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Abstract. High-utility itemset mining (HUIM) is a
critical issue in recent years since it can be used to
reveal the profitable products by considering both the
quantity and profit factors instead of frequent item-
set mining (FIM) of association rules (ARs). In this
paper, an evolutionary algorithm is presented to effi-
ciently mine high-utility itemsets (HUIs) based on the
binary particle swarm optimization. A maximal pat-
tern (MP)-tree strcutrue is further designed to solve
the combinational problem in the evolution process.
Substantial experiments on real-life datasets show that
the proposed binary PSO-based algorithm has better re-
sults compared to the state-of-the-art GA-based algo-
rithm.
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1. Introduction

Knowledge discovery in database (KDD) is an emerg-
ing issue since the potential or implicit information can
be found from a very large database. Most of them, fre-
quent itemset mining (FIM) or association-rule mining
(ARM) has been extensively developed to mine the set
of frequent itemsets in which the occurrence frequency
of items is no less than minimum support threshold or

the confidence of items is no less than minimum con-
fidence threshold [2], [5]. Since only the occurrence
frequencies of itemsets are discovered whether in FIM
or ARM, it is insufficient to identify the high profit
item/sets especially when the itemsets are rarely ap-
peared but have high profit values. To solve the lim-
itation of FIM or ARM, high-utility itemset mining
(HUIM) [20], [21], [22] was designed to discover the
“useful” and “profitable” itemsets from the quantitative
databases. Chan et al. [4] first mentioned utility min-
ing problem instead of FIM. Yao et al. [20] concerned
the quantity of items as the internal utility and the
unit profit of items as the external utility to discover
the HUIs. Liu et al. designed the two-phase (TWU)
model and developed the transaction-weighted down-
ward closure (TWDC) property for mining HUIs [16].
Lin et al. developed the condensed high-utility pat-
tern (HUP)-tree and related algorithm for discovering
HUIs [14]. Lan et al. designed the mining algorithm
based on index-projection mechanism and developed
the pruning strategy to efficiently mine the HUIs [10].
An efficient list-based algorithm (HUI-Miner) was also
proposed to mine the HUIs without candidate gener-
ation [15]. Fournier-Viger et al. adopted the HUI-
Miner algorithm and presented a FHM algorithm for
mining HUIs based on the constructed structure of 2-
itemsets [7], which is the state-of-the-art algorithm in
traditional HUIM.

The traditional algorithms of HUIM have to han-
dle the “exponential problem” of a very huge search
space while the number of distinct items or the size of
database is very large. Evolutionary computation is
an efficient way and able to find the optimal solutions
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using the principles of natural evolution [3]. The ge-
netic algorithm (GA) [11] is an optimization approach
to solve the NP-hard and non-linear problems and used
to investigate a very large search spaces to find the op-
timal solutions based on the designed fitness functions
with various operators such as selection, crossover, and
mutation. In the past, Kannimuthu and Premalatha
adopted the genetic algorithm and developed the high
utility pattern extracting approach using genetic al-
gorithm with ranked mutation using minimum utility
threshold (HUPEumu-GRAM) to mine HUIs [9]. In-
stead of GAs, Particle Swarm Optimization (PSO) [12]
is also a bio-inspired and population-based approach
for finding the optimal solutions by adopting the ve-
locity to update the particles. In this paper, a binary
PSO-based (BPSO) [13] algorithm with an improved
maximal pattern (MP)-tree structure is designed for
mining the HUIs. The major contributions of this pa-
per are described below:

• We have presented a discrete PSO-based algo-
rithm to mine high-utility itemsets (HUIs) based
on the sigmoid updating strategy. The TWU
model is also used in the designed algorithm to
reduce the size of each particle, thus speeding up
the the combinational phase for revealing the HUIs
in the evolution process.

• An efficient maximal pattern (MP)-tree structure
is developed to reduce the multiple database scans
by early pruning the invalid combinations of the
particles.

• Extensive experiments showed that the proposed
approach has better results compared to the state-
of-the-art GA-based algorithm [9] whether in run-
time or the number of discovered HUIs.

2. Related Work

2.1. Particle Swarm Optimization

In the past, many heuristic algorithms have been facil-
itated to solve the optimization problems for discover-
ing the necessary information in the evolutionary com-
putation [3]. The simple genetic algorithm (sGA) [11]
is a fundamental search technique to find the feasible
and optimal solution in a limit amount of time, which
was inspired by the Darwinian principles. Many vari-
ants of GAs have been extensively studied and applied
to a wide range of optimization problems [9], [19].

Kennedy and Eberhart first introduced Swarm Op-
timization (PSO) [12] in 1995, which was inspired by
the flocking behavior of birds to solve the optimization
problems. Instead of GA, each particle has memories
to keep its previous best particle (personal best, pbest)

and its previous best particle by considering its neigh-
borhoods (global best, gbest).

The PSO was originally defined to solve the con-
tinues valued spaces. In real-world situations, many
problems are set as the discrete variable spaces such
as scheduling and routing problems. Kennedy and
Eberhart then also designed a discrete (binary) PSO
(BPSO) [13] to solve the limitation of continuous PSO.
Sarath and Ravi also designed a BPSO optimization
approach to discover ARs [18]. Other applications by
adopting PSO to mine the required information are still
processed in progress [8], [17].

2.2. High-Utility Itemset Mining

High-utility itemset mining (HUIM) is an emerging
topic in recent decades. Chan et al. first developed
a mining framework for discovering the top-k closed
utility patterns [4]. Yao et al. then designed an ap-
proach to discover the profitable itemsets by consid-
ering both the purchase quantity (also considered as
internal utility) and profit (also considered as external
utility) of items to reveal HUIs [20], [21]. Liu et al. then
developed a two-phase (TWU) model and designed
the transaction-weighted downward closure (TWDC)
property to early prune the unpromising HUIs for dis-
covering HUIs [16]. Erwin et al. presented a paral-
lel projection scheme and used the disk storage for
handling the large-scale databases and the designed
approach performs well whether in dense or sparse
databases [6]. Lan presented a projected-based ap-
proach to level-wise reduce the size of the processed
databases for mining HUIs [10]. Fournier-Viger et al.
[7] proposed a FHM algorithm to keep the relationships
of 2-itemsets, thus reducing the computations for min-
ing the HUIs based on HUI-Miner algorithm [15], which
is state-of-the-art algorithm in traditional HUIM.

Instead of traditional HUIM, Kannimuthua and Pre-
malatha first designed the GA-based algorithm to mine
HUIs with the ranked mutation [9], which is the state-
of-the-art algorithm for mining HUIS in the evolution
process. In their approach, it is not easier to find the
initial 1-HTWUIs as the chromosome to find HUIs. A
very huge computation is necessary to initially set the
appropriate chromosomes. Moreover, some specific pa-
rameters are required in the evolution process of GAs.
In this paper, a binary PSO-based algorithm with an
efficient maximal pattern (MP)-tree structure are de-
signed to avoid the invalid combinations, thus improv-
ing the efficiency for discovering HUIs.
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3. Proposed Algorithm

In the designed binary PSO (BPSO)-based model [13],
it consists of pre-processing, particle encoding, fit-
ness evaluation and the updating processes to
mine HUIs. In the first pre-processing process,
the high-transaction-weighted utilization 1-itemsets
(1-HTWUIs) are first discovered based on TWU
model [16]. The valid combinations of the itesmets
in the database is also compressed as a maximal pat-
tern (MP)-tree structure, which can be used to avoid
the invalid generations of the particles in the updating
process. It uses the OR and NOR operators to deter-
mine whether the combined itemsets can generate the
valid combinations in the database. A simple MP-tree
structure is shown in Fig. 1.
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Fig. 1: The developed MP-tree structure.

In the second particle encoding process, the items
of 1-HTWUIs are sorted in their alphabetic-ascending
order corresponding to the j -th position of a particle.
The particle is thus encoded as the set of binary vari-
ables corresponding to the sorted order of 1-HTWUIs.
In the fitness evaluation, the particles are then evalu-
ated to find the pbest and gbest particles in the evolu-
tion process. For the last updating process, the par-
ticles are correspondingly updated by velocities, pbest,
gbest, and the sigmoid function. The MP-tree structure
is used here to generate only the valid combinations
of the particles. If the fitness value of the particle is
no less than the minimum utility count (the minimum
utility threshold multiplied by the total utility), it is
concerned as a HUI and put into the set of HUIs. In
the designed algorithm, the fitness function is the same
as the traditional HUIM as:

fitness(pi) = u(X), (1)

in which X is the union of j -th positions in the parti-
cle pi. This iteration is repeated until the termination
criteria is achieved. After that, the set of HUIs is dis-
covered. Details of the proposed algorithm is shown
below.

Algorithm 1: Proposed algorithm
Input: D, a quantitative database; ptable, a profit

table, δ, the minimum utility threshold;
M, the number of particles of each
iteration.

Output: HUIs, a set of high-utility itemsets.
1 find 1-HTWUIs;
2 set m = |1-HTWUIs|;
3 initialize p(t) = either 1 or 0;
4 initialize v(t) = rand();
5 initialize pbest(t) and gbest(t);
6 while termination criteria is not reached do
7 update the v(t+ 1) of M particles;
8 update the p(t+ 1) of M particles;
9 for i← 1,M particles do

10 if fitness(pi(t+ 1)) ≥ δ then
11 HUIs← GItems(pi(t+ 1)) ∪HUIs;
12 find pbest(t+ 1) of each M particle;
13 find gbest(t+ 1) among M ;

14 set t← t+ 1;

15 return HUIs;

In the designed algorithm, the set of 1-HTWUIs is
thus discovered based on two-phase model [16] (Line 1).
The number of 1-HTWUIs is thus used as the particle
size, which can reduce the combinational problem in
traditional HUIM [20], [21] (Line 2). The particles are
initialized by either 0 and 1 based on the binary PSO
approach [13] (Line 3). The velocities of particles are
randomized in the range of (0, 1) (Line 4). After that,
the pbest and gbest are also initialized in the same way
(Line 5). The velocities of particles are thus updated
according to the traditional PSO approach [12]. The
particles are then, updated based on the sigmoid func-
tion used in [13] and the designed MP-tree structure
(Line 8). In this procedure, the invalid particles (not
existing in the original database) cannot be generated,
which can greatly reduce the computations of multi-
ple database scans. The fitness values of the updated
particles are then determined to find the actual HUIs
(Lines 10 to 11). After that, the pbest and gbest of
the current particles are then updated for next itera-
tion (Lines 12 to 13). This procedure is repeatedly pro-
gressed until the termination criteria is achieved (Lines
6 to 14). After that, the set of the discovered HUIs is
outputted (Line 15).

4. Experimental Results

Substantial experiments were conducted to verify
the effectiveness and efficiency of the proposed algo-
rithm compared to the state-of-the-art evolutionary
HUPEumu-GRAM algorithm [9]. The algorithms in the
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experiments were implemented in C++ language, per-
forming on a PC with an Intel Core2 i3-4160 CPU and
4 GB of RAM, running the 64-bit Microsoft Windows
7 operating system. Two real-world datasets called
chess [1] and mushroom [1] are used in the experiments.
A simulation model [16] was developed to generate the
quantities and profit values of items in transactions
for all datasets. A log-normal distribution was used
to randomly assign quantities in the [1,5] interval, and
item profit values in the [1,1000] interval. In the con-
ducted experiments for mining HUIs, the performed al-
gorithms are all performed for 10,000 iterations and the
population size is set as 20. The experiments are exe-
cuted five times and the results are the average values
of them. The algorithms are then compared in terms
of execution time and number of HUIs. Note that the
runtime of the designed algorithm includes the con-
struction time of the designed MP-tree structure. The
parameters of the designed algorithm are respectively
set as: c1 = c2 (= 2) and w(= 0.9).

4.1. Runtime

In the conducted experiments of runtime in two
datasets, the state-of-the-art evolutionary HUPEumu-
GRAM algorithm of HUIM is compared to the designed
algorithm. The TWU model is an algorithm in tradi-
tional HUIM for mining HUIs, which is insufficient and
inappropriate to compare with designed algorithm in
term of runtime. The results are shown in Fig. 2.

From Fig. 2, it can be seen that the proposed al-
gorithm has better performance in terms of execu-
tion time compared to the HUPEumu-GRAM algo-
rithm w.r.t. different minimum thresholds. The rea-
son is that the proposed algorithm only generates the
valid combinations of itemsets existing in the database,
which can greatly avoid the combinational problem in
the evolution process. The HUPEumu-GRAM gener-
ates, however, many unpromising itemsets. The multi-
ple database scans are required to determine the in-
valid itemsets. This process takes very huge com-
putations and non-HUIs can thus be generated from
the database. When the minimum utility threshold is
set lower, more high transaction-weighted utilization
1-itemsets (1-HTWUIs) are discovered; it takes more
combinations to find the promising HUIs in the evolu-
tion process. Overall, the proposed algorithm can solve
the combinational problem in the evolution process
compared to the state-of-the-art HUPEumu-GRAM al-
gorithm.

4.2. Number of HUIs

In this section, the number of HUIs is evaluated to show
the performance of the compared algorithms. The
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Fig. 2: Runtime of compared algorithms.

state-of-the-art two-phase [16] algorithm is used to dis-
cover the actual and complete HUIs from the quantita-
tive databases. Experiments are conducted and shown
in Fig. 3.

From Fig. 3, it can be seen that the proposed algo-
rithm can generate nearly the same number of HUIs
compared to the state-of-the-art two-phase algorithm
especially when the minimum utility threshold is set
higher. The reason is that the size of a particle is as-
sociated with the number of 1-HTWUIs, less computa-
tions are required when the minimum utility thresh-
old is set higher. For more condense dataset such
as chess or mushroom datasets, the number of 1-
HTWUIs is close to the number of discovered HUIs
under higher minimum utility threshold; the number
of generated HUIs of the designed algorithm is close
to the traditional way for mining the complete HUIs.
The designed algorithm produce less number of the
HUIs compared to the TWU model under lower util-
ity threshold. This is reasonable since the proposed
algorithm is an evolutionary way to learn and dis-
cover the HUIs; when the minimum utility threshold
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Fig. 3: Number of HUIs of the compared algorithms.

is set lower, more high transaction-weighted utiliza-
tion 1-itemsets (1-HTWUIs) are discovered but it is
not easy to produce the same number of HUIs in the
evolution process. However, the proposed algorithm
outperforms the state-of-the-art HUPEumu-GRAM al-
gorithm, which can be found in Fig. 3(a) and Fig. 3(b).
This is reasonable since the GA-based algorithm is
barely to find the promising HUIs but the designed
algorithm can efficiently find the valid HUIs by con-
cerning both the local and global results.

5. Conclusions

In this paper, we first propose a binary particle swarm
optimization (BPSO)-based algorithm to efficiently
mine high-utility itemsets (HUIs). The contributions of
this paper are as follows. First, we adopted the discrete
mechanism and set the size of each particle as the num-
ber of discovered high-transaction-weighted utilization
1-itemsets (1-HTWUIs) based on TWU model. This
approach can greatly reduce the combinational prob-

lem in the evolution process. Second, the sigmoid
function is adopted and a maximal pattern (MP)-tree
structure is further designed to produce the valid com-
binations of itemsets, which can greatly reduce the
computations of multiple database scans. Third, from
the conducted experiments, the proposed approach has
better results compared to the state-of-the-art GA-
based algorithm for mining HUIs in based on the evolu-
tion process in terms of execution time and the ability
to discovered the complete of HUIs.
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