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Abstract 

The stability analysis of an imperfect plate subjected to the shear load is presented. To solve 
this problem, a specialized computer program based on FEM has been created. The nonlinear finite 
element method equations are derived from the variational principle of minimum of total potential 
energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used. 
Corresponding levels of the total potential energy are defined. Special attention is paid to the 
influence of imperfections on the post-critical buckling mode. Obtained results are compared with 
those gained using ANSYS system. 
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 1 INTRODUCTION 
Solving stability of the thin plate, it is often insufficient to determine the elastic critical load 

from eigenvalue buckling analysis, i.e. the load, when perfect plate starts buckling. It is necessary to 
include initial imperfections of real plate into the solution and determine limit load level more 
accurately. The geometrically non-linear theory represents a basis for the reliable description of  
the postbuckling behaviour of the imperfect plate. The result of the numerical solution represents 
high number of load versus displacement paths. 

 2 THEORY 
Restricting to the isotropic elastic material and to the constant distribution of the residual 

stresses over the thickness, the total potential energy can be expressed as: 

          
A

T

A A

T
mm

T
mm dAdAdAtU

t
pqkkDkkεεDεε 0

3

000 122

1

2

1
 (1) 

where:  

kε ,m    – are strains and curvatures of the neutral surface, 

00 ,kε m   – are initial strains and curvatures, 

pq,    – are displacements of the point of the neutral surface, related load vector. 

The system of conditional equations [1] one can get from the condition of the minimum  
of the increment of the total potential energy 0U . This system can be written as: 

 0FFFαK  extextintinc    (2) 
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where: 

incK  – is the incremental stiffness matrix of the plate,  

intF   – is the internal force of the plate, 

extF  – is the external load of the plate, 

extF  – is the increment of the external load of the plate.  

Eq. (2) represents the base for the Newton-Raphson iteration and the incremental method as 
well. The Gauss numerical integration (5 points) was used to evaluate the stiffness matrices and the 
load vectors. 

 3 FEM NONLINEAR ANALYSIS 
The FEM computer program using a 48 DOF element [2] has been created for analysis. Used 

FEM model [3] consists of 8x8 finite elements. Full Newton-Raphson procedure, in which the 
stiffness matrix is updated at every equilibrium iteration, has been applied [4]. The fundamental path 
of the solution starts from the zero load level and from the initial displacement. It means that the 
nodal displacement parameters of the initial displacements and the small value of the load parameter 
have been taken as the first approximation for the iterative process. To obtain other paths of the 
solution, random combinations of the parameters as the first approximation have been used. 
Interactive change of the pivot member during calculation is necessary for obtaining required number 
of load – displacement paths. Quality of presented paths has not been investigated in this paper. 

Obtained results were compared with results of the analysis using ANSYS system, where 
32x32 elements model was created (Fig. 1b). Element type SHELL143 (4 nodes, 
6 DOF at each node) was used [5]. The arc-length method was chosen for analysis, the reference  
arc-length radius is calculated from the load increment. Only fundamental path of nonlinear solution 
has been presented. Shape of the plate in postbuckling has also been displayed. 

 4 ILLUSTRATIVE EXAMPLE  
Illustrative example of steel plate loaded in shear (Fig. 1) is presented. Results of eigenvalue 

buckling analysis are presented first. These serve to prepare shapes of initial geometrical imperfection 
[6], [7] as a linear combination of eigenvectors. Also offer an image about location of critical points 
of nonlinear solution, help with settings in the management of nonlinear calculation process. Results 
of fully nonlinear analysis follow. 

Fig. 1: a) Notation of the quantities of the plate loaded in shear, b) ANSYS FEM model 
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 4.1 Eigenvalue buckling analysis 
Eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal linear 

elastic structure and is a problem of eigenvalues and eigenvectors [8]. Eigenvalues define the 
buckling load multipliers and the corresponding eigenvectors buckling mode shapes of the structure. 
Results for perfect plate [9] from Fig. 1 can be seen in the Table 1. 

Tab. 1: Buckling loads pcr [N/mm] and modes of buckling 

209.07 [N/mm] 258.86 554.57 598.53 

   

685.41 721.70 896.66 983.59 

  
 

 4.2 Nonlinear analysis 
The geometrically nonlinear theory represents a basis for the reliable description of the 

postbuckling behaviour of the plate [10], [11]. The result of the numerical solution of steel plate 
loaded in shear is presented as load – displacement paths. The initial displacements were assumed as 
the out of plane displacements only [12] as a combination of buckling modes 

     ii MODEd *0       (3) 

Parameters αi are mentioned below. In order to better describe post-buckling shape  
of the plate, nodal displacements wA, wC have been taken as the reference nodes (see Fig. 1). 

These presented nonlinear solutions of the postbuckling behaviour of the plate are divided into 
two parts. On the left side, there is load versus nodal displacement parameters relationship, on the 
right side the relevant level of the total potential energy is drawn [13]. (Unloaded plate represents a 
zero total potential energy level.) 

Following Figures present two cases, in which the plate in a post-buckling mode buckles in 
the shape that is identical to a shape of initial imperfection (but different from the first buckling mode 
obtained from eigenvalue buckling analysis). The difference consists in a fact, that while in first case 
the fundamental path represents the path with minimum value of the total potential energy for a given 
load, in the second case there exists also a path with the total potential energy level lower than that of 
the fundamental path [14]. 

Figure 2 presents a nonlinear analysis of the plate with initial imperfection whose shape was 
formed from first three eigenmodes. According to (3), following parameters α were considered: 
α1=0.3 mm, α2=0.2 mm, α3=0.1 mm. There are presented first three loading paths representing 
various forms of changes between buckling shapes. Displacement wC has been plotted by a solid line, 
wA by a dashed line. The Figure illustrates also shapes of the buckling area for particular paths and 
selected load values. In the right part, respective values of total potential energy can be seen. 
Fundamental path corresponds with the minimum value of total potential energy, thus there is no 
presumption of a snap-through. 

For comparison with an analysis of the same plate using ANSYS software system, the 
fundamental path of solution is presented (see Figure 3). In the selected load levels, corresponding 



158 

deformed shapes of the plate have been drawn along the paths. For greater clarity different scales 
were chosen for different load levels. 

 
Fig. 2: Results for α1=0.3 mm, α2=0.2 mm, α3=0.1 mm 

 
Fig. 3: Fundamental path for α1=0.3 mm, α2=0.2 mm, α3=0.1 mm from ANSYS 

In Figure 4 one can observe analysis of a thin plate with initial imperfection of a shape 
identical to a shape of the 2nd eigenmode. Parameter α2 of a value 0.1 mm has been considered. 

Displacement wC has been plotted by a solid line, wA by a dashed one again. Shapes of the 
buckling area are located next to the paths. On the right side of the Figure one can see, that the total 
potential energy for the fundamental path (blue line) is higher than energy for path 2 (red line). This 
path 2 represents buckling according to the 1st buckling mode, thus there is presumption of a snap-
through. 

For comparison with an analysis of the same plate using ANSYS software system, the 
fundamental path of solution is presented (see Figure 5). In the selected load levels, corresponding 

‐150000 ‐100000 ‐50000 0

fund. path
path 2
path 3

0

100

200

300

400

500

600

700

‐8 ‐6 ‐4 ‐2 0 2 4 6 8

wC

wA Energy [J] Displacement [mm] 

L
oa

d 
[N

/m
m

] 



159 

deformed shapes of the plate have been again drawn along the paths. For greater clarity different 
scales were chosen for different load levels. 

 
Fig. 4: Results for α2=0.1 mm 

 
Fig. 5: Fundamental path for α2=0.1 mm from ANSYS 

 5 CONCLUSIONS 
The influence of the value of the amplitude and the mode of the initial geometrical 

imperfections on the postbuckling behaviour of the thin plate subjected to the shear load was 
presented. Finite elements created for special purposes of thin plates stability analysis, enable high 
accuracy and speed convergence of the solution at less density of meshing. The possibility on an 
interactive affecting of the calculation within the user code makes it possible to investigate all  
load – displacement paths of the problem. 

As the important result one can note, that the level of the total potential energy of the 
fundamental stable path can be higher than the total potential energy of the secondary stable path. 
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This is the assumption for the change in the buckling mode of the plate. The evaluation of the level of 
the total potential energy for all paths of the non-linear solution is a small contribution to the 
investigation of the post buckling behaviour of thin plates. 
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