
VŠB Ű Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science

Department of Computer Science

Programme for the Post-processing and

Analysis of Complex Large-Scale

Spectroscopic Surveys Using the Virtual

Observatory Protocols

Program pro post-processing a analýzu

komplexních rozsáhlých

spektroskopických prohlídek v rámci

protokolů Virtuální observatoře

2016 Bc. David Andrešič

I would like to thank all people that helped me with this thesis, namely, Petr Škoda for his

patience, passion and scientiĄc advices, Petr Šaloun for his attitude, patience and publications

help and Jiří Nádvorník for his help with time series protocol and data model.

I would also like to thank other members of SPLAT-VO development team: Margarida

Castro Neves, Markus Demleitner, Peter W. Draper and Mark Taylor for consulting.

For the assistance on a Nostradamus 2015 conference contribution where part of this thesis

was presented, I would like to thank Ivan Zelinka.

And Ąnally, I would like to thank my girlfriend Radka for her never ending support since we

know each other.

Abstract

SPLAT-VO is a leading stellar spectra analysis tool that allows displaying, modifying and analys-

ing astronomical spectra. It was developed in 2003 as a part of Starlink project and during

its lifecycle, it was extended to include facilities that allows an interoperability with the Virtual

Observatory.

At these days, SPLAT-VO also serves as a reference implementation of new Virtual Obser-

vatory protocols and data models and is being enhanced in a way of interaction with other tools

and collaboration, as well as user experience.

My adjustments were accepted by community enhancing its current capabilitites and will

be a part of the next release. Expert community has been partially notiĄed about my results

at Nostradamus 2015 conference and will be fully notiĄed at SIMS2016 conference, where I will

submit my actual results with deadline after Ąnishing this thesis.

Key Words: Spectrum, time series, astroinformatics, Virtual Observatory, SPLAT-VO, Java,

data cubes

Contents

List of Symbols and Abbreviations 10

List of Figures 12

1 Introduction 15

2 Astroinformatics and Virtual Observatory 16

2.1 Virtual Observatory . 16

2.2 Tools . 20

3 Basic Terms and Concepts 22

3.1 Astronomy and Astroinformatics . 22

3.2 Software Engineering . 28

4 SPLAT-VO 37

4.1 History . 37

4.2 Team and Development Organization . 37

4.3 User Interface . 40

4.4 Most Typical Use Cases . 44

4.5 Technical Description . 45

4.6 Build Example . 48

4.7 Building Using Build Script . 51

4.8 Creating Installation Package . 51

5 Realized Improvements of SPLAT-VO 54

5.1 More Eicient Work with SAMP Protocol . 54

5.2 Access to All FITS Extensions . 57

5.3 Time Series Demonstrational Support . 58

5.4 SSA Query Results Enhancements . 59

5.5 Spectral Data CSV Export . 60

5.6 More Efective Spectra Deletion by Means of Visual Selection 61

6 Improvements Being Prepared for SPLAT-VO 62

6.1 Time Series and Data Cubes Support via New Protocol 62

6.2 Working Space . 64

6.3 Spectra Groups . 67

6.4 Spectral Data Lazy Loading . 70

8

7 SPLAT-VO Development Process Improvements 73

7.1 Wiki Documentation . 73

7.2 Issue Tracking . 73

7.3 Automatized Build with Jenkins CI inside Docker 76

8 Suggestions for Further Refactoring 78

9 Conclusion 80

References 81

Appendix 83

A SpecData Class Diagram 84

B SpecList Class Diagram 85

C GlobalSpecPlotList Class Diagram 86

D SpectrumIO Class Diagram 87

E SpecDataFactory Class Diagram 88

F Selected Difs and Source Codes 89

F.1 SSAP: Time Series Product Type Detection . 89

F.2 Plot Window: Y-axis Flipping for Time Series . 90

F.3 SAMP: Spectra as Tables Action Manager . 90

F.4 SAMP: VOTable Send Action Manager . 94

F.5 JTable Utilities . 97

F.6 SSA Query Results Selection Menu . 100

F.7 Spectrum Export to CSV and Text File . 102

F.8 Plot Control Key Listener . 104

F.9 PlotControl: Remove Current Spectrum From Plot 105

G Spectra Group VOTable example 106

9

List of Symbols and Abbreviations

VO Ű Virtual Observatory

HTTP Ű Hypertext Transfer Protocol

SOAP Ű Simple Object Access Protocol

WSDL Ű Web Services Description Language

REST Ű Representational state transfer

XML Ű Extensible Markup Language

DNS Ű Domain Name System

ISO/OSI Ű International Organization for Standardization / Open Systems In-

terconnection

SAMP Ű Simple Application Messaging Protocol

SSAP Ű Simple Spectra Access Protocol

ObsCore Ű Observation Data Model Core

SDM Ű Spectral Data Model

TAP Ű Table Access Protocol

SIAP Ű Simple Image Access Protocol

URL Ű Uniform Resource Locator

ADQL Ű Astronomical Data Query Language

SQL Ű Simple Query Language

GNU/GPL Ű GNU General Public License

FITS Ű Flexible Image Transport System

NASA Ű National Aeronautics and Space Administration

CI Ű Continuous Integration

CVS Ű Code Versioning System

IDE Ű Integrated Development Environment

LDAP Ű Lightweight Directory Access Protocol

OOD Ű Object-oriented Design

OOP Ű Object-oriented Programming

API Ű Application Programming Interface

UML Ű UniĄed Modeling Language

CPU Ű Central Processing Unit

OLTP Ű On-Line Transaction Processing

OLAP Ű On-Line Analytical Processing

ERP Ű Enterprise Resource Planning

ETL Ű Extract, transform, load

GUI Ű Graphical User Interface

MIME Ű Multipurpose Internet Mail Extensions

10

WYSIWYG Ű What You See Is What You Get

AI CAS Ű Astronomical Institute of the Czech Academy of Sciences

11

List of Figures

1 IVOA Architecture Level 2. Source: [5]. 18

2 The SAMP hub architecture. Source: [6]. 19

3 Comparison of photographic and intensity plot spectra for a star. Source: [14]. . 23

4 Continuous, emission and absorption spectra and their sources. Source: [14]. . . . 23

5 A simple light curve. Source: [15]. 24

6 The structure of FITS Ąle. Source: [17]. 25

7 A waterfall model of software developmnet. Source: [21]. 28

8 An iterative model of software development. Source: [22]. 28

9 Jenkins CI - example of UI. 30

10 An example of data cube (with totals). Source: [26]. 34

11 An example of star data warehouse schema. Source: [29]. 35

12 An example of snow Ćake data warehouse schema. Source: [29]. 36

13 SPLAT-VO at work. Source: [30]. 38

14 Many spectra in SPLAT-VO. Source: [30]. 38

15 Main window. 41

16 Query VO for spectra. 42

17 ObsCore browser. Source: [34]. 43

18 Plot window. 44

19 View/modify a spectrum. 45

20 Use-case model of the most typical use cases. Source: [34]. 46

21 WorkĆow of loading spectra in native format to internal SpecData format. Source: [34]. 47

22 SimpliĄed spectra loading sequence diagram. 49

23 SimpliĄed class diagram of spectra as table SAMP sender. 55

24 Sending spectrum as table via SAMP from Main Window. 56

25 Sending spectrum as table via SAMP from Query VO for spectra window. 57

26 Time series demonstrational support example. 58

27 SSA Query Results window enhancements . 59

28 Export to CSV and text Ąle feature. 60

29 Visual delete of spectrum in action. 61

30 Default rendering properties factory. 63

31 Working space - use case diagram. Source: [34]. 66

32 Working space - class diagram. 67

33 Working space - component diagram. 67

34 Working space - instantiation. 68

35 Working space - handling events. 69

36 Working space options menu - wireframe. 69

37 Working space settings - wireframe. 70

12

38 Memory usage of SPLAT-VO. Source: [34]. 71

39 Memory usage of spectra. Please note the highlighted sections that shows how

much memory spectral data consumes. It is clear that the spectral data are the

largest objects of spectra instances. 72

40 SPLAT-VO page at Stellar Department of the AI CAS wiki. 73

41 Deprecated SPLAT-VO issue tracker created in Google Spreadheet. 74

42 Deprecated SPLAT-VO issue tracker created in Google Spreadsheet - Ąlling form. 75

43 Oicial SPLAT-VO issue tracker in GitHub Issues. 76

44 Jenkins CI for SPLAT-VO - main job. 77

45 Jenkins CI for SPLAT-VO - main job detail with parameters and result. 77

46 Jenkins CI for SPLAT-VO - build artifacts history. 77

47 Complete SpecData and RemoteSpecData class diagram. Source: [34]. 84

48 Complete SpecList class diagram. Source: [34]. 85

49 Complete GlobalSpecPlotList class diagram. Source: [34]. 86

50 SpectrumIO and its dependencies class diagram. 87

51 SpecDataFactory and its dependencies class diagram. 88

52 Time series product type detection in VOTable. 89

53 Y-axis Ćipping for time series in Plot window. 90

54 Spectrum export to CSV and text Ąle - actions. 102

55 Spectrum export to CSV and text Ąle - Ąle choosers and writing methods. 103

56 PlotControl: Algorithm fot removing current spectrum from plot. 105

13

Listings

1 VOTable example. Source: [19]. 26

14

1 Introduction

As a result of technical development during last decades, many Ąelds of science were digitized

in order to use the growing power of computers, supercomputers and their grids. Since then, in-

struments and computers produce large amounts of data that increase exponentially and at these

days, scientists face a real data avalanche.

In order to solve this, an appropriate data and computational structures were created. In as-

troinformatics, we have Virtual Observatory that with its data archives, server-side processing

capabilities, and specialized protocols, as well as client applications, allows to handle these

amounts of data eiciently.

One of these client applications is SPLAT-VO that was (at the beginning) designed for stellar

spectra analysis and that is also a primary subject of this thesis. Since the beginning, it is one

of the best tools for stellar spectra analysis that can use the power of Virtual Observatory.

Several years ago, its development was basically took over by Heidelberg University and Czech

Academy of Sciences, under which we are attempting to improve it in a way of user experi-

ence, handling large amount of data, adding support for time series and making it a reference

implementation of new Virtual Observatory protocols.

In the near future, we plan to Ąnalize the work on time series protocol and data model

implementation, general refactoring of user interface that should allow more organized work

with SPLAT-VO and to improve loading large amounts of spectra and time series, as well

as other minor tweaks of user interface.

15

2 Astroinformatics and Virtual Observatory

When informatics reached borders of other Ąelds of science, new disciplines emerged. During

last decades, we newly recognized bioinformatics, geoinformatics, and basically any other X-

informatics (where X stands for any other science) [1].

In case of astronomy, the astroinformatics helps to handle large amounts of data produced

by observational instrumentations (reaching petabytes per each observing night) and supercom-

puter simulations that are impossible to process on a single local machine [2]. For example,

these are numbers for the several famous projects:

• Sloan Digital Sky Survey (SDSS) Data Release (DR) 12: 116 Terabytes1;

• Large Synoptic Survey Telescope (LSST): 15 Terabytes every night2;

• Pan-STARRS: several terabytes every night3.

As we can see later, the Sloan Digital Sky Survey is only one possible data source of many.

In this sense, using the power of supercomputer grids and specialized communication proto-

cols, astroinformatics helps to traditional astronomy with data-to-knowledge transformations,

information visualization, knowledge extraction, sky-based and catalog-based indexing tech-

niques, data mining and knowledge discovery, data-intensive computing, and astrostatistics [1].

Basically, we can say that astroinformatics is the new data-oriented paradigm for 21st century

astronomy research [1].

2.1 Virtual Observatory

Virtual Observatory (VO) is the vision that astronomical data sets and other resources should

work as a seamless whole [3]. It is a collection of interoperating data archives and software

tools which utilize the internet to form a scientiĄc research environment in which astronomical

research programs can be conducted [4].

For an astronomer, there is a great overview of Virtual Observatory beneĄts at GAVO4 Wiki

site5.

VO is being guided and standardized by IVOA6, a world-wide organization that shelters

individual country organisations (e.g. GAVO). Except the work on new standards and protocols,

IVOA also organises Virtual Observatory conferences and regular inter-operability meetings all

around the World, where our results were also published.

1Taken from SDSS homepage: http://www.sdss.org/dr12/data_access/volume/.
2Taken from LSST homepage:http://www.lsst.org/.
3Taken from Pan-STARRS homepage: http://pan-starrs.ifa.hawaii.edu/public/design-features/

data-handling.html.
4German Astrophysical Virtual Observatory. Homepage: http://www.g-vo.org/
5http://www.g-vo.org/pmwiki/About/About
6International Virtual Observatory Alliance. Homepage: http://ivoa.net/

16

http://www.sdss.org/dr12/data_access/volume/
http://www.lsst.org/
http://pan-starrs.ifa.hawaii.edu/public/design-features/data-handling.html
http://pan-starrs.ifa.hawaii.edu/public/design-features/data-handling.html
http://www.g-vo.org/
http://www.g-vo.org/pmwiki/About/About
http://ivoa.net/

2.1.1 Architecture

From technical point of view, VO is a world-wide ecosystem of mutually compatible data sets,

resources, services, and software tools which use a common set of technologies and a common set

of standards [3]. Many of the VO systems communicate with each other via custom application-

layer7 protocols (using especially HTTP, SOAP/WSDL or REST) stated by IVOA that heavily

use XML format for transferred messages and data. The VO infrastructure is based on a concept

of [3]:

• Resources that represents databases of any kind with some standardized metadata about

themselves;

• Services as processing nodes (e.g. data service querying a database behind and/or pro-

cessing obtained data, communicating with other systems via specialized and standardized

protocols, and publishing metadata about itself).

On the side of user interaction, VO acts according to a typical client-server model: client

sends its request to a server via a common communication protocol and server responds appro-

priately. To hide the complexity of VO infrastructure from an user, there is a built-in mechanism

in VO for discovering resources. This mechanism is called VO Registries8 and it acts like a com-

mon internet DNS: it holds all identiĄers and metadata of all known VO resources. Every

resource that is supposed to be available in VO needs to be registered in at least one publish-

ing registry (this is done by XML record with unique identiĄer and other resource metadata).

Other registries share these metadata among themselves (similar to DNS) via web services.

When a client application wants to query some resource, it discoveres available resources via

searchable registries (again, via web service).

For a better idea about positioning of resources, services, protocols, data models and client

applications in VO architecture, see Fig. 1 from IVOA Architecture speciĄcation [5].

2.1.2 Protocols

As said before, Virtual Observatory elements heavily communicates with each other via special-

ized protocols. In this section, most commonly used protocols called by client applications will

be shortly presented.

SAMP - Simple Application Messaging Protocol is used as a part of XML-based, event-

driven publish/subscribe messaging system. It allows to publish some generic weak-typed data

in XML format to all registered subscribers that are interested in the published message type.

7Of ISO/OSI model - see for example http://www.cisco1900router.com/

what-is-ios-model-the-overall-explanation-of-ios-7-layers.html
8For full specification of VO Registry, see http://www.ivoa.net/documents/RegistryInterface/20091104/

REC-RegistryInterface-1.0.pdf

17

http://www.cisco1900router.com/what-is-ios-model-the-overall-explanation-of-ios-7-layers.html
http://www.cisco1900router.com/what-is-ios-model-the-overall-explanation-of-ios-7-layers.html
http://www.ivoa.net/documents/RegistryInterface/20091104/REC-RegistryInterface-1.0.pdf
http://www.ivoa.net/documents/RegistryInterface/20091104/REC-RegistryInterface-1.0.pdf

Figure 1: IVOA Architecture Level 2. Source: [5].

The publishing can be synchronous9 as well as asynchronous10 and the message can be broad-

casted to all subscribers (interested in the published message type) or sent to an individual

subscriber only.

As shown on Fig. 2, the entire communication is centralized via SAMP hub. An SAMP-

interested application uses a discovery mechanism to look for a hub on the same network

(and the hub itself using the same mechanism guarantees that there will be only one running hub

on the network). If no SAMP hub is discovered, the application launches its own one. Otherwise,

it subscribes to the discovered hub, providing its name and message types that it is interested in

and asks the hub for information about other registered applications. When a publisher publishes

a message, the hub will decide (based on the interested message types of subscribers) which sub-

scribers will be notiĄed. A notiĄed subscriber then asks hub for the message from the publisher.

Details about SAMP protocol can be found in [6].

SSAP - Simple Spectra Access Protocol is used to remotely discover and access one-

dimensional spectra [7]. To access the spectra data sets:

1. The client queries the global resource registry (see 2.1.1) in order to Ąnd services of inter-

est [7].

9Waiting for a response from subscriber.
10Not waiting for any response from subscriber

18

Figure 2: The SAMP hub architecture. Source: [6].

2. The client makes a data discovery query to selected services.

3. The service returns a VOTable (see 3.1.4) with result data sets metadata.

4. The client retrieves selected data sets via access reference in metadata [7].

The query for selected services is in the following format [7]:

http://www.myvo.org/ssa?REQUEST=queryData&POS=22.438,-17.2&SIZE=0.02

As it can be seen, the query may be parametrized with interested data set format, position,

size, band, time and some optional parameters [7].

The VOTable returned by queried service may contain some signiĄcant columns identiĄed

by Spectral Data Model (SDM): a part of SSAP that attempts to unify the meaning (identiĄed

by UTYPE [7] and UCD [7]) of results from various resources.

There is a lot of other query parameters and resulting VOTable details behind SSAP protocol

that are beyond the scope of this thesis. If interested, please refer to full SSAP speciĄcation

in [7].

ObsCore - Observation Data Model Core is used as a data discovery and data access

protocol for observation data of basically any kind (so unlike, for example, SSAP, ObsCore does

not focus on spectra only). Nevertheless, it aims at providing a simple model easy to understand

and to implement by data providers that wish to publish their data in the Virtual Observatory [8].

To do so, it deĄnes lists of mandatory table names etc.

Other IVOA developed many protocols for diferent purposes. Their complete list is beyond

the scope of this thesis11, anyway, the following list summarizes other most used and signiĄcant

of them:

SIAP - Simple Image Access Protocol is used for image data access from a variety

of astronomical repositories through a uniform and reasonably simple interface [9]. Candidate

images are retrieved as a list in VOTable format (see 3.1.4) with access reference URLs based

on query deĄning a rectangular region on the sky [9]. Images themselves can be in various

formats, including FITS (see 3.1.3).

11More complete list can be found at: http://www.ivoa.net/documents/

19

http://www.ivoa.net/documents/

TAP - Table Access Protocol is a protocol for accessing general table data, including

data catalogs as well as general database tables (including metadata) [10]. TAP supports multi-

ple query languages, including ADQL (Astronomical Data Query Language)12 - a speciĄc query

language for astronomical purposes derived from standard SQL by IVOA. Results are returned

as VOTable (see section 3.1.4) as usual in IVOA protocols. TAP also supports simple spatial

cross-matching [10].

ConeSearch is a simple query protocol for retrieving records from a catalog of astronom-

ical sources [11]. The query describes sky position and an angular distance, deĄning a cone

on the sky and response returns a list of astronomical sources from the catalog whose positions

lie within the cone, formatted as a VOTable (see 3.1.4) [11].

2.2 Tools

This section covers a list of most used and most popular tools compatible with VO, especially

those that immediately relates with the aim of this thesis. The complete list of VO applications

can be found at IVOA’s VO Applications for Astronomers page13.

2.2.1 SPLAT-VO

SPLAT-VO is a spectral analysis tool, that received a VO support several years ago. For more

information, please see section 4 that is dedicated to it, since SPLAT-VO and its enhancements

are the aim of this thesis.

2.2.2 TOPCAT

TOPCAT is a shortcut for Tool for OPerations on Catalogues And Tables [12] and it is a powerful

interactive graphical viewer and editor for (not just astronomical) tabular data [12]. It supports

data visualization and various data formats and protocols including SAMP which makes it a per-

fect cooperative tool for use cases that are not covered by TOPCAT itself.

It is a part of Starlink and its Starjava project as well as SPLAT-VO (see section 4)

and is available under GNU/GPL license14.

2.2.3 Aladin

Aladin Sky Atlas is a tool for interactive accessing to astronomical images with connection

to Simbad15 and VizieR16 services. It is developed by the Centre de Données astronomiques

12ADQL specification: http://www.ivoa.net/documents/latest/ADQL.html
13http://www.ivoa.net/astronomers/applications.html
14GNU General Public License - see http://www.gnu.org/licenses/gpl-3.0.en.html
15http://simbad.u-strasbg.fr/simbad/
16http://vizier.u-strasbg.fr/viz-bin/VizieR

20

http://www.ivoa.net/documents/latest/ADQL.html
http://www.ivoa.net/astronomers/applications.html
http://www.gnu.org/licenses/gpl-3.0.en.html
http://simbad.u-strasbg.fr/simbad/
http://vizier.u-strasbg.fr/viz-bin/VizieR

de Strasbourg17, written in Java and available under GNU/GPL license. It has a Lite version

that can run directly from web browser. Same as TOPCAT or SPLAT-VO, Aladin supports

SAMP protocol which makes it a great cooperative tool.

17http://aladin.u-strasbg.fr/aladin.gml

21

http://aladin.u-strasbg.fr/aladin.gml

3 Basic Terms and Concepts

This section covers basic terms and basic concepts from astronomy, astroinformatics and software

engineering necessary for understanding of following sections.

3.1 Astronomy and Astroinformatics

Full description of basic astronomical and astroinformatical terms would of course be beyond

the scope of this thesis. This section therefore covers a minimum in a form of entities and data

formats required for understanding to following sections, where modiĄcations of SPLAT-VO tool

will be described.

3.1.1 Spectrum

Probably everyone remembers the old primary school physics experiment with sunlight and prism,

where sunlight coming through a prism is dispersed to individual colors, or knows a rainbow,

where the sunlight is dispersed in the same way on rain drops acting like a prism. This is possible

due to a fact that the sunlight Ů as a form of electromagnetic radiation that consists of electro-

magnetic waves visible by naked human eye Ů is composed from several electromagnetic waves

with diferent frequencies (a.k.a. wavelengths) [13]. And this composition is visible as a result

of prism dispersion and known as a sunlight spectrum.

In more general way, spectrum is a graph of relative intensity vs. frequency of any wave

phenomena [13]. The spectrum is a "Ąngerprint" of its source. In case of astronomy, lets

imagine a hot star (composed from superhot plasma) or difuse gas that emits light on diferent

wavelengths. What wavelength it is, depends on a original chemical element emitting the light.

These elements then can be identiĄed in the spectrum using their wavelengths. The comparison

of photographic and intensity plot spectra of a star is shown in Fig. 3. We recognize 3 basic

types of spectra [14]:

Continuum spectrum A dense hot object (such as the core of a star) acts like a black body

radiator. If we were able to view the light from this source directly without any intervening

matter then the resultant spectrum would appear to be a continuum as shown in Fig. 4, left [14].

Absorption spectrum Most stars are surrounded by outer layers of gas that are less dense

than the core. Photons of speciĄc frequency emitted by a star can be absorbed by electrons

in the difuse outer layer of gas, causing the electron to change energy levels and emitting a new

photon of speciĄc frequency. The direction of this re-emission however is random. By this,

the intensity of light at the wavelength of that photon will be less in the direction of an observer

and the spectrum will show dark absorption lines or a decrease in intensity as shown on Fig. 4.

Stellar spectra typically look like this [14].

22

Figure 3: Comparison of photographic and intensity plot spectra for a star. Source: [14].

Figure 4: Continuous, emission and absorption spectra and their sources. Source: [14].

23

Figure 5: A simple light curve. Source: [15].

Emission spectrum It occurs if an observer is not looking directly at a hot black body

source but instead at a difuse cloud of gas that is not a black body. If this cloud can be

excited by a nearby source of energy such as hot, young stars or an active galactic nucleus then

the electrons in atoms of the gas cloud can get excited. When they de-excite they emit photons

of speciĄc frequency and wavelength. As these photons can be re-emitted in any direction

an external observer will detect light at these wavelengths. The spectrum formed is an emission

or bright line spectrum, as shown in Fig. 4 [14].

3.1.2 Time Series / Light Curves

Astronomical time series (a.k.a. light curves) are graphs that show the brightness of an object

over a period of time [15] as shown in Fig. 5.

Light curves are useful in case of objects which change brightness in time, such as novae,

supernovae and variable stars [15]. Since we know generally what light curves look like for a set

of objects [15], we can compare it and understand an observed phenomena.

3.1.3 Data Format FITS

Stands for Flexible Image Transport System and is a specialized data format developed by NASA18

and the International Astronomical Union19 for the transport, analysis, and archival storage

of scientiĄc data sets [16]:

• Multi-dimensional arrays: 1D spectra, 2D images, 3D+ data cubes [16]

• Tables containing rows and columns of information [16]

• Header keywords provide descriptive information about the data [16]

18National Aeronautics and Space Administration - see https://www.nasa.gov/
19http://www.iau.org

24

https://www.nasa.gov/
http://www.iau.org

Figure 6: The structure of FITS Ąle. Source: [17].

FITS has been exclusively used for almost all astronomical data storage for more than 30

years. It allows to store various data types inside a single Ąle. For example, it can contain

an image of a star with its spectra in diferent wave bands. Each item is then stored in a form

of so-called extension of the respective type.

As shown on Fig. 6, FITS consists of items called Header Data Unit (HDU). There is a manda-

tory primary HDU that contains some mandatory metadata in a form of key/value pair (keys

are world-wide standardized) in ASCII header. There may also be other HDU s called exten-

sions. Each extension has its own set of metadata in header an we recognize following standard

types of extensions [18]:

IMAGE This extension type provides a means of storing a multidimensional array similar

to that of the FITS primary header and data unit [18].

TABLE This ASCII table extension type contains rows and columns of data entries expressed

as ASCII characters [18].

BINTABLE This binary table extension type provides a more Ćexible and eicient means

of storing data structures than is provided by the TABLE extension type. The table

rows may contain a mixture of numerical, logical and character data entries. In addition,

each entry is allowed to be a single dimensioned array. Numeric data are kept in binary

formats [18].

3.1.4 Data Format VOTable

The VOTable format is an XML standard for the interchange of data represented as a set

of tables [19] endorsed by IVOA. It is an unordered set of rows, each of a uniform structure,

as speciĄed in the table description (the table metadata). Each row in a table is a sequence

25

of table cells, and each of these contains either a primitive data type, or an array of such

primitives [19]. The data in VOTable may be expressed in one of the following formats:

TABLEDATA Pure XML format that can be used for small tables [19].

FITS Encapsulated or re-encoded FITS (see 3.1.3) [19].

BINARY and BINARY2 Ease of programming and support for streaming [19].

In order to describe the semantics of the contained data, VOTable uses UCD20, Utypes21,

Units22 and STC23 [19].

An example of VOTable follows:

<?xml version="1.0"?>

<VOTABLE version="1.3" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ivoa.net/xml/VOTable/v1.3"

xmlns:stc="http://www.ivoa.net/xml/STC/v1.30" >

<RESOURCE name="myFavouriteGalaxies">

<TABLE name="results">

<DESCRIPTION>Velocities and Distance estimations</DESCRIPTION>

<GROUP utype="stc:CatalogEntryLocation">

<PARAM name="href" datatype="char" arraysize="*"

utype="stc:AstroCoordSystem.href" value="ivo://STClib/CoordSys#

UTC-ICRS-TOPO"/>

<PARAM name="URI" datatype="char" arraysize="*"

utype="stc:DataModel.URI" value="http://www.ivoa.net/xml/STC/stc-

v1.30.xsd"/>

<FIELDref utype="stc:AstroCoords.Position2D.Value2.C1" ref="col1"/>

<FIELDref utype="stc:AstroCoords.Position2D.Value2.C2" ref="col2"/>

</GROUP>

<PARAM name="Telescope" datatype="float" ucd="phys.size;instr.tel"

unit="m" value="3.6"/>

<FIELD name="RA" ID="col1" ucd="pos.eq.ra;meta.main"

datatype="float" width="6" precision="2" unit="deg"/>

<FIELD name="Dec" ID="col2" ucd="pos.eq.dec;meta.main"

datatype="float" width="6" precision="2" unit="deg"/>

<FIELD name="Name" ID="col3" ucd="meta.id;meta.main"

datatype="char" arraysize="8*"/>

20The UCD1+ controlled vocabulary - see http://www.ivoa.net/documents/latest/UCDlist.html
21See http://wiki.ivoa.net/bin/view/IVOA/Utypes
22See http://www.ivoa.net/documents/VOUnits/
23Space-Time Coordinate Metadata - see Space-TimeCoordinateMetadata

26

http://www.ivoa.net/documents/latest/UCDlist.html
http://wiki.ivoa.net/bin/view/IVOA/Utypes
http://www.ivoa.net/documents/VOUnits/
Space-Time Coordinate Metadata

<FIELD name="RVel" ID="col4" ucd="spect.dopplerVeloc" datatype="int"

width="5" unit="km/s"/>

<FIELD name="e_RVel" ID="col5" ucd="stat.error;spect.dopplerVeloc"

datatype="int" width="3" unit="km/s"/>

<FIELD name="R" ID="col6" ucd="pos.distance;pos.heliocentric"

datatype="float" width="4" precision="1" unit="Mpc">

<DESCRIPTION>Distance of Galaxy, assuming H=75km/s/Mpc</DESCRIPTION>

</FIELD>

<DATA>

<TABLEDATA>

<TR>

<TD>010.68</TD><TD>+41.27</TD><TD>N 224</TD><TD>-297</TD><TD>5</TD><TD

>0.7</TD>

</TR>

<TR>

<TD>287.43</TD><TD>-63.85</TD><TD>N 6744</TD><TD>839</TD><TD>6</TD><TD

>10.4</TD>

</TR>

<TR>

<TD>023.48</TD><TD>+30.66</TD><TD>N 598</TD><TD>-182</TD><TD>3</TD><TD

>0.7</TD>

</TR>

</TABLEDATA>

</DATA>

</TABLE>

</RESOURCE>

</VOTABLE>

Listing 1: VOTable example. Source: [19].

As it can be seen from VOTable above, it consists of Metadata (Parameters + Infos +

Descriptions + Links + Fields + Groups) and Table data (stream of Rows that contains Cells

of Primitives - integers, chars, etc.) arranged as a set of Tables (list of Fields + TableData) [19].

To better understand the example, there is one Table called results under a Resource

myFavouriteGalaxies. This table has some Parameters identifying the telescope used and co-

ordinate system (based on STC). This Table has six columns with meaning described in Fields,

each with reference identiĄcator ID. The data itself are contained within Table data section.

There are three Rows with Cells ordered in the same order, as Fields in Metadata, which gives

them a meaning. For example: the second galaxy in the table has declination -63.85 degrees.

27

Figure 7: A waterfall model of software developmnet. Source: [21].

Figure 8: An iterative model of software development. Source: [22].

3.2 Software Engineering

As well as in case of the previous section, full description of all major software engineering terms

and concepts would be beyond the scope of this thesis. Therefore, only those terms and concepts

neccessary for understanding the following sections are described in this section.

3.2.1 Basic Methodics and Development Processes

During a history of software development, several processes evolved. From a most basic waterfall

model (see Fig. 7), that sufered from several drawbacks (long period from requirements collec-

tion to a Ąnal product, a signiĄcant risk of delivering a system with misunderstandings, etc.),

the software process moved to an iterative way of software development (see Fig. 8) [20], that

attempts to solve major drawbacks of waterfall model by segmentation of the whole software

process to several "small waterfalls" called iterations.

In each iteration then, we recognize the following actions that are realized in greater or lesser

degree (based on the development phase) [20]:

28

• Business modeling

• Collecting requirements

• Analysis and prioritization of requirements

• Development

• Testing

• Deployment

• Feedback and Change management

• Project management

There are several other methodologies in software development, that builds on the waterfall

and iterative software development (RUP, SCRUM, etc.). Their description is behind the scope

of this thesis, so for more information, please refer to [20] or [22].

3.2.2 Continuous Integration and Jenkins CI

Continuous Integration (CI) is a software development practice where members of a team inte-

grate their work frequently, usually each person integrates at least daily - leading to multiple

integrations per day. Each integration is veriĄed by an automated build (including test) to detect

integration errors as quickly as possible [23].

This leads to signiĄcant elimination of many integration problem, such as breaking the ex-

isting code, wrong use of API among development teams (or inside a development team).

CI can be used in cooperation with code versioning systems (see 3.2.3), system scripting,

build tools (such as Ant, Maven, etc.), speciĄc software development tools for checking code

coverage (by tests), copy/paste detection, automated bug Ąnders etc. It can therefore be used

as a tool for a complete Continuous Delivery (delivering the system to production use at every

moment).

Jenkins CI Is one of the best tools for Continuous Integration with large user base. It is writ-

ten in Java with web user interface (see Fig. 9), so it can be deployed to production on every

Java Application Server or Servlet Container. Jenkins CI24 can be used for automated builds,

testing, deploying and (also in cooperation with many plugins) for basically every automated

action one can think. Individual automated actions (called build) can be triggered by multiple

events, such as period, commit to repository, manual, by other upstream build etc.

24Jenkins CI homepage: https://jenkins-ci.org/

29

https://jenkins-ci.org/

Figure 9: Jenkins CI - example of UI.

3.2.3 Code Versioning Systems

Code Versioning Systems (a.k.a. CVS) are important in software development for several rea-

sons:

• It allows to track history of the project on Ąle level, including traversing it (reverting

changes, etc.).

• It makes team cooperation much faster and easier. CVS automatically merges Ąles modi-

Ąed by several members of the development team.

• It keeps the source code at one place.

There are several main CVS:

CVS The oldest (1986 [24]) and most primitive CVS still in use (especially for small projects.).

SVN A.k.a. Subversion is probably the version control system with the widest adoption [24].

Many large and well-known projects still uses it. It also has a large support in IDEs

and many user clients.

Git Initially developed by Linux kernel author Linus Torvalds, Git is currently one of the best,

fastest and most used CVS, especially in large projects. It is considered to be a Swiss

Army Knife of the code versioning - it is capable of almost every imaginable use case,

altough the way of achieving it might not be as user-friendly, as in case of other CVS.

In contrast with other CVS, Git uses a distributed version control system, so there is not

one centralized code base to pull the code from [24].

30

Mercurial Designed for larger projects, Mercurial is extremely fast and capable of all usual use

cases with ease, which is something, that makes it diferent from Git (ease of use vs. count

of features).

Bazaar Calls itself ŞVersion control for human beings.Ť [24] One of the main features of Bazaar

is the Ąne-grained control over the setup [24]. Otherwise it is very similar to other modern

CVS, like Git or Mercurial.

Microsoft Visual SourceSafe Microsoft’s attempt to create a CVS to use in cooperation

with its Visual Studio. After a criticism, it was discontinued and is no longer distributed

with current versions.

3.2.4 Issue Tracking

Issue tracking system allows an organization to register, watch, prioritize and generally organize

every issue related to some project. It allows to track the history of every issue, modify its states,

add comments or attachments etc.

Modern issue tracking systems also supports project management use cases, such as making

time estimates for each issue, creating Gantt’s charts, network chart and critical path, etc.

Among other requirements, we can present the capability to integrate the issue tracking

system with company’s LDAP system, ability to integrate with company’s database infrastruc-

ture and runtime environment in general, web user interface etc. Among the mostly used issue

trackers, we recognize:

Projectlibre Local machine Java application supporting issue tracking and several charts.

Redmine One of the most used issue trackers, written in Ruby on Rails, highly conĄgurable

with many plugins and charts support.

Trac and Apache Bloodhound Another mostly used issue tracker and its Apache spin-of.

Trac is written in Python and stands on using many plugins in order to meet general

requirements on issue tracking system.

Phabricator Is written in PHP and developed by Facebook, currently also in use by many

signiĄcant projects, such as Mediawiki, Blender, Dropbox, etc.

Atlassian JIRA Mostly commercial, but very favorite issue tracking system with its own

ecosystem. Many signifact projects uses it (e.g. Spring, Hibernate, etc.).

Github Issues Favorite issue tracker of Github25.
25Github homepage: https://github.com/

31

https://github.com/

3.2.5 Project Documentation

Project documentation is a desirable part of every software project. It describes the software

architecture, its API, used technologies and software libraries, build process etc.

We can look at the project documentation from the following perspectives:

Software API Usually written by programmers themselves as a part of source code, that is dur-

ing compilation transformed to a HTML, PDF or other user-friendly form. Typical exam-

ple of this is Javadoc.

Used technologies, architecture and software libraries Usually listed in master project

documentation - a Wiki page or a set of documents. Maintained by programmers and soft-

ware architects.

Project development organization Usually listed in master project documentation and main-

tained by project manager and/or team leader.

Project build information Usually listed in master project documentation and maintained

by programmers and software architects.

Other information - project history etc. Usually listed in master project documentation.

Based on these requirements, we can divide project documentation to the following:

Source code documentation Javadoc in Java, XML documentation in .NET etc.

Master project documentation Can be in a form of a single document (appropriate for small

projects), multiple documents (typical for corporations), Wiki-like systems (used in gen-

eral) or their combination. It should contain an overview of software project architecture

(including UML diagrams), used technologies and 3rd party software libraries, development

team organization and processes, information about obtaining source code and building

the project, project history etc. In modern age, it should also support collaborative work

for multiple simultaneous authors, revision history, adding comments and discussion etc.

3.2.6 Virtualization, Containers and Docker

The power of modern computers allows to run multiple services on a single host machine.

At these days, it is only a question of security, required/reserved computational power and or-

ganization structure requirements what of the following approaches will be used:

No virtualization This is the most basic approach for running multiple services on a single

machine: directly on the host machine. It is the most efective in sense of speed and system

resources, but also most vulnerable to attacks (if the attacker takes control over a service, it

also gains its privileges inside the entire host system) and diicult for system administration

(security, library conĆicts etc.).

32

Containers Uses a single kernel and resources from the host system. Virtual machines running

inside a container have a direct access to host machine hardware via its shared kernel.

This leads to very small overhead and high performance with a great level of isolation.

Typical example of container is Linux chroot, FreeBSD Jail or Docker.

Paravirtualization (Hypervisors) Uses a modiĄed host kernel that contains a hypervisor,

that allows guest machines to access host hardware (via hypervisor calls). The guest

knows that it is running inside a virtual machine, yet the level of isolation is much higher

than in case of containers (which is on the other hand redeemed by higher usage of host

system resources). A typical example is XEN.

Full virtualization Simply emulates all hardware except CPU. The guest has no idea that it is run-

ning inside a virtual machine, so the level of isolation on the same CPU architecture

is the highest possible (as well as host resources consumption). A typical examples are Vir-

tualBox, VMWare or even XEN conĄgured in full virtualization mode.

Emulation Simply emulates all hardware including CPU. This allows to run for example old

Amiga applications on a modern x86-64 computer, so the level of isolation (and host

system resources consumption) is the highest possible. This leads to poor performance,

yet it has its use cases. A typical example is QEMU.

3.2.7 Datacubes and Data Warehouses

To understand this section, we need to describe a diference between OLTP and and OLAP:

OLTP On-Line Transaction Processing - transactional systems for real-time data collecting

and storage (ERP, accounting software etc.). Thousands of transactions are being made

within a minute. It is considered to be a primary data source. These systems contain large

amounts of data and their analysis causes a signiĄcant delays in primary usage [25].

OLAP On-Line Analytical Processing is based on a multidimensional database concept. Its ba-

sis is multidimensional table (datacube), that allows to analyze the data from many points

of view (dimensions) directly by the user (so they do not need to work just with pre-

prepared views). They are designed for data analysis of periodically (not real-time) up-

dated data obtained from OLTP [25].

Data Cube As tables in relational databases, data cubes are used for storage in OLAP

databases [25]. Data cube is a multidimensional extension of database table (2-dimensional,

3-dimensional and n-dimensional in general) [25]. An example of data cube is shown on Fig. 10.

This data cube has 3 dimensions (Part, Store Location and Customer).

Dimension Elements can be a name of product, its price, size, etc. In case of Fig. 10 and

Part dimension, it is P1 - P5.

33

Figure 10: An example of data cube (with totals). Source: [26].

Hierarchy of Elements can be created on a dimension level for groups of relating elements.

For Fig. 10, let’s imagine a geographical hierarchy of Parts based on where they have been

produced:

• Parts

Ű EU

∗ P1

∗ P2

Ű USA

∗ P3

∗ P4

∗ P5

Basic operations with Data Cubes There are several operations that can be performed on

a data cube. Those most basic are:

Slicing selects one particular dimension from a given cube and provides a new sub-cube [27].

Dicing selects two or more dimensions from a given cube and provides a new sub-cube [27].

Roll-up performs aggregation on a data cube in a way of climbing up a concept hierarchy

for a dimension or dimension reduction [27].

Drill-up is the reverse operation of roll-up. It is performed either by stepping down a concept

hierarchy for a dimension or introducing a new dimension [27].

34

Figure 11: An example of star data warehouse schema. Source: [29].

Pivoting is also known as rotation. It rotates the data axes in view in order to provide an al-

ternative presentation of data [27].

A more complete description of data cube operations including simple, easy-to-understand

illustrations can be found in [27].

Data Warehouses A data warehouse is a relational database that is designed for query

and analysis rather than for transaction processing [28]. It usually contains historical data

derived from transaction data and separates analysis workload from transaction workload [28].

In addition to a relational database, a data warehouse environment includes an extraction,

transportation, transformation, and loading (ETL) solution, an online analytical processing

(OLAP) engine, client analysis tools, and other applications that manage the process of gathering

data and delivering it to business users [28].

Star and SnowĆake Schemas In data warehousing, we recognize two basic database schemas

(similar to traditional database schemas). In center of both of them, we can Ąnd a fact table

- table of business facts, measurements etc with foreign keys to surrounding dimension tables,

that contains descriptive metadata used for Ąltering etc.

Star schema Each dimension in a star schema is represented with only one-dimension table,

that contains the set of attributes (see an example on Fig. 11) [29].

SnowĆake schema Some dimension tables in the SnowĆake schema are normalized, which

causes the data to be splitted up into additional tables (see an example on Fig. 12) [29].

35

Figure 12: An example of snow Ćake data warehouse schema. Source: [29].

In my work, the international project SPLAT-VO (see section 4) is ready for star schema mainly.

There is also work on enabling basic data cubes operations within it (see section 6.1). For a

more complete description and other data warehouse schemas, please refer to [29].

36

4 SPLAT-VO

SPLAT-VO and its modiĄcations is the main subject of this thesis. Its name (SPLAT) is a short-

cut for SPectraL Analysis Tool [30] and it is a software application for displaying, modifying

and analysing astronomical spectra [31] (see Fig. 13 and Fig. 14 respectively, for example).

4.1 History

SPLAT was originally developed in 2003 as a part of Starlink (and its STARJAVA package)

project [31]. During its development, the original SPLAT was extended to include facilities that

allowed an interoperability with the Virtual Observatory (see Sec. 2.1) [32], which resulted

in a VO suix in its name in 2005.

SPLAT was also a leader project for moving future developments into the Java language,

with the obvious beneĄts of improved portability, modern language capabilities (OOD, OOP)

and core-level support for features like UIs and Internet protocols and services. This work

eventually led to the formation of what became the StarJava project, containing also the well-

known table processor TOPCAT [4] (see section 2.2.2).

The original Starlink project was eventually shut down in 2005, yet its development continued

until now under Joint Astronomy Centre26 (that released some parts under GNU/GPL licence)

and since 2015 by East Asian Observatory27 [33].

4.2 Team and Development Organization

SPLAT-VO development was took over in 2012 by GAVO28 (German Astrophysical Virtual

Observatory), Astronomical Institute of the Czech Academy of Sciences29 and VŠB - Technical

University of Ostrava, Faculty of Electrical Engineering and Computer Science30. Its current

development is focused on new and experimental IVOA standards implementation, handling

large data sets and other data types and data models as well as improving user interface.

4.2.1 Current Development Team

As mentioned before, SPLAT-VO is currently developed by several organizations:

Astronomical Institute of the Czech Academy of Sciences Fričova 298, 251 65 Ondře-

jov, Czech Republic.

Web: http://www.asu.cas.cz/

26Joint Astronomy Centre homepage: http://www.jach.hawaii.edu/
27East Asian Observatory homepage: http://www.eaobservatory.org/
28German Astrophysical Virtual Observatory homepage: www.g-vo.org
29http://www.asu.cas.cz/
30http://www.fei.vsb.cz/

37

http://www.asu.cas.cz/
http://www.jach.hawaii.edu/
http://www.eaobservatory.org/
www.g-vo.org
http://www.asu.cas.cz/
http://www.fei.vsb.cz/

Figure 13: SPLAT-VO at work. Source: [30].

Figure 14: Many spectra in SPLAT-VO. Source: [30].

38

• Petr Škoda ScientiĄc advisor and coordinator, IVOA Interoperability Meetings presenter.

E-mail: skoda@sunstel.asu.cas.cz.

Heidelberg University Astronomisches Rechen-Institut (ARI) Zentrum für Astronomie, Uni-

versität Heidelberg (ZAH) Mönchhofstr. 12 - 14, 69120 Heidelberg, Germany.

Web: http://www.uni-heidelberg.de/

• Margarida Castro Neves Maintainer and Java developer for SSA, ObsCore and DataLink

protocol-related features.

E-mail: mcneves@ari.uni-heidelberg.de.

• Markus Demleitner Server side implemetation of VO protocols and data models, GAVO

coordinator.

E-mail: msdemlei@ari.uni-heidelberg.de.

VŠB - Technical University of Ostrava Department of Computer Science, Faculty of Elec-

trical Engineering and Computer Science, VŠB - Technical University of Ostrava, 17. listopadu

15, 708 33 Ostrava-Poruba, Czech Republic.

Web: http://www.cs.vsb.cz/

• David Andrešič Java developer for spectra visualization, data export, time series imple-

mentation, refactoring suggestions and general tweaking.

E-mail: david.andresic.st@vsb.cz.

4.2.2 Previous Members of Development Team

The main developers of the original SPLAT-VO are:

• Peter W. Draper SPLAT architecture and main developer.

E-mail: p.w.draper@durham.ac.uk

• Mark Taylor Current developer of TOPCAT (see 2.2.2).

E-mail: m.b.taylor@bris.ac.uk

4.2.3 Current development process

Since the SPLAT-VO development is literally a world-wide activity, it does not Ąt exactly

into any usual software process model such as those described in section 3.2.1. For the last

several years, it is anyway close to agile methodics, since it has its backlog that contains (still

updated) requirements coming mainly from:

• conferences;

39

skoda@sunstel.asu.cas.cz
http://www.uni-heidelberg.de/
mcneves@ari.uni-heidelberg.de
msdemlei@ari.uni-heidelberg.de
http://www.cs.vsb.cz/
david.andresic.st@vsb.cz
p.w.draper@durham.ac.uk
m.b.taylor@bris.ac.uk

• practical experience at Stellar Dept. of Astronomical Institute of Czech Academy of Sci-

ences;

• IVOA Interoperability Meetings.

Based on current needs of astroinformatics community, the coordinators set the priorities to

the requirements and in cooperation with developers perform an implementation analysis. Based

on the estimated required time, the requirement is scheduled for implementation. It is usual

to make a proof-of-concept of the requirement implementation Ąrst, so it may be presented

on IVOA Interoperability Meetings and conferences to receive an expert feedback. This makes

the scope of every version totally open, so it is mainly maintainer’s choice when the Ąnal release

will be made (usually after the preplanned features are tested enough). Every implemented

requirement is continuously tested by our coordinators. Before the release, the maintainer

updates the changelog and user documentation and prepares a Ąnal build with installer that

is linked from SPLAT-VO homepage. In certain sense, SPLAT-VO development is therefore

iterative - each requirement (and its implementaton) is re-evaluated for several times during

its development until all sides are satisĄed enough to close the scope of the version and make

a release.

The bottleneck of this process is that the "backlog", communication and the entire inter-

operability are subject of e-mails. This makes tracking features in backlog, its implementation

status, discussion and time estimates as well as scope of versions, very hard to control. In order

to solve these issues, an issue tracking system is being introduced (see section 7.2).

Another problem is unability of coordinators to build a snapshot version (from current

state of the repository) on their own and check the state of repository by means of continuous

integration (see 3.2.2). In order to solve this problem, the "Dockerized" Jenkins CI system

is being introduced and deployed in Stellar Department of the AI CAS (see sections 3.2.2, 3.2.6

and 7.3).

4.3 User Interface

SPLAT-VO is a multi-window application. This section covers the most important of them

and their basic concepts. A complete description of SPLAT-VO user interface is a subject

of oicial documentation 31.

4.3.1 Main Window

This is a starting and central window of SPLAT-VO. As shown on Fig. 15, it contains a Global

list of spectra currently loaded to a running instance. Right side is a place of visualization

settings for the spectrum or spectra selected in Global list of spectra. The top of the Main

31SPLAT-VO original homepage: http://star-www.dur.ac.uk/~pdraper/splat/splat-vo/splat-vo.html,
GAVO SPLAT homepage: http://www.g-vo.org/pmwiki/About/SPLAT

40

http://star-www.dur.ac.uk/~pdraper/splat/splat-vo/splat-vo.html
http://www.g-vo.org/pmwiki/About/SPLAT

Figure 15: Main window.

Window contains the application menu - an entry point to where the spectra can be loaded

and processed.

Some of the most used and most interesting windows achievable in SPLAT-VO from the

Main Window are:

• Query VO for spectra (see section 4.3.2)

• ObsCore Browser (see section 4.3.3)

• Plot Window (see section 4.3.4)

• View/modify a spectrum (see section 4.3.5)

There are many other windows in SPLAT-VO, but those listed above should be suicient

for understanding of the aim of this thesis.

4.3.2 Query VO for spectra

This window (shown on Fig. 16) is an entry point to VO, where the user can search for spectra

(in IVOA terms: perform a data discovery) and download them (in IVOA terms: perform a data

access) through the SSAP protocol (see section 2.1.2). A complex interface consists of:

Service selection options on the left side where the user can select:

41

Figure 16: Query VO for spectra.

• Data source - observed or theoretical data

• Wave band - radio, optical, infrared, X-ray, etc.

• SSAP servers - concrete servers to be queried

Search and optional parameters in the middle and right, where the user can input param-

eters for data discovery (object name, right ascension, declination, radius, band, data

format etc.)

Query results and data access options at the bottom of the window, where the user can

Ąnd a tab for each SSAP server that found at least one spectrum

4.3.3 ObsCore Browser

ObsCore Browser is an experimental implementation of the ObsCore protocol (see section 2.1.2)

for general observation data discovery and access (see Fig. 17). Similar to Query VO for spectra

window, the user can select ObsCore services and perform a:

Cone search via Cone search protocol (see section 2.1.2) based on object name, right ascension,

declination, radius, band etc.

42

Figure 17: ObsCore browser. Source: [34].

ADQL search via ADQL protocol (see section 2.1.2) where more Ąne-grained parameters can

be set.

Results of the query are then shown to the user in the Query results panel on the right side

of the window.

4.3.4 Plot Window

Plot window is probably one of the most important SPLAT-VO windows at all. As the name

implies, this window serves for plotting spectra (see Fig. 14 and 18) based on parameters set

in Main Window (which can be overriden or precised within the Plot window itself).

The spectra plot itself covers most of the window, but at the top, the user can Ąnd an arsenal

of spectral analysis tools. Just for example:

• Cutting regions from spectrum

• Fitting

• Comparing

• Statistics

• Multiple matching

And many more (a concrete description of the individual algorithms is beyond the scope

of this thesis). Within these menus, the user can also highly customize the plot, invert axes,

set them logarithmic and much more.

43

Figure 18: Plot window.

4.3.5 View/modify a spectrum

A simple window that allows the user to view spectral data itself in a form of a table (see Fig. 19).

This window is (compared to others) very simple and almost featureless, yet it allows a manual

manipulation with spectral data, both axes transformation, adding columns by computation,

and newly data export to CSV format (see section 5.5).

4.4 Most Typical Use Cases

As the user interface implies, SPLAT-VO is capable of opening the spectra (and also light curves,

if they are represented as a spectrum with time axis instead of wavelength axis) contained

in multiple formats [34]. These data (Ąles) can be loaded:

• locally from a Ąle (many formats are supported) [34];

• via SSAP protocol32 (Virtual Observatory) [34];

• via SAMP protocol33 (Virtual Observatory) [34];

• as a in-memory result of some operations performed on other spectra [34].

32See 2.1.2
33See 2.1.2

44

Figure 19: View/modify a spectrum.

User can also send the opened spectra via SAMP protocol to other tool and/or save the spectra

in a diferent format and/or save the entire list of spectra to a local Ąle [34]. He/she can perform

many operations on the spectra. Just to get an idea:

• plotting one or more spectra to a plot window [34]

• performing actions on a plotted spectrum/spectra (e.g. cutting, Ątting) [34]

• adjusting the visualization of plotted spectra (e.g. color or style of line etc.) [34]

4.5 Technical Description

SPLAT-VO is a desktop application written in Java SE34 1.6 (yet the original SPLAT was com-

patible with version 1.5). The GUI is built using Java Swing library, which makes it look

the same way on all supported platforms.

Using the Java platform, SPLAT-VO is in general multi-platform and multi-arch application,

yet the internal usage of native libraries from the original Starlink project, that are written

in Fortran, C and C++, limits the platform support to following:

• GNU/Linux

34Java platform homepage: https://java.com

45

https://java.com

Figure 20: Use-case model of the most typical use cases. Source: [34].

• MS Windows

• Mac OS

for two major architectures: x86 and x86-64.

For a build, SPLAT-VO uses a customized Apache Ant35 and some of its modules supports

scripting in BeanShell36 and using Java EE.

4.5.1 Basic Entities and Architecture Overview

This section covers fundamentals of SPLAT-VO architecture and concepts.

SpecData, RemoteSpecData and SpecDataImpl SPLAT-VO is capable of loading spec-

tra in many data formats (e.g. FITS, VOTable, etc.). This is achieved by internal conversion

to an abstract entity called SpecData (see Fig. 21), that covers all common spectra properties

(data and metadata). For spectra that comes from remote sources, SPLAT-VO uses the exten-

sion of SpecData called RemoteSpecData [34]. For a complete UML class diagram, please refer

to appendix A.

This abstract representation of spectra is internally used by SPLAT-VO features. This ab-

stract representation of spectra is internally used by SPLAT-VO features. SpecData also keeps

a reference to SpecDataImpl, which is an interface for format-speciĄc operations of the original

spectrum Ąle (e.g. FITSSpecDataImpl).

35Apache Ant homepage: http://ant.apache.org
36http://www.beanshell.org/

46

http://ant.apache.org
http://www.beanshell.org/

Figure 21: WorkĆow of loading spectra in native format to internal SpecData format.
Source: [34].

SpecList is a singleton class that holds all spectra (instances of SpecData) loaded in SPLAT-

VO. In this text, the term SpecList is therefore interchangeable with Global list of spectra

(it is its implementation) [34]. For its complete class diagram, please refer to appendix B.

GlobalSpecPlotList is an aggregate singleton class that provides a direct access to the SpecList

instance and list of all plots. It provides integrated control interfaces to both these objects and

provides listeners for objects that want to be updated about changes in the lists of spectra or

plots [34]. For a complete class diagram, please refer to appendix C.

SplatBrowser GlobalSpecPlotList is also referenced by SplatBrowser - the central SPLAT-

VO window (see 4.3.1). So whenever this text notes that a spectrum is added to SplatBrowser or

Global list of spectra, it means that it is actually added to GlobalSpecPlotList (and SpecList

respectively) instance.

SplatBrowser class contains (among others) one crucial method called tryAddSpectrum().

This method (and its overrides) is responsible for loading spectra to GlobalSpecPlotList in-

stance based on provided metadata (spectrum URL etc.).

SpectrumIO and Props As the name implies, SpectrumIO class is responsible for loading

spectra to SplatBrowser (and Global list of spectra respectively), saving spectra (meaning in-

dividual SpecData instances) to various data formats (FITS, VOTable etc.) and serializing

the entire Global list of spectra to a single Ąle. As many other core classes in SPLAT-VO,

SpectrumIO is a singleton class, so there is always a single existing instance.

Props is a public and static class embedded within SpectrumIO. It is a container class for

describing the properties of a spectrum to be loaded (name, URL, pre-deĄned type, shortname,

units etc.). Some metadata are required to be compatible with Starlink AST 37 library (please

consult with JavaDoc for details). For a complete class diagram of SpectrumIO class, please

refer to appendix D.

37Starlink AST homepage: http://starlink.eao.hawaii.edu/starlink/AST

47

http://starlink.eao.hawaii.edu/starlink/AST

SpecDataFactory creates and clones instances of SpecData. The type of the spectrum sup-

plied is determined either by heuristics (based on the speciĄcation in Props instance) or by a given,

known, type (SpecDataFactory also contains constants and enumerations of supported data

formats and sources). For a complete class diagram, please refer to appendix E.

Process of Loading Spectra to SPLAT-VO A central point to add a spectrum or spectra

to Global list of spectra is its owner, that is SplatBrowser instance (see section 4.5.1). This class

contains several overriden methods called addSpectrum() and tryAddSpectrum(). The basic

diference between them is only in the way they react on exception:

• addSpectrum() shows an error dialog (extension of javax.swing.JDialog)

• tryAddSpectrum() throws an exception (extension of java.lang.Extension)

They are called mainly from UI (SplatBrowser and its displaySpectrum() methods), SpectrumIO,

SpecList and Splat SOAP server. Their arguments are also various: from spectrum URL and

suggested type ID through Props instance containing spectrum metadata to entire SpecData

instance.

The particular algorithm used for loading depends on provided parameters (a concrete over-

riden method), but the general idea is same in all cases as demonstrates the simpliĄed UML

sequence diagram (see Fig. 22) for method tryAddSpectrum(SpectrumIO.Props props):

1. The user initiates the loading of spectra via UI etc.

2. SpectrumIO handles the loading in separate thread (instance of SpectrumIO.Loader class)

by calling tryAddSpectrum() method of SplatBrowser.

3. Based on the provided type, SplatBrowser decides whether to expand spectra (via

SpecDataFactory.expandXMLSED() method) or parse it. The spectrum is located on pro-

vided URL.

4. SplatBrowser then loops over all found spectra on the provided URL and checks whether

it contains other embedded spectra. Then, for all found spectra, it calls GlobalSpecPlot-

List and its .add() method to add each spectrum to Global list of spectra.

The entire process of spectra loading is thread-safe.

4.6 Build Example

SPLAT-VO can of course be downloaded and installed from its homepage, but for some use

cases, it might be useful to build the current snapshot. This HOWTO basically follows steps

described in README Ąle of Starjava package. The build is tested on GNU/Linux.

48

Figure 22: SimpliĄed spectra loading sequence diagram.

4.6.1 Prerequisites

• Java Development Kit >=1.6 (we are oicially supporting JDK 7, but for now, SPLAT-VO

is still compiled to be compatible with JDK 6 using target argument)

• Java Advanced Imaging API38

• Set STAR_JAVA system variable to location of java binary. For example, if the JDK

is installed in /opt/java/jdk-1.6, then the location should be

/opt/java/jdk-1.6/jre/bin/java:

$ export STAR_JAVA=/opt/java/jdk-1.6/jre/bin/java

4.6.2 Build Steps

If all prerequisites are set, SPLAT-VO can be built by the following procedure:

1. Clone Git repository (splat-gavo branch)

$ git clone -b splat-gavo https://github.com/Starlink/starjava.git

2. Build the customized ant:

(a) Enter the cloned directory starjava containing source Ąles:

38JAI binaries and installation HOWTO: http://download.java.net/media/jai/builds/release/1_1_3/

INSTALL.html

49

http://download.java.net/media/jai/builds/release/1_1_3/INSTALL.html
http://download.java.net/media/jai/builds/release/1_1_3/INSTALL.html

$ cd starjava

(b) Enter ant subdirectory with the customized ant source Ąles

$ cd ant

(c) Adjust the PATH system variable to contain ant binaries required for ant build (over-

rides possibly existing ant installation)

$ export PATH=‘pwd‘/bin:$PATH

(d) Check that the customized ant is on the Ąrst place in the PATH system variable

$ whereis ant

(e) Back to starjava directory, set ANT_BUILD system variable to point to ant build

directory and enter back the ant subdirectory:

$ cd .. # back to starjava directory

$ export ANT_BUILD=‘pwd‘/bin

$ cd ant # back to starjava/ant subdirectory

(f) Build ant:

$ ant -Dstar.dir=‘echo $ANT_BUILD‘ clean

$ rm -R -f ‘echo $ANT_BUILD‘/*

$ ant -Dstar.dir=‘echo $ANT_BUILD‘ install

$ ant -Dstar.dir=‘echo $ANT_BUILD‘ clean

(g) Ajdust PATH system variable to point to newly built ant:

$ export PATH=$ANT_BUILD/bin:$PATH

3. Build Starjava

(a) Get back to starjava directory

$ cd ..

(b) Clean ...

$ ant clean

(c) Treat a bug - in splat/build.xml under target=”build” add javac compilerarg

(SPLAT uses some internal java.sun.* classes and javac compiler complains about

ContentType - ignore it):

50

<compilerarg value="-XDignore.symbol.file" />

(d) Treat some bugs in missing XSLT templates for docs by entering (still in starjava

directory):

$ mkdir -p bin/etc/xdoc

$ mkdir -p topcat/src/bin/etc/xdoc

$ mkdir -p ttools/src/bin/etc/xdoc

$ cp -v -R xdoc/* bin/etc/xdoc/

$ cp -v -R xdoc/* topcat/src/bin/etc/xdoc/

$ cp -v -R xdoc/* ttools/src/bin/etc/xdoc/

(e) Build (with proper encoding)

$ ant -Dfile.encoding=iso-8859-1 build

(f) The build should be ready in bin/bin/splat/ subdirectory - check by running:

$./bin/bin/splat/splat

4.7 Building Using Build Script

There is also a build script39 that can be used to automate the build process. To use it, just

download it to starjava directory and run:

$./_builder.sh

It checks the environment, detects JDK and can be used for full Starjava build or param-

eterized build with diferent JDK. Once when built, it also provides capabilities to skip ant

build or to build only splat subpackage of Starjava, which makes the build much faster. To see

the full list of capabilities, run:

$./_builder.sh --help

4.8 Creating Installation Package

SPLAT-VO can be tested and moved between systems without creating an installation package,

but for production use, an installer is a necessity.

39Buildscript URL: https://drive.google.com/file/d/0B_Kr8xwkCpBQamV6X05OZlZfVWM/view?usp=sharing

51

https://drive.google.com/file/d/0B_Kr8xwkCpBQamV6X05OZlZfVWM/view?usp=sharing

4.8.1 Prerequisities

To create an installation package, one need to meet with the following prerequisites:

1. Have SPLAT-VO already built (see sections 4.6 and 4.7).

2. Have IzPack40 tool for packaging applications and creating installers for Java application

installed. Please note, that SPLAT-VO scripts are compatible with IzPack v4.x, version

5.x is not currently supported.

3. Have C shell installed (csh or tcsh41)

4.8.2 Installer Creation Steps

• Add IzPack binaries to PATH system variable:

$ export PATH=${IZPACK_BIN_PATH}:$PATH # e.g. /opt/IzPack/bin

• Download and extract extra Ąles42 (containing icons, scripts etc.) to build directory (parent

of starjava directory):

$ cp -Rv ${EXTRA_FILES_DIRECTORY}/* ${BUILD_DIRECTORY}/

• Prepare the environment - prefer customized Apache Ant binary and set STAR_JAVA system

variable:

$ PATH=‘pwd‘/ant/bin:$PATH

$ export STAR_JAVA=$JDK_PATH

• Install binaries:

$./scripts/targetdeps splat install

• Remove unnecessary Ąles:

$ cd ..

$./removed_files.lis

• Build installer JAR Ąle

$./doit.csh

40IzPack homepage: http://izpack.org/
41tcsh homepage: http://www.tcsh.org/Home
42Extra files tarball URL: https://drive.google.com/file/d/0B_Kr8xwkCpBQdW0yWm54djJ1T28/view?usp=

sharing

52

http://izpack.org/
http://www.tcsh.org/Home
https://drive.google.com/file/d/0B_Kr8xwkCpBQdW0yWm54djJ1T28/view?usp=sharing
https://drive.google.com/file/d/0B_Kr8xwkCpBQdW0yWm54djJ1T28/view?usp=sharing

The Ąnal installer is a standard JAR Ąle, that can be executed by:

$ java -jar splat-vo.jar

Since the entire build and installation package creation is fully deterministic and can be au-

tomatized, a Jenkins CI job was created (see sections 3.2.2 and 7.3).

53

5 Realized Improvements of SPLAT-VO

This section is focused on improvements so far realized to SPLAT-VO. It describes new features

in SAMP communication, work with FITS Ąles, spectrum CSV export, some visual tweaks

and demonstrational support of time series, that is currently being standardized and imple-

mented (see section 6.1).

5.1 More Efficient Work with SAMP Protocol

SAMP protocol (described in section 2.1.2) is a powerful mean of interactive cooperativity.

SPLAT-VO now extends its current support for it to allow sending also original spectral data that

has not been processed by SPLAT-VO. This is important because SPLAT-VO does not always

keep all metadata and/or data. Sending is possible in VOTable (see section 3.1.4) and FITS

(see section 3.1.3) format.

In order to send a SAMP message via SAMP hub to other connected SAMP client, the sender

needs to obtain from hub a list of clients that supports the message type of the message.

For VOTable and FITS, the corresponding message type is:

• VOTable: table.load.votable

• FITS: table.load.fits

Beside the message type, in order to send the message as table, the message needs to have

also set the send type parameter to table.

Last important parameter in SAMP message metadata is the spectrum URL identiĄed

by Access.Reference keyword. This is a little bit tricky in case of in-memory spectra, that

are results of some SPLAT-VO operation on opened spectra and has no URL. These Ąles

are therefore stored to system temporary directory and their URL in this storage is sent

in SAMP message.

The implementation (shown on Fig. 23) uses UniformCallActionManager from the original

Starjava project. This class has embedded classes BroadcastAction and SendAction that ex-

tends standard Java Swing AbstractAction class and are initiated by UniformCallActionMana-

ger on request from SPLAT-VO action managers initiated by SampCommunicator class and pro-

vides UI menus and event handlers for SAMP communication.

Unfortunately, UniformCallActionManager does not provide a required level of customiza-

tion via its API (especially modifying the message and send type) and since it is not a di-

rect part of SPLAT-VO, it is now forked and modiĄed (including classes BroadcastAction

and SendAction) in SPLAT-VO as SplatUniformCallActionManager. This action manager

is extended by SpectraAsTablesSendActionManager (see appendix F.3) that also implements

a new interface EventEnabledTransmitter extending the original SAMP Transmitter inter-

face and standard Java AWT MouseListener, so it provides a standard SAMP functionality

54

Figure 23: SimpliĄed class diagram of spectra as table SAMP sender.

55

Figure 24: Sending spectrum as table via SAMP from Main Window.

and mouse event handler. It also imbeds a SOURCE_ENUM that identiĄes the source type that re-

quests a communication via SAMP and afects the way how SplatUniformCallActionManager

handles creating of the SAMP message.

SpectraAsTablesSendActionManager provides a common functionality for its descendants:

BinFITSTableSendActionManager and VOTableSendActionManager (see appendix F.4). These

classes are responsible for creating a SAMP message with approprite message and send types,

MIME type and spectrum URL. They are instantiated by SampCommunicator that is called

directly from Main Window or Query VO for spectra.

5.1.1 Sending Spectra Content from Main Window as Table

As described earlier, SPLAT-VO is now capable of sending the original spectra as table via SAMP.

One of the way how to achieve this is Main Window, as shown on Fig. 24.

Technically, it as achieved by calling above noted SampCommunicator and its overriden

methods createBinFITSTableTransmitter(specList:JList) for FITS SAMP interoperabil-

ity and createVOTableTransmitter(specList:JList) for VOTable SAMP interoperability.

5.1.2 Sending Spectra Content from SSA Query Browser as Table

SSA query browser (also known as Query VO for spectra) is another part of SPLAT-VO UI

from where the user can send a spectrum (or spectra) via SAMP as table (see Fig. 25). This place

is for sending even more important than the Main Window since it allows to send directly selected

results from SSAP query which highly improves the eiciency of work.

Technically, it as achieved by calling above noted SampCommunicator and its overriden meth-

ods createBinFITSTableTransmitter(ssaQueryBrowser:SSAQueryBrowser) for FITS SAMP

interoperability and createVOTableTransmitter(ssaQueryBrowser:SSAQueryBrowser) for VO-

Table SAMP interoperability.

56

Figure 25: Sending spectrum as table via SAMP from Query VO for spectra window.

5.2 Access to All FITS Extensions

First version of this feature was already presented in [4] and is being continuously improved

since then.

In the historic versions, SPLAT-VO was (simply put) reading only the Ąrst HDU found

in the FITS Ąle. But FITS can contain many HDUs in a form of an extension as described

in 3.1.3. These extensions were basically inaccessible in SPLAT-VO [4].

Current versions of SPLAT-VO are able to load all HDUs located in the input FITS Ąle.

Each HDU produces a spectrum (a SpecData instance) in the Global list of spectra referencing

the corresponding FITS header. This implicates that features like showing the FITS headers

or ordering by its metadata (contained in FITS headers) are automatically working with this new

feature, allowing SPLAT to become a general-purpose, feature-rich FITS viewer and editor

as well and even more importantly, with ability to access all FITS headers (or more precisely

its metadata) also improvement of its spectral analysis capabilities [4].

This is possible thanks to a gentle refactoring of SPLAT-VO architecture, that so far ex-

pected (generally speaking) that one source (Ąle etc.) provides one spectrum. Newly, SPLAT-

VO expects the multiplicity 1:M so when there will be a need in the future to add a similar

functionality (to load more spectra from one source Ąle), SPLAT-VO will be ready for it [4].

Currently, there is one drawback that remains unresolved: in FITS world, it is common

to have a primary HDU with no spectral data, yet with common observational parameters.

Since this HDU is skipped, these metadata are inaccessible. After a long internal discussion,

handling multi-HDU FITS Ąles will be left to user with a dialog with some possible actions

(including this one) and with option to perform the chosen action to all loaded spectra.

57

Figure 26: Time series demonstrational support example.

5.3 Time Series Demonstrational Support

This feature was also already presented at IVOA Interoperability Meeting in October 2015. In

order to support the need for light curves (and time series in general) standard, that is crucial

for handling data from several large scientiĄc projects (including LSST43, LIGO44 and more), a

demonstrational support of time series was implemented to SPLAT-VO. With support on server

side in Astronomical Institute of the Czech Academy of Sciences, SPLAT-VO is capable of:

• Showing correct units on time axis (Julian Date and ModiĄed Julian Date)

• Inverting y-axis in case of magnitudes (where the lower number indicates more brighter

object)

• Customized visualization in Plot window, where the time series are plotted as larger crosses

instead a polynom

See Fig. 26 for an example.

For data discovery, a standard SSAP protocol is used and the detection of time series is done

by looking for Spectral Data Model (see section 2.1.2) parameter ssa_producttype (see ap-

pendix F.1 for code sample) in VOTable of:

• SSAP query results

• locally opened VOTable Ąle

43The Large Synoptic Survey Telescope: http://www.lsst.org/
44Laser Interferometer Gravitational-Wave Observatory: https://www.ligo.caltech.edu/

58

http://www.lsst.org/
https://www.ligo.caltech.edu/

Figure 27: SSA Query Results window enhancements

Technical implementation consisted of new ObjectTypeEnum enumeration with TIMESERIES

and SPECTRUM values. Creating this enumeration was the fastest way to achieve a suitable demo

for time series, yet in future standardized implementation, this logic will move to inheritance-

based architecture. SpecData and TableSpecDataImpl (VOTable format implementation of

SpecDataImpl) classes were modiĄed to contain support for ObjectTypeEnum and (since they

are smart beans) to act accordingly based on these values. These classes are instantiated by

SpectrumIO which was with SpecDataFactory also extended to accept this parameter and

SplatBrowser now recognizes the ObjectTypeEnum in the core tryAddSpectrum() methods,

which allows it to pre-set time series visual preferences and Ćip the Y-axis (see appendix F.2 for

code sample) described above.

As the reader can see, this solution is only temporary, so it is not a part of standard SPLAT-

VO distribution yet and there is a working progress on its standardization described in 6.1.

5.4 SSA Query Results Enhancements

One of drawbacks of SSAP query results in Query VO for spectra window was the inability

to directly copy selected query results. When the user wanted (for example) copy a spectrum

URL, he needed either to know a keyboard shortcut and copy the entire line (that can contain

dozens of columns) or rewrite the URL manually. Therefore we added a new feature (shown on

Fig. 27) that allows to:

• Copy current cell to clipboard

• Copy current selection to clipboard

• Copy all table data to clipboard

This feature has a form of context menu shown to user by clicking by right mouse button

to query results table.

The implementation is centered around new SSAQueryResultsTableSelectionMenu class,

that extends standard javax.swing.JMenu (see appendix F.6 for source code). This menu

is added to a context menu in SSAP query results JTable and uses a new set of JTable utilities

59

Figure 28: Export to CSV and text Ąle feature.

in JTableUtilities class (see appendix F.5 for source code) to select the required content

from SSAP query results JTable.

5.5 Spectral Data CSV Export

SPLAT-VO allows to view and edit spectral data in a form of a simple table. This feature

is available from Main Window under View - View/modify spectra values menu. But it does

not provide a direct functionality to export these values to an external Ąle (exporting the result

in-memory spectrum to FITS, VOTable etc. is not always a suitable option).

As shown on Fig. 28, SPLAT-VO can now export the spectral data to CSV (columns

are delimited by a semicolon) and to a simple text Ąle (columns are delimited by tabulator),

that can both be used in other processing (including big data or manual). This feature is available

under File menu.

As in case of copying results from Query VO for spectra window described in 5.4, implemen-

taion uses a new JTableUtilities helper class (see appendix F.5 for source code) to select

the required content from JTable containing the spectral data. This JTable is contained

in SpecViewerFrame instance, that newly contains embedded classes initiating Ąle chooser

and handling the export itslef (extensions of standard javax.swing.AbstractAction called

SaveAsCSVAction and SaveAsTextAction - see appendix F.7).

60

Figure 29: Visual delete of spectrum in action.

5.6 More Effective Spectra Deletion by Means of Visual Selection

This feature was also already previewed in [34]. When working with multiple spectra, it might

be useful to select e.g. a noisy one and conveniently remove it from Working space [34].

The current version of SPLAT-VO allows a visual selection of a spectrum in Plot window.

It highlights it and pre-selects in the local drop-down menu and Global list of spectra [34].

SPLAT-VO newly contains a delete feature, where after pressing a Delete key or clicking

on an appropriate button, the user is asked to conĄrm the removal of the currently selected

spectrum with the pre-checked option to remove it from the Global list of spectra as well (see

Fig. 29).

The implementation consisted of creating a new PlotControlKeyListener (see appendix

F.8) that detects a Delete key pressed and calls a new method removeCurrentSpectrumFromPlot

(see appendix F.9) in PlotControl class that handles plotting the spectra. This method

is also called from a new Remove button located at the right side of the drop-down menu

with plotted spectra. Removing from Main Windows (SplatBrowser instance) is accompa-

nied with visual pre-selection in Global list of spectra. This is ensured by a new interface

SpecListModelSelectionListener that is implemented as an anonymous class in SplatBrowser.

This listener listens for a new SpecListModelSelectionEvent Ąred by SpecList when new

spectrum or spectra are set as selected.

61

6 Improvements Being Prepared for SPLAT-VO

Features described in this section are currently in a phase of development or pre-development

(based on agreement with developers community and previous analysis acceptance). Part

of these features were already previewed in [34]. Implementation of these features has been

suspended because of change of priorities during the development (especially in favor of time

series), but will continue as soon as more prioritized features will be implemented.

By implementing the following features, SPLAT-VO should allow the user to store all the data

(including in-memory data) in a local storage and in an universal format, readable by other

software tools. It will also read this stored data on startup, so it will allow the user to re-

sume the previous work. It should also allow better organization of incoming data by grouping

the data to user-deĄned groups. And it should improve the performance by lowering the memory

consumption using the lazy loading of the spectra. These features are covered in sections 6.2,

6.3 and 6.4.

Currently most crucial feature in development is however a standardized support for time

series, described in section 6.1 and presented in experimental phase on the upcoming IVOA

Interoperability Meeting.

6.1 Time Series and Data Cubes Support via New Protocol

As mentioned in section 5.3, realized implementation of time series support was only demonstra-

tional. It uses SSAP for data discovery, which is a bad practice since this protocol is intended

for spectra only. Another bad practices can be found in implementation, that was only demon-

strational.

This has changed lately thanks to Jiří Nádvorník’s new data model using data cubes realized

in VOTable. SPLAT-VO was given a support for this data model. It can open it and operate

with it in the same way as described in section 5.3:

• Data discovery is performed via ObsCore protocol (see section 2.1.2).

• It looks for <PARAM> element in VOTable with name="cube_dataset_producttype"

and value="timeseries" attributes. A corresponding (yet not Ąnal) UType is supposed

to be obscore:ObsDataset.dataProductType.

• It will identify time axis (UType spec:Cube.Data.TimeAxis.Value - ModiĄed Julian date

in our example) and observable axis (UType spec:Cube.Data.ObservableAxis.Value -

magnitude) and Ąnd corresponding data columns within VOTable (<TABLEDATA> element

- see section 3.1.4).

• It will load and apply visualization properties for time series:

Ű Render data by points (instead of a polynomial line as in case of spectra)

62

Ű Larger size for each point

Ű Render points as crosses

Ű Invert Y-axis

Visualization was refactored since demonstrational support. It is now driven by individual

rendering properties for spectra and time series. When the object (spectrum or time series)

is about to be rendered, SPLAT-VO will call a factory method (see Fig. 30) for creating

the proper rendering properties. In case that object type could not be detected, the spectrum

rendering properties are used as fallback.

Figure 30: Default rendering properties factory.

This implementation of time series and data cubes support will be presented by Petr Škoda

on the upcoming IVOA Interoperability Meeting in May 2016 in Cape Town. Based on the re-

sults, other refactoring is prepared:

• Inheritance-based architecture of SpecData. Currently, the object type (spectrum or time

serie) is identiĄed by ObjectTypeEnum enumeration tied to SpecData entity. This is suf-

Ącient for demonstrational purposes, but for a real use, it is unmaintainable. Therefore,

a new abstract class called ObservedData with all common properties will be created.

The current class SpecData will extend it, as well as a new class TimeSeriesData. The rea-

son of waiting with the refactoring for results of IVOA Interoperability Meeting presenta-

tion is the fact that almost all current usages of SpecData class would have to be replaced

by the new ObservedData, which is diicult to manage and priorities and implementation

details may change after that.

63

• Larger support for data cubes: allow basic operations described in section 3.2.7. Basically,

this will require switching between current and several more drop down boxes in visual-

ization settings in Main Window, based on the object type. But the refactored rendering

properties are now ready for this.

Aim of these iterative modiĄcations is to continue on standardization of time series within

IVOA (protocol and data model using data cubes), which is currently a pressing issue, as de-

scribed in 5.3.

6.2 Working Space

Simply put: this feature will save all spectra loaded in SPLAT-VO at the moment to a user-

deĄned folder [34].

In current implementation, SPLAT-VO downloads all remote spectra to a system temporary

directory, spectra from local Ąles and spectra that are results of some operations are not saved

anywhere. This limits the user-experience because the user has no direct access to all loaded

spectra in order to use it with other tools (manual saving of the spectra or sending it via SAMP

is not suiciently general and comfortable) [34]. By implementing this feature:

• The user will be able to restore the previous work in SPLAT-VO just by starting it (SPLAT-

VO will ask the user to automatically load the content of the Working space if any).

• The user will be able to immediately work with all loaded spectra in other tools (the Work-

ing space directory will be editable and accessible, so the user can use other tools and ac-

cess the stored spectra - the access for other tools is read-only, only SPLAT-VO will

be able to write to a Working space)

There are also several issues that needs to be considered and solved during the implementa-

tion:

• Working space content must be synchronized with the global list of spectra (SpecList).

This will be achieved by:

Ű creating an interface WorkingSpaceTransactionalProcedure with proceed() method

Ű creating a singleton class SpecWorkingSpace with getInstance()

and update(SpecList, WorkingSpaceTransactionalProcedure) methods

Ű adding Working space calls to add and remove methods of SpecList and:

Ű making SpecList’s add and remove methods transactional by rewriting the original

code to a form of anonymous WorkingSpaceTransactionalProcedure class imple-

mentation (the original code will be the body of its proceed() operation). The trans-

actions themselves can be implemented in two ways:

64

∗ using 3rd party library (XADisk45 or Apache Commons Transaction46) (pre-

ferred)

∗ writing the proprietary transactional system - probably using a lock Ąle mecha-

nism - at the beginning of a transaction, a lock Ąle with metadata about trans-

action progress would be created and at the end of a transaction, this lock Ąle

would be deleted (means a commit of the transaction).

Ű by attaching a new SpecDataWorkingSpaceListener (implementing already existing

SpecListener - see Fig. 32) to a GlobalSpecPlotList and implement transactional

event handlers for spectrum MODIFIED and CHANGED events (ADDED and REMOVED events

are already covered and needs to be covered outside these event handlers because

of the need to have add/remove methods completely transactional).

Ű locking each Ąle in the Working space while SPLAT-VO runs (using java.nio.channel)

- this will ensure that Working space content will not be modiĄed by any user

or any other tool (in other words: no external action will compromise the integrity

of the Working space)

• At least in the Ąrst release, the user should have an option to turn of this feature - this will

be achieved by adding a new option under Options menu located at the top of the main

window. This option will be called Working space settings and will open a simple window

containing:

Ű checkbox Enable Working space (checked by default) . Disabling it will cause

the deletion of the working space content (integrity precaution). An event

will be Ąred when the state of the working space was changed.

Ű directory selection tool to point to the Working space directory (label: Working space

directory) - this Ąeld will be disabled if the Working space is not enabled

Ű these settings will be stored in the system using the standard Java Preferences API

(java.util.prefs.Preferences) as in case of other SPLAT-VO settings

• SPLAT-VO will have to be able to load all stored data during startup (if the Working space

is enabled) to global list. This will be ensured by new method loadFromWorkingSpace()

in SpecList and loadWorkingSpaceContent() in SpecWorkingSpace (throws

WorkingSpaceException if anything goes wrong). Since the Working space content will

be editable by external tools when the SPLAT-VO is not running (when running, the Work-

ing space content is locked and read-only), the loading will have to use general mechanism

for opening a local Ąle (same as in case of the File -> Open feature in the main window).

In case of any error during loading the Ąles, an WorkingSpaceException will be thrown,

45https://xadisk.java.net/
46http://commons.apache.org/proper/commons-transaction/

65

https://xadisk.java.net/
http://commons.apache.org/proper/commons-transaction/

reported to the user via alert box and the Working space loading process will be aborted

as one.

• SPLAT-VO deals with many sources and formats of spectra, but the SpecList contains

only the SpecData instances. The Working space mechanism will therefore store these

SpecData instances in a form of FITS with BINTABLE exetnsion (required by Spectra

groups feature described in 6.3 - VOTable representing the spectra group can reference

only a FITS BINTABLE, this also means that the original incoming spectra must be held

in the system temporary directory as until now) with as many metadata as possible.

6.2.1 Use-case view

A list of Working space use-cases is shown at UML use-case diagram at Fig. 31.

Figure 31: Working space - use case diagram. Source: [34].

6.2.2 Logical view

Logical view of Working space is represented by UML class diagram at Fig. 32. A complete

description of individual classes is available at the beginning of this section.

6.2.3 Implementation view

Implementation view of Working space is represented by UML component diagram at Fig. 33.

It shows a current SPLAT-VO using the standard Global list of spectra, that will be directly

using the new Working space component.

6.2.4 Process view

There are two crucial processes that for better understanding requires a visualization using UML

activity diagram:

• Instantiation process shown on Fig. 34 describes all neccassities required for successful

instantiation of Working space.

66

• Event handling process shown on Fig. 35 describes all major events Ąred and handled

by Working space and current SPLAT-VO components.

6.2.5 User interface impacts

Wireframes that visualizes user impacts of Working space described at the beginning of this

section are shown on Fig. 36 (integration to Main Window menu) and Fig. 37 (a simple dialog

with Working space settings).

6.3 Spectra Groups

This feature will allow the user to organize incoming spectra to groups and therefore to work

with only a subset of all loaded spectra relevant to current work. When the lazy loading feature

(described more closely in 6.4) is implemented, this feature will also allow to signiĄcantly reduce

memory consumption of SPLAT-VO because only the spectra of the currently selected group

will be fully initialized [34].

Figure 32: Working space - class diagram.

Figure 33: Working space - component diagram.

67

Implementation of this feature will require implementation of Working space as well (see

6.2), because it requires all the spectra to be locally available (references in group VOTable)

and in the required format (FITS with WAVE/FLUX columns) [34].

In points:

• Each spectra group will be represented by VOTable stored in Working space. Each spec-

trum in the VOTable will be represented by an individual reference under corresponding

TABLE element. All spectra will be grouped under a single RESOURCE element. Please refer

to appendix G to an example of such a VOTable

• Since the current VOTable generators and writers works with a StarTable instance, a new

(simpliĄed) VOTable generator called SpecGroupVOTableWriter will need to be written.

This new generator will have a write() method taking a SpecData instance as an argu-

ment, Ąnding its reference in working space and generating the appropriate VOTable.

• The name of the VOTable in working space will be in this format:

splatvo_{unique UUID}.sg.vot

• The user-editable name and description of the spectra group will be stored in VOTable

NAME and DESCRIPTION elements.

Figure 34: Working space - instantiation.

68

Figure 35: Working space - handling events.

Figure 36: Working space options menu - wireframe.

69

• The spectra group will serve as a source of spectra loaded to the current Global list of spec-

tra (in other words: the current Global list of spectra will contain only the spectra of the cur-

rently selected spectra group)

• Each spectrum added to Global list of spectra will therefore be added to the currently

selected group (it can be later regrouped to one or n groups).

• Each spectrum will need to be assigned to at least one group

• There will be default group called (default).

• A new panel with a selectbox, Create, Edit and Delete button will be added to a Main

Window. It will be positioned left from global spectra list. A multiselectbox with a list

of all assignable spectra groups will be added to the spectra details panel located right

from Global list of spectra.

• This feature must take in count, that Working space may be disabled during the runtime.

The Working space will Ąre an event about this and spectra groups will handle it by showing

an alert window to the user. After closing it, all corresponding panels in the Main Window

will be hidden and all models will be reset (that means also cleared, since the Working

space content is deleted when the feature is turned of).

• In case of implementing the lazy loading feature, only the spectra of the currently selected

group can be fully initialized - for more details, please refer to 6.4.

• Creating, editing and deleting of groups, as well as assigning the spectra to them, will

need to be fully transactional - for possible ways of ensuring this, please refer to 6.2.

6.4 Spectral Data Lazy Loading

As shown on Fig. 38 (where Ągures 1 and 2 shows minimal and maximal memory usage based

on JVM garbage collection status when no spectra are loaded and Ągures 3 and 4 shows minimal

Figure 37: Working space settings - wireframe.

70

and maximal memory usage after loading 60 spectra) and Fig. 39, spectral data consumes a con-

siderable amount of memory. Opening a large data set can cause java.lang.OutOfMemoryError:

Java heap space error or signiĄcantly limit the usability of the user’s system [34].

In order to avoid this, spectral data will be loaded "lazily". This means that only spectra

of one spectra group (see section 6.3) or only e.g. actually plotted spectra (depends on further

speciĄcation) will be "fully loaded" (including data itself, otherwise only metadata would be "fully

loaded/initialized") [34].

Lazy initializaton (loading of all spectral data) will be done on demand (calling the getter)

by loading the spectral data from Working space (see 6.2) [34]. The implementation of Working

space is mandatory here because of in-memory and remote spectra that could not be covered

by lazy initialization (will have to be fully initialized from the beginning or would have to im-

plement much more complex mechanism).

The uninitialization will be performed on (last remaining) Plot window close event. Other

features working with spectral data outside of Plot window will not cause spectrum uninitializa-

tion and the spectrum will remain initialized (these features are not used so commonly as Plot

window, so implementing the uninitialization will be an overhead at this moment - anyway,

the mechanism will exist in case of the need). Also, in case of implementing the spectra groups

feature (see section 6.3), the uninitialization will be performed during the switch of the spectra

groups (all spectra located in the old group would be uninitialized).

Figure 38: Memory usage of SPLAT-VO. Source: [34].

More technically

The SpecData will implement new SplatLazyInitialization interface with declared methods

initializeLazyFields(level:FieldInitializationLevel) and its opposite called similarly

uninitializeLazyFields(level:FieldInitializationLevel) , where FieldInitializati-

onLevel is an enumeration with concrete levels of initialization (currently considered values:

ALL and FIRST, which will load all data with exception of collections and data arrays).

71

The concrete initialization of the spectra will be performed using the new singleton class

SpecLazyInitializer with initialize(spectrum : SpecData, level:FieldInitializati-

onLevel) and uninitialize(spectrum : SpecData, level:FieldInitializationLevel) meth-

ods. The getter in SpecData will then call the

SplatLazyInitialization.initializeLazyFields(FieldInitializationLevel.ALL) that will

call the SpecLazyInitializer.initialize(this, level).

A new method called getStoredSpecData(spectrum:SpecData):SpecData will be added

to SpecWorkingSpace class. This method will return last stored variant of the given spectrum,

so the SpecLazyInitializer can use it to initialize all required elements of the spectrum.

Figure 39: Memory usage of spectra. Please note the highlighted sections that shows how
much memory spectral data consumes. It is clear that the spectral data are the largest objects
of spectra instances.

72

7 SPLAT-VO Development Process Improvements

Among SPLAT-VO software modiĄcations, there was also a need to improve and unify team

communication, project documentation and ensure that the repository is always compilable

in a sense of CI (see section 3.2.2).

7.1 Wiki Documentation

To make a central project documentation, a wiki page at Stellar Department of the AI CAS

wiki was created47 as shown on Fig. 40. This page contains basic information about SPLAT-

VO, its history, development team and contacts, code repository and build information, list

of published articles, issue tracking, continuous integration etc.

Figure 40: SPLAT-VO page at Stellar Department of the AI CAS wiki.

7.2 Issue Tracking

As described in section 4.2.3, current development process heavily relies on e-mail communica-

tions with all its disadvantages:

• Not all relevant participants are added to e-mail copies

• Many ideas are simply lost in tons of other ideas

• Many ideas are mixed with other in one e-mail conversation

• After several copies, it is hard to track even an authorship of individual parts of the con-

versation
47Stellar Department of the Astronomical Institute of the Czech Academy of Sciences wiki: https://stelweb.

asu.cas.cz/wiki/index.php/SPLAT-VO

73

https://stelweb.asu.cas.cz/wiki/index.php/SPLAT-VO
https://stelweb.asu.cas.cz/wiki/index.php/SPLAT-VO

• It is very hard to manage and track the scope of each version

• It is very hard to track the status of individual issues and requests

In order to solve this, a temporary and simple issue tracker was created. After some time,

it was uniĄed with a new oicial issue tracker.

7.2.1 Simple Issue Tracker Using Google Docs

At Ąrst, a growing number of new issues emerged and required a centralized tracking place.

Therefore a simple issue tracker was created48 using Google Docs49. It was using a simple Google

Spreadheet (see Fig. 41) Ąlled by pre-prepared Google Forms form (see Fig. 42) that created

the individual issues.

Figure 41: Deprecated SPLAT-VO issue tracker created in Google Spreadheet.

This simple spreadsheet allowed every basic issue tracking feature that was required at the

moment:

• Creating issues with name and description

• Adding comments to them

• Track changes (via comments and Google Docs versioning)

• Assign issues to concrete people

• Time tracking (creation date, last change date)

48Simple issue tracker in Google Docs: https://docs.google.com/spreadsheets/d/

1NQkhiBf3t6KkOar1n3Q2hYM6XOdQ8g-qt3ZpDB94fyo/pubhtml?widget=true&headers=false
49Google Docs URL: https://docs.google.com/

74

https://docs.google.com/spreadsheets/d/1NQkhiBf3t6KkOar1n3Q2hYM6XOdQ8g-qt3ZpDB94fyo/pubhtml?widget=true&headers=false
https://docs.google.com/spreadsheets/d/1NQkhiBf3t6KkOar1n3Q2hYM6XOdQ8g-qt3ZpDB94fyo/pubhtml?widget=true&headers=false
https://docs.google.com/

• Status tracking (several states were supported)

This simple issue tracker was used only by Czech group of development team and is currently

deprecated and replaced by the oicial issue tracker (see section 7.2.2).

7.2.2 UniĄed Issue Tracker Using GitHub Issues

During last months, we initiated and uniĄed the oicial central issue tracking system. From

several diferent possibilities described in section 3.2.4, we chose GitHub Issues. The main

reasons were the following:

• Our repository was already hosted on GitHub

• It fully supports our basic ideas (each request or idea, its status, conversation, assignee,

history and target version is kept within an issue)

• Supports basic workĆow (create - close - reopen)

• With support of multiple labels (basic and custom), we can set a Ąne grained workĆow

and organize the work.

• With customizable milestones support we can set a target version for each issue and track

the scope of each release

• We can assign issues to concrete people

• Supports basic Ąltering (by assignee, author, label, milestone and state)

• Has simple WYSIWYG editor

Figure 42: Deprecated SPLAT-VO issue tracker created in Google Spreadsheet - Ąlling form.

75

• Privacy: on public repositories, all issues are visible to a regular, unregistered visitors,

but the conversation can be locked and only team members can add comments.

Figure 43: Oicial SPLAT-VO issue tracker in GitHub Issues.

For GitHub Issues also spoke the fact that anything more complex can be achieved by a com-

bination of basic features and none of the other issue tracking systems is so easy to use (and de-

ploy). Currently, we have all opened issues migrated to this new central issue tracker50 (see

Fig. 43)

7.3 Automatized Build with Jenkins CI inside Docker

In order to have a possibility to build SPLAT-VO installation package from the current repos-

itory and to ensure that the source code in repository is buildable at any time, we deployed

Jenkins CI in a Docker container on server of Stellar Dept. AI CAS51. The container runs

from custom Docker image derived from standard Jenkins CI Docker image52.

As shown on Fig. 44, this instance of Jenkins CI contains at this moment one job (called

SPLAT-VO_Build-installer), that is parametrized by a single parameter Branch identifying

a Git branch from which the SPLAT-VO will be built (see Fig. 45).

Jenkins CI will pass these arguments to shell script that will build SPLAT-VO and create

its installer by the same process as described in section 4.6 and 4.8. The resulting installers

are versioned and accessible from the same Jenkins CI environment (see Fig. 46).

50SPLAT-VO GitHub Issues: https://github.com/SPLAT-VO/starjava/issues
51Jenkins CI instance for SPLAT-VO URL: http://antares.stel:50080/
52Standard Jenkins CI Docker image: https://hub.docker.com/_/jenkins/

76

https://github.com/SPLAT-VO/starjava/issues
http://antares.stel:50080/
https://hub.docker.com/_/jenkins/

Figure 44: Jenkins CI for SPLAT-VO - main job.

Figure 45: Jenkins CI for SPLAT-VO - main job detail with parameters and result.

Figure 46: Jenkins CI for SPLAT-VO - build artifacts history.

77

8 Suggestions for Further Refactoring

Some parts of SPLAT-VO contain certain bad practices that works well at this moment, but makes

future enhancements very diicult and tricky. Among those most obvious are:

Logic on presentation layer A typical example of this bad practice is Query VO for spec-

tra, but basically every UI class is afected by this. The presentation layer is responsible

for drawing the UI and it should not contain any other logic. SPLAT-VO heavily uses

a non-UI code in UI classes which causes too many copy/pastes and makes further en-

hancements very diicult and unmaintainable.

Listeners embedded on presentation layers Listeners are the most used parts of SPLAT-

VO afected by this bad practice, but in general: SPLAT-VO contains too many large

classes that should be separated to several smaller, more readable and maintainable classes

that makes a logical structure. A listener is a nice example of this, since it is tied to an event

and not a particular window or panel, where it is placed at this moment.

Too many copy/pastes This bad practice relates to the above ones. The same or very sim-

ilar code is copied and pasted elsewhere. A nice example of this is logic for loading

spectra, which is contained in SplatBrowser in almost ten methods and again in Query

VO for spectra and other parts of SPLAT-VO. This makes the code almost unmaintainable

and change or enhancement of spectra loading algorithm is very time-wasting and buggy.

Strong dependence on native Starlink libraries This limits some enhancements because

these native libraries are very little maintained in these days and very diicult and time-

wasting to change. The fact that they are written in languages such as Fortran or C/C++

limits the portability of SPLAT-VO, which is crucial especially in modern days.

Using throw/catch in a sense of conditions A nice example of this bad practice is Main

Window class SplatBrowser and its addSpectrum() method. Instead of determining

the conditions, the code simply attempts to treat the input in one way and switches

to another when exception is thrown. With not properly logging exceptions, this is very

dangerous and makes any diagnostics and maintenance very diicult.

Insuicient use of unit tests SPLAT-VO contains only a few unit tests and new code is not

covered at all. This produces very buggy releases since SPLAT-VO relies only on user

testing of limited functionalities performed by one or two persons. This testing also does

not cover regression testing, that ensures that the implementation of new features did not

break the old code.

78

Use of deprecated tools and libraries From the most obvious libraries and tools, we can

name Apache Ant (that has been replaced by Apache Maven53 and Gradle54), jUnit (used

in very old version) and Java Runtime Environment, that has been recently upgraded

to 1.6, but even this is ten years old technology with deprecated memory management and

missing modern features.

53Apache Maven homepage: https://maven.apache.org/
54Gradle homepage: http://gradle.org/

79

https://maven.apache.org/
http://gradle.org/

9 Conclusion

Deep and documented analysis of SPLAT-VO architecture allowed to implement the support

for time series and data cubes, which is current pressing issue in astroinformatics. SPLAT-VO

is also ready for more exotic forms of FITS data format and enhanced collaboration via SAMP

protocol. With new data exports, SPLAT-VO signiĄcantly enhances collaboration with other

tools in general. SPLAT-VO is now also improved in a way of user experience and performing

a scientiĄc research is now therefore more painless.

Development of SPLAT-VO is now more professional by using central issue tracking system,

continuous integration and project Wiki documentation.

For further enhancements, there is a set of analyzed and prepared features that highly

improves its work with large data sets and user experience that is designed for working on many

diferent large projects. There is also a set of refactoring suggestions that should move SPLAT-

VO more to modern ages as well.

During the work on this thesis, 17 improvements, 1 bug, and 3 general tasks have been

created. From this number of issues, 6 were tested and closed, 2 are currently being tested, 5

are in progress (at least with deep implementation analysis) and 8 minor-severity issues or tasks

are created and waiting for higher priorities to be resolved. These statistics (gathered in less

than 10 minutes) also shows described beneĄts of the new issue tracking system that I have

suggested and picked-up. For higher eiciency, I have suggested testing process enhancements

that also includes higher usage of unit testing (the Jenkins CI instance, that I have created,

is ready for this task). In dozens of new or modiĄed classes (most of them core ones), several

thousands of new lines of code has been added. During merges with other branches and analysis

phase for large refactoring and improvements suggestions, considerably large part of code has

been reviewed, which resulted in suggestions described at the end of this thesis. The number

of issues that currently remains in progress and number of reviewed lines of code also shows

how frequently and rapidly priorities change in SPLAT-VO development. This remains to be

one of the greatest bottlenecks of SPLAT-VO development, yet beneĄts of the implementation

of my suggestions are currently showing up. A new technical and non-technical documentation,

that I have created helps to centralize the knowledge about SPLAT-VO and pass the know-how

to new members of the development team.

My adjustments were accepted by SPLAT-VO development community. Results were ac-

cepted for Nostradamus 2015 conference, as well as presented on IVOA Interoperability Meetings

in October 2015 and May 2016. I will submit current results to the SIMS2016 conference, where

the deadline is after Ąnishing this thesis.

Beside the need of major refactoring and other (not only) technical adjustments, that have

been described in this thesis, SPLAT-VO is still a remarkable software tool of its time capable

of serving to its purpose in these days with beneĄts of being a reference implementation to newly

emerging VO standards.

80

References

[1] PennState (2016) Astroinformatics in a Nutshell. Available at:

https://asaip.psu.edu/Articles/astroinformatics-in-a-nutshell. Cited on Mar 07, 2016

[2] Petr Škoda. Optical Spectroscopy with the Technology of Virtual Observatory. Baltic

Astronomy. 2011, Vol. 20, p. 531-539. Cited on Mar 07, 2016. Available at:

http://adsabs.harvard.edu/abs/2011BaltA..20..531S [online].

[3] International Virtual Observatory Alliance (2016) International Virtual Observatory Al-

liance. Available at: http://ivoa.net/. Cited on Mar 07, 2016

[4] Petr Šaloun, David Andrešič, Petr Škoda and Ivan Zelinka. Visualization of Large Amount

of Spectra in Virtual Observatory Environment. International Journal of Automation and

Computing. 2014, 11(6), 613-620 [cit. 2016-03-08]. DOI: 10.1007/s11633-014-0845-y. ISSN

1476-8186. Available at: http://link.springer.com/10.1007/s11633-014-0845-y [online]

[5] International Virtual Observatory Alliance (2010) IVOA Architecture. Available

at: http://ivoa.net/documents/Notes/IVOAArchitecture/20101123/IVOAArchitecture-

1.0-20101123.pdf. Cited on Mar 08, 2016

[6] International Virtual Observatory Alliance (2012) SAMP - Simple Application Messaging

Protocol. Available at: http://www.ivoa.net/Documents/latest/SAMP.html. Cited on Mar

09, 2016

[7] International Virtual Observatory Alliance (2012) Simple Spectral Access Protocol Available

at: http://www.ivoa.net/Documents/latest/SSA.html. Cited on Mar 09, 2016

[8] Mireille Louys, Doug Tody, Patrick Dowler, Daniel Durand, Laurent Michel, Francois

Bonnarel, Alberto Micol and the IVOA DataModel working group (2016) Observation Data

Model Core Components and its Implementation in the Table Access Protocol Version 1.1

Available at: http://www.ivoa.net/documents/ObsCore/. Cited on Mar 10, 2016

[9] Doug Tody, Ray Plante (2009) Simple Image Access SpeciĄcation Version 1.0 Available at:

http://www.ivoa.net/documents/latest/SIA.html. Cited on Mar 11, 2016

[10] Patrick Dowler, Guy Rixon, Doug Tody (2010) Table Access Protocol Version 1.0 Available

at: http://www.ivoa.net/documents/TAP/. Cited on Mar 11, 2016

[11] Roy Williams, Robert Hanisch, Alex Szalay, Raymond Plante (2008) Simple Cone Search

Version 1.03 Available at: http://www.ivoa.net/documents/latest/ConeSearch.html. Cited

on Mar 11, 2016

81

[12] Mark Taylor (2015) TOPCAT - Tool for OPerations on Catalogues And Tables Version

4.3-2 Available at: http://www.star.bris.ac.uk/ mbt/topcat/sun253/sun253.html. Cited on

Mar 12, 2016

[13] Glenn Elert (2015) The Nature of Light Available at: http://physics.info/light/. Cited on

Mar 12, 2016

[14] Australia Telescope National Facility (2016) Types of Astronomical Spectra Avail-

able at: http://www.atnf.csiro.au/outreach/education/senior/astrophysics/spectra_as-

tro_types.html. Cited on Mar 12, 2016

[15] National Aeronautics and Space Administration (2013) Light Curves and What They Can

Tell Us Available at: http://imagine.gsfc.nasa.gov/science/toolbox/timing1.html. Cited on

Mar 12, 2016

[16] Thomas A. McGlynn (2014) The FITS Support Oice Available at:

http://Ąts.gsfc.nasa.gov/. Cited on Mar 16, 2016

[17] M. Donahue, T. Kimball (1997) FITS File Format. In: HST Data Handbook. Available at:

http://www.stsci.edu/documents/dhb/web/c02_dataĄles.fm2.html. Cited on Mar 16, 2016

[18] William D. Pence (2012) FITS Extension Names. Available at:

http://Ąts.gsfc.nasa.gov/xtension.html. Cited on Mar 16, 2016

[19] Francois Ochsenbein, Roy Williams, Clive Davenhall, Markus Demleitner, Daniel Du-

rand, Pierre Fernique, David Giaretta, Robert Hanisch, Tom McGlynn, Alex Szalay, Mark

Taylor, Andreas Wicenec (2013) VOTable Format DeĄnition Version 1.3. Available at:

http://www.ivoa.net/documents/VOTable/. Cited on Mar 17, 2016

[20] Ivo Vondrák (2002) Úvod do softwarového inženýrství. [in Czech] Available at:

http://vondrak.cs.vsb.cz/download/Uvod_do_softwaroveho_inzenyrstvi.pdf. Cited

on Mar 20, 2016

[21] Douglas Hughey. (2009) The Traditional Waterfall Approach Available at:

http://www.umsl.edu/ hugheyd/is6840/waterfall.html. Cited on Mar 20, 2016

[22] Think Agile. (2016) Software Development Methodologies Available at:

http://agilerules.blogspot.cz/2014/07/software-development-methodologies.html. Cited on

Mar 20, 2016

[23] Martin Fowler. (2006) Continuous Integration Available at:

http://www.martinfowler.com/articles/continuousIntegration.html. Cited on Mar 20,

2016

82

[24] Glen Stansberry. (2008) 7 Version Control Systems Reviewed Available at:

https://www.smashingmagazine.com/2008/09/the-top-7-open-source-version-control-

systems/. Cited on Mar 20, 2016

[25] Center for Knowledge Management, Faculty of Electrical Engineering, Czech Technical Uni-

versity in Prague. (2011) Základní informace Ű o co se jedná a k čemu to slouží Available at:

http://czm.fel.cvut.cz/vyuka/A4M33CPM/Download/DatoveKostky.pdf. Cited on Mar 25,

2016

[26] Howard Hamilton. (2012) Data Cubes Available at: http://www2.cs.uregina.ca/ db-

d/cs831/notes/dcubes/dcubes.html. Cited on Mar 25, 2016

[27] tutorialspoint.com. (2016) Data Warehousing - OLAP Available at:

http://www.tutorialspoint.com/dwh/dwh_olap.htm. Cited on Mar 25, 2016

[28] Oracle Corporation. (2002) Data Warehousing Concepts Available at:

https://docs.oracle.com/cd/B10500_01/server.920/a96520/concept.htm. Cited on Mar 26,

2016

[29] tutorialspoint.com. (2016) Data Warehousing - Schemas Available at:

http://www.tutorialspoint.com/dwh/dwh_schemas.htm. Cited on Mar 26, 2016

[30] Petr Škoda, Peter W. Draper, Margarida Castro Neves, David Andrešič

and Tim Jenness. Spectroscopic analysis in the virtual observatory environ-

ment with SPLAT-VO. Astronomy and Computing. 2014, 7-8, 108-120 [cit.

2016-03-29]. DOI: 10.1016/j.ascom.2014.06.001. ISSN 22131337. Available at:

http://linkinghub.elsevier.com/retrieve/pii/S2213133714000250 [online]

[31] Peter W. Draper. (2015) Starlink SPLAT-VO. Available at: http://star-www.dur.ac.uk/

pdraper/splat/splat-vo/. Cited 29 May 2016.

[32] Petr Šaloun, David Andrešič, Petr Škoda a Ivan Zelinka. Upcoming Features of SPLAT-VO

in Astroinformatics. s. 475 [cit. 2016-03-30]. DOI: 10.1007/978-3-319-00542-3_47. Available

at: http://link.springer.com/10.1007/978-3-319-00542-3_47 [online]

[33] Starlink. (2015) Starlink. Available at: http://starlink.eao.hawaii.edu/starlink. Cited 29

May 2016.

[34] Petr Šaloun, David Andrešič, Petr Škoda and Ivan Zelinka. Better Spectra Manipulation

in SPLAT-VO. p. 373 [cit. 2016-04-01]. DOI: 10.1007/978-3-319-29504-6_36. Available at:

http://link.springer.com/10.1007/978-3-319-29504-6_36 [online]

83

A SpecData Class Diagram

Figure 47: Complete SpecData and RemoteSpecData class diagram. Source: [34].

84

B SpecList Class Diagram

Figure 48: Complete SpecList class diagram. Source: [34].

85

C GlobalSpecPlotList Class Diagram

Figure 49: Complete GlobalSpecPlotList class diagram. Source: [34].

86

D SpectrumIO Class Diagram

Figure 50: SpectrumIO and its dependencies class diagram.

87

E SpecDataFactory Class Diagram

Figure 51: SpecDataFactory and its dependencies class diagram.

88

F Selected Diffs and Source Codes

This appendix section contains a few selected difs with some interesting or crucial parts of

SPLAT-VO improvements.

F.1 SSAP: Time Series Product Type Detection

Figure 52: Time series product type detection in VOTable.

89

F.2 Plot Window: Y-axis Flipping for Time Series

Figure 53: Y-axis Ćipping for time series in Plot window.

F.3 SAMP: Spectra as Tables Action Manager

/∗

∗ Copyright (C) 2009 Science and Technology Facilities Council

∗

∗ History :

∗ 06−MAR−2009 (Mark Taylor):

∗ Original version .

∗ 14−JUL−2009 (Peter Draper):

∗ Give up on 1D FITS and always transmit FITS tables .

∗ 16−OCT−2009 (Peter Draper):

∗ Send SSA meta−data as required by HIPE (paul . balm@sciops . esi . int)

∗ More SSA 1.0 compatible .

∗ 16−FEB−2016 (David Andresic):

∗ Send spectrum as table .

∗/

package uk.ac.starlink . splat . util ;

import java.awt.event.MouseEvent;

import java.io . File ;

import java.io .IOException;

import java.net.MalformedURLException;

import java.net.URL;

import java. util .Arrays;

import java. util .HashMap;

import java. util .LinkedList;

import java. util . List ;

import java. util .Map;

import javax.swing.JList;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event. ListSelectionListener ;

import org.astrogrid .samp.Message;

import org.astrogrid .samp.gui.GuiHubConnector;

90

import uk.ac.starlink . splat .data.SpecData;

import uk.ac.starlink . splat .data.SpecDataFactory;

import uk.ac.starlink . splat . iface .GlobalSpecPlotList;

import uk.ac.starlink . splat . iface .SpectrumIO.Props;

import uk.ac.starlink . splat .vo.DataLinkParams;

import uk.ac.starlink . splat .vo.SSAQueryBrowser;

import uk.ac.starlink . util .URLUtils;

/∗∗

∗ Provides GUI actions for sending spectra by SAMP.

∗

∗ @author Mark Taylor

∗ @author David Andresic

∗ @version Id

∗/

public abstract class SpectraAsTablesSendActionManager

extends SplatUniformCallActionManager

implements EventEnabledTransmitter, ListSelectionListener

{

protected static enum SOURCE_ENUM {

JLIST,

SSAP_BROWSER

}

private SOURCE_ENUM spectraSource;

/∗∗

∗ Message type

∗/

private String mType;

/∗∗

∗ Send type

∗/

private String sendType;

/∗∗

∗ Global list of spectra .

∗/

private JList specList;

/∗∗

∗ SSA Query Browser instance

∗/

private SSAQueryBrowser ssaBrowser;

/∗∗

∗ Currently selected index in the global list of spectra .

∗/

private int selectedIndex = −1;

/∗∗

∗ Map holding URL of each spectrum

∗/

private Map<SpecData, String> spectraUrls = new HashMap<SpecData, String>();

/∗∗

∗ Constructor .

∗

∗ @param specList global list of spectra

∗ @param hubConnector controls connection with SAMP hub

∗/

public SpectraAsTablesSendActionManager(SSAQueryBrowser ssaBrowser,

GuiHubConnector hubConnector, String mtype, String sendtype)

{

super(ssaBrowser, hubConnector, mtype,

sendtype);

this .ssaBrowser = ssaBrowser;

this .spectraSource = SOURCE_ENUM.SSAP_BROWSER;

updateSpecState();

this .mType = mtype;

this .sendType = sendtype;

}

91

/∗∗

∗ Constructor .

∗

∗ @param specList global list of spectra

∗ @param hubConnector controls connection with SAMP hub

∗/

public SpectraAsTablesSendActionManager(JList specList,

GuiHubConnector hubConnector, String mtype, String sendtype)

{

super(specList, hubConnector, mtype,

sendtype);

this .specList = specList;

this .spectraSource = SOURCE_ENUM.JLIST;

specList.addListSelectionListener(this) ;

updateSpecState();

this .mType = mtype;

this .sendType = sendtype;

}

/∗∗

∗ Implement ListSelectionListener interface to ensure that this object

∗ keeps track of the current selection state in the global spectrum list .

∗/

public void valueChanged(ListSelectionEvent e) {

updateSpecState();

}

@Override

public void mouseClicked(MouseEvent arg0) {updateSpecState();}

@Override

public void mouseEntered(MouseEvent arg0) {}

@Override

public void mouseExited(MouseEvent arg0) {}

@Override

public void mousePressed(MouseEvent arg0) {}

@Override

public void mouseReleased(MouseEvent arg0) {}

/∗∗

∗ Invoked when the selection state of the global spectrum list

∗ may have changed .

∗/

protected void updateSpecState() {

switch (getSpectraSource()) {

case JLIST:

int [] indices = specList.getSelectedIndices () ;

selectedIndex = (indices == null || indices .length != 1)

? −1

: indices [0];

setEnabled(selectedIndex >= 0);

break;

case SSAP_BROWSER:

List<Props> props = ssaBrowser.getSpectraAsList(true);

setEnabled(props != null && props.size() > 0);

break;

default :

throw new IllegalStateException("Unsupported source type.");

}

}

/∗∗

∗ Returns the currently − selected spectrum , if any .

∗/

protected List<SpecData> getSpecData()

{

if (getSpectraSource() == null) {

throw new IllegalStateException("There is no spectra source defined for SAMP send action manager.");

}

switch (getSpectraSource()) {

case JLIST:

return Arrays.asList(GlobalSpecPlotList.getInstance().getSpectrum(selectedIndex));

92

case SSAP_BROWSER:

return getSpectraFromSSAQueryBrowser();

default :

throw new IllegalStateException("Unsupported spectra source.");

}

}

/∗∗

∗ Constructs and returns a message for transmitting load of the

∗ currently selected spectrum .

∗/

protected abstract List<Message> createMessages()

throws IOException, SplatException;

/∗∗

∗ Returns a URL corresponding to an existing resource given by a

∗ location string , if possible . If <code>loc</code> is an

∗ existing file , a file −type URL is returned .

∗ Otherwise , if <code>loc</code> can be parsed as a URL,

∗ that is returned . Otherwise , <code>null</code> is returned .

∗

∗ @param loc string pointing to resource (URL or filename)

∗ @return URL describing <code>loc</code>, or null

∗/

protected static URL getUrl(String loc)

{

if (loc == null) {

return null ;

}

File locFile = new File(loc) ;

if (locFile . exists ()) {

return URLUtils.makeFileURL(locFile);

}

else {

try {

return new URL(loc);

}

catch (MalformedURLException e) {

return null ;

}

}

}

public SOURCE_ENUM getSpectraSource() {

return spectraSource;

}

/∗∗

∗ Extracts the currently selected spectra from SSA Query Browser

∗

∗ @return

∗/

private List<SpecData> getSpectraFromSSAQueryBrowser() {

List<SpecData> spectra = new LinkedList<SpecData>();

List<Props> props = ssaBrowser.getSpectraAsList(true);

spectraUrls. clear () ;

// Inspired by SplatBrowser . tryAddSpectrum() and simplified

if (props != null) {

for (Props p : props) {

System.out.println("and146: props url: " + p.getDataLinkRequest() + " / " + p.getidValue() + " / " + p.getShortName() + " /

" + p.getSpectrum());

if (p.getType() == SpecDataFactory.SED || p.getType() == SpecDataFactory.TABLE) {

try {

List<SpecData> sp = Arrays.asList(SpecDataFactory.getInstance().expandXMLSED(p.getSpectrum()));

for (SpecData s : sp) {

spectra.add(s);

spectraUrls.put(s, p.getSpectrum());

}

// spectra . addAll (Arrays . asList (SpecDataFactory . getInstance () . expandXMLSED(p.getSpectrum()))) ;

} catch (SplatException e) {

throw new RuntimeException("Unable to extract spectra from SSA Query Browser.", e);

}

93

} else {

try {

if (p.getType() == SpecDataFactory.DATALINK) {

DataLinkParams dlparams = new DataLinkParams(p.getSpectrum());

p.setSpectrum(dlparams.getQueryAccessURL(0)); // get the accessURL for the first service read

String stype = null;

if (p.getDataLinkFormat() != null) { // see if user has changed the output format

stype = p.getDataLinkFormat();

p.setType(SpecDataFactory.mimeToSPLATType(stype));

//props . setObjectType (SpecDataFactory .mimeToObjectType(stype)) ;

}

else if (dlparams.getQueryContentType(0) == null || dlparams.getQueryContentType(0).isEmpty()) //if not,

use contenttype

p.setType(SpecDataFactory.GUESS);

else {

stype = dlparams.getQueryContentType(0);

p.setType(SpecDataFactory.mimeToSPLATType(stype));

//props . setObjectType (SpecDataFactory .mimeToObjectType(stype)) ;

}

}

List<SpecData> sp = SpecDataFactory.getInstance().get(p.getSpectrum(), p.getType());

for (SpecData s : sp) {

spectra.add(s);

spectraUrls.put(s, p.getSpectrum());

}

// spectra . addAll (SpecDataFactory . getInstance () . get (p. getSpectrum () , p.getType ())) ; ///!!! IF it ’ s a list ???

} catch (Exception e) {

throw new RuntimeException("Unable to extract spectra from SSA Query Browser.", e);

}

}

}

}

return spectra;

}

/∗∗

∗ Returns URL of the given spectrum , if exists

∗

∗ @param spec

∗ @return

∗/

protected String getURLOfSpec(SpecData spec) {

return spectraUrls.get(spec);

}

}

F.4 SAMP: VOTable Send Action Manager

/∗

∗ Copyright (C) 2009 Science and Technology Facilities Council

∗

∗ History :

∗ 06−MAR−2009 (Mark Taylor):

∗ Original version .

∗ 14−JUL−2009 (Peter Draper):

∗ Give up on 1D FITS and always transmit FITS tables .

∗ 16−OCT−2009 (Peter Draper):

∗ Send SSA meta−data as required by HIPE (paul . balm@sciops . esi . int)

∗ More SSA 1.0 compatible .

∗ 16−FEB−2016 (David Andresic):

∗ Send spectrum as table .

∗/

package uk.ac.starlink . splat . util ;

import java.io . File ;

import java.io .IOException;

import java.net.URL;

import java. util .HashMap;

import java. util .LinkedList;

import java. util . List ;

import java. util .Map;

94

import javax.swing.JList;

import javax.swing.JMenu;

import javax.swing.event. ListSelectionListener ;

import org.astrogrid .samp.Message;

import org.astrogrid .samp.gui.GuiHubConnector;

import uk.ac.starlink . splat .data.SpecData;

import uk.ac.starlink . splat .data.SpecDataFactory;

import uk.ac.starlink . splat .vo.SSAQueryBrowser;

import uk.ac.starlink . util .URLUtils;

/∗∗

∗ Provides GUI actions for sending spectra contained inside VOTable by SAMP.

∗

∗ @author Mark Taylor

∗ @author David Andresic

∗ @version Id

∗/

public class VOTableSendActionManager

extends SpectraAsTablesSendActionManager

{

private static final String MTYPE = "table.load.votable";

private static final String SENDTYPE = "table";

/∗∗

∗ Constructor .

∗

∗ @param ssaQueryBrowser SSA Query Browser instance

∗ @param hubConnector controls connection with SAMP hub

∗/

public VOTableSendActionManager(SSAQueryBrowser ssaQueryBrowser,

GuiHubConnector hubConnector)

{

super(ssaQueryBrowser, hubConnector, MTYPE,

SENDTYPE);

updateSpecState();

}

/∗∗

∗ Constructor .

∗

∗ @param specList global list of spectra

∗ @param hubConnector controls connection with SAMP hub

∗/

public VOTableSendActionManager(JList specList,

GuiHubConnector hubConnector)

{

super(specList, hubConnector, MTYPE,

SENDTYPE);

specList.addListSelectionListener(this) ;

updateSpecState();

}

/∗∗

∗ Constructs and returns a message for transmitting load of the

∗ currently selected spectrum .

∗/

protected List<Message> createMessages()

throws IOException, SplatException

{

List<Message> messages = new LinkedList<Message>();

for (SpecData spec : getSpecData()) {

String fmt = spec.getDataFormat();

String mime = null;

URL locUrl = null;

File tmpFile = null;

System.out.println("and146: specdata url: ") ;

// See if we already have a VOTable spectrum ready to use .

if ("VOTable".equals(fmt) || "TABLE".equals(fmt)) {

if (new File(spec.getFullName()).exists()) {

95

mime = "application/x−votable+xml";

locUrl = getURLOfSpec(spec) == null ? getUrl(spec.getFullName()) : new URL(getURLOfSpec(spec));

}

else {

tmpFile = File.createTempFile("spec", ".vot") ;

tmpFile.deleteOnExit();

// locUrl = URLUtils.makeFileURL(tmpFile) ;

locUrl = getURLOfSpec(spec) == null ? URLUtils.makeFileURL(tmpFile) : new URL(getURLOfSpec(spec));

mime = "application/x−votable+xml";

spec = SpecDataFactory.getInstance()

.getTableClone(spec, tmpFile.toString(),

"votable") ;

spec.save() ;

assert tmpFile.exists () : tmpFile;

}

} else {

throw new SplatException("Invalid data format of the spectrum.");

}

assert mime != null;

assert locUrl != null ;

// Prepare a metadata map describing the spectrum .

// There should probably be more items in here .

Map meta = new HashMap();

meta.put("Access.Reference", locUrl.toString()) ;

meta.put("Access.Format", mime);

String shortName = spec.getShortName();

if (shortName != null && shortName.trim().length() > 0) {

meta.put("vox:image_title", shortName);

meta.put("Target.Name", shortName);

}

// Units .

String dataUnits = spec.getDataUnits();

String coordUnits = spec.getFrameSet().getUnit(1);

if (dataUnits != null && coordUnits != null) {

if (! coordUnits.equals("")) {

meta.put("vox:spectrum_units",

coordUnits + " " + dataUnits);

meta.put("Spectrum.Char.SpectralAxis.unit", coordUnits);

meta.put("Spectrum.Char.FluxAxis.unit", dataUnits);

}

}

// Columns.

String xColName = spec.getXDataColumnName();

String yColName = spec.getYDataColumnName();

if (xColName != null && yColName != null) {

meta.put("vox:spectrum_axes", xColName + " " + yColName);

meta.put("Spectrum.Char.SpectralAxis.Name", xColName);

meta.put("Spectrum.Char.FluxAxis.Name", yColName);

}

// Prepare and return the actual message .

Message msg = new Message(MTYPE);

msg.addParam("url", locUrl.toString()) ;

msg.addParam("meta", meta);

if (shortName != null && shortName.trim().length() > 0) {

msg.addParam("name", shortName);

}

System.out.println("and146: check #3");

System.out.println("and146: URL: " + locUrl.toString());

messages.add(msg);

}

return messages;

}

@Override

public JMenu createSendMenu() {

switch (getSpectraSource()) {

case JLIST:

96

return super.createSendMenu("Send spectrum as VOTable to...");

case SSAP_BROWSER:

return super.createSendMenu("Send result spectra as VOTable to...");

default :

throw new IllegalStateException("Unsupported source.");

}

}

}

F.5 JTable Utilities

package uk.ac.starlink . splat . util ;

import java. util . logging.Logger;

import javax.swing.JOptionPane;

import javax.swing.JTable;

/∗∗

∗ Class of static members that provide utility functions for JTable .

∗

∗ @author Andresic

∗ @version Id

∗

∗/

public class JTableUtilities {

// Logger .

private static Logger logger = Logger.getLogger("uk.ac. starlink . splat . util . JTableUtilities ") ;

/∗∗

∗ Class of static methods, so no construction .

∗/

private JTableUtilities ()

{

// Do nothing .

}

/∗∗

∗ Gets the content of currently selected JTable cell as String

∗ or returns null , if the selection is invalid .

∗

∗ @param table

∗ @return

∗/

public static String getCurrentCellContent(JTable table) {

Utilities .checkObject(table, "Table must be set.") ;

int row = table.getSelectedRow();

int col = table.getSelectedColumn();

boolean validSelection = row > −1 && col > −1;

if (validSelection) {

Object value = table.getValueAt(row, col);

String strValue = value == null ? "" : value.toString() ;

return strValue;

} else {

logger .warning("Invalid selection .") ;

return null ;

}

}

/∗∗

∗ Gets all the content of the given JTable String

∗ or returns null , if the selection is invalid .

∗

∗ @param table

∗ @param lineBreak

∗ @param cellBreak

∗ @return

97

∗/

public static String getAllContent(JTable table, String lineBreak, String cellBreak) {

Utilities .checkObject(table, "Table must be set.") ;

Utilities .checkObject(lineBreak, "Line break must be set.");

Utilities .checkObject(cellBreak, "Cell break must be set.") ;

int numCols=table.getColumnCount();

int numRows=table.getRowCount();

int [] rowsSelected=Utilities .range(0,numRows);

int [] colsSelected=Utilities .range(0,numCols);

return getContent(table, lineBreak, cellBreak, numCols, numRows,

rowsSelected, colsSelected) ;

}

/∗∗

∗ Gets all the content of the given JTable (including column names) as String

∗ or returns null , if the selection is invalid .

∗

∗ @param table

∗ @param lineBreak

∗ @param cellBreak

∗ @return

∗/

public static String getAllContentWithHeaders(JTable table, String lineBreak, String cellBreak) {

Utilities .checkObject(table, "Table must be set.") ;

Utilities .checkObject(lineBreak, "Line break must be set.");

Utilities .checkObject(cellBreak, "Cell break must be set.") ;

// get column names

String headerColumns = getColumnNames(table, lineBreak, cellBreak);

// get table data

String content = getAllContent(table, lineBreak, cellBreak);

return headerColumns + content;

}

/∗∗

∗ Gets the content of current JTable selection as String

∗ or returns null , if the selection is invalid .

∗

∗ @param table

∗ @param lineBreak

∗ @param cellBreak

∗ @return

∗/

public static String getCurrentSelectionContent(JTable table, String lineBreak, String cellBreak) {

int numCols=table.getSelectedColumnCount();

int numRows=table.getSelectedRowCount();

int [] rowsSelected=table.getSelectedRows();

int [] colsSelected=table.getSelectedColumns();

return getContent(table, lineBreak, cellBreak, numCols, numRows,

rowsSelected, colsSelected) ;

}

//

private static String getContent(JTable table, String lineBreak, String cellBreak,

int columnCount, int rowCount, int[] selectedRowsCount, int[] selectedColumsCount) {

if (columnCount > 0 && rowCount > 0) {

StringBuffer value = new StringBuffer();

for (int i=0; i<rowCount; i++) {

for (int j=0; j<columnCount; j++) {

value.append(escapeContentBreaks(table.getValueAt(selectedRowsCount[i], selectedColumsCount[j]), lineBreak,

cellBreak));

if (j<columnCount−1) {

value.append(cellBreak);

}

}

value.append(lineBreak);

}

98

return value.toString() ;

} else {

logger .warning("Invalid selection .") ;

return null ;

}

}

private static String getColumnNames(JTable table, String lineBreak, String cellBreak) {

StringBuilder headerColumnsSB = new StringBuilder();

for (int i = 0; i < table.getTableHeader().getColumnModel().getColumnCount(); i++) {

Object headerColumn = table.getColumnName(i);

headerColumnsSB.append(headerColumn == null ? "" : headerColumn.toString());

if (i != table.getTableHeader().getColumnModel().getColumnCount() − 1) {

headerColumnsSB.append(cellBreak);

}

}

String headerColumns = headerColumnsSB.toString() + lineBreak;

return headerColumns;

}

private static String escapeContentBreaks(Object cell, String lineBreak, String cellBreak) {

return cell == null ? "" : cell .toString() . replace(lineBreak, " ") . replace(cellBreak, " ") ;

}

}

99

F.6 SSA Query Results Selection Menu

package uk.ac.starlink . splat .vo;

import java.awt.Component;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import javax.swing.JOptionPane;

import javax.swing.JPopupMenu;

import uk.ac.starlink . splat . util . JTableUtilities ;

import uk.ac.starlink . splat . util . Utilities ;

import uk.ac.starlink . table .gui.StarJTable;

/∗∗

∗ Popup menu for StarJTable wit SSA Query results .

∗

∗ @author Andresic

∗

∗/

public class SSAQueryResultsTableSelectionMenu extends JMenu {

private static final long serialVersionUID = 1L;

private static final String CELL_BREAK = "\t";

private static final String LINE_BREAK = System.getProperty("line.separator");

private static final String TITLE = "Selection";

// private StarJTable starJTable ;

public SSAQueryResultsTableSelectionMenu() {

super(TITLE);

addMenuItems();

}

private void addMenuItems() {

add(createCopyCurrentCellItem());

add(createCopyCurrentSelectionItem());

add(createCopyAllTableDataItem());

}

/∗∗

∗ Menu item for copying the currently selected cell content to clipboard .

∗

∗ @return

∗/

private JMenuItem createCopyCurrentCellItem() {

JMenuItem menuItem = new JMenuItem("Copy current cell to clipboard");

menuItem.addActionListener(new ActionListener() {

@Override

public void actionPerformed(ActionEvent arg0) {

String content = JTableUtilities .getCurrentCellContent(getStarJTable(arg0));

if (content != null) {

Utilities .addStringToClipboard(content);

} else {

JOptionPane.showMessageDialog(getStarJTable(arg0), "Invalid selection. Please select some cell. ") ;

}

}

});

return menuItem;

}

/∗∗

∗ Menu item for copying the all current selection content to clipboard .

100

∗

∗ @return

∗/

private JMenuItem createCopyCurrentSelectionItem() {

JMenuItem menuItem = new JMenuItem("Copy current selection to clipboard");

menuItem.addActionListener(new ActionListener() {

@Override

public void actionPerformed(ActionEvent arg0) {

String content = JTableUtilities .getCurrentSelectionContent(getStarJTable(arg0), LINE_BREAK, CELL_BREAK);

if (content != null) {

Utilities .addStringToClipboard(content);

} else {

JOptionPane.showMessageDialog(getStarJTable(arg0), "Invalid selection. Please select some area.");

}

}

});

return menuItem;

}

/∗∗

∗ Menu item for copying the all current selection content to clipboard .

∗

∗ @return

∗/

private JMenuItem createCopyAllTableDataItem() {

JMenuItem menuItem = new JMenuItem("Copy all table data to clipboard");

menuItem.addActionListener(new ActionListener() {

@Override

public void actionPerformed(ActionEvent arg0) {

String content = JTableUtilities .getAllContent(getStarJTable(arg0), LINE_BREAK, CELL_BREAK);

if (content != null) {

Utilities .addStringToClipboard(content);

}

}

});

return menuItem;

}

protected StarJTable getStarJTable(ActionEvent e) {

JMenuItem jmi = (JMenuItem) e.getSource();

JPopupMenu jpm = (JPopupMenu) jmi.getParent();

Component component = jpm.getInvoker();

return traverseToStarJTable(component);

}

private StarJTable traverseToStarJTable(Component component) {

System.out.println("and146: " + component);

if (component == null) {

return null ;

}

if (component instanceof StarJTable) {

return (StarJTable) component;

} else {

if (component instanceof JPopupMenu) {

return traverseToStarJTable(((JPopupMenu)component).getInvoker());

} else {

return traverseToStarJTable(component.getParent());

}

}

}

}

101

F.7 Spectrum Export to CSV and Text File

Figure 54: Spectrum export to CSV and text Ąle - actions.

102

Figure 55: Spectrum export to CSV and text Ąle - Ąle choosers and writing methods.

103

F.8 Plot Control Key Listener

/∗∗

∗

∗/

package uk.ac.starlink . splat .plot ;

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

/∗∗

∗ PlotControlKeyListener listens for PlotControl ’ s KeyEvents .

∗

∗ @author David Andresic

∗ @version Id

∗/

public class PlotControlKeyListener implements KeyListener {

private PlotControl plotControl;

public PlotControlKeyListener(PlotControl plotControl) {

this .plotControl = plotControl;

}

@Override

public void keyPressed(KeyEvent e) {

if (e != null) {

switch (e.getKeyCode()) {

case KeyEvent.VK_DELETE:

deleteSpectrum();

break;

default :

// noop

break;

}

}

}

@Override

public void keyReleased(KeyEvent e) {

// so far no operation

}

@Override

public void keyTyped(KeyEvent e) {

// so far no operation

}

/∗ Actual handlers ∗/

private void deleteSpectrum() {

plotControl.removeCurrentSpectrumFromPlot();

}

}

104

F.9 PlotControl: Remove Current Spectrum From Plot

Figure 56: PlotControl: Algorithm fot removing current spectrum from plot.

105

G Spectra Group VOTable example

The following VOTable contains a reference to 2 FITS Ąles containing the actual spectra.

<?xml version="1.0"?>

<VOTABLE version="1.3" xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance"

xmlns="http://www.ivoa.net/xml/VOTable/v1.3"

xmlns:stc="http://www.ivoa.net/xml/STC/v1.30" >

<RESOURCE name="splatVoSpectraGroup">

<DESCRIPTION>SPLAT−VO (ver.) Spectra Group VO−Table</DESCRIPTION>

<TABLE name="NORMbxn0727.fits">

<FIELD name="WAVE" datatype="double" ucd="em.wl" unit="angstrom"/>

<FIELD name="FLUX" datatype="double" ucd="phot.flux.density" unit="erg/cm∗∗2/s/angstrom"/>

<DATA>

<FITS>

<STREAM href="file:///path/to/spectrum/NORMbxn0727.fits"/>

</FITS>

</DATA>

</TABLE>

<TABLE name="NORMbxn0728.fits">

<FIELD name="WAVE" datatype="double" ucd="em.wl" unit="angstrom"/>

<FIELD name="FLUX" datatype="double" ucd="phot.flux.density" unit="erg/cm∗∗2/s/angstrom"/>

<DATA>

<FITS>

<STREAM href="file:///path/to/spectrum/NORMbxn0728.fits"/>

</FITS>

</DATA>

</TABLE>

</RESOURCE>

</VOTABLE>

106

	List of Symbols and Abbreviations
	List of Figures
	Introduction
	Astroinformatics and Virtual Observatory
	Virtual Observatory
	Tools

	Basic Terms and Concepts
	Astronomy and Astroinformatics
	Software Engineering

	SPLAT-VO
	History
	Team and Development Organization
	User Interface
	Most Typical Use Cases
	Technical Description
	Build Example
	Building Using Build Script
	Creating Installation Package

	Realized Improvements of SPLAT-VO
	More Efficient Work with SAMP Protocol
	Access to All FITS Extensions
	Time Series Demonstrational Support
	SSA Query Results Enhancements
	Spectral Data CSV Export
	More Effective Spectra Deletion by Means of Visual Selection

	Improvements Being Prepared for SPLAT-VO
	Time Series and Data Cubes Support via New Protocol
	Working Space
	Spectra Groups
	Spectral Data Lazy Loading

	SPLAT-VO Development Process Improvements
	Wiki Documentation
	Issue Tracking
	Automatized Build with Jenkins CI inside Docker

	Suggestions for Further Refactoring
	Conclusion
	References
	Appendix
	SpecData Class Diagram
	SpecList Class Diagram
	GlobalSpecPlotList Class Diagram
	SpectrumIO Class Diagram
	SpecDataFactory Class Diagram
	Selected Diffs and Source Codes
	SSAP: Time Series Product Type Detection
	Plot Window: Y-axis Flipping for Time Series
	SAMP: Spectra as Tables Action Manager
	SAMP: VOTable Send Action Manager
	JTable Utilities
	SSA Query Results Selection Menu
	Spectrum Export to CSV and Text File
	Plot Control Key Listener
	PlotControl: Remove Current Spectrum From Plot

	Spectra Group VOTable example

