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Abstract 

The subject of the article is the verification of the reliability of thin-walled rotationally 
symmetric cylindrical shells, using probabilistic approaches. Internal forces and stress of the shell are 
analysed assuming a membrane action. Material and geometric characteristics of the steel shell are 
considered as random variables. The reliability index is evaluated using the Latin Hypercube 
Sampling method. The results of the reliability analysis are derived in a general form, so that they 
may be useful for assessing the reliability of tanks and pipes. 
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 1 INTRODUCTION 
Apparently, rotationally symmetric shells represent the most frequently encountered type in 

engineering practice. If internal moments are absent and only inner forces are present in the shell, 
then the shell is said to be in the so-called membrane state. This state is advantageous and desirable in 
terms of material strain, and it is thus important in design to ensure that this state is compromised 
minimally by unsuitable design [2]. Vertical cylindrical steel storage tanks represent a typical 
example of rotationally symmetric shells. A rotationally symmetric tank is loaded by hydrostatic 
pressure constantly along parallel circles. The solution of this type of shell is relatively simple, and in 
many cases, it may be applied for the reliability analysis of pressure pipes of power plants. 

 2 ROTATIONALLY SYMMETRIC SHELLS IN THE MEMBRANE STATE  
The evaluation of internal forces and stresses in rotationally symmetric tank shapes can be 

simplified and calculated as rotationally symmetric thin shells, see Fig. 1. The derivation of the 
computational formulas for determining the internal forces of the shell proceeded particularly 
from [4]. 

 The rotationally symmetric thin shell depicted in Fig. 1. is characterized by the prescription 
of its middle surface and thickness t. If we project a perpendicular (normal) n to the mid-surface from 
point M, we can use this normal to define two mutually perpendicular planes which intersect the mid-
surface at the points of maximum and minimum curvatures. These planes are called the principal 
normal planes. 

 The first principal plane is determined by the normal n and axis of rotation o. The normal n 
is at an angle  with the axis of rotation. The intersection of the first principal plane with the shell 
mid-surface forms curve C which represents the meridian. Curve C has, in point M, the centre of 
curvature O, where the distance between the centre of curvature O and point M is the principal 
curvature radius r. 
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The second principal plane is perpendicular to the first principal plane, and the second 
principal curvature radius r, which is determined by the distance between point M and the centre of 
curvature O located on the axis of rotation lies here. The task is rotationally symmetric for all points 
lying on circle C on the shell mid-surface. The distance of each point of the circle C from the centre 
of curvature O is r. The principal curvature radius r is a cone the base of which is the circle C. 
The position of points on the circle C is determined by the angle . For radius r of the circle C , it 
holds that r=rsin . 

 
Fig. 1: Rotationally symmetric shell 

The principal sections form a network of meridians and parallels on the mid-surface, the 
intersections of which are determined by angles  and . If we consider hydrostatic pressure as our 
only load, the internal forces may then be analysed using the equilibrium equations of the membrane 
state of an axially symmetric shell, see Fig. 2. 
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Fig. 2: Internal forces of the shell in membrane state  

Hydrostatic pressure from the liquid is represented by the surface load pr [Nm-2]. Loading pr 
evokes internal forces, which can be analysed using the conditions of equilibrium. The arrows in 
Fig. 2. represent internal forces N, V. By multiplying the membrane size (N, N, V, V) by the 
length of the segment on which it acts, we obtain the respective internal force. For example, the 
normal component N, acts on segment 12, and it corresponds to the force N rd. Movement by 

rd in the direction of the meridian leads to change of N to the value 

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multiplying by the length of element 34, we obtain the relation for the normal force in the form 
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Modifying (1) and neglecting small quantities of higher orders, we obtain 
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From the moment equilibrium condition with regard to the centre of the element, and 
neglecting the members of the higher orders, we obtain  

 0   drdrVdrdrV ,   (3) 

from which it follows that V=V=V. Furthermore, let us express the force equilibrium condition in 
the direction of the normal. The resultant loading caused by the hydrostatic pressure of oil acting on 
the thin wall in the direction of its normal is 

   drdrpdAp rr  .    (4) 

The resultant of membrane forces N in the direction of the normal upon neglecting the small 
quantities of higher orders is 
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  ddrN  ,      (5) 

which is shown in Fig. 3, representing the vertical section passing through the axis of the shell. 

 
Fig. 3: Force equilibrium condition in the direction of the normal in the vertical section 

 
Fig. 4: Force equilibrium condition in the direction of the normal in the horizontal section 

The projection of membrane forces N in the direction of the normal is displayed using 
sections perpendicular to the axis of rotation, see Fig. 4. By adding the two normal forces N 
rdsin(d and substituting sin(d d we can express the force in the horizontal plane as 
N rdd, see Fig. 4. and Fig. 3. Upon projecting this force in the direction of the normal, see Fig. 
3, we obtain 

   sin ddrN .     (6) 
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Adding (5), (6) and (4), we obtain the force equilibrium condition (7) in the direction of the 
normal. 

   0sin    drdrpddrNddrN r . (7) 

Substituting r=rsin( into equation (7), we obtain (8). 

  rrprNrN r  .     (8) 

Modifying equation (8), we obtain the final form (9) of the equation. 
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 3 THE RELIABILITY CONDITION OF THIN-WALLED CIRCULAR SHELLS 
A typical example of vertical cylindrical steel storage shells are tanks for the storage of crude 

oil, which are made of thin plates. The dominant load case of the cylindrical tank is the load on the 
inner surface of the shell due to hydrostatic pressure of oil which loads the shell constantly in parallel 
circles. For thin-walled circular cylindrical tanks, it holds that =90, r=rsin 90=r, r=, 
  180;0 , 0<r=r<, see Fig. 5.  

 
Fig. 5: Thin-walled cylindrical shell 

Substituting r= and r= r into (9), we obtain the equation for a rotationally symmetric 
circular cylindrical tank as 

 rpN r  ,       (10) 

N is the internal force evoked by the hydrostatic pressure caused by the oil which acts on 
dC, the other internal forces N, V, V are equal to zero; it results from the equilibrium conditions. 
Surface loading pr [Nm-2] at the depth h is due to hydrostatic pressure of oil and is of magnitude: 

 hgpr   ,       (11) 

where  is the density of oil at temperature 20, which can be considered as 880 3kgm  (globally 

listed values are in the interval 730 - 1000 kgm-3), g is acceleration due to gravity, which, in our 
latitude (49), is approximately g=9.81ms-2.  

Substituting (11) into (10), we obtain 

 rhgN   .       (12) 

The resultant force acting perpendicularly to the surface tdC (in the centre of segment 14 or 
23) is  

  dCNF  .       (13) 
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For reliable design and operation of the tank, the reserve resistance G must be greater than 
zero, i.e., the loading force F (action) is less than or equal to the plate resistance R: 

 0 FRG ,       (14) 

where R is the resistance which can be calculated as  

 dCtfR y  ,       (15) 

where fy is the yield strength. The condition of reliability (14) can then be written with regard to (13) 
and (15) as  

 0 rhgtfG y  .     (16) 

Equation (16) represents the equation for assessing the design reliability or service reliability 
of circular cylindrical tanks according to a number of standards, e.g., EEMUA 159 [5] or API653 [6]. 
Reliability according to standards is provided mainly by low (safe) values of the permissible stress, 
however, a non-zero probability that failure will occur always exists, see, e.g., [1, 3]. 

 4 RELIABILITY ANALYSIS  
Variables in equation (16) are considered as random in probabilistic assessments of reliability. 

Failure occurs when inequality (16) is not fulfilled. Reliability of all courses can be evaluated using 
the reliability index  acc. to Cornell [7], which is defined as the reciprocal of the variation 
coefficient of the reserve reliability, and is determined assuming normality of distribution of G acc. to 
the relation:  

 
G

G




  ,       (17) 

where G is the mean value and G is the standard deviation of random variable G. Reliability 
index  is related to the failure probability Pf acc. to the relation Pf= (-), where  is the cumulative 
distribution function of the standardized Gaussian probability density function. Due to degradation 
phenomena, decrease in the thickness of the tank shell takes place during operation. This is frequently 
caused by corrosion. The effect of changes in plate thicknesses can be studied using (17) provided 
that random variables G, F, R have Gaussian probability density functions. Let us study the 
relationship between the nominal plate thickness t and value  (17). In (16) h = 22.3 - 0.3 = 22 m 
(depth of 0.3 m from the bottom). The distance 0.3 m from the bottom in the reliability condition (16) 
is taken into account because the calculation of internal forces (9) is inaccurate near the bottom or 
change in thicknesses in the connection of courses. The value of 0.3 m is listed in standards 
EEMUA 159 and API 653. Input random values fy and t were considered with Gaussian probability 
density functions. Yield strength fy was considered with mean value fy = 393.5 MPa and standard 
deviation fy = 25.4 MPa [8]. The thickness of the course t was introduced with mean value t = t, 
and standard deviation t = 0.04t [8]. Random variables fy and t are statistically independent. 

The evaluation of  (17) was performed using 100 simulation runs of the Latin Hypercube 
Sampling method [7, 9]. As an illustrative example, let us consider the tank which is in operation near 
the village of Nelahozeves. The tank radius is 42.235 m, the fill height is 22.3 m, the tank height is 
H=24.0 m. The curves of  vs t for a selected set of values ghr are presented in Fig. 6. The solid 
line shows the curve for ghr=9115 kNm-1; corresponding to parameters =kgm-3, 
g=9.81ms-2, h=22 m, r=42.235 m. It is obvious that the reliability is sufficient for values 
corresponding to an actual tank of thickness t=39 mm. The values  for other intermediate factors , 
g, h, r, t are interpolated from Fig. 6 analogously. 
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Fig. 6: Reliability index  vs thickness t 

 5 CONCLUSIONS 
The methodology for the evaluation of reliability of thin-walled rotational symmetric 

cylindrical shells was demonstrated in the paper. The reliability was analysed using reliability index 
. Fig. 6 shows how the value of  decreases with decreasing t. Decrease in thickness t is usually due 
to corrosion. For safe operation >t, where the target value t is the normative value ensuring 
reliable operation of thin-walled structures. The generalization of the analysis of reliability evaluated 
acc. to ghr makes it possible to assess the reliability of technologically important facilities of 
power plants which are modelled as thin-walled rotationally symmetric cylindrical shells loaded 
along their perimeters by constant pressure perpendicular to the surface of the shell. 
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