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Abstract. This paper deals with a three-dimensional
non-destructive evaluation of partially conductive
cracks from eddy current testing signals. An SUS316L
plate specimen containing a crack is non-destructively
inspected by the eddy current method using numerical
simulations. An extensive database of eddy current re-
sponse signals is prepared while dimensional parame-
ters of a crack together with its partial conductivity
are varied in wide ranges. A Support Vector Machine
classification algorithm is employed to solve the elec-
tromagnetic inverse problem. The acquired signals are
employed for training the algorithm and for testing its
performance. It is demonstrated that the Support Vec-
tor Machine algorithm is able to properly classify de-
tected defects into proper classes with very high proba-
bility even the partial conductivity of a detected crack
together with its width are unknown.
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1. Introduction

New approaches such as System Health Monitoring
and Condition Based Maintenance are nowadays em-
ployed for assessment of structural integrity of vari-
ous components and structures. The modern meth-
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ods follow three consecutive phases - detection of non-
homogeneities, their diagnosis and finally prognosis of
their further development. The first two phases are
inherently associated with Non-Destructive Evaluation
(NDE) of materials. Enhancing NDE methods is there-
fore very important for reliable assessment of struc-
tures.

NDE techniques are based on numerous physical
principles and phenomena. Eddy current testing
(ECT) is one of the widely utilized electromagnetic
NDE methods. ECT works on the basis of an interac-
tion of time-varying electromagnetic field with a con-
ductive body according to the Faraday’s electromag-
netic induction law. There are many advantages such
as high sensitivity for surface breaking defects, high in-
spection speed, contact-less inspection, versatility, and
maturity of numerical means that account for contin-
uously enlarging application area of the ECT, mainly
in nuclear, petrochemical and aviation industries [I].
On the other hand, ECT is a relative method and the
inverse problem is ill-posed [2]. Therefore, evaluating
dimensions of a detected defect from ECT response sig-
nals can be quite difficult [3]. ECT instruments provide
raw data with limited or absent capability of interpret-
ing quantitatively the data [4]. Typically, evaluation
relies on calibrated curves measured on pre-fabricated
etalons and on the skills of an operator. Recently, the
progress in powerful computers has allowed develop-
ing of automated procedures to make decisions. Quite
satisfactory results are reported by several groups for
automated evaluation of artificial slits [3] and even for
several parallel notches [5]. However, evaluation of real
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cracks, especially stress corrosion cracking (SCC), from
ECT response signals remains still very difficult.

SCCs are quite different in comparison with artificial
slits or even to other types of real defects. Cross sec-
tions of SCC frequently show branched structure and
a group of cracks usually occurs in what is known as a
colony. The local opening of SCC is usually very small,
e.g. tens of micrometers; however, a damaged region
itself is much broader. SCC contains many unbroken
ligaments both in depth and opening directions, which
makes SCC partially conductive [6]. In the case of
artificial EDM notches the width is usually considered
fixed in the inversion process of ECT signals. However,
for cracks with non-zero conductivity the width affects
the signal and it has to be considered unknown during
reconstruction [7]. It means that the additional vari-
ables should be taken into account for evaluation of a
detected SCC that considerably increases ill-posedness
of the inverse problem [2]. Thus, many unsatisfactory
results are reported when the automated procedures
originally developed for non-conductive cracks are em-
ployed in the evaluation of SCCs. It is stated that one
of the possible reasons is lack of sufficient information
131

Standard ECT inspection is performed in such a way
that an ECT response signal is acquired during a two
dimensional scanning of an ECT probe over a surface of
the tested material. However, only a one-dimensional
signal is then employed for the evaluation; a response
signal along a detected crack length is extracted from
the whole data set. Only three parameters are esti-
mated / the crack surface length, position of its centre
and a maximum depth. The crack width and its con-
ductivity are set before the inversion without knowl-
edge of their actual values.

The authors already proposed new approach for the
three-dimensional reconstruction of partially conduc-
tive cracks such as for example SCCs [§]. The unique-
ness of the proposal lays in the utilization of two-
dimensional ECT response signals while the estima-
tion of the three-dimensional crack profile is performed.
The partial conductivity of a crack and its width as
well are considered unknown during the reconstruction.
The tabu search stochastic method was used to solve
the inverse problem.

Support Vector Machine (SVM) classification algo-
rithm is newly employed to tackle assessment of par-
tially conductive cracks in this paper.

2. Numerical Model

A plate specimen having the electromagnetic param-
eters of a stainless steel SUS316L is inspected in this
study. The specimen has a thickness of ¢ = 10 mm, a
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conductivity of ¢ = 1.35 MS-m~! and a relative per-
meability of p, = 1. A single surface breaking crack
appears in the plate. It is modelled as a cuboid having
different electromagnetic properties from the base ma-
terial. Configuration of the plate (region Q) with the
crack (region €27 is shown in Fig. [l The crack region
Q1 (22 x 2 x 10 mm?®) shown in details in Fig. is uni-
formly divided into a grid composed of n; x n, x n.
(11 x5x10) cells in length, width and depth directions,
respectively, defining a possible crack geometry. The

dimensions of each cell are 2.0 x 0.4 x 1.0 mm?.

A new eddy-current probe proposed by the authors
is employed for the near-side inspection of the plate
[8]. Tt consists of two circular exciting coils positioned
apart from each other and oriented normally regarding
the plate surface. The circular coils are connected in
series but magnetically opposite to induce uniformly
distributed eddy currents in the plate. The exciting
coils are supplied from a harmonic source with a fre-
quency of 5 kHz and the current density 1 A-mm™2.
ECT response signal is detected by a small circular coil
located in the centre between the exciting coils to gain
high sensitivity as the direct coupling between the ex-
citing coils and the detector is minimal at this position.
The configuration of the new probe is shown in Fig.
Dimensions of the detecting coil are as follows: an in-
ner diameter of 1.2 mm, an outer diameter of 3.2 mm
and a winding height of 0.8 mm. The detecting coil is
oriented along the z-axis according to the coordinate
system shown in Fig. [3]
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Fig. 1: Configuration of plate specimen with crack region.

Two-dimensional scanning, the so called C-scan, is
performed over the cracked surface with a lift-off of
1 mm. The real and imaginary parts of the induced
voltage in the detecting coil are sensed and recorded
during the inspection.

The fast-forward FEM-BEM analysis solver using
database [9] is adopted here for the ECT response sig-
nals simulation. Actually, a version of the database al-
gorithm upgraded by the authors in previous works [5]
for the computation of the ECT signals due to multiple
cracks is used in this paper. The database is designed
for a three-dimensional defect region and not as usu-
ally for a two-dimensional one where a crack width is
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Fig. 3: ECT probe configuration.

considered fixed. Thus, the ECT response signals can
be simulated also for partially conductive cracks with
variable width using the same database generated in
advance. The area of the simulated two-dimensional
ECT signals has surface dimensions of 100 x 28 mm?.
The number of scanning points in the two directions is

50 and 70, respectively.

In total, 6050 scenarios are simulated, while the
crack parameters are changed as follows:

e length: from 2 to 22 mm with a step of 2 mm,
e width: from 0.4 to 2.0 mm with a step of 0.4 mm,
e depth: from 0 to 10 mm with a step of 1 mm,

e partial conductivity: from 0 to 10 % of the base
material conductivity.

3. Support Vector Machine

Support Vector Machine (SVM) is related to the super-
vised learning methods that analyse data and recognize
patterns. It is a non-probabilistic binary linear model
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based classifier. The training algorithm constructs a
model that represents patterns as points in the vector
space. Such mapped patterns of the separate classes
are divided by a gap that is as wide as possible [I0].
Development of the classification system includes data
separation into training and testing sets. Each instance
in the training set contains features of the observed
data and the class labels. The training set consists of
the instance - label pairs (z;,y;), ¢ = 1,2, ...,1, where
r; € R" and y = {1, —1}'. The SVM requires solution
of the optimization problem [11]:

l
1
ming, p ¢ {2wTw + cZ} &, (1)
i=1

with subject to:

yi (W () +b) >1—&,& >0, (2)
where ¢(x;) maps x; into a higher dimensional space
and C' > 0 is the regularization parameter. Due to pos-
sibly high dimensionality of the vector variable wone
usually solve the following dual problem defined as:

ming, {;QTQ(X - eTa} , (3)

subject to:

yla=00<wo <C, (4)
where i = 1,2,...,] and e = [1,1,...,1]T is the vec-
tor of all ones of the length [,Q is an [ by [ pos-
itive semidefinite matrix, Q;; = y;y,K(x;,y;) and
K(zi,z;) = ¢(x;)T¢(x;) are the kernel functions [10],
[11].

As soon as the problem Eq. is solved, the optimal
w satisfies the term Eq. and the decision function
is as follows:

l
sen (w”§(x + b)) = sen (Z yics K (@i, ) + b) L)

i=1

after this step, y;a;Vi,b label names support vectors
and other information such as kernel parameters are
stored in the model [IT].

There are four basic kernel functions: linear, polyno-
mial, radial basic function (RBF) and sigmoidal func-
tion. Each of the kernels has one or more parameters
to be set depending on the particular type. The most
frequently used kernel function - RBF is defined as [I1]:

(6)

K(zi,y;) =exp (= | & — y; [|?) ,7 > 0.

The quality of SVM models depends on the proper
setting (tuning) of SVM hyper-parameters process
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called SVM model selection. This is a challenging prob-
lem due to the inclusion of kernels in the SVM. On the
one hand, SVMs can implement a variety of represen-
tations via the choice of the kernel. On the other hand,
kernel specification defines a similarity metric (data en-
coding) in the input space, which complicates model

selection [12].
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Fig. 4: Grid search algorithm.

According to [12], SVM model selection depends in
general on two parameters:

e parameters controlling the "margin" size,

e model parameterization, which is the choice of ker-
nel type and its complexity parameters.

Successful tuning of SVM parameters requires a con-
ceptual understanding of their role and their effect on
the generalization ability. It is important to make a
distinction between SVM parameters controlling the
margin size and those controlling the model flexibility.
For example, the margin size is controlled by param-
eter C' and the model flexibility is controlled by the
kernel parameters described above. As for regression
problems, the width of the insensitive zone (inversely
related to margin size) is controlled by the value of
¢, and the model flexibility can be controlled by the
kernel complexity parameter and/or the regularization
parameter C.

Figure [4 shows a Grid Search approach belonging
to the exhaustive approach for model selection, and
also optimized parameter tuning using an evolutionary
algorithm. The grid search is one of the widely used
approaches for model parameter selection.
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4. Reconstruction of Partially

Conductive Cracks

A design of reconstruction scheme and particular re-
sults of the automatic reconstruction of a detected de-
fect are presented in this section. The process of de-
veloping the reconstruction algorithm can be summa-
rized as follows. The large database of the eddy cur-
rent response signals is built at first according to the
explanation provided in section 2. The calculated re-
sponse signals are then divided into the training and
the testing sets. The signals from the training sets are
read by the algorithm to train the classifier. After the
SVM is trained, the signals from the test sets are used
for validation. The later signals are classified into de-
fined classes according to the crack?s dimensions and
its partial conductivity to provide results of the three-
dimensional crack reconstruction.

The other possibility on the contrary to the deter-
ministic method of the SVM parameters setting is to
exploit an evolution optimization techniques usually
based on stochastic processes. These methods are able
to find solutions that can be very close to the optimal
ones even on the multimodal function with many local
extremes [10]. In the experiment, C-SVM formulation
with RBF kernel function is used. This formulation of
SVM requires setting of two cost parameters:

e parameter C' which has the value between 27> and
220’

e parameter v which is between 272° and 2°.

The search method for selecting near - optimal pa-
rameters is called the grid search. This method ex-
haustively calculates K-fold Cross-Validation (CV) ac-
curacy for every combination from the defined region
of parameters C' and . For instance, if performing
a coarse search of region between 27° and 22° for the
parameter C, one could choose to try every cost pa-
rameter 2™ for m = —5, —4,...,0, ..., 19, 20. For each of
these C' parameters, one try every v at the value 2™ for
m = —20,—19,...,0,...,4,5. This search requires run-
ning SVM training for 676 different parameters com-
binations. This technique is very time consuming even
for searching of two model parameters [10].

Table [I] provides the distribution of a number of sig-
nals to the training and the testing sets of SVM models
including parameters obtained using grid search algo-
rithms, which are used to train the SVM models. Fi-
nally, the accuracy of training SVM models and testing
signals are shown in Tab. [I] too. The best results are
received for SVM model 98.0727 %. Only two from the
550 test signals are not correctly classified into proper
classes. The signal of a crack with following param-
eters: length 20 mm, width 2 mm, depth 9 mm and
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Tab. 1: Results of SVM.

Training | Testing C . Training Testing
signals signals accuracy|%| | accuracy|%|
6050 550 19.7 | 5.0 98.3140 87.4545
6050 550 19.9 | 4.3 98.1818 87.4545
5500 550 19.7 | 5.0 98.0727 99.6364
5500 550 19.9 | 4.3 98.0 99.6364
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