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1. Introduction

The optimization theory is developing in parallel with
the appearance of real-life problems and with the need
to solve them. Thanks to that, some types of prob-
lems gained a special status among the others and
many tools to solve these problems have been devel-
oped. An example is the linear programming (LP). In
1947, George Dantzig introduced the simplex method
for solving LP [3]. However, the simplex method has a
strong competitor – interior-point methods, especially
primal-dual interior-point methods [15].

In the field of the nonlinear programming (NLP),
interior-point methods have been also applied. How-
ever, the situation in NLP is more complicated in com-
parison with LP calculations and interior point meth-
ods are sometimes experiencing numerical difficulties.

This fact motivated Roman Polyak and Igor Griva to
design an alternative method based on the nonlinear
rescaling (NR) theory.

Nowadays, NR methods can solve large-scale NLP
problems with thousands of variables and constraints.
They were successfully used to the radiotherapy treat-
ment planning and are applied at some hospitals in
USA and Europe [1].

The basic idea of NR methods is a nonlinear trans-
formation of constraint functions to improve the prop-
erties of Lagrangian. Originally, the modified barrier
methods [8] were introduced along with few modified
barrier functions. Afterwards, the log-sigmoid function
was also considered usable for NR [9], [10]. Conse-
quently, the pieces of knowledge were refined, put to-
gether and a generalization of these techniques led to
the concept of NR methods and NR functions. Similar
to progress with interior-point methods, the primal-
dual nonlinear rescaling (PDNR) method was devel-
oped [11].

PDNR method is locally convergent with the Q-
linear convergence rate. To improve these properties,
PDNR method can be combined with another opti-
mization method (e.g. the primal-dual path-following
method) to obtain the global convergence [11]. An-
other way how to improve the convergence of PDNR
method is a dynamic scaling parameter update [5] to-
gether with some globalization strategy (e.g. a step
length computation). Recently, generalizations and
other improvements [12], [13] were developed to im-
prove the asymptotic convergence rate and to reduce
the computational effort. The main purposes of this
paper are to describe in detail parameters of PDNRD
method and to give recommendations about their set-
ting.

The paper is organized as follows. First, the convex
optimization problem is stated and basic assumptions
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are discussed. Then, NR functions are defined and the
key idea of NR method is explained. Afterwards, basic
primal-dual variant of NR method is presented. Next,
PDNRD method is explained and its parameters are
described. Finally, numerical experiments with differ-
ent parameter settings were made and the results are
presented in Section 7.

2. Statement of the Problem

We consider the convex optimization problem{
minimize f(x), x ∈ <n,

subject to ci(x) ≥ 0, i = 1, . . . , r.
(1)

Function f is convex and functions ci are concave,
∀i = 1, . . ., r. Let S ⊆ <n be the admissible set
of problem Eq. (1). For simplicity we define mapping
c : <n → <r as

c(x) = (c1(x), c2(x), . . . , cr(x))
T
, ∀x ∈ <n.

We suppose that:

• Functions f , ci, ∀i = 1, . . . , r, are at least twice
continuously differentiable on the set <n.

• The optimal set X∗ = Argmin {f(x);x ∈ S} is
bounded and not empty.

• The Slater condition holds.

For problem Eq. (1) we define the Lagrangian

L(x;λ) = f(x)−
r∑
i=1

λici(x). (2)

Due to assumption (C), Karush-Kuhn-Tucker’s
(KKT) conditions can be used to test the optimality.
If x̂ ∈ X∗ then there is a vector λ̂ ∈ <r such that

∇xL(x̂; λ̂) = 0,

λ̂ ≥ 0,

λ̂ici(x̂) = 0, ∀i = 1, . . . , r.

(3)

Conversely, if a pair (x̂, λ̂) ∈ S × <r satisfies Eq. (3)
then x̂ ∈ X∗.

3. Nonlinear Rescaling
Functions

First, we define functions that will be used to transform
constraints of problem Eq. (1).

Definition 1. Twice continuously differentiable func-
tion ψ : (t0; +∞)→ <, where −∞ < t0 < 0, satisfying
conditions

(i) ψ(0) = 0, ψ′(0) = 1,
(ii) ψ′(t) > 0,∀t ∈ (t0; +∞),
(iii) ψ′′(t) < 0,∀t ∈ (t0; +∞),
(iv) ∃a > 0 : ψ(t) ≤ −at2,∀t ∈ (t0; 0),
(v) ∃b > 0 : ψ′(t) ≤ bt−1,∀t > 0,
(vi) ∃c > 0 : ψ′′(t) ≥ −ct−2,∀t > 0

is called NR function.

Remark 1. It follows from (ii) and (iii) that NR func-
tion ψ is increasing and concave on the whole domain.
Because of (ii) and (v) it is true that lim

t→+∞
ψ′(t) = 0.

Similarly from (iii) and (vi) it holds that lim
t→+∞

ψ′′(t) =

0.

For example, the exponential transformation, the
modified logarithmic function and the hyperbolic bar-
rier function defined by the following formulas

ψ1(t) = 1− e−t,
ψ2(t) = ln (t+ 1),
ψ3(t) = t

t+1 .

are nonlinear rescaling functions [11].

Fig. 1: Graphs of functions ψ2 (blue) and ψq2 (red), τ = − 1
2
.

Functions ψi, i = 2, 3, can be modified so that
ψi ∈ C2(<). The function ψ1 is already twice con-
tinuously differentiable and the following modification
is not necessary, of course it can be done. For a given
parameter τ ∈ (−1; 0) the quadratic extrapolation is
defined by the relations

ψqi(t) =

{
ψi(t), for t ≥ τ,
qi(t) = Ait

2 +Bit+ Ci, for t < τ,

whereas coefficients of the function qi can be deter-
mined from the formulas

ψi(τ) = qi(τ), ψ′i(τ) = q′i(τ), ψ′′i (τ) = q′′i (τ).
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From this equations we obtain

Ai = 1
2ψ
′′
i (τ),

Bi = ψ′i(τ)− τψ′′i (τ),
Ci = ψi(τ)− τψ′i(τ) + 1

2τ
2ψ′′i (τ).

4. Nonlinear Rescaling
Approach

NR methods are based on the idea to transform prob-
lem Eq. (1) using a nonlinear rescaling function ψ de-
fined on the whole real axis to the equivalent problem{

minimize f(x), x ∈ <n,

subject to k−1ψ(kci(x)) ≥ 0, i = 1, . . . , r.
(4)

From the definition of NR function, it is obvious that
problems Eq. (1) and Eq. (4) have the same admissible
sets, because

ψ (kci(x)) ≥ 0⇔ ci(x) ≥ 0, ∀i = 1, . . . , r.

Hence, the optimal sets are also the same. Positive real
number k is the scaling parameter, which can be fixed
or dynamically enlarged during the iteration process,
see Algorithm 3.

The Lagrangian for equivalent problem Eq. (4) is
given by the following formula:

L(x;λ, k) = f(x)− k−1
r∑
i=1

λiψ(kci(x)). (5)

For any r ∈ N we denote

<r+ = {v ∈ <r; vi ≥ 0} ,
<r++ = {v ∈ <r; vi > 0} .

Suppose for a while that we know the solution of the
dual problem λ∗ ∈ <r+. Then it is sufficient to mini-
mize the function L(x;λ∗, k) in the primal variable x.
The constrained optimization problem would be trans-
formed to an unconstrained optimization problem.

Since the Lagrange multipliers λ∗ are not known, we
estimate them and update them in every step of the
method - just like the primal problem. In consequence,
the constrained optimization problem is converted to
a sequence of unconstrained optimization problems.
Newton’s method or its variant is applied in each step
to minimize the Lagrangian L in the primal variable.

Algorithm 1. (The basic concept of NR methods)

Let k > 0 be a scaling parameter. Initial approxima-
tions x0 ∈ <n and λ0 ∈ <r++ are given. We suppose
that an approximation (xs, λs) ∈ <n × <r++, s ∈ N0,

is known already. We find the next primal-dual pair
(xs+1, λs+1) using the following formulas

xs+1 : ∇xL(xs+1;λs, k) = 0,
λs+1
i = ψ′

(
kci(x

s+1)
)
λsi , i = 1, . . . , r.

(6)

The NR method converges for any fixed but large
enough k > 0 under the standard second order opti-
mality conditions [5].

Remark 2. If λs ∈ <r++, then also λs+1 ∈ <r++. This
property follows from condition (ii) of NR function ψ.
In other words, NR methods are interior-point methods
in the dual variable.

The Algorithm 1 is well defined due to the following
theorem.

Theorem 1. Suppose that X∗ is bounded. For any
given (λ, k) ∈ <r++ × <++ there exists one and only
one x̂ ∈ <n such that

L(x̂;λ, k) = min
x∈<n

L(x;λ, k).

Proof: [10], page 206.

The main purpose of NR is to improve properties
of the Lagrangian. The classical Lagrangian L – as
a connection between the constrained and the uncon-
strained optimization – does not always work, because
the existence of the unconstrained Lagrange minimizer
is unknown in general. On the other hand, the uncon-
strained minimizer of the Lagrangian L always exists
(according to Theorem 1). Moreover, NR dramatically
sharpens the reaction of the Lagrangian to the con-
straint violation, which has an impact on the compu-
tations.

In comparison to interior-point methods, there is no
"infinite wall". NR methods are exterior point meth-
ods. Also, the unbounded increase of the scaling pa-
rameter is not needed to guarantee the convergence of
the method.

We illustrate the influence of NR on the Lagrangian
on the following simple example.

Example 1. The Lagrangian of the following problem{
minimize x, x ∈ <1,

subject to x+ 1 ≥ 0,
(7)

and the Lagrangian of the equivalent problem are con-
sidered.{

minimize x, x ∈ <1,

subject to k−1ψq2 (k(x+ 1)) ≥ 0,
(8)
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We take a look on the graphs of both Lagrangians,
which are defined by the formulas

L(x;λ) = x− λ(x+ 1),
L(x;λ, k) = x− k−1λψq2 (k(x+ 1)) .

(9)

NR fundamentally changes the shape of the La-
grangian. The sharp reaction of the Lagrangian L to
the constraint violation is obvious in Fig. 2.

Fig. 2: The Lagrangian for the problem Eq. (7) - on the top -
and for the equivalent problem Eq. (8) with k = 1 - on
the bottom.

We project the graphs of the both Lagrangians to
the phase plane in Fig. 3. Suppose that we want to
find Lagrange minimizer for λ = 2. After substitution,
formulas Eq. (9) have the form:

L(x; 2) = −x− 2,
L(x; 1, k) = x− k−12ψq2 (k(x+ 1)) .

The function L(x; 2) is a decreasing linear function.
We cannot find the Lagrange minimizer of it, because
it is unbounded below.

If we rearrange the first equation in formulas Eq. (9)
in the following way:

L(x;λ) = (1− λ)x− λ,

it is apparent that for any λ 6= 1 we cannot find the
Lagrange minimizer. On the other hand, we know from
Theorem 1 that the Lagrangian L has a minimizer for
any λ > 0. This is the main contribution of NR.

Fig. 3: The projection of the Lagrangian for the prob-
lem Eq. (7) - on the top - and for the equivalent prob-
lem Eq. (8) with k = 1 - on the bottom - to the phase
plane.

5. Primal-dual Nonlinear
Rescaling Method

The update of the Lagrange multipliers is clear from
equations Eq. (6). When we want to calculate xs+1,
we must solve a nonlinear system of equations using
Newton’s method. Although this approach works well
far from the solution, primal-dual variant of the NR
method performs better in the neighborhood of the so-
lution [5]. In Section 6, we will combine these two
techniques to obtain a stable and globally convergent
method.

Let approximations x ∈ <n, λ ∈ <r++ be known. We
suppose that

x̂ = x+ ∆x,

λ̂ = λ̄+ ∆λ,
(10)
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where (∆x,∆λ) is a primal-dual Newton step and λ̄ is
a predictor of the Lagrange multipliers, which is given
by the following formula

λ̄ = Ψ′ (kc(x))λ,

where
Ψ′ (kc(x)) = diag (kci(x))

r
i=1 .

The reason, why define λ̄ in this way is hidden in the
equality

∇xL(x;λ, k) = ∇xL(x; λ̄).

One step of Newton’s method consists of solving the
system of (n+ r) linear equations

N(·)
[

∆x
∆λ

]
=

[
−∇xL(x; λ̄)

0

]
, (11)

where a pair (∆x,∆λ) is unknown and

N(·) =

[
∇2
xxL(x; λ̄) −∇c(x)T

−kΨ′′ (kc(x)) Λ∇c(x) Ir

]
.

Symbols Ψ′′ (kc(x)), Λ denotes diagonal matrices de-
fined as

Ψ′′ (kc(x)) = diag (ψ′′(kci(x)))
r
i=1 ,

Λ = diag (λi)
r
i=1 .

If N(·) is sparse, we can use numerical algebra
techniques for sparse matrices [15] to solve the sys-
tem Eq. (11).

In the opposite case, we express ∆λ from the second
equation of the system Eq. (11) and we substitute it to
the first equation. Now, we must solve only a system
with n equations, instead of a system of (n+ r) equa-
tions. The system has the following form

M(·)∆x = −∇xL(x; λ̄), (12)

where

M(·) = ∇2
xxL(x; λ̄)− k∇c(x)TΨ′′ (kc(x)) Λ∇c(x).

Remark 3. It is obvious that M(·) is a symmetric
matrix. It can be shown [11], page 120 that if the sec-
ond order optimality conditions hold true at the point
(x∗;λ∗), then M(·) is a positive definite matrix for all
(x;λ) sufficiently close to the optimal primal-dual pair,
when the scaling parameter is sufficiently large.

Algorithm 2. (One step of PDNR method)

Let k ∈ <++ be fixed. The approximations x ∈ <n,
λ ∈ <r++ are given.

• We compute a dual predictor

λ̄ = Ψ′ (kc(x))λ.

• We calculate the Newton step (∆x,∆λ) from sys-
tem Eq. (11), or

• we find out the primal Newton step ∆x from for-
mula Eq. (12) and then we compute the dual New-
ton step using the following relation

∆λ = kΨ′′ (kc(x)) Λ∇c(x)∆x.

• We calculate the new primal-dual approximation

x := x+ ∆x, λ := λ̄+ ∆λ.

The Algorithm 2 describes only one step of PDNR
method. Although, the input vector of multipliers be-
longs to <r++, it is not guaranteed that the updated
vector of multipliers has also all its components posi-
tive. In contrast, this statement is true for Algorithm 1,
according to Remark 2. Therefore, PDNR method can-
not stand alone in a general case and the improvement
is needed (see Algorithm 3).

6. Dynamic Scaling Parameter
Update

To obtain a higher convergence rate of the method,
we dynamically change the scaling parameter. More-
over, we use Newton’s method with a step length (e.g.
the backtracking line search algorithm) to solve formu-
las Eq. (6).

We introduce a function which measures the dis-
tance between the approximation (x, λ) and the solu-
tion (x∗, λ∗).

Definition 2. The function ν : <n×<r → <+, defined
as follows

ν(x, λ) = max { ‖∇xL(x;λ)‖,
−min1≤i≤r ci(x),
−min1≤i≤r λi,∑r
i=1 |λici(x)| } ,

(13)

is called the merit function.

Formula (13) is motivated by KKT conditions. From
the first order optimality conditions it follows that

ν(x̂, λ̂) = 0⇔ (x̂, λ̂) ∈ X∗.

For known primal-dual pair (x, λ) we set the param-
eter k according to the relation

k = ν(x, λ)−1/2. (14)

It is obvious that if a primal-dual sequence
{(xs, λs)}+∞0 tends to (x∗, λ∗), then ν(xs, λs) → 0+

and also ks → +∞ when s→ +∞.
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To prevent from a singularity in system Eq. (11), we
solve the following regularized system

Nk(·)
[

∆x
∆λ

]
=

[
−∇xL(x; λ̄)

0

]
, (15)

where the primal-dual pair (x, λ) is an approximation
of solution, k is the scaling parameter, λ̄ = Ψ′ (kc(x))λ
is the dual predictor of the Lagrange multipliers and

Nk(·) =

[
∇2
xxL(x; λ̄) + 1

k2 In −∇c(x)T

−kΨ′′ (kc(x)) Λ∇c(x) Ir

]
.

It is important to remark that the regularization has
no effect to the 1.5-superlinear convergence rate of
PDNRD method [5].

In a comparison to interior-point methods, the in-
verse matrix to Nk(·) exists at the optimal point for
every k ∈ <++.

Assume that the approximation (x, λ) of the point
(x∗, λ∗) is known. First, we use PDNRD method. If
there is a superlinear decrease of the merit function, we
have found the next approximation. In the opposite
case, we use the primal Newton step ∆x (calculated
during the use of PDNRD method) to minimize the
function L(x;λ, k), where λ and k are fixed. We ap-
ply the backtracking line search method to guarantee
the global convergence in the minimization process. In
this way, we obtained the globally convergent PDNRD
method with the 1.5-superlinear convergence rate.

Algorithm 3. (The globally convergent PDNRD
method)

An initial approximation x0 ∈ <n is given. An accu-
racy parameter ε > 0 and an initial scaling parameter
k ∈ <++ are given. Parameters q ∈ (0; 1), η ∈ (0; 0.5),
ω > 1, σ > 0 and θ > 0 are also given. Set x := x0,
λ := (1, 1, . . . , 1) ∈ <r, λg := λ and H := ν(x, λ).

• If H ≤ ε, then stop, output (x, λ).

• Find λ̄ and (∆x,∆λ) from primal-dual system
Eq. (15) with known (x, λ) and set

x̂ := x+ ∆x, λ̂ := λ̄+ ∆λ, Ĥ := ν(x̂, λ̂).

• If Ĥ ≤ min
{
H3/2−θ, 1− θ

}
, then set

x := x̂, λ := λ̂, H := Ĥ, k := max

{
1√
H
, k

}
and go to step 1.

• Find α ∈ (0; 1〉 so that it holds

L(x+ α∆x;λg, k)− L(x;λg, k)

≤ ηα∆xT∇xL(x;λg, k),

using the backtracking line search algorithm.

• Set
x := x+ α∆x, λ̂ := Ψ′(kc(x))λg.

• If
‖∇xL(x;λg, k)‖ ≤ σ

k
‖λ̂− λg‖,

then go to step 8.

• Find (∆x,∆λ) from primal-dual system Eq. (15)
with known (x, λg) and go to step 4.

• If ν(x, λ̂) ≤ qH, then set

λ := λ̂, λg := λ̂, H := ν(x, λ̂), k := max

{
1√
H
, k

}
and go to step 1.

• Set k := ωk and go to step 7.

7. Numerical Experiments

From the finite element approximation of contact prob-
lems of the linear elasticity with the friction in three
space dimensions arise a minimization problem

minimize 1
2x

TAx− xTb, x ∈ <n

subject to g2i − x2i+m − x2i+2m ≥ 0, i ∈ I,
xi − li ≥ 0, i ∈ I,

(16)

where n = 3m is the number of variables, A ∈ <n×n
is a symmetric and positive definite matrix, b ∈ <n,
g ∈ <m+ , l ∈ <m and I = {1, 2, . . . ,m}. This is a con-
vex programming problem so we can use NR approach
to solve it. We use the function ψq2 with τ = 1

2 to
rescale the conditions and subsequently we obtain the
equivalent problem. The reason for this choice is that
for a sufficiently large class of functions c(x) is the func-
tion − ln c(x) self-concordant. If we apply Newton’s
method to a self-concordant function, we can say some-
thing more about the convergence of Newton’s method
[2]).

PDNRD method was tested on two model problems
- the chord problem, which in contrary to Eq. (16) con-
tains also unconstrained variables, and the steel brick
problem, whose finite element approximation leads ex-
actly to Eq. (16). All computations were performed in
MATLAB on the PC Intel Core i7 (2.4 GHz) with 8 GB
RAM. In tables below we reported the number of iter-
ations (it) , the number of solutions of the primal-dual
system (nS) and the solution time in seconds (time).
If some data is missing, it means that the solution time
was too long in the comparison to the other cases in
the table.
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7.1. Chord Problem

We consider a problem

min
u∈K
J (u), (17)

where

J (u) =
1

2

∫ 1

0

‖u′(t)‖2dt−
∫ 1

0

u(t)Tf(t)dt,

K = { u ∈
(
H1

0 (0; 1)
)2

: u2(t) ≥ 0,∀t ∈ (0; 0.5),
‖u(t)‖ ≤ 1.4,∀t ∈ (0.5; 1) } ,

f(t) =
(
36π2 sin 6πt,−4π2 sin 2πt

)T
.

Fig. 4: The chord deformation.

Minimization problem Eq. (17) describes a loaded
chord fixed at the endpoints. The chord is partially
above a plain and partially inside a cylindrical tube
Fig. 4. The function u(t) is the chord deflection. The
chord problem was presented as a model problem in
[6].

The objective function 1
2x

TAx − xTb, x ∈ <n
matches the convex quadratic functional J (u), linear
constraints in problem Eq. (16) matches the constraint
u2(t) ≥ 0, ∀t ∈ (0; 0.5) from the definition of the set
K and quadratic constraints matches ‖u(t)‖ ≤ 1,4,
∀t ∈ (0.5; 1).

First, we decided if the primal-dual system has a
sparse matrix. We say that the matrix is sparse if it
has at most 10 % nonzero elements. In Fig. 5, the
structure of the matrix Nk(·) ∈ <192×192 for n = 128 is
depicted. This matrix has only 636 nonzero elements
(1.7 %). Hence, Nk(·) is the sparse matrix. In the same
way we could argue for other choices of n.

We solved the chord problem for different settings of
parameters of PDNRD method. The main result from
Tab. 1 is a non-increasing number of iterations and also
a non-increasing number of solutions of the primal-dual
system while increasing the number of variables. The
best choice of the scaling parameter was kinit = 10 in

Fig. 5: The structure of the matrix Nk(·) ∈ <192×192 (the
chord problem). Black colour indicates 636 nonzero el-
ements.

Tab. 1: The chord problem. PDNRD method with parameters
ω = 10, σ = 1

2
kinit, θ = 0.4, q = 0.5, η = 0.01,

ε = 10−6.

kinit

n r 10 102 103

64 32 10/31/0.173 4/23/0.118 7/7/0.021
128 64 7/50/0.238 6/33/0.126 3/79/0.351
256 128 8/60/0.515 8/37/0.454 3/143/1.099
512 256 11/65/1.989 5/49/2.037 7/150/5.036
1024 512 12/70/10.330 6/72/13.088 8/100/22.229
2048 1024 12/58/37.640 6/70/53.256 7/66/50.650
4096 2048 13/74/221.834 – –

it/nS/time it/nS/time it/nS/time

Tab. 2: The chord problem (n = 1024). PDNRD with param-
eters ω = 10, σ = 1

2
kinit, kinit = 10, ε = 10−6.

η = 0.01
q θ = 0.1 θ = 0.4
0.1 6/49/8.015 6/49/8.054
0.5 10/65/11.554 12/70/10.518
0.9 30/99/16.347 31/77/13.548

η = 0.3
q θ = 0.1 θ = 0.4
0.1 6/49/8.133 6/49/8.036
0.5 10/68/11.503 12/71/10.671
0.9 30/92/15.094 31/78/12.885

it/nS/time it/nS/time

this case, because of the best performance for larger
problems.

From Tab. 2 it is obvious that the choice q = 0.1 was
the best one. Parameters η and θ had no significant
impact on the computation in this case.

7.2. Steel Brick Problem

Let us consider a steel brick lying on the rigid obstacle.
The brick occupies the domain S = (0; 3) × (0; 1) ×
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(0; 1). The boundary ∂S is divided into three parts

Γu = {0} × (0; 1)× (0; 1),

Γc = (0; 3)× (0; 1)× {0} ,
Γp = ∂S\

(
Γ̄u ∪ Γ̄c

)
,

on which different boundary conditions are given (see
Fig. 6). The problem is described in the detail in [6].

Fig. 6: The steel brick.

The progress was similar to the previous one con-
sidering the chord problem. First, the matrix Nk(·)
was tested whether it is sparse or not. In Fig. 7, the
structure of the matrix Nk(·) ∈ <150×150 for n = 90 is
depicted. This matrix contains 8340 nonzero elements
(37 %). Hence, the matrix Nk(·) is not sparse and we
solved the primal-dual system in a different way (see
Section 5).

Fig. 7: The structure of matrix Nk(·) ∈ <150×150 (steel brick
problem). Black colour indicates 8340 nonzero elements.

The number of variables was denoted as n = 3 m
and the number of conditions as r = 2 m. The steel
brick problem was solved for different choices of n. Ac-
cording to the data in Tab. 3, the best setting for the
initial values of the scaling parameter was kinit = 10
in this problem. Number nS rose with increasing kinit.

The results from Tab. 4 supports that the choice
η = 0.01 is better than η = 0.3. The parameter θ has
no significant impact on the computation.

Tab. 3: The steel brick problem. PDNRD method with param-
eters ω = 10, σ = 1

2
kinit, θ = 0.4, q = 0.5, η = 0.01,

ε = 10−6.

kinit

n r 10 102 103

54 36 6/39/0.153 5/54/0.268 4/119/0.570
90 60 6/38/0.218 6/45/0.239 4/102/0.743
180 120 8/40/0.257 4/90/0.700 4/136/1.653
324 216 7/37/0.663 10/35/0.619 4/130/3.146
648 432 12/67/7.258 10/77/10.003 6/123/15.696

it/nS/time it/nS/time it/nS/time

Tab. 4: The steel brick problem (n = 648). PDNRD method
with parameters ω = 10, σ = 1

2
kinit, kinit = 10, ε =

10−6.

η = 0.01
q θ = 0.1 θ = 0.4
0.1 5/46/5.562 5/46/5.767
0.5 12/45/4.460 12/67/7.135
0.9 12/67/7.545 12/67/7.105

η = 0.3
q θ = 0.1 θ = 0.4
0.1 5/44/5.593 5/44/5.482
0.5 11/41/4.398 12/62/8.820
0.9 12/62/8.761 12/62/8.718

it/nS/time it/nS/time

The characteristic property of PDNRD method is
the "hot" start of the method (as it was observed and
proved in [11]). "Hot" start means that from some
point only one Newton step is needed to sufficiently
shrink the distance between a current approximation
and the solution. We can expect that a computational
effort to solve the problem with the accuracy 10−12

will not be dramatically higher than with an accuracy
10−6. Our results support this statement (compare
Tab. 3 and Tab. 5).

Tab. 5: The steel brick problem. PDNRD method with param-
eters ω = 10, σ = 1

2
kinit, kinit = 10, θ = 0.4, q = 0.5,

η = 0.01, ε = 10−12.

n r kinit = 10
54 36 8/45/0.165
90 60 10/51/0.252
180 120 12/44/0.269
324 216 10/47/0.806
648 432 14/71/7.371

it/nS/time

7.3. Parameters

When using a numerical method the setting of the pa-
rameters is very important. Experience with numerical
experiments helps us to find the optimal setting. Based
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on the tests of PDNRD method on examples from Sec-
tions 7.1 and 7.2, we made considerations about a suit-
able setting of the parameters.

Factor ω

The factor ω affects the rate of the increase of the
scaling parameter. For ω ∈ 〈5; 20〉 we obtain almost
the same results. So we set ω = 10. However, even for
the other choices ω > 1 there are not any significant
changes. At most, it may happen that it takes a few
extra steps of the method.

Parameter σ

The choice of the parameter σ is less important than
the choice of the ratio between σ and the initial choice
of the scaling parameter kinit. It is the fraction σ

k
which decides about the number of inner iterations
(and thus about the number of Newton steps in the
damped phase of Newton’s method). It is clear that
for σ >> k there are too little inner steps. On the
other hand, for σ << k there is too many of them.
According to the results of the numerical experiments,
the choice σ = 1

2kinit is suitable.

Parameter θ

The parameter θ affects whether the inner solver
runs or not. If we set θ = 0, the inner solver runs when-
ever the 1.5-superlinear decrease of the merit function
was not achieved. Choosing θ = 0.5, we are saying that
we are satisfied with only linear decrease of the merit
function. Therefore, it is wise to set θ ∈ 〈0; 0.5〉. It
appears (see Tab. 2 and Tab. 4) that the method does
not depend on this parameter.

In the condition, which is related to the parameter
θ, the term min

{
H3/2−θ, 1− θ

}
is calculated. We can

ask why do not simply use the term H3/2−θ instead of
the previous one. As we know, the classical Newton
method is effective only in the neighborhood of the so-
lution, so if we are "far" from the solution the damped
Newton method is better suited to use. The expres-
sion "far" means that the merit function is greater than
1− θ.

Factor q

The number of inner steps is influenced by the frac-
tion σ

k together with the factor q. This factor also af-
fects how often is the scaling parameter increased. Due
to the way in which is this parameter used in PDNRD
method, it is needed to set q ∈ (0; 1). Moreover, we
must choose the factor q so that the method does not
use too many inner steps. Based on the data in Tab. 2
and Tab. 4, any factor q ∈ (0; 1) was suitable. However,
the best results were obtained by setting q = 0.1.

Parameter η

The backtracking line search parameter η is usually
chosen in the range from 0.01 to 0.3 (see [2] page 466).
According to data in Tab. 2 and Tab. 4 the choice of
the parameter η ∈ 〈0.01; 0.3〉 is arbitrary.

Initial value of the scaling parameter

Based on the results shown in Tab. 1 and Tab. 3,
increasing the initial value of the scaling led to in-
stabilities in computations. The best results in the
both model examples were obtained with kinit = 10.
Therefore, we recommend setting kinit around ten or
less. Further reason to set kinit rather lower is that the
scaling parameter can be increased during the compu-
tation, but it cannot be decreased.

Initial approximation

The computation also depends on the initial approx-
imation. The number of steps can be decreased, if
"lucky" initial approximation is chosen. In problems
like a beam deflection or contact problems we choose
an initial state of the system as the initial approxima-
tion, because the shape changes of a body are usually
very small. Thus we set x0 = (0, 0, . . . , 0).

8. Conclusion

The practical aspects of PDNRD method were de-
scribed. Especially, the meaning of the parameters of
PDNRD method were explained in detail. PDNRD
method was tested on two quadratic programming
problems with quadratic constraints (the chord prob-
lem and the steel brick problem). Based on the tests,
the recommendations about setting the parameters
were made.

The solution of the primal-dual system is the most
expensive operation, thus the number of solutions of
the primal-dual system determines the total complexity
of computations. It was found out that the increasing
number of variables in both presented problems has not
a consequence in the increasing number of solutions of
the primal-dual system (see Tab. 1 and Tab. 3). This
fact supports the applicability of PDNRD method on
problems of an arbitrary size.
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