typicky 2000V/µs a nízkou cenou. Používá se jako převodník proudu na napětí, invertující zesilovač, neinvertující zesilovač, vyrovnávací paměť ve video technice, vstupní zesilovač pro komparační AD převodník apod. Může být použit jako náhrada tradičních operačních zesilovačů ve vysokofrekvenční oblasti, protože má výbornou impulzní odezvu [12]. Na obrázcích 1.1, 1.2 a 1.3 jsou zobrazeny tři úrovně modelů AD844.

Obrázek 1.3: Model třetí úrovně AD844

Model první úrovně je tvořen dvěma oddělovacími zesilovači, zdrojem proudu řízeným proudem a reprezentuje také ideální zapojení CCII+. Model druhé úrovně je charakterizován

parazitními rezistory R_x , R_y , R_z a R_o . Na třetí úrovni je model doplněn o parazitní kondenzátory C_x , C_y a C_z . Dále existuje model čtvrté úrovně, který respektuje nelinearity modelovaného obvodu, model páté úrovně reprezentuje profesionální makro model (SPICE modely dodávané výrobcem) a šestý model je na úrovni součástek (tranzistory). Pro nejčastější aplikace, které mají charakter lineárních obvodů, se využívají modely do třetí úrovně. Na obrázku 1.4 je zobrazeno vnitřní zjednodušené zapojení transimpedančního operačního zesilovače AD844, které realizuje CCII+.

Obrázek 1.4: Vnitřní zjednodušené zapojení transimpedančního OZ AD844

Tranzistory T5 a T6 tvoří proudové zrcadlo pro kladnou polaritu, zatímco tranzistory T7 a T8 tvoří proudové zrcadlo pro zápornou polaritu napětí. Tranzistory T1, T2, T3 a T4 tvoří oddělovací zesilovač. Proudy i_x a i_z se rovnají a platí pro ně vztah:

$$i_x = i_z = i_{cc1} - i_{cc2} \tag{1.1}$$

V tabulce 1.1 jsou uvedeny parametry zesilovače AD844:

Tabulka 1.1:Parametry zesilovače AD844

	Hodnoty
Vstupní napěťová nesymetrie	50 - 150μV
Napájecí napětí	5 – 18V
Záporný vstupní klidový proud (svorka X)	150 – 250nA
Kladný vstupní klidový proud (svorka Y)	100 – 200nA
Vstupní odpor (svorka X)	50 - 65Ω
Vstupní odpor (svorka Y)	$7-10M\Omega$
Vstupní kapacita (svorka X)	2pF
Vstupní kapacita (svorka Y)	2pF
Výstupní odpor (svorka Z)	$2,8-3M\Omega$

Komerčně dostupné aktivní proudové prvky

Výstupní kapacita (svorka Z)	4,5pF
Klidový proud	6,5 – 7,5mA
Výstupní rychlost přeběhu	1200 – 2000V/µs
Zesílení	60000
Trvalý proud (vstup X)	5mA
Krátkodobý proud (vstup X)	10mA

1.2 Transkonduktanční operační zesilovač OPA860/OPA861

OPA860/OPA861 vyráběny společností Texas Instruments jsou monolitické operační zesilovače tvořeny transkonduktančním operačním zesilovačem, OPA860 navíc obsahuje napěťový sledovač (buffer). Šířka pásma je u OTA uváděna 80MHz a rychlost přeběhu 900V/µs. U napěťového sledovače, který je součástí OPA860 je šířka pásma až 1600MHz a rychlost přeběhu 4000V/µs. Používají se k realizaci napěťových a proudových zesilovačů, převodníků U/I, převodníků I/U, filtrů, oscilátorů apod. [13], [14]. Na obrázcích 1.5, 1.6 a 1.7 jsou zobrazeny tři úrovně modelů OPA860.

Obrázek 1.5: Model první úrovně OPA860

Obrázek 1.6: Model druhé úrovně OPA860

Obrázek 1.7: Model třetí úrovně OPA860

Modely oproti transimpedančnímu operačnímu zesilovači AD844 nemají oddělovací zesilovač spojen s výstupní svorkou Z. Model druhé úrovně je charakterizován parazitními rezistory R_x , R_y , R_z , R_i a R_o s rozdílnými hodnotami oproti AD844. Na třetí úrovni je model doplněn o parazitní kondenzátory C_y , C_z a C_i . Na obrázku 1.8 je zobrazeno vnitřní zjednodušené zapojení transkonduktančního operačního zesilovače OPA861 (oproti OPA860 neobsahuje oddělovací zesilovač), které realizuje CCII+.

Obrázek 1.8: Vnitřní zjednodušené zapojení transkonduktančního OZ OPA861

Tranzistory T5 a T6 tvoří proudové zrcadlo pro kladnou polaritu, zatímco tranzistory T7 a T8 tvoří proudové zrcadlo pro zápornou polaritu napětí. T1, T2 a T3, T4 tvoří dvě komplementární dvojice tranzistorů. Proudy i_x a i_z se rovnají a opět zde platí vztah:

$$i_x = i_z = i_{cc1} - i_{cc2} \tag{1.2}$$

V tabulce 1.2 jsou uvedeny parametry zesilovače OPA860/OPA861:

 Tabulka 1.2:
 Parametry zesilovače OPA860/OPA861

	Hodnoty
Napájecí napětí	±6,5V
Vstupní napěťová nesymetrie	$12-20 \mathrm{mV}$
Vstupní klidový proud (svorka X)	5 – 6,6µA
Vstupní klidový proud (svorka Y)	100 - 140µA
Vstupní impedance (svorka X)	10,5 – 13,3Ω
Vstupní odpor (svorka Y)	455kΩ
Vstupní kapacita (svorka Y)	2,1pF
Výstupní odpor (svorka Z)	54kΩ
Výstupní kapacita (svorka Z)	2,1pF

2 Analýza pásmových propustí

Pásmová propust neboli lineární filtr je zařízení složené z dolní a horní propusti, které propouští signál v určitém pásmu mezi dvěma mezními frekvencemi, označovanými horní a dolní frekvence a zadržuje všechny frekvence mimo toto pásmo. Pásmové propusti složené pouze s pasivních prvků, jako jsou rezistory, kondenzátory a cívky se nazývají pasivní pásmové propusti. Výhody pasivních propustí jsou cena, jednoduché řešení filtrace a není potřeba napájení pro aktivní prvky. Za nevýhody lze označit nízký přenos, který může být maximálně roven jedné a nízkou hodnotu činitele jakosti, to má za následek přetlumení obvodů. Pásmové propusti obsahující navíc aktivní prvek, jako je operační zesilovač, tranzistor, current conveyor a podobně se nazývají aktivní pásmové propusti. Jejich výhoda je mnohem vyšší přenos a vyšší činitel jakosti. Nevýhodou je nutnost napájení aktivních prvků a frekvenční rozsah závisí na šířce pásma daného aktivního prvku [1], [2].

2.1 Pásmová propust se zpětnou vazbou

Zpětnou vazbu můžeme přesněji nazvat jako podkritická kladná paralelní napěťová zpětná vazba. Podkritcká, protože nechceme zpětnovazební obvod rozkmitat, nýbrž vyžadujeme stabilitu. Obvod se skládá z pásmové propusti, dvou zpětnovazebních rezistorů R_a , R_b , vstupní napětí je označeno u_1 , výstupní napětí u_2 a vstupní napětí do pásmové propusti, jež označíme u_A . Potřebujeme zjistit napětí u_A a jelikož je pásmová propust lineární obvod, platí zde princip superpozice.

Obrázek 2.1: Pásmová propust se zpětnou vazbou

V prvním kroku obvod zjednodušíme tak, že napětí u_1 zkratujeme, ale necháme napětí u_2 , jak si lze všimnout na obrázku 2.2. Napětí na uzlu (A) označíme u_A . Nyní můžeme odvodit vztah pro u_A a zároveň odvodit přenos zpětnovazebního obvodu β .

Obrázek 2.2: Zjednodušení obvodu pomocí superpozice

Vztah pro napětí u_A :

$$u_A' = \frac{R_a}{R_a + R_b} \cdot u_2 \tag{2.1}$$

Vztah pro přenos zpětnovazebního obvodu β je:

$$\beta = \frac{R_a}{R_a + R_b} < 1 \tag{2.2}$$

V druhém kroku opět upravíme obvod z obrázku 2.1. Tentokrát zkratujeme napětí u_2 a ponecháme napětí u_1 . Napětí na uzlu (A) označíme $u_A^{"}$.

Vztah pro napětí $u_A^{''}$:

$$u_A^{"} = \frac{R_b}{R_a + R_b} \cdot u_1 \tag{2.3}$$

Vztah pro napětí $u_A^{''}$ vyjádřený pomocí přenosu zpětnovazebního obvodu β :

$$\frac{u_A^{'}}{u_1} = \frac{R_b}{R_a + R_b} = 1 - \frac{R_a}{R_a + R_b} = 1 - \beta$$
(2.4)

Vztah pro výsledné u_A je:

$$u_A = u'_A + u''_A \tag{2.5}$$

$$u_{A} = \frac{R_{a}}{R_{a} + R_{b}} \cdot u_{2} + \frac{R_{b}}{R_{a} + R_{b}} \cdot u_{1} \to u_{A} = \beta \cdot u_{2} + (1 - \beta) \cdot u_{1}$$
(2.6)

Obecný vztah pro výpočet přenosové funkce základní pásmové propusti PP 2. řádu [3] viz obr. 2.1:

$$F_{PP}(p) = \frac{a_1 \cdot p}{b_2 \cdot p^2 + b_1 \cdot p + b_0} = \frac{K \cdot \frac{\omega_0}{Q} \cdot p}{p^2 + \frac{\omega_0}{Q} \cdot p + \omega_0^2}$$
(2.7)

Postup výpočtu přenosu celé pásmové propusti s podkritickou kladnou ZV:

$$F_{PP}(p) = \frac{u_2}{u_A} \to u_A = \frac{u_2}{F_{(p)}}$$
 (2.8)

$$u_{A} = \frac{u_{2}}{F_{PP}(p)} = \frac{1}{\frac{K \cdot \frac{\omega_{0}}{Q} p}{p^{2} + \frac{\omega_{0}}{Q} p + \omega_{0}^{2}}} \cdot u_{2} = \frac{p^{2} + \frac{\omega_{0}}{Q} p + \omega_{0}^{2}}{K \cdot \frac{\omega_{0}}{Q} \cdot p} \cdot u_{2}$$
(2.9)

- 22 -

Dosadíme za u_A vztah z rovnice 2.6 a dostaneme:

$$\beta \cdot u_2 + (1 - \beta) \cdot u_1 = \frac{p^2 + \frac{\omega_0}{Q} \cdot p + \omega_0^2}{\frac{K \cdot \omega_0}{Q} \cdot p} \cdot u_2$$
(2.10)

$$K \cdot \frac{\omega_0}{Q} \cdot p \cdot (1 - \beta) \cdot u_1 + K \cdot \frac{\omega_0}{Q} \cdot p \cdot \beta \cdot u_2 = \left(p^2 + \frac{\omega_0}{Q} \cdot p + \omega_0^2\right) \cdot u_2$$
(2.11)

$$K \cdot \frac{\omega_0}{Q} \cdot p \cdot (1 - \beta) \cdot u_1 = \left(p^2 + \frac{\omega_0}{Q} \cdot p + \omega_0^2 \right) \cdot u_2 - K \cdot \frac{\omega_0}{Q} \cdot p \cdot \beta \cdot u_2$$
(2.12)

$$K \cdot \frac{\omega_0}{Q} \cdot p \cdot (1 - \beta) \cdot u_1 = \left(p^2 + \frac{\omega_0}{Q} \cdot p + \omega_0^2 - K \cdot \frac{\omega_0}{Q} \cdot p \cdot \beta \right) \cdot u_2$$
(2.13)

$$K \cdot \frac{\omega_0}{Q} \cdot p \cdot (1 - \beta) \cdot u_1 = \left[p^2 + \left(\frac{\omega_0}{Q} - K \cdot \frac{\omega_0}{Q} \cdot \beta \right) \cdot p + \omega_0^2 \right] \cdot u_2$$
(2.14)

Převedeme poměr obou napětí na levou stranu rovnice a dostáváme celkový přenos pásmové propusti s podkritickou kladnou ZV:

$$F(p) = \frac{u_2}{u_1} = \frac{K \cdot \frac{\omega_0}{Q} \cdot p \cdot (1-\beta)}{p^2 + \frac{\omega_0}{Q} \cdot (1-K \cdot \beta) \cdot p + \omega_0^2}$$
(2.15)

Pro zajištění stability pásmové propusti s podkritickou kladnou ZV musí být všechny koeficienty charakteristické rovnice kladné, proto volíme přenos na středním kmitočtu K = 1:

$$F(p) = \frac{\frac{\omega_0}{Q} \cdot p \cdot (1-\beta)}{p^2 + \frac{\omega_0}{Q} (1-\beta) \cdot p + \omega_0^2} = \frac{\frac{\omega_0}{1-\beta} \cdot p}{p^2 + \frac{\omega_0}{Q} \cdot p + \omega_0^2}$$
(2.16)

Porovnáním přenosové funkce F(p) této pásmové propusti s obecným tvarem dostáváme vztah pro činitel jakosti Q_{ekv} , pomocí něho můžeme později vypočítat zpětnovazební rezistory R_a a R_b :

$$Q_{ekv} = \frac{Q}{1-\beta} = \frac{Q}{\frac{R_b}{R_a+R_b}} = Q \cdot \frac{R_a+R_b}{R_b} = Q \cdot \left(1 + \frac{R_a}{R_b}\right)$$
(2.17)

2.2 Pásmová propust realizovaná aktivním prvkem CCII+

Obrázek 2.4: Pásmová propust s aktivním prvkem CCII+

Na obrázku 2.4 je uvedeno zapojení pásmové propusti s aktivním prvkem CCII+ a napěťovým sledovačem pracují v napěťovém režimu. Zapojení je modifikací pasivní pásmové propusti (Wienův článek).

Ze schématu lze odvodit následující vztahy:

$$u_x = u_y = u_1 \tag{2.18}$$

$$i_z = i_x \tag{2.19}$$

$$u_2 = u_z \tag{2.20}$$

Impedance kondenzátoru a rezistoru v operátorovém tvaru se vyjádří jako [3]:

$$Z_C(p) = \frac{1}{p \cdot C} \tag{2.21}$$

$$Z_R(p) = R \tag{2.22}$$

Pro jednodušší počítání, nahradíme sériovou kombinaci rezistoru R_1 a kondenzátoru C_1 impedancí Z_1 a paralelní kombinaci rezistoru R_2 a kondenzátoru C_2 impedancí Z_2 .

Obrázek 2.5: Pásmová propust nahrazená impedancemi

Vztahy pro impedance Z_1 a Z_2 :

$$Z_1 = R_1 + \frac{1}{p \cdot C_1} = \frac{p \cdot C_1 \cdot R_1 + 1}{p \cdot C_1}$$
(2.23)

$$Z_{2} = \frac{R_{2} \cdot \frac{1}{p \cdot C_{2}}}{R_{2} + \frac{1}{p \cdot C_{2}}} = \frac{\frac{R_{2}}{p \cdot C_{2}}}{\frac{p \cdot C_{2} \cdot R_{2} + 1}{p \cdot C_{2}}} = \frac{R_{2}}{p \cdot C_{2} \cdot R_{2} + 1}$$
(2.24)

Potom musí platit:

$$i_x = \frac{u_x}{Z_1} = \frac{u_1}{Z_1} \tag{2.25}$$

$$i_z = i_x = \frac{u_1}{Z_1} \tag{2.26}$$

$$u_{z} = Z_{2} \cdot i_{z} = Z_{2} \cdot \frac{u_{1}}{Z_{1}} = \frac{Z_{2}}{Z_{1}} \cdot u_{1}$$
(2.27)

$$u_2 = \frac{Z_2}{Z_1} \cdot u_1 \tag{2.28}$$

- 24 -

Obecný vztah pro výpočet přenosové funkce pásmové propusti 2. řádu:

$$F(p) = \frac{a_1 \cdot p}{b_2 \cdot p^2 + b_1 \cdot p + b_0} = \frac{K \cdot \frac{\omega_0}{Q} \cdot p}{p^2 + \frac{\omega_0}{Q} \cdot p + \omega_0^2}$$
(2.29)

Výpočet přenosu pásmové propusti se dá vyjádřit také:

$$F(p) = \frac{u_2}{u_1} = \frac{Z_2}{Z_1} \tag{2.30}$$

Dosadíme vztah pro impedanci Z_1 z rovnice 2.23 do jmenovatele a vztah pro impedanci Z_2 z rovnice 2.24 do čitatele a dostaneme:

$$F(p) = \frac{\frac{R_2}{p \cdot C_2 \cdot R_2 + 1}}{\frac{p \cdot C_1 \cdot R_1 + 1}{p \cdot C_1}} = \frac{R_2}{p \cdot C_2 \cdot R_2 + 1} \cdot \frac{p \cdot C_1}{p \cdot C_1 \cdot R_1 + 1} = \frac{p \cdot C_1 \cdot R_2}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 + p \cdot C_1 \cdot R_1 + p \cdot C_2 \cdot R_2 + 1} = \frac{p \cdot \frac{1}{C_2 \cdot R_1}}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 + p \cdot (C_1 \cdot R_1 + C_2 \cdot R_2) + 1} = \frac{p \cdot \frac{1}{C_2 \cdot R_1}}{p^2 + p \cdot \frac{(C_1 \cdot R_1 + C_2 \cdot R_2)}{C_1 \cdot C_2 \cdot R_1 \cdot R_2}}$$
(2.31)

V posledním kroku odvozování rovnice, jsme ve jmenovateli osamostatnili parametr p^2 , vydělením rovnice $C_1C_2R_1R_2$, abychom mohli určit vztahy pro střední kmitočet ω_0 , šířku pásma *B*, přenos na středním kmitočtu *K* a činitel jakosti *Q*. Poslední člen ve jmenovateli odpovídá vztahu pro ω_0^2 , kde po odmocnění dostáváme vztah pro ω_0 . Druhý člen ve jmenovateli odpovídá vztahu pro B, což je poměr ω_0 a *Q*. Nakonec pomocí těchto vztahů určíme vztah pro *Q*.

Odvozování vztahu pro ω_0 :

D _

$$\omega_0^2 = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2} \to \omega_0 = \frac{1}{\sqrt{C_1 \cdot C_2 \cdot R_1 \cdot R_2}}$$
(2.32)

Odvozený vztah pro B:

$$B = \frac{\omega_0}{Q} = \frac{C_1 \cdot R_1 + C_2 \cdot R_2}{C_1 \cdot C_2 \cdot R_1 \cdot R_2}$$
(2.33)

Odvozování vztahu pro Q:

$$\frac{\omega_{0}}{Q} = \frac{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}}{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}} \rightarrow Q = \frac{\omega_{0} \cdot C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{\sqrt{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{\sqrt{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}} \cdot \frac{1}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}} \cdot \frac{1}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}} \cdot \frac{1}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{1} \cdot R_{1} + C_{2} \cdot R_{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{2} \cdot R_{2}}{C_{1} \cdot R_{2} \cdot R$$

Odvozování vztahu pro *K*:

$$K \cdot \frac{\omega_0}{Q} = \frac{1}{C_2 \cdot R_1} \to K = \frac{1}{C_2 \cdot R_1} \cdot \frac{Q}{\omega_0} = \frac{1}{C_2 \cdot R_1} \cdot \frac{C_1 \cdot C_2 \cdot R_1 \cdot R_2}{C_1 \cdot R_1 + C_2 \cdot R_2} = \frac{C_1 \cdot R_2}{C_1 \cdot R_1 + C_2 \cdot R_2}$$
(2.35)

Abychom mohli zvolit hodnoty součástek, zavedeme si pomocné veličiny *n* a *m* a zvolíme:

$$R_1 = n \cdot R_2 \tag{2.36}$$

$$C_1 = m \cdot C_2 \tag{2.37}$$

$$C_2 = C \tag{2.38}$$

$$R_2 = R \tag{2.39}$$

Z toho vyplívá:

$$C_1 = m \cdot C \tag{2.40}$$

$$R_1 = n \cdot \mathbf{R} \tag{2.41}$$

Dosadíme do vztahů pro ω_0 , Q, B a K:

$$\omega_0 = \frac{1}{\sqrt{m \cdot C \cdot C \cdot nR \cdot R}} = \frac{1}{\sqrt{n \cdot m \cdot C^2 \cdot R^2}} = \frac{1}{R \cdot C \cdot \sqrt{n \cdot m}}$$
(2.42)

$$Q = \frac{R \cdot C \cdot \sqrt{n \cdot m}}{m \cdot C \cdot n \cdot R + R \cdot C} = \frac{\sqrt{n \cdot m}}{n \cdot m + 1}$$
(2.43)

$$B = \frac{n \cdot R \cdot C + R \cdot m \cdot C}{n \cdot R \cdot R \cdot m \cdot C \cdot C} = \frac{(n+m) \cdot R \cdot C}{n \cdot m \cdot R^2 \cdot C^2} = \frac{n+m}{n \cdot m \cdot R \cdot C}$$
(2.44)

$$K = \frac{m \cdot C \cdot R}{m \cdot n \cdot C \cdot R + R \cdot C} = \frac{m}{n \cdot m + 1}$$
(2.45)

Vztah pro jaké *m* a *n* se *Q* rovná maximu:

$$\frac{dQ}{dn} = \frac{\frac{1}{2} \frac{1}{\sqrt{n \cdot m}} \cdot m \cdot (n \cdot m + 1) - \sqrt{n \cdot m} \cdot m}{(n \cdot m + 1)^2} = \frac{\frac{m}{2 \cdot \sqrt{n \cdot m}} \cdot (n \cdot m + 1) - m\sqrt{n \cdot m}}{(n \cdot m + 1)^2} = 0$$
(2.46)

$$\frac{n \cdot m + 1}{2 \cdot \sqrt{n \cdot m}} - \sqrt{n \cdot m} = 0 \tag{2.47}$$

$$\frac{1}{2\cdot\sqrt{n\cdot m}}\cdot\left[(n\cdot m+1)-2\cdot\sqrt{n\cdot m}\cdot\sqrt{n\cdot m}\right]=0$$
(2.48)

$$n \cdot m + 1 - 2 \cdot n \cdot m = 0 \tag{2.49}$$

$$1 - n \cdot m = 0 \tag{2.50}$$

$$n \cdot m = 1 \tag{2.51}$$

$$n = \frac{1}{m} \to m = \frac{1}{n} \tag{2.52}$$

Dosazením *n* do rovnice 2.43 dostaneme Q_{max} :

$$Q_{max} = \frac{\sqrt{\frac{m}{m}}}{\frac{m}{m}+1} = \frac{1}{2}$$
(2.53)

Pomocí vztahu pro *K* odvodíme vztah pro *n*, při K = 1:

$$K = \frac{m}{n \cdot m + 1} \tag{2.54}$$

$$1 = \frac{m}{n \cdot m + 1} \tag{2.55}$$

$$m = n \cdot m + 1 \tag{2.56}$$

$$n \cdot m = m - 1 \tag{2.57}$$

$$n = \frac{m-1}{m} \tag{2.58}$$

Do vztahu z rovnice 2.58 dosadíme vztah pro m z rovnice 2.52, tím zjistíme hodnotu n:

$$n = \frac{\frac{1}{n} - 1}{\frac{1}{n}}$$
(2.59)

$$n = n \cdot \left(\frac{1}{n} - 1\right) \tag{2.60}$$

$$1 = \frac{1}{n} - 1 \tag{2.61}$$

$$2 = \frac{1}{n} \tag{2.62}$$

$$n = \frac{1}{2} \tag{2.63}$$

Nyní do rovnice 2.52 dosadíme n z rovnice 2.63 a zjistíme hodnotu m:

$$m = \frac{1}{\frac{1}{2}} = 2 \tag{2.64}$$

2.2.1 Návrh součástek pro pásmovou propust

Po dosazení hodnot *m* z rovnice 2.64 a *n* z rovnice 2.63 do zvolených rovnic 2.40 a 2.41 zjistíme, že rezistor R_1 je polovinou rezistoru R_2 (*R*) a kondenzátor C_1 je dvojnásobně větší jako kondenzátor C_2 (*C*):

$$R_1 = \frac{R}{2} \tag{2.65}$$

$$C_1 = 2 \cdot C \tag{2.66}$$

Pro pásmovou propust si zvolíme kmitočet f_0 a kondenzátor C. Tyto hodnoty dosadíme do vztahu pro f_0 a vypočítáme hodnotu rezistoru R.

Zvolený kmitočet f_0 :

$$f_0 = 10kHz \tag{2.67}$$

Zvolený kondenzátor C:

$$C = 1n \tag{2.68}$$

Ze vztahu pro kmitočet f_0 odvodíme vztah pro rezistor R:

$$f_0 = \frac{1}{2 \cdot \pi \cdot R \cdot C} \to R = \frac{1}{2 \cdot \pi \cdot f_0 \cdot C}$$
(2.69)

Vypočítáme hodnotu rezistoru *R* pro kmitočet $f_0 = 10kHz$ a kondenzátor C = 1n:

$$R = \frac{1}{2 \cdot \pi \cdot 10^4 \cdot 10^{-9}} = \frac{1}{2 \cdot \pi} \cdot 10^5 = 0,159 \cdot 10^5 = 15,9k\Omega$$
(2.70)

Nyní můžeme určit hodnoty součástek pásmové propusti:

$$R_1 = \frac{R}{2} = \frac{15,9}{2} = 7,95k\Omega \tag{2.71}$$

$$R_2 = R = 15,9k\Omega \tag{2.72}$$

$$C_1 = 2 \cdot C = 2 \cdot 1 = 2n \tag{2.73}$$

$$C_2 = C = 1n \tag{2.74}$$

Jelikož hodnoty rezistorů neodpovídají hodnotám odporové řady, vybereme ty, které se jim nejvíce přiblíží. Vybíráme z odporové řady E24. Nejblíže rezistoru R_1 odpovídá hodnota 8k2 a rezistoru R_2 odpovídá hodnota 16k. Můžeme si všimnout, že vypočítaná hodnota rezistoru R_1 se liší od zvolené hodnoty z odporové řady o 250 Ω , zatímco vypočítaná hodnota rezistoru R_2 se liší od zvolené hodnoty z odporové řady pouze o 100 Ω . Nabízí se zde možnost nahradit rezistor R_1 dvěma paralelně zapojenými rezistory, přičemž oba budou mít odpor 16k Ω , abychom zredukovali rozdílnost vypočítaných a naměřených výsledků. Na přesnosti použitých rezistorů a kondenzátorů je závislá přesnost středního kmitočtu f_0 . Obě varianty zapojení jsou zobrazeny na obrázku č. 2.6 a na obrázku č. 2.7.

Obrázek 2.6: 1. varianta zapojení pásmové propusti

Obrázek 2.7: 2. varianta zapojení pásmové propusti

2.2.2 Frekvenční charakteristiky zapojení

Pro simulaci zapojení byl použit program SNAP. Na obrázku 2.8 je vyobrazena amplitudová frekvenční charakteristika a na obrázku 2.9 je zobrazena fázová frekvenční charakteristika.

Obrázek 2.8: Amplitudová frekvenční charakteristika pásmové propusti

Z charakteristiky si můžeme všimnout, že dolní frekvence f_d se přibližně rovná 4,1kHz a horní frekvence f_h je rovna přibližně 24,1kHz. Šířka pásma neboli frekvenční pásmo, které pásmová propust efektivně propouští má tedy hodnotu 20kHz.

Obrázek 2.9: Fázová frekvenční charakteristika pásmové propusti

2.3 Pásmová propust realizovaná CCII+ s podkritickou kladnou zpětnou vazbou

Základní pásmová propust z obr. 2.4 je doplněná dvěma zpětnovazebními rezistory R_a a R_b , které vytvářejí podkritickou kladnou zpětnou vazbu. Analýzou zapojení odvodíme vztahy pro přenosovou funkci F(p), Q_{ekv} , B a ω_0 .

Obrázek 2.10: Pásmová propust realizovaná aktivním prvkem CCII+ se zpětnou vazbou

Ze schématu lze odvodit následující vztahy:

$$u_x = u_y = u_1 \tag{2.75}$$

$$i_z = i_x \tag{2.76}$$

$$u_2 = u_z \tag{2.77}$$

Vztah pro Q_{ekv} použijeme stejný z rovnice 2.17 a jelikož $Q_{max} = Q$ dosadíme hodnotu z rovnice 2.53:

$$Q_{ekv} = Q \cdot \left(1 + \frac{R_a}{R_b}\right) = \frac{1}{2} \cdot \left(1 + \frac{R_a}{R_b}\right)$$
(2.78)

Vztah přenosové funkce bude tedy:

$$F(p) = \frac{\frac{\overline{Q} \cdot \left(1 + \frac{R_a}{R_b}\right)}{Q \cdot \left(1 + \frac{R_a}{R_b}\right)} \cdot p} \frac{p}{p^2 + \frac{\omega_0}{Q \cdot \left(1 + \frac{R_a}{R_b}\right)}} \cdot p + \omega_0^2}$$
(2.79)

Vztahu pro ω_0 odpovídá stejný vztah jako v předchozí pásmové propusti. Dosazením pomocných veličin m = 2 a n = 1/2 z rovnic 2.63 a 2.64 dostáváme:

$$\omega_0 = \frac{1}{\sqrt{C_1 \cdot C_2 \cdot R_1 \cdot R_2}} = \frac{1}{R \cdot C \cdot \sqrt{n \cdot m}} = \frac{1}{R \cdot C}$$
(2.80)

Odvození vztahu pro B:

$$B = \frac{\omega_0}{Q_{ekv}} = \frac{\omega_0}{Q \cdot \left(1 + \frac{R_a}{R_b}\right)} = \frac{2 \cdot \omega_0}{1 + \frac{R_a}{R_b}}$$
(2.81)

2.3.1 Návrh součástek pro pásmovou propust se zpětnou vazbou

Hodnoty součástek R_1, R_2, C_1, C_2 a frekvenci f_0 zvolíme stejné z předchozí pásmové propusti (podkapitola 2.2.1). Abychom mohli vykreslit frekvenční charakteristiky, potřebujeme vypočítat hodnoty rezistorů R_a a R_b .

Vypočítané hodnoty součástek R_1, R_2, C_1, C_2 :

$$R_1 = \frac{R}{2} = \frac{15.9}{2} = 7,95k\Omega \tag{2.82}$$

$$R_2 = R = 15,9k\Omega \tag{2.83}$$

$$C_1 = 2 \cdot C = 2 \cdot 1 = 2n \tag{2.84}$$

$$C_2 = C = 1n \tag{2.85}$$

Pro výpočet rezistorů R_a a R_b si zvolíme $Q_{ekv} = 10$:

$$Q_{ekv} = \frac{1}{2} \cdot \left(1 + \frac{R_a}{R_b}\right) \tag{2.86}$$

$$10 = \frac{1}{2} \cdot \left(1 + \frac{R_a}{R_b}\right) \tag{2.87}$$

$$10 = \frac{1}{2} + \frac{R_a}{2 \cdot R_b} \tag{2.88}$$

$$10 - \frac{1}{2} = \frac{R_a}{2 \cdot R_b} \tag{2.89}$$

$$2 \cdot \left(10 - \frac{1}{2}\right) = \frac{R_a}{R_b} \tag{2.90}$$

$$\frac{R_a}{R_b} = 19 \tag{2.91}$$

Výsledná hodnota poměru rezistorů R_a a $R_b = 19$, což znamená, že rezistor R_a musí být devatenáctkrát větší, než rezistor R_b . Zvolíme $R_a = 10k\Omega$ a dopočítáme rezistor R_b :

$$R_b = \frac{R_a}{19} = \frac{10 \cdot 10^3}{19} = 526,3\Omega \tag{2.92}$$

Rezistor takové hodnoty se nevyskytuje v odporové řadě E24 a proto zvolíme nejbližší hodnotu, která mu odpovídá $R_b = 510R$. Rezistory R_1 a R_2 budou také upraveny do odporové řady E24 stejně jako v podkapitole 3.2.1. Opět uvedeme pro ukázku 2 možné varianty zapojení s navrhnutými součástkami. U první varianty zapojení na obrázku 2.11 je zvolen rezistor $R_1 = 8k2$, kdežto ve druhé variantě (obrázek 2.12) se rezistor R_1 nahradil dvěma paralelně zapojenými rezistory, přičemž oba budou mít odpor 16k Ω .

Obrázek 2.11: 1. varianta zapojení

Obrázek 2.12: 2. varianta zapojení

2.3.2 Frekvenční charakteristiky zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázku 2.13 jsou zobrazeny amplitudové frekvenční charakteristiky pro tři hodnoty činitele jakosti Q = 1; 5 a 10. Fázové frekvenční charakteristiky pro stejné hodnoty Q jsou na obrázku 2.14.

Obrázek 2.13: Amplitudové frekvenční charakteristiky pásmové propusti

Z charakteristiky si můžeme všimnout, že pro Q = 10 se dolní frekvence f_d přibližně rovná 9,5kHz a horní frekvence f_h je rovna přibližně 10,5kHz. Šířka pásma neboli frekvenční pásmo, které pásmová propust efektivně propouští má tedy hodnotu 1kHz. Porovnáním frekvenčních charakteristik zjistíme, že s vyšší hodnotou činitele jakosti je amplitudová frekvenční charakteristika strmější a tedy propouští menší frekvenční pásmo.

Obrázek 2.14: Fázové frekvenční charakteristiky pásmové propusti

2.4 RLC modifikovaná pásmová propust s podkritickou kladnou zpětnou vazbou

Zapojení je modifikací předcházejícího zapojení pásmové propusti. Obvod je složen z aktivního prvku CCII+, dvou zpětnovazebních rezistorů R_a , R_b , na svorce X z rezistoru R_1 , do svorky Z je zapojeno paralelní zapojení rezistoru R_2 , kondenzátoru C_1 a cívky L_1 (paralelní rezonanční obvod) a oddělovací zesilovač.

Obrázek 2.15: RLC modifikovaná pásmová propust se zpětnou vazbou

Ze schématu lze odvodit následující vztahy:

$$u_x = u_y = u_1 \tag{2.93}$$

$$i_z = i_x \tag{2.94}$$

$$u_2 = u_z \tag{2.95}$$

Pro jednodušší počítání, nahradíme rezistor R_1 impedancí Z_1 a paralelní kombinaci rezistoru R_2 , cívky L_1 a kondenzátoru C_1 impedancí Z_2 a nebudeme uvažovat rezistory R_a a R_b .

Obrázek 2.16: RLC zapojení nahrazeno impedancemi

Z rovnic 2.21 a 2.22 víme, čemu se rovná operátorový tvar impedance rezistoru a kondenzátoru. Nyní vyjádříme operátorový tvar impedance cívky [3]:

$$Z_{L(p)} = p \cdot L \tag{2.96}$$

Vztahy pro impedance Z_1 a Z_2 :

$$Z_1 = R_1 \tag{2.97}$$

$$\frac{1}{Z_2} = \frac{1}{R_2} + \frac{1}{p \cdot L_1} + p \cdot C_1 \to Z_2 = \frac{p \cdot R_2 \cdot L_1}{p^2 \cdot R_2 \cdot L_1 \cdot C_1 + p \cdot L_1 + R_2}$$
(2.98)

Potom musí platit:

$$i_x = \frac{u_x}{Z_1} = \frac{u_1}{Z_1} \tag{2.99}$$

$$i_z = i_x = \frac{u_1}{Z_1} \tag{2.100}$$

$$u_z = Z_2 \cdot i_z = Z_2 \cdot \frac{u_1}{Z_1} = \frac{Z_2}{Z_1} \cdot u_1$$
(2.101)

$$u_2 = \frac{Z_2}{Z_1} \cdot u_1 \tag{2.102}$$

$$F(p) = \frac{u_2}{u_1} = \frac{Z_2}{Z_1} \tag{2.103}$$

Odvození vztahu pro přenosovou funkci:

. .

$$F(p) = \frac{\frac{p \cdot R_2 \cdot L_1}{p^2 \cdot R_2 \cdot L_1 \cdot C_1 + p \cdot L_1 + R_2}}{R_1} = \frac{p \cdot R_2 \cdot L_1}{p^2 \cdot R_1 \cdot R_2 \cdot L_1 \cdot C_1 + p \cdot R_1 \cdot L_1 + R_1 \cdot R_2} = \frac{p \cdot \frac{R_2 \cdot L_1}{R_1 \cdot R_2 \cdot L_1 \cdot C_1}}{p^2 + p \cdot \frac{R_1 \cdot L_1}{R_1 \cdot R_2 \cdot L_1 \cdot C_1} + \frac{R_1 \cdot R_2}{R_1 \cdot R_2 \cdot L_1 \cdot C_1}} = \frac{p \cdot \frac{R_1 \cdot L_1}{R_1 \cdot R_2 \cdot L_1 \cdot C_1}}{p^2 + p \cdot \frac{1}{R_1 \cdot C_1}}$$

$$(2.104)$$

Odvozování vztahu pro ω_0 :

$$\omega_0^2 = \frac{1}{C_1 \cdot L_1} \to \omega_0 = \frac{1}{\sqrt{C_1 \cdot L_1}}$$
(2.105)

Odvozený vztah pro B:

$$B = \frac{\omega_0}{Q} = \frac{1}{R_2 \cdot C_1} \tag{2.106}$$

Odvození vztahu pro Q:

$$Q = \frac{\omega_0}{B} = \frac{\frac{1}{\sqrt{C_1 \cdot L_1}}}{\frac{1}{R_2 \cdot C_1}} = \frac{R_2 \cdot C_1}{\sqrt{C_1 \cdot L_1}} = \frac{\sqrt{R_2 \cdot C_1} \cdot \sqrt{R_2 \cdot C_1}}{\sqrt{C_1 \cdot L_1}} = \sqrt{\frac{R_2^2 \cdot C_1^2}{C_1 \cdot L_1}} = R_2 \cdot \sqrt{\frac{C_1}{L_1}}$$
(2.107)

Odvození vztahu pro K:

$$K \cdot \frac{\omega_0}{Q} = \frac{1}{R_1 \cdot C_1} \to K = \frac{1}{R_1 \cdot C_1} \cdot \frac{Q}{\omega_0} = \frac{1}{R_1 \cdot C_1} \cdot \frac{R_2 \cdot C_1}{1} = \frac{R_2}{R_1}$$
(2.108)

2.4.1 Návrh součástek pro RLC modifikovanou propust

Pro pásmovou propust si zvolíme opět kmitočet $f_0 = 10kHz$ a kondenzátor $C_1 = 10n$. Tyto hodnoty dosadíme do vztahu pro ω_0 a vypočítáme hodnotu cívky L_1 :

$$\omega_0 = 2 \cdot \pi \cdot f_0 = \frac{1}{\sqrt{C_1 \cdot L_1}} \to L_1 = \frac{1}{C_1 \cdot (2 \cdot \pi \cdot f_0)^2}$$
(2.109)

$$L_1 = \frac{1}{1 \cdot 10^{-8} \cdot 2^2 \cdot \pi^2 \cdot 10^8} = 25,36mH \tag{2.110}$$

Dosazením do vzorce pro Q vypočítáme hodnotu rezistoru R_2 , při zvolení Q = 1:

$$R_2 = Q \cdot \sqrt{\frac{L_1}{c_1}} = 1 \cdot \sqrt{\frac{25,36 \cdot 10^{-3}}{10^{-8}}} = 1 \cdot \sqrt{25,36 \cdot 10^5} = 1592,5\Omega$$
(2.111)

Jelikož jsou cívky objemné, drahé a obtížně integrovatelné součástky hlavně pro nižší kmitočty, nahradíme cívku L_1 a rezistor R_2 syntetickým induktorem s paralelním ztrátovým rezistorem složeným ze dvou rezistorů R_3 a R_4 , kondenzátoru C_2 a operačního zesilovače OZ [4].

Obrázek 2.17: Nahrazení cívky a rezistoru syntetickým induktorem

Pro syntetický induktor platí:

$$L_1 = R_3 \cdot R_4 \cdot C_2 \tag{2.112}$$

$$R_2 = \frac{R_3 \cdot R_4}{R_3 + R_4} \tag{2.113}$$

Zvolením rezistorů $R_3 = R_4 = R$ dostáváme:

$$R_2 = \frac{R}{2}$$
(2.114)

$$L_1 = R^2 \cdot C_2 \tag{2.115}$$

Vypočítáme hodnotu rezistoru R:

$$R = 2 \cdot R_2 = 2 \cdot 1592,5 = 3185\Omega \tag{2.116}$$

Vypočítáme hodnotu kondenzátoru C₂:

$$C_2 = \frac{L_1}{R^2} = \frac{25,36 \cdot 10^{-3}}{3185^2} = 2,5nF$$
(2.117)

Pro K = 1 platí $R_1 = R_2 = \frac{R}{2} = 1592,5\Omega.$

Pro výpočet rezistorů R_a a R_b si zvolíme $Q_{ekv} = 10$ při Q = 1:

$$Q_{ekv} = Q \cdot \left(1 + \frac{R_a}{R_b}\right) \tag{2.118}$$

$$\frac{R_a}{R_b} = \frac{Q_{ekv}}{Q} - 1 = \frac{10}{1} - 1 = 9$$
(2.119)

Výsledná hodnota poměru rezistorů R_a a $R_b = 9$, což znamená, že rezistor R_a musí být devětkrát větší, než rezistor R_b . Zvolíme $R_a = 10k\Omega$ a dopočítáme rezistor R_b :

$$R_b = \frac{R_a}{9} = \frac{10 \cdot 10^3}{9} = 1,11k\Omega$$
 (2.120)

Součástky C_2 , R_b , R_1 , R_3 a R_4 zvolíme podle odporové řady E24 následovně $R_3 = R_4 = 3k3$. Rezistor R_1 můžeme zvolit 1k6 nebo nahradit dvěma paralelně zapojenými rezistory, přičemž oba budou mít odpor 3k3. Rezistor R_b volíme 1k1 a kondenzátor C_2 zvolíme 2n4.

Obrázek 2.18: Zapojení pásmové propusti s navrhnutými součástkami
2.4.2 Frekvenční charakteristiky zapojení

Simulace byla provedena se zvolenými hodnotami součástek podle odporové řady E24. Na obrázku 2.19 jsou zobrazeny amplitudové frekvenční charakteristiky pro čtyři hodnoty činitele jakosti Q = 1; 2; 4 a 11. Fázové frekvenční charakteristiky pro stejné hodnoty Q jsou na obrázku 2.20.

Obrázek 2.19: Amplitudové frekvenční charakteristiky pásmové propusti

Obrázek 2.20: Fázové frekvenční charakteristiky pásmové propusti

2.5 Pásmová propust realizovaná 3 aktivními prvky

Obvod je tvořen dvěma proudovými konvejory CCII+ a operačním zesilovačem OZ. První realizuje převodník napětí proud, druhý realizuje proudový zesilovač a operační zesilovač OZ realizuje převodník proud napětí. Wienův článek ve funkci pásmové propusti pracuje v proudovém režimu.

- 2

Ze schématu lze odvodit následující vztahy:

$$u_x = u_y = u_1 \tag{2.121}$$

$$i_z = i_x \tag{2.122}$$

$$u_2 = u_z \tag{2.123}$$

K odvození přenosové funkce použijeme program pro symbolickou analýzu SNAP:

$$F(p) = \frac{p \cdot C_1 \cdot R_2 \cdot R_b}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a + p \cdot (C_2 \cdot R_2 \cdot R_a + C_1 \cdot R_1 \cdot R_a + C_1 \cdot R_2 \cdot R_a) + R_a} = \frac{p \cdot \frac{R_b}{C_2 \cdot R_1 \cdot R_a}}{p^2 + p \cdot \frac{R_a \cdot (C_2 \cdot R_2 + C_1 \cdot R_1 + C_1 \cdot R_2)}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a}} = \frac{p \cdot \frac{R_b}{C_2 \cdot R_1 \cdot R_a}}{p^2 + p \cdot \frac{C_2 \cdot R_2 + C_1 \cdot R_1 + C_1 \cdot R_2}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a}} = (2.124)$$

Porovnáním přenosové funkce vygenerované SNAPem a obecného tvaru přenosu pásmové propusti odvodíme vztahy pro ω_0 , *B*, *Q* a *K*:

$$\omega_0^2 = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2} \to \omega_0 = \frac{1}{\sqrt{C_1 \cdot C_2 \cdot R_1 \cdot R_2}}$$
(2.125)

$$B = \frac{\omega_0}{Q} = \frac{C_2 \cdot R_2 + C_1 \cdot R_1 + C_1 \cdot R_2}{C_1 \cdot C_2 \cdot R_1 \cdot R_2}$$
(2.126)

$$Q = \frac{\omega_0 \cdot c_1 \cdot c_2 \cdot R_1 \cdot R_2}{c_2 \cdot R_2 + c_1 \cdot R_1 + c_1 \cdot R_2} = \frac{1}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{1}{c_2 \cdot R_2 + c_1 \cdot R_1 + c_1 \cdot R_2} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{1}{c_2 \cdot R_2 + c_1 \cdot R_1 + c_1 \cdot R_2} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{1}{c_2 \cdot R_2 + c_1 \cdot R_1 + c_1 \cdot R_2} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{1}{c_2 \cdot R_2 + c_1 \cdot R_1 + c_1 \cdot R_2} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{1}{c_2 \cdot R_2 + c_1 \cdot R_1 + c_1 \cdot R_2} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{1}{c_2 \cdot R_2 + c_1 \cdot R_1 + c_1 \cdot R_2} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{1}{c_2 \cdot R_2 + c_1 \cdot R_1 + c_1 \cdot R_2} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{\sqrt{c_1 \cdot c_2 \cdot R_1 \cdot R_2}} \cdot \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{c_2 \cdot R_2 \cdot R_2 \cdot R_2} \cdot \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{c_2 \cdot R_2 \cdot R_2 \cdot R_2} = \frac{c_1 \cdot c_2 \cdot R_1 \cdot R_2}{c_2 \cdot R_2 \cdot R_2 \cdot R_2} \cdot \frac{c_1 \cdot c_2 \cdot R_2 \cdot R_2}{c_2 \cdot R_2 \cdot R_2 \cdot R_2} \cdot \frac{c_1 \cdot c_2 \cdot R_2 \cdot R_2}{c_2 \cdot R_2 \cdot R_2 \cdot R_2} \cdot \frac{c_1 \cdot c_2 \cdot R_2 \cdot R_2}{c_2 \cdot R_2 \cdot R_2 \cdot R_2} \cdot \frac{c_1 \cdot c_2 \cdot R_2 \cdot R_2}{c_2 \cdot R_2 \cdot R_2} \cdot \frac{c_1 \cdot c_2 \cdot R_2}{c_2 \cdot R_2} \cdot \frac{c_1 \cdot c_2 \cdot R_2}{c_2 \cdot R_2} \cdot \frac{c_1 \cdot c_2 \cdot R_2}{c_2 \cdot R_2} \cdot \frac{c_1$$

$$\frac{C_{1}^{2} \cdot C_{2}^{2} \cdot R_{1}^{2} \cdot R_{2}^{2}}{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}} \cdot \frac{1}{(C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2})^{2}} = \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{1} \cdot \frac{1}{(C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2})^{2}} = \frac{\sqrt{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}}$$
(2.127)
$$K = \frac{\frac{R_{b}}{C_{2} \cdot R_{1} \cdot R_{1}}}{\frac{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}}{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}} = \frac{R_{b}}{C_{2} \cdot R_{1} \cdot R_{a}} \cdot \frac{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{2} \cdot R_{2} + C_{1} \cdot R_{1} + C_{1} \cdot R_{2}} = \frac{R_{b}}{R_{a}} \cdot \frac{C_{1} \cdot R_{2}}{C_{1} \cdot R_{2} + \frac{R_{b}}{R_{a}} \cdot \frac{C$$

2.5.1 Návrh součástek PP realizované 3 aktivními prvky

Pro pásmovou propust si zvolíme opět kmitočet $f_0 = 10kHz$, stejné hodnoty součástek $C_1 = C_2 = C$ a $R_1 = R_2 = R$. Hodnoty použijeme z podkapitoly 2.2.1:

$$C = 1n \tag{2.129}$$

$$R = 15,9k\Omega \tag{2.130}$$

Vypočítáme hodnotu Q:

$$Q = \frac{\sqrt{10^{-9} \cdot 10^{-9} \cdot 15, 9 \cdot 10^3 \cdot 15, 9 \cdot 10^3}}{10^{-9} \cdot 15, 9 \cdot 10^3 + 10^{-9} \cdot 15, 9 \cdot 10^3 + 10^{-9} \cdot 15, 9 \cdot 10^3} = \frac{1}{3}$$
(2.131)

Zbývá vypočítat hodnoty rezistorů R_e a R_f , které zjistíme, když dosadíme vypočítané hodnoty C a R do vztahu pro K = 1:

$$K = \frac{R_f}{R_e} \cdot \frac{1}{\frac{10^{-9}}{10^{-9}} + \frac{15.9 \cdot 10^3}{15.9 \cdot 10^3} + 1}} = \frac{R_f}{R_e} \cdot \frac{1}{1 + 1 + 1} = \frac{R_f}{R_e} \cdot \frac{1}{3}$$
(2.132)

$$3 \cdot K = \frac{R_f}{R_e} \tag{2.133}$$

$$\frac{R_f}{R_e} = 3 \tag{2.134}$$

Výsledná hodnota poměru rezistorů R_f a $R_e = 3$, což znamená, že rezistor R_f musí být třikrát větší, než rezistor R_e . Zvolíme $R_e = 1k\Omega$ a dopočítáme rezistor $R_f = 3k\Omega$. Rezistory ještě upravíme podle odporové řady E24 následovně $R_1 = R_2 = 16k\Omega$. Rezistory $R_e = 1k\Omega$ a $R_f = 3k\Omega$ se v odporové řadě E24 nachází a proto není nutné je měnit. Na obrázku 2.20 je uvedeno zapojení s navrhnutými součástkami.

Obrázek 2.22: Zapojení s navrhnutými součástkami

2.5.2 Frekvenční charakteristiky zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázku 2.23 je zobrazena amplitudová frekvenční charakteristika a fázová frekvenční charakteristika na obrázku 2.24. Z amplitudové frekvenční charakteristiky si můžeme všimnout, že dolní frekvence f_d se přibližně rovná 3kHz a horní frekvence f_h je rovna přibližně 33kHz. Šířka pásma neboli frekvenční pásmo, které pásmová propust efektivně propouští má tedy hodnotu 30kHz. Plošší tvar frekvenční charakteristiky oproti pásmové propusti z podkapitoly 2.2 je dán nižší hodnotou činitele jakosti Q = 1/3. Obdobně jako v předcházejících případech je možno zvýšit činitel jakosti filtru zavedením podkritické zpětné vazby (R_a a R_b). Uvedený typ filtru bude v následující kapitole použit k realizaci oscilátoru.

Obrázek 2.23: Amplitudová frekvenční charakteristika pásmové propusti

Obrázek 2.24: Fázová frekvenční charakteristika pásmové propusti

2.6 Pásmová propust realizovaná dvěma CCII+ s podkritickou kladnou ZV

Obvod je tvořen dvěma proudovými konvejory CCII+ a podkritickou kladnou zpětnou vazbou tvořenou dvěma zpětnovazebními rezistory R_a a R_b [7], [8].

Obrázek 2.25: *Pásmová propust realizovaná 2 CCII+ s podkritickou kladnou ZV* Pro přenosovou funkci pásmové propusti platí vztah [8]:

$$F(p) = \frac{p \cdot \frac{1}{C_1 \cdot R_2} \cdot (1 - \beta)}{p^2 + p \cdot \frac{1}{C_2 \cdot R_2} \cdot (1 - \frac{C_2}{C_1} \cdot \beta) + \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2}}$$
(2.135)

Pro ω_0 , Q, Q_{ekv} a K platí vztahy [8]:

$$\omega_0 = \frac{1}{\sqrt{C_1 \cdot C_2 \cdot R_1 \cdot R_2}}$$
(2.136)

$$Q = \sqrt{\frac{C_2 \cdot R_2}{C_1 \cdot R_1}}$$
(2.137)

$$Q_{ekv} = \frac{1}{1 - \frac{c_2}{c_1}\beta} \cdot Q \tag{2.138}$$

$$K = \frac{C_2}{C_1}$$
(2.139)

2.6.1 Návrh součástek pro pásmovou propust

Pro pásmovou propust si zvolíme opět kmitočet $f_0 = 10kHz$. Abychom vypočítaly hodnoty rezistorů R_1 a R_2 , zvolíme Q = 0.5, K = 1 a dosadíme do vzorců:

$$K = \frac{c_2}{c_1} \to \frac{c_2}{c_1} = 1 \tag{2.140}$$

$$Q = \sqrt{\frac{C_2 \cdot R_2}{C_1 \cdot R_1}} \to \frac{R_2}{R_1} = 0,5^2 = \frac{1}{4}$$
(2.141)

Poměr rezistorů R_2 a $R_1 = 1/4$, což znamená, že rezistor R_1 musí být čtyřikrát větší, než rezistor R_2 . Zvolíme $R_1 = 3k3$ podle odporové řady E24, dopočítáme rezistor $R_2 = 825\Omega$, který také upravíme podle odporové řady E24 na hodnotu 820*R*.

Podle rovnice 2.140 zvolíme kondenzátory $C_1 = C_2 = C$ a vypočítáme C:

$$C = \frac{1}{2 \cdot \pi \cdot f_0 \cdot \sqrt{R_1 \cdot R_2}} = \frac{1}{2 \cdot \pi \cdot 10^4 \cdot \sqrt{820 \cdot 3300}} = 9,68nF \approx 10nF$$
(2.142)

Pro výpočet zpětnovazebních rezistorů R_a a R_b si zvolíme $Q_{ekv} = 10$ při Q = 0.5:

$$Q_{ekv} = \frac{1}{1 - \frac{C_2}{C_1} \beta} \cdot Q \tag{2.143}$$

$$10 = \frac{1}{\frac{R_b}{R_a + R_b}} \cdot 0,5 \tag{2.144}$$

$$\frac{10}{0.5} = \frac{R_a + R_b}{R_b} \tag{2.145}$$

$$\frac{10}{0.5} = 1 + \frac{R_a}{R_b} \tag{2.146}$$

$$\frac{R_a}{R_b} = \frac{10}{0.5} - 1 = 19 \tag{2.147}$$

Výsledná hodnota poměru zpětnovazebních rezistorů R_a a $R_b = 19$, což znamená, že rezistor R_a musí být devatenáctkrát větší, než rezistor R_b . Zvolíme $R_a = 10k\Omega$ a dopočítáme rezistor $R_b = 526,3\Omega$, který upravíme podle odporové řady E24 na hodnotu 510R. Na obrázku 2.26 je zobrazeno zapojení pásmové propusti s navrhnutými hodnotami součástek.

Obrázek 2.26: Zapojení pásmové propusti s navrhnutými součástkami

2.6.2 Frekvenční charakteristiky zapojení

Simulace byla provedena se zvolenými hodnotami součástek podle odporové řady E24. Na obrázku 2.27 jsou zobrazeny amplitudové frekvenční charakteristiky pro tři hodnoty činitele jakosti Q = 0.5; 5 a 10. Fázové frekvenční charakteristiky pro stejné hodnoty Q jsou na obrázku 2.28.

Obrázek 2.27: Amplitudové frekvenční charakteristiky pásmové propusti

Obrázek 2.28: Fázové frekvenční charakteristiky pásmové propusti

3 Analýza oscilátorů

Oscilátor je charakterizován převážně zesilovačem a filtrem typu pásmová propust s kladnou zpětnou vazbou, který generuje střídavý periodický signál a nezpracovává vstupní signál (je zdrojem signálu). Zesilovač slouží k doplňování ztrát vznikajících v obvodu, aby nezanikly oscilace. Pomocí zpětné vazby zesilovač napájí svůj vstup, čímž si zajistí signál, který zpracovává. Protože ve zpětné vazbě dochází ke ztrátám energie, musí být zesílení zesilovače blízké nebo rovno těmto ztrátám – amplitudová podmínka oscilací. Se zesílením $A < A_{krit}$ bude amplituda s přibývajícím časem klesat, až zcela zanikne. V opačném případě, kdy zesílení $A > A_{krit}$ bude amplituda stoupat až do saturace. Fázová podmínka oscilací říká, že výstupní signál ze zpětné vazby musí být ve fázi se vstupním signálem zesilovače. Oscilátory rozdělujeme na harmonické, které vyrábějí sinusový signál s určitou frekvencí a na neharmonické s např. obdélníkovými, pilovými, trojúhelníkovými průběhy. Dále je dělíme na oscilátory RC a LC, jejichž frekvence je závislá na pasivních prvcích. RC oscilátory se používají pro nízké a střední kmitočty. LC oscilátory jsou vhodné pro vysoké kmitočty [5], [9].

3.1 1. modifikace RC oscilátoru

K realizaci RC oscilátoru využijeme zapojení filtru z kapitoly 2. Kladná zpětná vazba je tvořena rezistory R_a a R_b . Pomocí programu SNAP stanovíme charakteristickou rovnici autonomního systému. Ke stanovení kmitočtu oscilací a podmínky vzniku oscilací řešíme kořeny charakteristické rovnice.

Obrázek 3.1: Zapojení RC oscilátoru

Rovnici pro přenosovou funkci získáme pomocí programu SNAP:

$$F(p) = \frac{p \cdot (R_2 \cdot R_a \cdot R_b \cdot C_1)}{p^2 \cdot (C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a + C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_b) + p \cdot (C_1 \cdot R_1 \cdot R_a + C_2 \cdot R_2 \cdot R_b + C_1 \cdot R_1 \cdot R_b + C_2 \cdot R_2 \cdot R_a - C_1 \cdot R_2 \cdot R_a) + R_a + R_b}$$
(3.1)

Jmenovatel přenosové funkce (charakteristická rovnice) rozdělíme na dvě části, imaginární a reálnou, přičemž se obě části musí rovnat nule. Kmitočet oscilací ω_0 získáme z reálné části, položíme-li reálnou část rovnu nule a podmínku vzniku oscilací získáme z části imaginární. Nejdříve si určíme vztah pro komplexní proměnnou *p*:

$$p = j \cdot \omega \to p^2 = (j \cdot \omega)^2 = -\omega^2 \tag{3.2}$$

Odvodíme imaginární složku:

$$\omega \cdot \left[(C_1 \cdot R_1 + C_2 \cdot R_2) \cdot R_a + (C_1 \cdot R_1 + C_2 \cdot R_2) \cdot R_b - C_1 \cdot R_2 \cdot R_a \right] \le 0$$
(3.3)

$$\omega \cdot [(C_1 \cdot R_1 + C_2 \cdot R_2) \cdot (R_a + R_b) - C_1 \cdot R_2 \cdot R_a] \le 0$$
(3.4)

$$\omega \cdot (R_a + R_b) \cdot \left(C_1 \cdot R_1 + C_2 \cdot R_2 - C_1 \cdot R_2 \cdot \frac{R_a}{R_a + R_b} \right) \le 0 \tag{3.5}$$

$$C_1 \cdot R_1 + C_2 \cdot R_2 - C_1 \cdot R_2 \cdot \frac{R_a}{R_a + R_b} \le 0$$
(3.6)

$$C_1 \cdot R_1 + C_2 \cdot R_2 \le C_1 \cdot R_2 \cdot \frac{R_a}{R_a + R_b}$$
(3.7)

$$\frac{R_a}{R_a + R_b} \ge \frac{C_1 \cdot R_1}{C_1 \cdot R_2} + \frac{C_2 \cdot R_2}{C_1 \cdot R_2}$$
(3.8)

$$\frac{R_a}{R_a + R_b} \ge \frac{R_1}{R_2} + \frac{C_2}{C_1}$$
(3.9)

$$\beta \ge \frac{R_1}{R_2} + \frac{C_2}{C_1} \tag{3.10}$$

Abychom mohli zvolit hodnoty součástek, zavedeme si pomocné veličiny n a m a zvolíme:

$$R_1 = n \cdot R \tag{3.11}$$

$$C_1 = m \cdot C \tag{3.12}$$

$$R_2 = R \tag{3.13}$$

$$C_2 = C \tag{3.14}$$

Potom dostáváme vztah pro β :

$$\beta \ge \frac{n \cdot R}{R} + \frac{C}{m \cdot C} = n + \frac{1}{m} \tag{3.15}$$

Zvolením $Q = \frac{1}{2}$ můžeme zároveň použít vztah pro *n* z předchozí kapitoly (rovnice 2.52), dosadit do vztahu pro β a tím si určit podmínky, při kterých se obvod rozkmitá:

$$n = \frac{1}{m} \to \beta \ge \frac{1}{m} + \frac{1}{m} \ge \frac{2}{m}$$
(3.16)

$$\beta \le 1 \tag{3.17}$$

$$\frac{2}{m} \le \beta \le 1 \tag{3.18}$$

Proto, aby se obvod rozkmital, je nutné volit hodnoty m = 3 a větší. Hodnotu m = 2 zvolit nelze, jelikož by hodnota rezistoru R_a byla rovna nekonečnu a rezistor R_b roven 0. V našem případě zvolíme m = 3, n = 1/3 a pomocí vztahu z rovnice 3.15 vypočítáme přenos β :

$$\beta = \frac{1}{3} + \frac{1}{3} = \frac{2}{3} \tag{3.19}$$

Nyní odvodíme reálnou složku z rovnice 3.1 a dostaneme vztah pro ω_0 :

$$\omega^{2} \cdot (C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2} \cdot R_{a} + C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2} \cdot R_{b}) + R_{a} + R_{b} = 0$$
(3.20)

$$R_a + R_b - \omega^2 \cdot (R_a + R_b) \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 = 0$$
 (3.21)

$$(R_a + R_b) \cdot (1 - \omega^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2) = 0$$
(3.22)

- 45 -

$$\omega^{2} = \omega_{0}^{2} = \frac{1}{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}} \to \omega_{0} = \frac{1}{\sqrt{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}}$$
(3.23)

3.1.1 Návrh součástek pro RC oscilátor

Po dosazení hodnot *m* a *n* do zvolených rovnic 3.11 a 3.12 zjistíme, že rezistor R_1 je třetinou rezistoru R_2 (*R*) a kondenzátor C_1 je trojnásobně větší jako kondenzátor C_2 (*C*):

$$R_1 = \frac{R}{3} \tag{3.24}$$

$$C_1 = 3 \cdot C \tag{3.25}$$

Hodnoty součástek R_2 , C_2 a frekvenci f_0 zvolíme stejné z pásmové propusti (podkapitola 2.2.1). Abychom mohli vykreslit frekvenční a přechodovou charakteristiku, potřebujeme vypočítat hodnoty rezistorů R_1 , R_a , R_b a kondenzátoru C_1 .

Vypočítané hodnoty součástek R_1, R_2, C_1, C_2 :

$$R_1 = \frac{15,9}{3} = 5,3k\Omega \tag{3.26}$$

$$R_2 = R = 15,9k\Omega \tag{3.27}$$

$$C_1 = 3 \cdot 1 = 3n \tag{3.28}$$

$$C_1 = C = 1n \tag{3.29}$$

Zbývá vypočítat rezistory R_a a R_b , k tomu použijeme následující vztah:

$$\frac{R_a}{R_b} = \frac{\beta}{1-\beta} = \frac{\frac{2}{3}}{1-\frac{2}{3}} = \frac{\frac{2}{3}}{\frac{1}{3}} = 2$$
(3.30)

Výsledná hodnota poměru rezistorů R_a a $R_b = 2$, což znamená, že rezistor R_a musí být dvakrát větší, než rezistor R_b . Zvolíme $R_a = 2k\Omega$ a dopočítáme rezistor $R_b = 1k\Omega$. Rezistory ještě upravíme podle odporové řady E24 následovně $R_1 = 5k1$ a $R_2 = 16k$. Rezistory $R_a = 2k\Omega$ a $R_b = 1k\Omega$ se v odporové řadě E24 nachází a proto není nutné je měnit. Na obrázku 3.2 je uvedeno zapojení s navrhnutými součástkami.

Obrázek 3.2: Zapojení s navrhnutými součástkami

3.1.2 Frekvenční a impulzní charakteristika zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázku 3.3 je zobrazena amplitudová frekvenční charakteristika autonomního obvodu s velice strmým tvarem. Impulzní charakteristika na obrázku 3.4 byla znázorněna se třemi hodnotami rezistoru R_b v rozmezí od 950 Ω do 1050 Ω . Na sinusovém průběhu označeném v obrázku číslem 1 je nastavena hodnota rezistoru na vypočtenou tedy $1k\Omega$. Amplituda je stabilní, jelikož je splněna amplitudová podmínka. Na sinusovém průběhu označeném číslem 2 je hodnota rezistoru R_b zvolena 1050 Ω ($R_a/R_b < 2$). Protože je hodnota větší než vypočítaná, amplituda se bude s přibývajícím časem neustále zmenšovat, až zcela zmizí. Na sinusovém průběhu číslo 3 jsme zvolili hodnotu rezistoru $R_b = 950\Omega$ ($R_a/R_b > 2$). Se zmenšenou hodnotou rezistoru stoupá i amplituda signálu, která v ideálním případě bude stoupat do nekonečna. Reálně stoupá do určité hodnoty, kde se ustálí a závisí na saturaci výstupního signálu aktivního prvku.

Obrázek 3.3: Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru

Obrázek 3.4: Impulzní charakteristika oscilátoru

3.2 2. modifikace RC oscilátoru

Obvod je složen z aktivních prvků CCII+ a jednoho aktivního prvku OZ. CCII+1 realizuje neinvertující převodník napětí proud, CCII+2 s OZ tvoří neinvertující převodník proud napětí. Pasivní prvky R_1 , R_2 , C_1 , C_2 tvoří Wienův článek pracující v proudovém režimu.

Obrázek 3.5: Zapojení RC oscilátoru

Rovnici pro přenosovou funkci získáme pomocí programu SNAP:

$$F(p) = \frac{p \cdot (R_2 \cdot R_a \cdot R_b \cdot C_1)}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a + p \cdot (C_1 \cdot R_1 \cdot R_a + C_2 \cdot R_2 \cdot R_a - C_1 \cdot R_2 \cdot R_b + C_1 \cdot R_2 \cdot R_a) + R_a}$$
(3.37)

Odvodíme imaginární složku:

$$\omega \cdot (C_1 \cdot R_1 \cdot R_a + C_2 \cdot R_2 \cdot R_a - C_1 \cdot R_2 \cdot R_b + C_1 \cdot R_2 \cdot R_a) = 0$$
(3.38)

$$R_a \cdot (C_2 \cdot R_2 + C_1 \cdot R_1 + C_1 \cdot R_2) - C_1 \cdot R_2 \cdot R_b \le 0$$
(3.39)

$$R_a \cdot (C_2 \cdot R_2 + C_1 \cdot R_1 + C_1 \cdot R_2) \le C_1 \cdot R_2 \cdot R_b$$
(3.40)

$$\frac{R_a}{R_b} \le \frac{C_1 \cdot R_2}{C_2 \cdot R_2 + C_1 \cdot R_1 + C_1 \cdot R_2}$$
(3.41)

Odvodíme reálnou složku a dostaneme vztah pro ω_0 :

$$-\omega^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a + R_a = 0 \tag{3.42}$$

$$-\omega^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 + 1 = 0 \tag{3.43}$$

$$\omega^{2} = \omega_{0}^{2} = \frac{1}{c_{1} \cdot c_{2} \cdot R_{1} \cdot R_{2}} \to \omega_{0} = \frac{1}{\sqrt{c_{1} \cdot c_{2} \cdot R_{1} \cdot R_{2}}}$$
(3.44)

3.2.1 Návrh součástek pro RC oscilátor

Pro RC oscilátor si zvolíme opět kmitočet $f_0 = 10kHz$, stejné hodnoty součástek $C_1 = C_2 = C$ a $R_1 = R_2 = R$. Hodnoty použijeme z podkapitoly 2.2.1:

$$C = 1n \tag{3.45}$$

$$R = 15,9k\Omega \tag{3.46}$$

Zbývá vypočítat hodnoty rezistorů R_a a R_b , které zjistíme, když dosadíme vypočítané hodnoty C a R do vztahu z rovnice 3.41:

$$\frac{R_a}{R_b} \le \frac{10^{-9.15,9.10^3}}{10^{-9.15,9.10^3 + 10^{-9.15,9.10^3} + 10^{-9.15,9.10^3}}$$
(3.47)

$$\frac{R_a}{R_b} \le \frac{1}{3} \tag{3.48}$$

Poměr rezistorů R_a a $R_b \le 1/3$, což znamená, že rezistor R_b musí být alespoň třikrát větší, než rezistor R_a . Zvolíme $R_a = 1k\Omega$ a dopočítáme rezistor $R_b = 3k\Omega$. Rezistory ještě upravíme podle odporové řady E24 následovně $R_1 = R_2 = 16k$. Rezistory $R_a = 1k\Omega$ a $R_b = 3k\Omega$ se v odporové řadě E24 nachází a proto není nutné je měnit. Na obrázku 3.6 je uvedeno zapojení s navrhnutými součástkami.

Obrázek 3.6: Zapojení s navrhnutými součástkami

3.2.2 Frekvenční a impulzní charakteristika zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázku 3.7 je zobrazena amplitudová frekvenční charakteristika autonomního obvodu s velice strmým tvarem.

Impulzní charakteristika na obrázku 3.8 byla znázorněna se třemi hodnotami rezistoru R_a v rozmezí od 990 Ω do 1010 Ω . Na sinusovém průběhu označeném v obrázku číslem 1 je nastavena hodnota rezistoru na vypočtenou, tedy $1k\Omega$. Amplituda je stabilní, jelikož je splněna amplitudová podmínka. Na sinusovém průběhu označeném číslem 2 je hodnota rezistoru zvolena 1010 Ω ($R_a/R_b > 1/3$). Protože je hodnota větší než vypočítaná, amplituda se bude s přibývajícím časem neustále zmenšovat, až zcela zmizí. Na sinusovém průběhu číslo 3 jsme zvolili hodnotu rezistoru 990 Ω ($R_a/R_b < 1/3$). Se zmenšenou hodnotou rezistoru stoupá i amplituda signálu, která v ideálním případě bude stoupat do nekonečna. Reálně stoupá do určité hodnoty, kde se ustálí a závisí na saturaci výstupního signálu aktivního prvku.

Obrázek 3.7: Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru

Obrázek 3.8: Impulzní charakteristika oscilátoru

3.3 **3. modifikace RC oscilátoru s proudovým výstupem**

Obvod je složen ze tří aktivních prvků CCII+, CCII+1 pracuje jako pásmová propust s modifikovaným Wienovým článkem (R_1 , R_2 , C_1 , C_2). CCII+2 a CCII+3 realizují převodník napětí proud se symetrickým výstupem. Poměr rezistorů R_a , R_b určuje podmínku vzniku oscilací.

$$F(p) = \frac{p \cdot (R_2 \cdot R_a \cdot C_1)}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_b + p \cdot (C_1 \cdot R_1 \cdot R_b + C_2 \cdot R_2 \cdot R_b - C_1 \cdot R_2 \cdot R_a) + R_b}$$
(3.52)

Odvodíme imaginární složku:

$$\omega \cdot (C_1 \cdot R_1 \cdot R_b + C_2 \cdot R_2 \cdot R_b - C_1 \cdot R_2 \cdot R_a) = 0 \tag{3.53}$$

$$R_2 \cdot C_2 + R_1 \cdot C_1 - R_2 \cdot C_1 \cdot \frac{R_a}{R_b} \le 0$$
(3.54)

$$R_{2} \cdot C_{1} \cdot \left(\frac{R_{2} \cdot C_{2}}{R_{2} \cdot C_{1}} + \frac{R_{1} \cdot C_{1}}{R_{2} \cdot C_{1}} - \frac{R_{a}}{R_{b}}\right) \le 0$$
(3.55)

$$\frac{R_1}{R_2} + \frac{C_2}{C_1} - \frac{R_a}{R_b} \le 0 \tag{3.56}$$

$$\frac{R_a}{R_b} \ge \frac{R_1}{R_2} + \frac{C_2}{C_1} \tag{3.57}$$

Odvodíme reálnou složku a dostaneme vztah pro ω_0 :

$$-\omega^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_b + R_b = 0 \tag{3.58}$$

$$-\omega^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 + 1 = 0 \tag{3.59}$$

$$\omega^{2} = \omega_{0}^{2} = \frac{1}{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}} \to \omega_{0} = \frac{1}{\sqrt{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}}$$
(3.60)

3.3.1 Návrh součástek pro RC oscilátor

Pro RC oscilátor si zvolíme opět kmitočet $f_0 = 10kHz$ a protože máme stejnou pásmovou propust jako v podkapitole 2.2.1, použijeme stejné hodnoty součástek. Rezistor R_1 je polovinou rezistoru R_2 (*R*) a kondenzátor C_1 je dvojnásobně větší jako kondenzátor C_2 (*C*):

$$R_1 = 7,95k\Omega \tag{3.61}$$

$$R_2 = 15,9k\Omega \tag{3.62}$$

$$C_1 = 2n \tag{3.63}$$

$$C_2 = 1n \tag{3.64}$$

Zbývá vypočítat hodnoty rezistorů R_a a R_b , které zjistíme, když dosadíme vypočítané hodnoty C_1, C_2, R_1, R_2 do vztahu z rovnice 3.57:

$$\frac{R_a}{R_b} \ge \frac{7,95 \cdot 10^3}{15,9 \cdot 10^3} + \frac{1 \cdot 10^{-9}}{2 \cdot 10^{-9}}$$
(3.65)

$$\frac{R_a}{R_b} \ge 1 \tag{3.66}$$

Poměr rezistorů R_a a $R_b \ge 1$, což znamená, že rezistor R_a musí mít stejný nebo větší odpor, než rezistor R_b . Zvolíme $R_a = R_b = 1k\Omega$. Rezistory ještě upravíme podle odporové řady E24 následovně $R_1 = 8k2$, $R_2 = 16k$. Rezistory $R_a = R_b = 1k\Omega$ se v odporové řadě E24 nachází a proto není nutné je měnit. Na obrázku 3.10 je uvedeno zapojení s navrhnutými součástkami.

Obrázek 3.10: Zapojení s navrhnutými součástkami

3.3.2 Frekvenční a impulzní charakteristika zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázku 3.11 je zobrazena amplitudová frekvenční charakteristika autonomního obvodu s velice strmým tvarem. Impulzní charakteristika na obrázku 3.12 byla znázorněna se třemi hodnotami rezistoru R_a v rozmezí od 950 Ω do 1050 Ω . Na sinusovém průběhu označeném v obrázku číslem 1 je nastavena hodnota rezistoru na vypočtenou, tedy $1k\Omega$. Amplituda je stabilní, jelikož je splněna amplitudová podmínka. Na sinusovém průběhu označeném číslem 2 je hodnota rezistoru zvolena 950 Ω ($R_a/R_b < 1$). Protože je hodnota menší než vypočítaná, amplituda se bude s přibývajícím časem neustále zmenšovat, až zcela zmizí. Na sinusovém průběhu číslo 3 jsme zvolili hodnotu rezistoru 1050 Ω ($R_a/R_b > 1$). Se zvětšenou hodnotou rezistoru stoupá i amplituda signálu, která v ideálním případě bude stoupat do nekonečna. Reálně stoupá do určité hodnoty, kde se ustálí a závisí na saturaci výstupního signálu aktivního prvku.

Obrázek 3.11: Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru

Obrázek 3.12: Impulzní charakteristika oscilátoru

3.4 4. modifikace RC oscilátoru

CCII+2 pracuje jako pásmová propust s modifikovaným Wienovým článkem (R_1 , R_2 , C_1 , C_2) s podkritickou zpětnou vazbou (R_a , R_b). Obvod je doplněn převodníkem napětí proud CCII+1. Na jeho vstup je přiveden výstupní signál z napěťového výstupu oscilátoru (celkové kladná zpětná vazba).

Obrázek 3.13: Zapojení RC oscilátoru

Rovnici pro přenosovou funkci získáme pomocí programu SNAP:

$$F(p) = \frac{p \cdot (R_2 \cdot R_a \cdot C_1 \cdot R_c \cdot R_b)}{p^2 \cdot (C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_b \cdot R_c + C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a \cdot R_c) + R_b \cdot R_c + R_a \cdot R_c + p \cdot (C_2 \cdot R_2 \cdot R_b \cdot R_c + C_2 \cdot R_2 \cdot R_a \cdot R_c + C_1 \cdot R_1 \cdot R_b \cdot R_c - C_1 \cdot R_2 \cdot R_b \cdot R_a - C_1 \cdot R_2 \cdot R_a \cdot R_c)}$$
(3.67)

Odvodíme imaginární složku:

$$\omega \cdot \begin{pmatrix} C_2 \cdot R_2 \cdot R_b \cdot R_c + C_2 \cdot R_2 \cdot R_a \cdot R_c + C_1 \cdot R_1 \cdot R_a \cdot R_c + \\ C_1 \cdot R_1 \cdot R_b \cdot R_c - C_1 \cdot R_2 \cdot R_b \cdot R_a - C_1 \cdot R_2 \cdot R_a \cdot R_c \end{pmatrix} = 0$$
(3.68)

$$C_{2} \cdot R_{2} \cdot R_{b} + C_{2} \cdot R_{2} \cdot R_{a} + C_{1} \cdot R_{1} \cdot R_{a} + C_{1} \cdot R_{1} \cdot R_{b} - \left(\frac{C_{1} \cdot R_{2} \cdot R_{b} \cdot R_{a}}{R_{c}} + C_{1} \cdot R_{2} \cdot R_{a}\right) \le 0$$
(3.69)

$$R_a \cdot (R_2 \cdot C_2 + R_1 \cdot C_1) + R_b \cdot (R_2 \cdot C_2 + R_1 \cdot C_1) - R_2 \cdot C_1 \cdot \left(\frac{R_a}{R_c} \cdot R_b + R_a\right) \le 0 \quad (3.70)$$

$$(R_a + R_b) \cdot (R_2 \cdot C_2 + R_1 \cdot C_1) - R_2 \cdot C_1 \cdot R_a \cdot \left(\frac{R_b}{R_c} + 1\right) \le 0$$
(3.71)

$$\frac{R_a + R_b}{R_a} \cdot (R_2 \cdot C_2 + R_1 \cdot C_1) - R_2 \cdot C_1 \cdot \left(\frac{R_b}{R_c} + 1\right) \le 0$$
(3.72)

$$\left(1 + \frac{R_b}{R_a}\right) \cdot \left(R_2 \cdot C_2 + R_1 \cdot C_1\right) \le \left(1 + \frac{R_b}{R_c}\right) \cdot R_2 \cdot C_1 \tag{3.73}$$

$$\left(1 + \frac{R_b}{R_a}\right) \cdot \frac{R_2 \cdot C_2 + R_1 \cdot C_1}{R_2 \cdot C_1} \le \left(1 + \frac{R_b}{R_c}\right) \tag{3.74}$$

$$\left(1 + \frac{R_b}{R_a}\right) \cdot \left(\frac{C_2}{C_1} + \frac{R_1}{R_2}\right) \le \left(1 + \frac{R_b}{R_c}\right) \tag{3.75}$$

$$\frac{C_2}{C_1} + \frac{R_1}{R_2} \le \frac{1 + \frac{R_b}{R_c}}{1 + \frac{R_b}{R_a}}$$
(3.76)

Odvodíme reálnou složku a dostaneme vztah pro ω_0 :

$$-\omega^{2} \cdot (C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2} \cdot R_{a} \cdot R_{c} + C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2} \cdot R_{b} \cdot R_{c}) + R_{a} + R_{b} = 0 \quad (3.77)$$

$$\omega^2 \cdot (C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a + C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_b) = R_a + R_b$$
(3.78)

$$\omega^2 \cdot R_1 \cdot R_2 \cdot C_1 \cdot C_2 \cdot (R_a + R_b) = R_a + R_b \tag{3.79}$$

- 54 -

$$\omega^2 \cdot R_1 \cdot R_2 \cdot C_1 \cdot C_2 = 1 \tag{3.80}$$

$$\omega^{2} = \omega_{0}^{2} = \frac{1}{c_{1} \cdot c_{2} \cdot R_{1} \cdot R_{2}} \to \omega_{0} = \frac{1}{\sqrt{c_{1} \cdot c_{2} \cdot R_{1} \cdot R_{2}}}$$
(3.81)

3.4.1 Návrh součástek pro RC oscilátor

Pro RC oscilátor si zvolíme opět kmitočet $f_0 = 10kHz$ a protože máme stejnou pásmovou propust jako v podkapitole 2.2.1, použijeme stejné hodnoty součástek. Rezistor R_1 je polovinou rezistoru R_2 (*R*) a kondenzátor C_1 je dvojnásobně větší jako kondenzátor C_2 (*C*):

$$R_1 = 7,95k\Omega \tag{3.82}$$

$$R_2 = 15,9k\Omega \tag{3.83}$$

$$C_1 = 2n \tag{3.84}$$

$$C_2 = 1n \tag{3.85}$$

Hodnoty rezistorů R_a a R_c zjistíme dosazením vypočítaných hodnot C_1, C_2, R_1, R_2 do vztahu z rovnice 3.76:

$$\frac{7,95\cdot10^3}{15,9\cdot10^3} + \frac{1\cdot10^{-9}}{2\cdot10^{-9}} \le \frac{1+\frac{R_b}{R_c}}{1+\frac{R_b}{R_a}}$$
(3.86)

$$1 + \frac{R_b}{R_a} \le 1 + \frac{R_b}{R_c} \tag{3.87}$$

$$\frac{1}{R_a} \le \frac{1}{R_c} \to \frac{R_c}{R_a} \le 1 \tag{3.88}$$

Poměr rezistorů R_c a $R_a \le 1$, což znamená, že rezistor R_c musí mít stejný nebo menší odpor, než rezistor R_a . Zvolíme $R_a = R_c = 1k\Omega$. Pro výpočet zpětnovazebního rezistoru R_b si zvolíme $Q_{ekv} = 5,5$ při Q = 0,5:

$$Q_{ekv} = Q \cdot \left(1 + \frac{R_a}{R_b}\right) \tag{3.89}$$

$$5.5 \cdot R_b = 0.5 \cdot R_b + \frac{500 \cdot R_b}{R_b}$$
(3.90)

$$R_b = 100\Omega \tag{3.91}$$

Rezistory ještě upravíme podle odporové řady E24 následovně $R_1 = 8k2$, $R_2 = 16k$. Rezistory $R_a = R_c = 1k\Omega$ a $R_b = 100\Omega$ se v odporové řadě E24 nachází a proto není nutné je měnit. Na obrázku 3.14 je uvedeno zapojení s navrhnutými součástkami.

Obrázek 3.14: Zapojení s navrhnutými součástkami

3.4.2 Frekvenční a impulzní charakteristika zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázku 3.15 je zobrazena amplitudová frekvenční charakteristika autonomního obvodu s velice strmým tvarem.

Impulzní charakteristika na obrázku 3.16 byla znázorněna se třemi hodnotami rezistoru R_c v rozmezí od 900 Ω do 1100 Ω . Na sinusovém průběhu označeném v obrázku číslem 1 je nastavena hodnota rezistoru na vypočtenou tedy $1k\Omega$. Amplituda je stabilní, jelikož je splněna amplitudová podmínka. Na sinusovém průběhu označeném číslem 2 je hodnota rezistoru zvolena 1100 Ω ($R_c/R_a > 1$). Protože je hodnota větší než vypočítaná, amplituda se bude s přibývajícím časem neustále zmenšovat, až zcela zmizí. Na sinusovém průběhu číslo 3 jsme zvolili hodnotu rezistoru 900 Ω ($R_c/R_a < 1$). Se zmenšenou hodnotou rezistoru stoupá i amplituda signálu, která v ideálním případě bude stoupat do nekonečna. Reálně stoupá do určité hodnoty, kde se ustálí a závisí na saturaci výstupního signálu aktivního prvku.

Obrázek 3.15: Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru

Obrázek 3.16: Impulzní charakteristika oscilátoru

3.5 **5. modifikace RC oscilátoru s proudovým výstupem**

Obvod je složen ze čtyř aktivních prvků CCII+, CCII+2 pracuje jako pásmová propust s modifikovaným Wienovým článkem (R_1 , R_2 , C_1 , C_2). CCII+3 a CCII+4 realizují převodník napětí proud se symetrickým výstupem. Poměr rezistorů R_a , R_c určuje podmínku vzniku oscilací.

Obrázek 3.17: *Zapojení RC oscilátoru s proudovým výstupem* Rovnici pro přenosovou funkci získáme pomocí programu SNAP:

$$F(p) = -\frac{p \cdot (R_2 \cdot R_a \cdot C_1 \cdot R_b)}{p^2 \cdot (C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_b \cdot R_c + C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a \cdot R_c) + R_b \cdot R_c + R_a \cdot R_c + (C_2 \cdot R_2 \cdot R_b \cdot R_c + C_2 \cdot R_2 \cdot R_a \cdot R_c + C_1 \cdot R_1 \cdot R_b \cdot R_c - C_1 \cdot R_2 \cdot R_b \cdot R_a - C_1 \cdot R_2 \cdot R_a \cdot R_c)}$$
(3.92)

Jelikož je jmenovatel přenosové funkce shodný s přenosovou funkcí oscilátoru z podkapitoly 3.4, musí platit stejný vztah pro oscilační podmínku i střední kmitočet ω_0 . Vztah pro podmínku oscilací:

$$\frac{C_2}{C_1} + \frac{R_1}{R_2} \le \frac{1 + \frac{R_b}{R_c}}{1 + \frac{R_b}{R_a}}$$
(3.93)

Vztah pro ω_0 :

$$\omega_0 = \frac{1}{\sqrt{C_1 \cdot C_2 \cdot R_1 \cdot R_2}} \tag{3.94}$$

3.5.1 Návrh součástek pro RC oscilátor

Pro RC oscilátor si zvolíme opět kmitočet $f_0 = 10kHz$ a protože máme stejnou pásmovou propust jako v podkapitole 2.2.1, použijeme stejné hodnoty součástek. Rezistor R_1 je polovinou rezistoru R_2 (*R*) a kondenzátor C_1 je dvojnásobně větší jako kondenzátor C_2 (*C*):

$$R_1 = 7,95k\Omega \tag{3.95}$$

$$R_2 = 15,9k\Omega \tag{3.96}$$

$$C_1 = 2n \tag{3.97}$$

$$C_2 = 1n \tag{3.98}$$

Poměr rezistorů R_a a R_c je shodný s oscilátorem v podkapitole 3.4:

$$\frac{R_c}{R_a} \le 1 \tag{3.99}$$

Poměr rezistorů R_c a $R_a \le 1$, což znamená, že rezistor R_c musí mít stejný nebo menší odpor, než rezistor R_a . Zvolíme $R_a = R_c = 1k\Omega$. Zvolením $Q_{ekv} = 5,5$ a Q = 0,5 zjistíme hodnotu rezistoru zpětnovazebního rezistoru $R_b = 100\Omega$ viz podkapitola 3.4.1.

Obrázek 3.18: Zapojení s navrhnutými součástkami

3.5.2 Frekvenční a impulzní charakteristika zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázku 3.19 je zobrazena amplitudová frekvenční charakteristika autonomního obvodu s velice strmým tvarem. Impulzní charakteristika na obrázku 3.20 byla znázorněna se třemi hodnotami rezistoru R_c v rozmezí od 900 Ω do 1100 Ω . Na sinusovém průběhu označeném v obrázku číslem 1 je nastavena hodnota rezistoru na vypočtenou tedy $1k\Omega$. Amplituda je stabilní, jelikož je splněna amplitudová podmínka. Na sinusovém průběhu označeném číslem 2 je hodnota rezistoru zvolena 1100 Ω ($R_c/R_a > 1$). Protože je hodnota větší než vypočítaná, amplituda se bude s přibývajícím časem neustále zmenšovat, až zcela zmizí. Na sinusovém průběhu číslo 3 jsme zvolili hodnotu rezistoru 900 Ω ($R_c/R_a < 1$). Se zmenšenou hodnotou rezistoru stoupá i amplituda signálu, která v ideálním případě bude stoupat do nekonečna. Reálně stoupá do určité hodnoty, kde se ustálí a závisí na saturaci výstupního signálu aktivního prvku.

Obrázek 3.19: Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru

Obrázek 3.20: Impulzní charakteristika oscilátoru

3.6 6. modifikace RC oscilátoru

Obvod je tvořen jedním CCII+, který pracuje jako pásmová propust s modifikovaným Wienovým článkem (R_1 , R_2 , C_1 , C_2). Podkritická kladná zpětná vazba filtru je tvořena rezistory R_a a R_b . Dále zesilovačem řízeným výstupním signálem (stabilizace amplitudy výstupního signálu). V podkapitole 3.6.1 jsou uvedeny 2 varianty zapojení řízeného zesilovače, první je realizováno zesilovačem s napěťově řízeným zesilovačem VCA810 doplněným servosmyčkou OPA820, které bylo převzato z katalogu [6]. Další zapojení zesilovače s řízeným zesílením je realizováno CCII+ s nelineárním rezistorem (R_{d1} , R_{d2} , D1, D2).

Obrázek 3.21: Zapojení RC oscilátoru

Rovnici pro přenosovou funkci získáme pomocí programu SNAP:

$$F(p) = -\frac{p \cdot (R_1 \cdot R_2 \cdot R_b \cdot C_1 + R_1 \cdot R_2 \cdot R_a \cdot C_1) + R_2 \cdot R_b + R_2 \cdot R_a}{p^2 \cdot (C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_a + C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_b) + R_a + R_b}$$
(3.100)

Odvodíme imaginární složku:

$$\omega \cdot \begin{pmatrix} C_1 \cdot R_1 \cdot R_a + C_2 \cdot R_2 \cdot R_b + C_1 \cdot R_1 \cdot R_b + C_2 \cdot R_2 \cdot R_a - C_1 \cdot R_2 \cdot R_a \\ -C_1 \cdot R_2 \cdot R_b \cdot A \end{pmatrix} = 0 \quad (3.101)$$

$$(R_1 \cdot C_1 + R_2 \cdot C_2) \cdot (R_a + R_b) - R_2 \cdot C_1 \cdot (R_a + R_b \cdot A) \le 0$$
(3.102)

$$(R_1 \cdot C_1 + R_2 \cdot C_2) \cdot (R_a + R_b) \le R_2 \cdot C_1 \cdot (R_a + R_b \cdot A)$$
(3.103)

$$\left(\frac{R_1}{R_2} + \frac{C_2}{C_1}\right) \cdot \left(R_a + R_b\right) \le R_a + R_b \cdot A \tag{3.104}$$

$$\frac{R_1}{R_2} + \frac{C_2}{C_1} \le \frac{R_a + R_b \cdot A}{R_a + R_b}$$
(3.105)

Odvodíme reálnou složku a dostaneme vztah pro ω_0 :

$$-\omega^{2} \cdot (C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2} \cdot R_{a} + C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2} \cdot R_{b}) + R_{a} + R_{b} = 0$$
(3.106)

$$R_a + R_b - \omega^2 \cdot (R_a + R_b) \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 = 0$$
 (3.107)

$$(R_a + R_b) \cdot (1 - \omega^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2) = 0$$
(3.108)

$$\omega^{2} = \omega_{0}^{2} = \frac{1}{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}} \to \omega_{0} = \frac{1}{\sqrt{C_{1} \cdot C_{2} \cdot R_{1} \cdot R_{2}}}$$
(3.109)

3.6.1 Návrh součástek pro RC oscilátor:

Pro RC oscilátor si zvolíme opět kmitočet $f_0 = 10kHz$ a protože máme stejnou pásmovou propust jako v podkapitole 2.2.1, použijeme stejné hodnoty součástek. Rezistor R_1 je polovinou rezistoru R_2 (*R*) a kondenzátor C_1 je dvojnásobně větší jako kondenzátor C_2 (*C*):

$$R_1 = 7,95k\Omega \tag{3.110}$$

$$R_2 = 15,9k\Omega \tag{3.111}$$

$$C_1 = 2n \tag{3.112}$$

$$C_2 = 1n \tag{3.113}$$

Hodnoty rezistorů R_a , R_b zvolíme stejné jako v předchozím oscilátoru (podkapitola 3.5.1) tedy $R_a = 1k\Omega$ a $R_b = 100\Omega$. Určíme podmínku oscilací, která je závislá na řízeném zesilovači dosazením vypočítaných hodnot C_1 , C_2 , R_1 , R_2 , R_a , R_b do vztahu z rovnice 3.105:

$$\frac{7,95\cdot10^3}{15,9\cdot10^3} + \frac{1\cdot10^{-9}}{2\cdot10^{-9}} \le \frac{10^3 + 100\cdot A}{10^3 + 100}$$
(3.114)

$$A \ge 1 \tag{3.115}$$

Podmínka oscilací bude splněna, když hodnota zesílení $A \ge 1$. Rezistory upravíme podle odporové řady E24 následovně $R_1 = 8k2$, $R_2 = 16k$. Rezistory $R_a = 1k\Omega$ a $R_c = 100\Omega$ se v odporové řadě E24 nachází a proto není nutné je měnit. Na obrázku 3.22 je uvedeno zapojení s navrhnutými součástkami a na obrázcích 3.23, 3.24 jsou zobrazeny dvě varianty zapojení zesilovače řízeného výstupním signálem.

Obrázek 3.22: Zapojení s navrhnutými součástkami

Obrázek 3.23: 1. varianta zesilovače řízeného výstupním signálem

Obrázek 3.24: 2. varianta zesilovače řízeného výstupním signálem

3.6.2 Frekvenční a impulzní charakteristika zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázku 3.25 je zobrazena amplitudová frekvenční charakteristika autonomního obvodu s velice strmým tvarem.

Impulzní charakteristika na obrázku 3.26 byla znázorněna se třemi hodnotami zesílení řízeného zesilovače *A* v rozmezí od 0,9 do 1,1. Na sinusovém průběhu označeném v obrázku číslem 1 je nastaveno zesílení na hodnotu 1. Amplituda je stabilní, jelikož je splněna amplitudová podmínka. Na sinusovém průběhu označeném číslem 2 je nastaveno zesílení na hodnotu 0,9. S menším zesílením bude amplituda s přibývajícím časem klesat, až zcela zanikne. Na sinusovém průběhu číslo 3 jsme nastavili zesílení na hodnotu 1,1. Se zvyšujícím se zesílením stoupá i amplituda signálu, která v ideálním případě bude stoupat do nekonečna. Reálně stoupá do určité hodnoty, kde se ustálí a závisí na saturaci výstupního signálu aktivního prvku.

Obrázek 3.25: Amplitudová frekvenční charakteristika autonomního obvodu oscilátoru

Obrázek 3.26: Impulzní charakteristika oscilátoru

4 Analýza ARC bikvadů KHN a TT

KHN filtr pojmenovaný podle tří autorů W. J. Kerwin, L. P. Huelsman a R. W. Newcomb je často používán v praxi. Důvodem je nízká citlivost na změnu pasivních prvků, nastavitelnost činitele jakosti Q, šířky pásma B, středního kmitočtu ω_0 a přenosu K. Filtr složený ze tří aktivních prvků představuje přenosové funkce pásmovou propust, dolní propust a horní propust. Přidáním čtvrtého aktivního prvku lze realizovat i pásmovou zádrž. Další filtr TT (Tow-Thomas) je modifikací filtru KHN. Oproti filtru KHN nerealizuje přenosovou funkci horní propust a lze jej realizovat pouze dvěma aktivními prvky CCII+ [10], [11].

4.1 KHN filtr realizovaný třemi CCII+

Obvod je modifikací známého zapojení KHN filtru s operačními zesilovači (obrázek 4.1), které jsme nahradili proudovými konvejory CCII+ (obrázek 4.2). Tvoří ho součtový zesilovač, dva integrátory a dvě zpětné vazby tvořenými rezistory R_4 a R_5 . Svorka PP představuje přenosovou funkci pásmová propust, přenosovou funkci dolní propust představuje svorka DP a horní propust představuje svorka HP.

Obrázek 4.1: Zapojení KHN filtru s operačními zesilovači

Obrázek 4.2: Zapojení KHN filtru s proudovými konvejory CCII+

K odvození přenosových funkcí PP, DP a HP použijeme program pro symbolickou analýzu SNAP:

$$F_{PP}(p) = -\frac{p \cdot C_2 \cdot R_2 \cdot R_4 \cdot R_5 \cdot R_6}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5 + p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_6 + R_3 \cdot R_5 \cdot R_6} = -\frac{\frac{p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5}}{p^2 + p \cdot \frac{C_2 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5} + \frac{R_3 \cdot R_5 \cdot R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5}} = -\frac{\frac{p \cdot R_6}{C_1 \cdot R_1 \cdot R_5}}{p^2 + p \cdot \frac{R_6}{C_1 \cdot R_1 \cdot R_5} + \frac{R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5}}$$
(4.1)

$$F_{DP}(p) = -\frac{R_4 \cdot R_5 \cdot R_6}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5 + p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_6 + R_3 \cdot R_5 \cdot R_6} =$$

$$-\frac{\frac{R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3}}{p^2 + p \cdot \frac{R_6}{C_1 \cdot R_1 \cdot R_5} + \frac{R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4}}$$

$$F_{HP}(p) = -\frac{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4 \cdot R_5 \cdot R_6}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_5 + p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4 \cdot R_6 + R_3 \cdot R_5 \cdot R_6} =$$

$$-\frac{\frac{p^2 \cdot R_6}{R_3}}{p^2 + p \cdot \frac{R_6}{C_1 \cdot R_1 \cdot R_5} + \frac{R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4}}$$
(4.3)

Odvodíme vztahy pro ω_0 , *B*, *K* a *Q*:

$$\omega_0^2 = \frac{R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \to \omega_0 = \sqrt{\frac{R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4}}$$
(4.4)

$$B = \frac{\omega_0}{Q} = \frac{R_6}{C_1 \cdot R_1 \cdot R_5}$$
(4.5)

$$K = -\frac{\frac{R_6}{C_1 \cdot R_1 \cdot R_3}}{\frac{R_6}{C_1 \cdot R_1 \cdot R_5}} = -\frac{C_1 \cdot R_1 \cdot R_5 \cdot R_6}{C_1 \cdot R_1 \cdot R_3 \cdot R_6} = -\frac{R_5}{R_3}$$
(4.6)

$$Q = \frac{\omega_0}{B} = \frac{\sqrt{\frac{R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4}}}{\frac{R_6}{C_1 \cdot R_1 \cdot R_5}} = \frac{\sqrt{\frac{R_6}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4}} \cdot C_1 \cdot R_1 \cdot R_5}}{R_6} = \frac{R_6 \cdot C_1^2 \cdot R_1^2 \cdot R_5^2}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_4 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_4 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_4 \cdot R_4} \cdot \frac{1}{R_6^2} = \frac{1}{C_1 \cdot C_2 \cdot R_4 \cdot R_4} \cdot \frac{1}{R_6 \cdot R_4} \cdot \frac{1}{$$

 $\frac{R_1 \cdot R_5^{\ 2} \cdot C_1}{C_2 \cdot R_2 \cdot R_4 \cdot R_6} = R_5 \cdot \sqrt{\frac{R_1 \cdot C_1}{R_2 \cdot R_4 \cdot R_6 \cdot C_2}} = R_5 \cdot \sqrt{\frac{R_1 \cdot C_1}{R_2 \cdot C_2} \cdot \frac{1}{R_4 \cdot R_6}}$ (4.7)

4.1.1 Návrh součástek pro KHN filtr

Pro KHN filtr si zvolíme kmitočet $f_0 = 10kHz$. Abychom určili hodnoty rezistorů R_3 a R_5 , zvolíme přenos na středním kmitočtu K = 1:

$$K = -\frac{R_5}{R_3} = 1 \tag{4.8}$$

Protože poměr rezistorů R_5 a $R_3 = 1$, zvolíme rezistory $R_3 = R_5 = R_A = 10k\Omega$. Prvky CCII+2, R_1 , C_1 a CCII+3 R_2 , C_2 tvoří integrátory, proto můžeme zvolit $R_1 = R_2 = R = 15,9k\Omega$ a $C_1 = C_2 = C = 1n$ (hodnoty byly převzaty z podkapitoly 2.2.1), jelikož platí vztah:

$$f_0 = \frac{1}{2 \cdot \pi \cdot R \cdot C} = \frac{1}{2 \cdot \pi \cdot 15, 9 \cdot 10^3 \cdot 1 \cdot 10^{-9}} \approx 10 kHz$$
(4.9)

Hodnoty rezistorů R_4 a R_6 vypočítáme dosazením do vztahu pro Q, kde zvolíme $Q = 1/\sqrt{2}$ a $R_4 = R_6 = R_B$:

$$Q = R_5 \cdot \sqrt{\frac{R_1 \cdot C_1}{R_2 \cdot C_2} \cdot \frac{1}{R_4 \cdot R_6}}$$
(4.10)

- 65 -

(4.2)

$$\frac{1}{\sqrt{2}} = 10 \cdot 10^3 \cdot \sqrt{1 \cdot \frac{1}{R_B^2}} \tag{4.11}$$

$$\frac{1}{\sqrt{2}} = \frac{10 \cdot 10^3}{R_B} \tag{4.12}$$

$$R_B = 10 \cdot 10^3 \cdot \sqrt{2} = 14,14k\Omega \tag{4.13}$$

Rezistory upravíme podle odporové řady E24 následovně $R_1 = R_2 = 16k$, $R_4 = R_6 = 15k$. Ostatní pasivní prvky se v odporové řadě E24 nachází a proto není nutné je měnit. Na obrázku 4.3 je uvedeno zapojení s navrhnutými součástkami.

Obrázek 4.3: Zapojení KHN filtru s navrhnutými součástkami

4.1.2 Amplitudové frekvenční charakteristiky zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázcích 4.4, 4.5 a 4.6 jsou zobrazeny amplitudové frekvenční charakteristiky horní propusti (modře), dolní propusti (zeleně) a pásmové propusti (červeně) pro tři hodnoty činitele jakosti Q = 0,707; 5 a 10.

Obrázek 4.4: Amplitudové frekvenční charakteristiky KHN filtru pro Q = 0,707

Obrázek 4.5: Amplitudové frekvenční charakteristiky KHN filtru pro Q = 5

Obrázek 4.6: Amplitudové frekvenční charakteristiky KHN filtru pro Q = 10

4.2 TT filtr realizovaný dvěma CCII+

Obvod je tvořen dvěma integrátory a dvěma zpětnými vazbami tvořenými rezistory R_2 a R_3 . Svorka PP představuje přenosovou funkci pásmová propust, přenosovou funkci dolní propust představuje svorka DP.

Obrázek 4.7: Zapojení filtru TT s proudovými konvejory CCII+

K odvození přenosových funkcí PP a DP použijeme program pro symbolickou analýzu SNAP:

$$F_{PP}(p) = -\frac{p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 + p \cdot C_2 \cdot R_1 \cdot R_3 \cdot R_4 + R_1 \cdot R_2} = -\frac{\frac{p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}}{p^2 + p \cdot \frac{C_2 \cdot R_1 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{\frac{p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}}{p^2 + p \cdot \frac{C_2 \cdot R_1 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{\frac{p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}}{p^2 + p \cdot \frac{C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{\frac{p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}}{p^2 + p \cdot \frac{C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{\frac{p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}}{p^2 + p \cdot \frac{C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{\frac{p \cdot C_2 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}}}{p^2 + p \cdot \frac{C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4} = -\frac{p \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4}{P \cdot R_1 \cdot R_2 \cdot$$

 $p^2 + p \cdot \frac{1}{C_1 \cdot R_2} + \frac{1}{C_1 \cdot C_2 \cdot R_3 \cdot R_4}$

$$F_{DP}(p) = -\frac{R_2 \cdot R_3}{p^2 \cdot C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_3 \cdot R_4 + p \cdot C_2 \cdot R_1 \cdot R_3 \cdot R_4 + R_1 \cdot R_2} = -\frac{\overline{C_1 \cdot C_2 \cdot R_1 \cdot R_2 \cdot R_4}}{p^2 + p \cdot \frac{1}{C_1 \cdot C_2 \cdot R_1 \cdot R_3 \cdot R_4}}$$
(4.15)

Odvodíme vztahy pro ω_0 , *B*, *K* a *Q*:

$$\omega_0^2 = \frac{1}{C_1 \cdot C_2 \cdot R_3 \cdot R_4} \to \omega_0 = \frac{1}{\sqrt{C_1 \cdot C_2 \cdot R_3 \cdot R_4}}$$
(4.16)

$$B = \frac{\omega_0}{Q} = \frac{1}{C_1 \cdot R_2}$$
(4.17)

$$K = -\frac{\frac{1}{C_1 \cdot R_1}}{\frac{1}{C_1 \cdot R_2}} = -\frac{C_1 \cdot R_2}{C_1 \cdot R_1} = -\frac{R_2}{R_1}$$
(4.18)

$$Q = \frac{\omega_0}{B} = \frac{\frac{1}{\sqrt{C_1 \cdot C_2 \cdot R_3 \cdot R_4}}}{\frac{1}{C_1 \cdot R_2}} = \frac{C_1 \cdot R_2}{\sqrt{C_1 \cdot C_2 \cdot R_3 \cdot R_4}} = \frac{C_1^2 \cdot R_2^2}{C_1 \cdot C_2 \cdot R_3 \cdot R_4} = \frac{C_1}{C_2} \cdot \frac{R_2^2}{R_3 \cdot R_4} = R_2 \cdot \sqrt{\frac{C_1}{C_2} \cdot \frac{1}{R_3 \cdot R_4}}$$
(4.19)

4.2.1 Návrh součástek pro TT filtr

Pro KHN filtr si zvolíme kmitočet $f_0 = 10kHz$, rezistory $R_3 = R_4 = R = 1,6k\Omega$ a kondenzátory $C_1 = C_2 = C = 10n$. Abychom určili hodnoty rezistorů R_1 a R_2 , zvolíme přenos na středním kmitočtu K = 1:

$$K = -\frac{R_2}{R_1} = 1 \tag{4.20}$$

Protože poměr rezistorů R_2 a $R_1 = 1$, zvolíme rezistory $R_1 = R_2$. Hodnoty dosadíme do vztahu pro Q, kde zvolíme $Q = 1/\sqrt{2}$, 5, 10. Výpočet obvodových prvků pro Q = 10:

$$Q = R_2 \cdot \sqrt{\frac{C_1}{C_2} \cdot \frac{1}{R_3 \cdot R_4}}$$
(4.21)

$$10 = R_2 \cdot \sqrt{1 \cdot \frac{1}{1600^2}} \tag{4.22}$$

$$10 = R_2 \cdot \frac{1}{1600} \tag{4.23}$$

$$R_2 = R_1 = 1600 \cdot 10 = 16k\Omega \tag{4.24}$$

Všechny hodnoty rezistorů se nachází v odporové řadě E24. Na obrázku 4.8 je uvedeno zapojení TT filtru s navrhnutými součástkami.

Obrázek 4.8: Zapojení filtru TT s navrhnutými součástkami

4.2.2 Amplitudové frekvenční charakteristiky zapojení

Simulace byla provedena s přesnými vypočítanými hodnotami součástek. Na obrázcích 4.9 a 4.11 jsou zobrazeny amplitudové frekvenční charakteristiky dolní propusti a pásmové propusti pro tři hodnoty činitele jakosti Q = 0,707 (červeně), $Q = 5 \pmod{e}$ a $Q = 10 \pmod{e}$.

Obrázek 4.9: Amplitudové frekvenční charakteristiky pásmové propusti TT filtru

Obrázek 4.10: Amplitudové frekvenční charakteristiky dolní propusti TT filtru

5 Experimentální ověření

Zapojení pásmových propustí a oscilátorů byla napájena na plošný spoj. Filtry KHN a TT byly realizovány na nepájivém poli. Komerční aktivní prvek, který realizoval CCII+, byl zvolen AD844. Použité přístroje: digitální osciloskop Tektronix TDS 2002B, funkční generátor Agilent 33210A a napájecí zdroj Diametral P230R51D.

5.1 Pásmová propust realizovaná aktivním prvkem CCII+

Na CCII+ se přivádí napájecí napětí $+U_{cc} = 15V$ a $-U_{cc} = 15V$, vstupní napětí U_{1pp} se pohybovalo od 400 do 412mV. Tabulka naměřených hodnot je uvedena v příloze A (tabulka A.1). Popis zapojení je uveden v kapitole 2.2.

Obrázek 5.1: Realizované zapojení pásmové propusti

Obrázek 5.2: Amplitudová frekvenční charakteristika pásmové propusti

5.2 Pásmová propust realizovaná CCII+ s podkritickou kladnou zpětnou vazbou

Na CCII+ se přivádí opět napájecí napětí $+U_{cc} = 15V$ a $-U_{cc} = 15V$, vstupní napětí U_{1pp} se pohybovalo od 400 do 408mV. Tabulky naměřených hodnot jsou uvedeny v příloze A (tabulka A.2, A.3, A.4). Zapojení bylo změřeno pro činitele jakosti Q = 1 ($R_b = 10k\Omega$), Q = 5 ($R_b = 1k\Omega$) a Q = 10 ($R_b = 510\Omega$). Popis zapojení je uveden v kapitole 2.3.

Obrázek 5.3: Realizované zapojení pásmové propusti s podkritickou kladnou ZV pro Q = 10

Obrázek 5.4: Amplitudové frekvenční charakteristiky pásmové propusti

5.3 Pásmová propust se syntetickým induktorem s podkritickou kladnou ZV

Na CCII+ se přivádí opět napájecí napětí $+U_{cc} = 15V$ a $-U_{cc} = 15V$, vstupní napětí U_{1pp} se pohybovalo od 396 do 408mV. Tabulky naměřených hodnot jsou uvedeny v příloze A (tabulka A.5,
A.6, A.7 a A.8). Zapojení bylo změřeno pro činitele jakosti Q = 1 (bez zpětné vazby), Q = 2 ($R_b = 10k\Omega$), Q = 4 ($R_b = 3,3k\Omega$) a Q = 11 ($R_b = 1k\Omega$). Popis zapojení je uveden v kapitole 2.4.

Obrázek 5.5: Realizované zapojení pásmové propusti se syntetickým induktorem pro Q = 11

Obrázek 5.6: Amplitudové frekvenční charakteristiky pásmové propusti

5.4 KHN filtr realizovaný třemi CCII+

Na CCII+1, CCII+2 a CCII+3 se přivádí opět napájecí napětí $+U_{cc} = 15V$ a $-U_{cc} = 15V$, vstupní napětí U_{1pp} se pohybovalo od 198 do 206mV. Tabulky naměřených hodnot jsou uvedeny v příloze A (tabulka A.9, A.10, A.11, A.12, A.13 a A.14). Zapojení bylo změřeno pro činitele jakosti Q = 0,707 ($R_4 = R_6 = 15k\Omega$) a Q = 5 ($R_4 = R_6 = 2k\Omega$). Popis zapojení je uveden v kapitole 4.1.

Horní propust s činitelem jakosti Q = 5 se nepodařilo změřit pro frekvence 1000Hz a menší. Dolní propust byla změřena pouze do frekvence 100kHz. Důvodem bylo, že amplituda výstupního signálu U_{2pp} byla na hranici rozlišovací schopnosti osciloskopu. Horní propust s činitelem jakosti Q = 0,707 nebylo možné změřit v rozmezí 100-400Hz a dolní propust v rozmezí 0,4MHz-1MHz. Pásmová propust s oběma činiteli jakosti byla měřitelná od 100Hz do 1MHz.

Obrázek 5.7: Realizované zapojení filtru KHN pro Q = 0,707

Obrázek 5.8: Amplitudové frekvenční charakteristiky KHN filtru pro Q = 0,707

Obrázek 5.9: Amplitudové frekvenční charakteristiky KHN filtru pro Q = 5

5.5 TT filtr realizovaný dvěma CCII+

Na CCII+1 a CCII+2 se přivádí opět napájecí napětí $+U_{cc} = 15V$ a $-U_{cc} = 15V$, vstupní napětí U_{1pp} se pohybovalo od 388 do 408mV. Tabulky naměřených hodnot jsou uvedeny v příloze A (tabulka A.15, A.16, A.17 a A.18). Zapojení bylo změřeno pro činitele jakosti Q = 0,707 ($R_1 = R_2 = 16k\Omega$) a Q = 5 ($R_1 = R_2 = 8,2k\Omega$). Popis zapojení je uveden v kapitole 4.2.

Obrázek 5.10: Realizované zapojení TT filtru pro Q = 0,707

Pásmovou propust s činitelem jakosti Q = 5 se nepodařilo změřit pro frekvence 1000Hz a menší stejně jako u KHN filtru a dále byla neměřitelná od 600kHz. Dolní propust byla změřena pouze do frekvence 100kHz. Pásmová propust s činitelem jakosti Q = 0,707 vykazuje od 800kHz zkreslené hodnoty, jelikož jsme přesáhli rozlišovací schopnosti osciloskopu. Dolní propust nebylo možné změřit v rozmezí 0,1-1MHz.

Obrázek 5.11: Amplitudové frekvenční charakteristiky TT filtru pro Q = 0,707

Obrázek 5.12: Amplitudové frekvenční charakteristiky TT filtru pro Q = 5

5.6 1. modifikace RC oscilátoru

Na CCII+ se přivádí opět napájecí napětí $+U_{cc} = 15V$ a $-U_{cc} = 15V$. Zpětnovazební rezistor R_b byl nahrazen rezistorem $R_{b1} = 750\Omega$ a trimrem $R_{b2} = 470\Omega$, kterým dostavujeme obvod, aby se rozkmital. Popis zapojení je uveden v kapitole 3.1.

Obrázek 5.13: Realizované zapojení oscilátoru

Na obrázku 5.14 je zobrazen časový průběh oscilátoru. Změřený mezní kmitočet má hodnotu $f_0 = 10,1kHz$ a napětí $U_{2pp} = 13V$. Amplituda sinusového signálu je tedy 6,5V. Na obrázku 5.15 je zobrazeno frekvenční spektrum generovaného signálu oscilátorem. Základní harmonická frekvence je $f_0 = 10,1kHz$, v oblasti kolem 20kHz a 40kHz vidíme další harmonické složky (druhá a čtvrtá).

Obrázek 5.14: Časový průběh výstupního signálu oscilátoru

Obrázek 5.15: Frekvenční spektrum generovaného signálu oscilátorem

5.7 2. modifikace RC oscilátoru

Na CCII+1 a CCII+2 se přivádí opět napájecí napětí $+U_{cc} = 15V$ a $-U_{cc} = 15V$. Rezistor $R_a = 1k\Omega$ byl nahrazen trimrem $R_a = 865\Omega$, kterým dostavujeme obvod, aby se rozkmital. Zesílení musí být rovno 3 nebo lehce přes hodnotu, aby signál nedosáhl saturace. Popis zapojení je uveden v kapitole 3.2.

Na obrázku 5.17 je zobrazen časový průběh oscilátoru. Změřený mezní kmitočet má hodnotu $f_0 = 10,73kHz$ a napětí $U_{2pp} = 24,2V$. Amplituda sinusového signálu je tedy 12,1V a je lehce zkreslená. Na obrázku 5.18 je zobrazeno frekvenční spektrum generovaného signálu oscilátorem. Základní harmonická frekvence je $f_0 = 10,73kHz$, vyšší harmonické složky druhá, třetí a čtvrtá jsou výraznější než u předcházejícího zapojení oscilátoru.

Obrázek 5.17: Časový průběh výstupního signálu oscilátoru

Obrázek 5.18: Frekvenční spektrum generovaného signálu oscilátorem

5.8 6. modifikace RC oscilátoru

Na CCII+1 a CCII+2 se přivádí opět napájecí napětí $+U_{cc} = 15V$ a $-U_{cc} = 15V$. Rezistor R_c byl nahrazen trimrem $R_c = 500\Omega$, kterým dostavujeme obvod, aby se rozkmital. Popis zapojení je uveden v kapitole 3.6.

Na obrázku 5.20 je zobrazen časový průběh oscilátoru. Změřený mezní kmitočet má hodnotu $f_0 = 10,19kHz$, napětí zobrazené kanálem CH1 $U_{2pp} = 1,36V$ a napětí zobrazené kanálem CH2 $U_{2pp} = 2,22V$. Amplituda sinusového signálu U_{2pp} je tedy 0,68V a U_{2pp} je 1,11V. Na obrázku 5.21 je zobrazeno frekvenční spektrum generovaného signálu oscilátorem. V oblasti frekvenče $f_0 = 10,19kHz$ vidíme hlavní harmonickou, ostatní harmonické složky jsou na úrovni šumu. Odstup první harmonické od šumu je -52dB.

Obrázek 5.19: Realizace zapojení oscilátoru

Obrázek 5.20: Časový průběh výstupních signálů oscilátoru

Obrázek 5.21: Frekvenční spektrum generovaného signálu oscilátorem

Závěr

V práci bylo prezentováno několik moderních komerčně dostupných aktivních prvků představujících pozitivní proudový konvejor druhé generace, dále zapojení filtrů typu pásmová propust, RC oscilátorů a univerzálních filtrů KHN a TT. Všechny tyto zapojení byly navrhnuty pro kmitočet 10kHz a aktivní prvek realizující CCII+ byl zvolen AD844.

Pásmové propusti byly doplněny o podkritickou kladnou zpětnou vazbu a zkoumalo se, jaký má vliv na tyto filtry. Podkritcká vazba slouží ke zvýšení činitele jakosti při zachování dynamického rozsahu zpracovaného signálu. Výhody jsou, že přenos na středním kmitočtu a střední kmitočet se nebudou měnit v závislosti na změně činitele jakosti. Činitel jakosti nastavujeme změnou poměru zpětnovazebních rezistorů. Pro zajištění stability pásmových propustí s podkritickou kladnou zpětnou vazbou musí být všechny koeficienty charakteristické rovnice kladné, proto volíme přenos na středním kmitočtu K = 1. Stejný přenos byl také zvolen při návrhu univerzálních filtrů KHN a TT.

Zapojení pásmových propustí a oscilátorů byla napájena na plošný spoj. Filtry KHN a TT byly realizovány na nepájivém poli. Nejprve bylo změřeno zapojení pásmové propusti bez podkritické kladné zpětné vazby (podkapitola 5.1). Porovnáním nasimulované a naměřené amplitudové frekvenční charakteristiky bylo zjištěno, že se charakteristiky shodují, filtr tedy pracuje ve frekvenčním pásmu 20kHz tak, jak byl i navržen. Další zapojení pásmové propusti s podkritickou kladnou zpětnou vazbou (podkapitola 5.2) bylo změřeno pro tři hodnoty činitele jakosti. Při nastavení Q = 1 a 5 se filtr choval podobně, jako byl navržen. U Q = 10 již přenos -60dB neodpovídal frekvenci 100Hz. Důvodem bylo, že amplituda výstupního signálu na osciloskopu byla dosti zkreslená. Zapojení pásmové propusti se syntetickým induktorem (podkapitola 5.3) se chovalo stejně podle simulace v rozmezí kmitočtů 600Hz-200kHz pro zvolené činitele jakosti. Vyšší a nižší kmitočty již neodpovídaly hodnotám přenosu. Na vině byla opět slabá rozlišovací schopnost osciloskopu. Stejně tak filtry KHN a TT vykazovaly rozdílné výsledky při nižších a vyšších kmitočtech nebo byly dokonce tyto úrovně signálu na těchto kmitočtech neměřitelné.

Přínosem diplomové práce je analýza a odvození návrhových vztahů filtrů a oscilátorů s aktivními prvky typu CCII+ a praktické ověření jejich parametrů (frekvenční charakteristiky a frekvenční spektra).

Použitá literatura

- [1] Elektrické filtry: pasivní filtry [online]. 2009 [cit. 2016-03-02]. Dostupné z: http://www.urel.feec.vutbr.cz/MTEO/belf/pasivni%20filtry.pdf
- [2] Bandpass filter [online]. WhatIs, 2006 [cit. 2016-03-02]. Dostupné z: http://whatis.techtarget.com/definition/bandpass-filter
- [3] HÁJEK, Karel a Jiří SEDLÁČEK. Kmitočtové filtry. 1. vyd. Praha: BEN technická literatura, 2002. ISBN 80-7300-023-7.
- [4] DOSTÁL, Tomáš. Elektrické filtry: přednášky a numerická cvičení. Vyd. 1. Brno: Vysoké učení technické, Fakulta elektrotechniky a komunikačních technologií, Ústav radioelektroniky, 2004. ISBN 80-214-2561-X.
- [5] BERNKOPF, Jaroslav. Elektronika [online]. Valašské Meziříčí, 2014 [cit. 2016-03-31]. Dostupné z: http://www.bernkopf.cz/skola/predmety/elektronika/materialy/skripta/elektronika.pdf
- [6] VCA810 High Gain Adjust Range, Wideband and Variable Gain Amplifier [online]. Texas Instruments, 2015 [cit. 2016-03-21]. Dostupné z: http://www.ti.com/lit/ds/symlink/vca810.pdf
- [7] FABRE, A. Hing Imput Impedance Insensitive Second-Order Filters Implemendent from CCs. IEEE Trans. CAS-I, Vol. 41 No. 12, 1994, 918-921.
- [8] TESAŘ, Zdeněk a Iva PETŘÍKOVÁ. Oprimalizace dynamického rozsahu vstupního signálu pásmové propusti s obvody CCII+. Konference RTT, Ostravice, 2015 [cit. 2016-03-22].
- [9] LC Oscillator Basics [online]. Electronics Tutorials, 2016 [cit. 2016-03-31]. Dostupné z: http://www.electronics-tutorials.ws/oscillator/oscillators.html
- [10] SUN, Yichuang. Design of high frequency integrated analogue filters. London: Institution of Electrical Engineers, c2002. ISBN 0852969767.
- [11] SOLIMAN, Ahmed M. Generation of Kerwin-Huelsman-Newcomb biquad filter circuits using nodal admittance matrix expansion. International Journal of Circuit Theory and Applications [online]. 2011, 39(7), 697-717 [cit. 2016-04-01]. DOI: 10.1002/cta.654. ISSN 00989886. Dostupné z: http://doi.wiley.com/10.1002/cta.654
- [12] AD844: 60 MHz, 2000 V/µs Monolithic Op Amp Data Sheet. Analog Devices [online]. Norwood, 2009 [cit. 2016-04-03]. Dostupné z: http://www.analog.com/media/en/technicaldocumentation/data-sheets/AD844.pdf
- [13] OPA860: Wide Bandwidth Operational Transconductance Amplifier and Buffer [online]. Texas Instruments, 2008 [cit. 2016-04-08]. Dostupné z: http://www.ti.com/lit/ds/symlink/ opa860.pdf
- [14] OPA861: Wide Bandwidth Operational Transconductance Amplifier [online]. Texas Instruments, 2013 [cit. 2016-04-08]. Dostupné z: http://www.ti.com/lit/ds/symlink/opa861.pdf

Seznam příloh

Příloha A: Naměřené hodnoty I

Součástí DP je příloha na CD.

Adresářová struktura přiloženého CD:

- Schemata ProfiCAD/ schémata kreslená v programu ProfiCAD
- Schemata SNAP/ schémata kreslená v programu SNAP
- Namerene vysledky.xlsx naměřené charakteristiky a tabulky hodnot

Příloha A: Naměřené hodnoty

Frekvence	U _{2pp} [mV]	U2pp/U1pp	F [dB]
10kHz	412	1,03	0,26
8kHz	404	1,01	0,09
6kHz	364	0,91	-0,82
4kHz	284	0,71	-2,97
2kHz	158	0,40	-8,07
1kHz	82	0,21	-13,76
800Hz	66,4	0,17	-15,60
600Hz	50,4	0,13	-17,99
400Hz	34	0,09	-21,41
200Hz	17,4	0,04	-27,23
100Hz	9	0,02	-32,96
20kHz	328	0,82	-1,72
40kHz	196	0,49	-6,20
60kHz	136	0,34	-9,37
80kHz	104	0,26	-11,70
100kHz	84	0,21	-13,56
200kHz	44	0,11	-19,17
400kHz	24	0,06	-24,44
600kHz	17	0,04	-27,43
800kHz	14	0,04	-29,12
1MHz	12	0,03	-30,46

Tabulka A 1 [.]	Tabulka naměřených hodnot pásmové propusti
1 40 4114 1 1.1.	i de titud namer en yen no anor pasmore propusti

Tabulka A.2: Tabulka naměřených hodnot pásmové propusti se ZV(Q = 1)

Frekvence	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	4,4	0,01	-39,17
200Hz	8,48	0,02	-33,47
400Hz	17,4	0,04	-27,23
600Hz	25,6	0,06	-23,88
800Hz	34	0,09	-21,41
1kHz	42	0,11	-19,58
2kHz	86	0,22	-13,35
4kHz	178	0,45	-7,03
6kHz	284	0,71	-2,97
8kHz	380	0,95	-0,45
9kHz	400	1,00	0,00
10kHz	412	1,03	0,26
12kHz	384	0,96	-0,35
15kHz	318	0,80	-1,99

20kHz	230	0,58	-4,81
40kHz	108	0,27	-11,37
60kHz	72	0,18	-14,89
80kHz	54,4	0,14	-17,33
100kHz	43,2	0,11	-19,33
200kHz	22,4	0,06	-25,04
400kHz	11,5	0,03	-30,83
600kHz	8,4	0,02	-33,56
800kHz	6,96	0,02	-35,19
1MHz	6,24	0,02	-36,14

Tabulka A.3:Tabulka naměřených hodnot pásmové propusti se ZV(Q = 5)

Frekvence	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	1,12	0,00	-51,06
200Hz	1,8	0,00	-46,94
400Hz	3,2	0,01	-41,94
600Hz	4,8	0,01	-38,42
800Hz	6,24	0,02	-36,14
1kHz	7,84	0,02	-34,15
2kHz	16,6	0,04	-27,64
4kHz	36,8	0,09	-20,72
6kHz	71,2	0,18	-14,99
8kHz	158	0,40	-8,07
9kHz	276	0,69	-3,22
10kHz	460	1,15	1,21
10,1kHz	460	1,15	1,21
11kHz	314	0,79	-2,10
12kHz	198	0,50	-6,11
15kHz	92	0,23	-12,77
18kHz	63,2	0,16	-16,03
20kHz	52,8	0,13	-17,59
40kHz	21,4	0,05	-25,43
60kHz	14	0,04	-29,12
80kHz	10,2	0,03	-31,87
100kHz	8,2	0,02	-33,76
200kHz	4,32	0,01	-39,33
400kHz	2,48	0,01	-44,15
600kHz	2	0,01	-46,02
800kHz	1,76	0,00	-47,13
1MHz	1,68	0,00	-47,54

Frekvence	U _{2pp} [mV]	U _{2pp} /U _{1pp}	F [dB]
100Hz	1,04	0,00	-51,70
200Hz	1,28	0,00	-49,90
400Hz	1,92	0,00	-46,38
600Hz	2,72	0,01	-43,35
800Hz	3,52	0,01	-41,11
1kHz	4,4	0,01	-39,17
2kHz	8,88	0,02	-33,07
4kHz	20,4	0,05	-25,85
6kHz	39,2	0,10	-20,18
8kHz	88,8	0,22	-13,07
9kHz	174	0,44	-7,23
9,5kHz	300	0,75	-2,50
10kHz	524	1,31	2,35
10,08kHz	536	1,34	2,54
11kHz	214	0,54	-5,43
12kHz	116	0,29	-10,75
15kHz	51,2	0,13	-17,86
18kHz	34,2	0,09	-21,36
20kHz	28,8	0,07	-22,85
40kHz	11,4	0,03	-30,90
60kHz	7,52	0,02	-34,52
80kHz	5,7	0,01	-36,92
100kHz	4,56	0,01	-38,86
200kHz	2,48	0,01	-44,15
400kHz	1,6	0,00	-47,96
600kHz	1,36	0,00	-49,37
800kHz	1,28	0,00	-49,90
1MHz	1,2	0,00	-50,46

Tabulka A.4: Tabulka naměřených hodnot pásmové propusti se ZV (Q = 10)

Tabulka A.5: Tabulka naměřených hodnot RLC modifikované pásmové propusti (Q = 1)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	404	16,2	0,04	-27,94
200Hz	404	17,8	0,04	-27,12
400Hz	404	22,4	0,06	-25,12
600Hz	404	28	0,07	-23,18
800Hz	404	35,2	0,09	-21,20
1kHz	404	42,4	0,10	-19,58
2kHz	412	80,8	0,20	-14,15
4kHz	412	166	0,40	-7,90
6kHz	412	268	0,65	-3,74
8kHz	408	364	0,89	-0,99

9kHz	408	396	0,97	-0,26
10,35kHz	412	412	1,00	0,00
12kHz	408	396	0,97	-0,26
15kHz	412	324	0,79	-2,09
20kHz	412	232	0,56	-4,99
40kHz	412	108	0,26	-11,63
60kHz	408	71,2	0,17	-15,16
80kHz	408	55,2	0,14	-17,37
100kHz	412	44,4	0,11	-19,35
200kHz	408	26,4	0,06	-23,78
400kHz	408	20	0,05	-26,19
600kHz	408	19	0,05	-26,64
800kHz	408	19	0,05	-26,64
1MHz	408	20	0,05	-26,19

Tabulka A.6: Tabulka naměřených hodnot RLC modifikované pásmové propusti (Q = 2)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	396	8,56	0,02	-33,30
200Hz	400	9,36	0,02	-32,62
400Hz	400	11,8	0,03	-30,60
600Hz	400	14,8	0,04	-28,64
800Hz	400	18,2	0,05	-26,84
1kHz	400	21,8	0,05	-25,27
2kHz	412	42,4	0,10	-19,75
4kHz	412	92	0,22	-13,02
6kHz	412	168	0,41	-7,79
8kHz	412	288	0,70	-3,11
9kHz	412	364	0,88	-1,08
10kHz	412	416	1,01	0,08
10,34kHz	412	420	1,02	0,17
12kHz	412	360	0,87	-1,17
15kHz	412	226	0,55	-5,22
20kHz	412	137	0,33	-9,56
40kHz	408	56,8	0,14	-17,13
60kHz	408	37,2	0,09	-20,80
80kHz	408	28,4	0,07	-23,15
100kHz	408	23,6	0,06	-24,75
200kHz	408	14	0,03	-29,29
400kHz	408	10,4	0,03	-31,87
600kHz	408	9,8	0,02	-32,39
800kHz	408	9,6	0,02	-32,57
1MHz	408	10	0,02	-32,21

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	400	4,8	0,01	-38,42
200Hz	404	5,04	0,01	-38,08
400Hz	404	6,16	0,02	-36,34
600Hz	404	7,67	0,02	-34,43
800Hz	404	9,4	0,02	-32,67
1kHz	404	11,2	0,03	-31,14
2kHz	412	21,6	0,05	-25,61
4kHz	412	47,2	0,11	-18,82
6kHz	412	88,8	0,22	-13,33
8kHz	412	178	0,43	-7,29
9kHz	412	280	0,68	-3,35
10,34kHz	412	436	1,06	0,49
12kHz	412	272	0,66	-3,61
15kHz	412	130	0,32	-10,02
20kHz	412	72,8	0,18	-15,06
40kHz	408	28,8	0,07	-23,03
60kHz	408	19,2	0,05	-26,55
80kHz	408	14,4	0,04	-29,05
100kHz	404	12	0,03	-30,54
200kHz	408	7,28	0,02	-34,97
400kHz	408	5,6	0,01	-37,25
600kHz	404	5,28	0,01	-37,67
800kHz	408	5,2	0,01	-37,89
1MHz	404	5,2	0,01	-37,81

Tabulka A.7: Tabulka naměřených hodnot RLC modifikované pásmové propusti (Q = 4)

Tabulka A.8: Tabulka naměřených hodnot RLC modifikované pásmové propusti (Q = 11)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	400	2,16	0,01	-45,35
200Hz	404	2,32	0,01	-44,82
400Hz	404	2,64	0,01	-43,70
600Hz	404	3,2	0,01	-42,02
800Hz	404	3,8	0,01	-40,53
1kHz	404	4,4	0,01	-39,26
2kHz	412	8,32	0,02	-33,90
4kHz	412	18	0,04	-27,19
6kHz	412	33,6	0,08	-21,77
8kHz	412	74,4	0,18	-14,87
9kHz	412	130	0,32	-10,02
9,5kHz	412	204	0,50	-6,11
10,33kHz	412	504	1,22	1,75
11kHz	412	272	0,66	-3,61

12kHz	412	126	0,31	-10,29
15kHz	412	50,4	0,12	-18,25
20kHz	408	27,2	0,07	-23,52
40kHz	408	11	0,03	-31,39
60kHz	404	7,28	0,02	-34,88
80kHz	404	5,68	0,01	-37,04
100kHz	404	4,72	0,01	-38,65
200kHz	408	3,04	0,01	-42,56
400kHz	404	2,4	0,01	-44,52
600kHz	404	2,4	0,01	-44,52
800kHz	404	2,32	0,01	-44,82
1MHz	404	2,24	0,01	-45,12

Tabulka A.9: Tabulka naměřených hodnot filtru KHN (dolní propust, Q = 0,707)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U _{2pp} /U _{1pp}	F [dB]
100Hz	200	298	1,49	3,46
200Hz	200	298	1,49	3,46
400Hz	200	298	1,49	3,46
600Hz	200	298	1,49	3,46
800Hz	200	298	1,49	3,46
1kHz	200	298	1,49	3,46
2kHz	202	302	1,50	3,49
3kHz	202	298	1,48	3,38
4kHz	202	294	1,46	3,26
6kHz	202	274	1,36	2,65
8kHz	202	242	1,20	1,57
9kHz	202	220	1,09	0,74
10kHz	202	202	1,00	0,00
11kHz	202	182	0,90	-0,91
12kHz	202	162	0,80	-1,92
15kHz	202	118	0,58	-4,67
20kHz	202	72	0,36	-8,96
40kHz	202	19,4	0,10	-20,35
60kHz	200	8,72	0,04	-27,21
80kHz	198	5	0,03	-31,95
100kHz	198	3,28	0,02	-35,62
200kHz	200	1	0,01	-46,02
400kHz	198	0,84	0,00	-47,45

Tabulka A.10: Tabulka naměřených hodnot filtru KHN (horní propust, Q = 0,707)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
400Hz	200	0,72	0,00	-48,87
600Hz	200	1,28	0,01	-43,88

	_		_	_
800Hz	200	2,08	0,01	-39,66
1kHz	200	3,2	0,02	-35,92
2kHz	202	12,5	0,06	-24,17
4kHz	202	47,6	0,24	-12,55
6kHz	202	98,4	0,49	-6,25
8kHz	202	154	0,76	-2,36
9kHz	202	178	0,88	-1,10
10kHz	202	198	0,98	-0,17
11kHz	202	216	1,07	0,58
12kHz	202	230	1,14	1,13
15kHz	202	258	1,28	2,13
20kHz	202	278	1,38	2,77
40kHz	202	290	1,44	3,14
60kHz	200	292	1,46	3,29
80kHz	198	292	1,47	3,37
100kHz	200	294	1,47	3,35
200kHz	200	292	1,46	3,29
400kHz	200	286	1,43	3,11
600kHz	200	276	1,38	2,80
800kHz	200	264	1,32	2,41
1MHz	198	250	1,26	2,03

Tabulka A.11: Tabulka naměřených hodnot filtru KHN (pásmová propust, Q = 0,707)

	T T F T T			
Frekvence	$U_{1pp}[mV]$	$U_{2pp}[mV]$	U_{2pp}/U_{1pp}	F [dB]
100Hz	200	3,44	0,02	-35,29
200Hz	202	6,3	0,03	-30,12
400Hz	202	12,3	0,06	-24,31
600Hz	200	19	0,10	-20,45
800Hz	202	25,2	0,12	-18,08
1kHz	202	31	0,15	-16,28
2kHz	206	61,6	0,30	-10,49
4kHz	206	118	0,57	-4,84
6kHz	206	164	0,80	-1,98
8kHz	206	192	0,93	-0,61
9kHz	206	198	0,96	-0,34
9,92kHz	202	196	0,97	-0,26
10kHz	202	196	0,97	-0,26
11kHz	206	198	0,96	-0,34
12kHz	206	192	0,93	-0,61
15kHz	206	174	0,84	-1,47
20kHz	206	140	0,68	-3,35
40kHz	206	75,2	0,37	-8,75
60kHz	206	51,2	0,25	-12,09

80kHz	204	38	0,19	-14,60
100kHz	204	30,8	0,15	-16,42
200kHz	204	16,2	0,08	-22,00
400kHz	204	8,4	0,04	-27,71
600kHz	204	6	0,03	-30,63
800kHz	204	4,72	0,02	-32,71
1MHz	204	4,16	0,02	-33,81

Tabulka A.12: Tabulka naměřených hodnot filtru KHN (dolní propust, Q = 5)

		r		
Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	200	40,8	0,20	-13,81
200Hz	202	40,4	0,20	-13,98
400Hz	200	40,8	0,20	-13,81
600Hz	200	41,2	0,21	-13,72
800Hz	200	41,2	0,21	-13,72
1kHz	202	41,2	0,20	-13,81
2kHz	206	42,8	0,21	-13,65
4kHz	206	49,2	0,24	-12,44
6kHz	206	64	0,31	-10,15
8kHz	206	106	0,51	-5,77
9kHz	206	149	0,72	-2,81
9,5kHz	206	166	0,81	-1,88
9,8kHz	206	166	0,81	-1,88
10kHz	206	160	0,78	-2,19
10,5kHz	206	134	0,65	-3,74
11kHz	204	106	0,52	-5,69
12kHz	206	70	0,34	-9,38
15kHz	204	29,6	0,15	-16,77
20kHz	204	13	0,06	-23,91
40kHz	204	2,8	0,01	-37,25
60kHz	204	1,36	0,01	-43,52
80kHz	202	0,88	0,00	-47,22
100kHz	202	0,56	0,00	-51,14

Tabulka A.13: Tabulka naměřených hodnot filtru KHN (horní propust, Q = 5)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U _{2pp} /U _{1pp}	F [dB]
1kHz	200	1,64	0,01	-41,72
2kHz	200	1,92	0,01	-40,35
4kHz	204	8,24	0,04	-27,87
6kHz	206	24	0,12	-18,67
8kHz	204	68,8	0,34	-9,44
9kHz	206	123	0,60	-4,48

-	-	<u>.</u>		
9,8kHz	204	162	0,79	-2,00
10kHz	206	164	0,80	-1,98
10,5kHz	204	150	0,74	-2,67
11kHz	206	132	0,64	-3,87
12kHz	206	102	0,50	-6,11
15kHz	206	67,2	0,33	-9,73
20kHz	206	52	0,25	-11,96
40kHz	204	42,4	0,21	-13,65
60kHz	202	41,2	0,20	-13,81
80kHz	202	40,4	0,20	-13,98
100kHz	202	40,4	0,20	-13,98
200kHz	204	40,4	0,20	-14,06
400kHz	204	40,4	0,20	-14,06
600kHz	204	40,4	0,20	-14,06
800kHz	204	40	0,20	-14,15
1MHz	204	40	0,20	-14,15

Tabulka A.14: Tabulka naměřených hodnot filtru KHN (pásmová propust, Q = 5)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	200	0,7	0,00	-49,12
200Hz	202	1,4	0,01	-43,18
400Hz	200	1,84	0,01	-40,72
600Hz	200	2,64	0,01	-37,59
800Hz	202	3,5	0,02	-35,23
1kHz	200	4,3	0,02	-33,35
2kHz	206	9,96	0,05	-26,31
4kHz	206	21	0,10	-19,83
6kHz	204	39,6	0,19	-14,24
8kHz	206	87,2	0,42	-7,47
9kHz	206	138	0,67	-3,48
9,8kHz	204	166	0,81	-1,79
10kHz	204	162	0,79	-2,00
11kHz	204	118	0,58	-4,75
12kHz	204	85	0,42	-7,60
15kHz	204	45	0,22	-13,13
20kHz	204	26,4	0,13	-17,76
40kHz	204	10,9	0,05	-25,44
60kHz	202	7,4	0,04	-28,72
80kHz	202	5,36	0,03	-31,52
100kHz	202	4,32	0,02	-33,40
200kHz	202	2,24	0,01	-39,10
400kHz	202	1,36	0,01	-43,44
600kHz	202	0,88	0,00	-47,22

800kHz	202	0,8	0,00	-48,05
1MHz	202	0,8	0,00	-48,05

Tabulka A.15: Tabulka naměřených hodnot filtru TT (pásmová propust, Q = 0,707)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
100Hz	388	10	0,03	-31,78
200Hz	388	20,08	0,05	-25,72
400Hz	388	33,2	0,09	-21,35
600Hz	388	43,2	0,11	-19,07
800Hz	388	55,2	0,14	-16,94
1kHz	388	67,2	0,17	-15,23
2kHz	392	124	0,32	-10,00
4kHz	392	236	0,60	-4,41
6kHz	392	324	0,83	-1,65
8kHz	392	372	0,95	-0,45
9,2kHz	392	376	0,96	-0,36
10kHz	384	370	0,96	-0,32
11kHz	382	356	0,93	-0,61
12kHz	382	346	0,91	-0,86
15kHz	392	300	0,77	-2,32
20kHz	392	236	0,60	-4,41
40kHz	392	125	0,32	-9,93
60kHz	388	88	0,23	-12,89
80kHz	388	70	0,18	-14,87
100kHz	388	54	0,14	-17,13
200kHz	388	37	0,10	-20,41
400kHz	392	27,6	0,07	-23,05
600kHz	392	24	0,06	-24,26
800kHz	388	20	0,05	-25,76
1MHz	388	22	0,06	-24,93

Tabulka A.16: Tabulka naměřených hodnot filtru TT (dolní propust, Q = 0,707)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U _{2pp} /U _{1pp}	F [dB]
100Hz	388	560	1,44	3,19
200Hz	388	560	1,44	3,19
400Hz	388	560	1,44	3,19
600Hz	388	564	1,45	3,25
800Hz	388	560	1,44	3,19
1kHz	388	560	1,44	3,19
2kHz	392	564	1,44	3,16
4kHz	392	552	1,41	2,97
6kHz	392	516	1,32	2,39

8kHz	392	444	1,13	1,08
9,2kHz	392	388	0,99	-0,09
10kHz	392	356	0,91	-0,84
12kHz	392	276	0,70	-3,05
15kHz	392	194	0,49	-6,11
20kHz	392	114	0,29	-10,73
40kHz	392	31	0,08	-22,04
60kHz	388	16,8	0,04	-27,27
80kHz	388	10,4	0,03	-31,44
100kHz	388	8	0,02	-33,71

Tabulka A.17: Tabulka naměřených hodnot filtru TT (pásmová propust, Q = 5)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U2pp/U1pp	F [dB]
1kHz	396	18,4	0,05	-26,66
2kHz	408	24	0,06	-24,61
4kHz	408	46,4	0,11	-18,88
6kHz	408	87,2	0,21	-13,40
8kHz	408	182	0,45	-7,01
9kHz	408	272	0,67	-3,52
9,6kHz	408	294	0,72	-2,85
10kHz	408	284	0,70	-3,15
11kHz	408	208	0,51	-5,85
12kHz	408	154	0,38	-8,46
15kHz	404	88	0,22	-13,24
20kHz	408	53	0,13	-17,73
40kHz	404	24	0,06	-24,52
60kHz	404	20	0,05	-26,11
80kHz	400	15	0,04	-28,52
100kHz	404	11	0,03	-31,30
200kHz	400	6	0,02	-36,48
400kHz	400	4,7	0,01	-38,60
600kHz	400	4	0,01	-40,00

Tabulka A.18: Tabulka naměřených hodnot filtru TT (dolní propust, Q = 5)

Frekvence	U _{1pp} [mV]	U _{2pp} [mV]	U _{2pp} /U _{1pp}	F [dB]
100Hz	396	84	0,21	-13,47
200Hz	396	82	0,21	-13,68
400Hz	396	82	0,21	-13,68
600Hz	396	82	0,21	-13,68
800Hz	396	82	0,21	-13,68
1kHz	396	82	0,21	-13,68
2kHz	408	86	0,21	-13,52
4kHz	408	96	0,24	-12,57

6kHz	408	127	0.31	-10,14
8kHz	408	214	0,52	-5,60
9kHz	408	290	0,71	-2,97
9,8kHz	408	284	0,70	-3,15
10kHz	408	268	0,66	-3,65
11kHz	408	178	0,44	-7,20
12kHz	408	120	0,29	-10,63
15kHz	404	54,4	0,13	-17,42
20kHz	404	24,4	0,06	-24,38
40kHz	404	6,3	0,02	-36,14
60kHz	404	3,2	0,01	-42,02
80kHz	400	2,64	0,01	-43,61
100kHz	400	2	0,01	-46,02