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Abstract. This paper discusses the negative impact of
errors in the dating of information gathered across a
distributed network of sensors to be treated by a cen-
tralized monitoring algorithm. In this contribution, an
example of flow monitoring serves as basis for the anal-
ysis. We consider an estimator setup for loss detec-
tion. Using a simple probability model, we determine
the variance of this estimator and show how it is im-
pacted by the dating uncertainty. A mitigating solution
is proposed. Further extensions are discussed.
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1. Introduction

In this article, we wish to stress the negative role on
data analysis algorithms of dating inaccuracies of mea-
surements. We base our discussion on a particular case
of bulk material flow monitoring, but the reasoning
could be generalized to other cases, and spur interest
in this underestimated problem. To understand the is-
sue under consideration here, let us now focus on flow
monitoring applications. In various industrial fields,
conveyor systems (or pipes) are used to transport bulk
material from one inlet point to an outlet point, over
possibly long distances, see [16]. These systems are
subject to product losses (e.g due to hardware ageing)
or thefts. Besides their obvious economical impact,
these losses are caused for other numerous issues such
as environmental disasters (e.g. oil leaks) or cascaded
unreliability in downstream production processes (e.g.
in a supply chain).

To prevent these malicious effects, numerous loss

detection systems have been developed. A detection
method commonly employed uses the law of conserva-
tion of mass to relate measurements from sensors dis-
tributed along the transport path. The resulting class
of “balancing methods” evaluates the deviation in each
part of the path between measured inlet and outlet
mass or volume flow. In the oil industry, this method,
also known as compensated mass balance (when the
variation of density is accounted for, see [12]), is very
popular. Its main advantages are the relative simplicity
for actual implementation, the ease of tuning, the abil-
ity to uncover small leaks taking place over long time
periods, along with its fast reaction to major leaks,
see [6]. Considering the sensing technologies available
for bulk material flow measurement (mostly laser or
ultrasonic based, e.g. [9], [18]), this approach can be
generalized to a wide class of bulk material conveyors.

Applying the conservation of mass principle based
on information from spatially distributed sensors re-
quires a good synchronization of data. The return
of experience from several remarkable applications re-
ported in the literature has served to formulate recom-
mendations concerning the data acquisition technology,
see [6]: i) the employed remote terminal units retriev-
ing information from in-situ instruments should allow
fast data transfer to the centralized master monitoring
system, ii) the data should be carefully time-stamped
with accurate and synchronized clocks (e.g. using GPS
clock or Rugby clocks which, unfortunately, can be
hardly available and subjected to jamming in many
areas, or even SMS over cellular networks). Unfortu-
nately, these recommendations are far from the techni-
cal status observed in currently installed systems. This
is not surprising, as the problem of clock synchroniza-
tion over a network is a complex one, even under the
assumption of perfect two-way communications across
the network, see [10], [11], and for this reason has been
identified as a bottleneck in several control and moni-
toring architectures as described in [2], [13], [15], [19].
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Let us now describe in more details the implemen-
tation of dating methodologies. As detailed in [1], the
variation in reporting times from one data acquisition
device (DAD) situated in one field location to the dis-
tant centralized supervisory control and data acquisi-
tion system (SCADA) can be quite large. The dis-
cussed time-stamping is usually not performed at the
level of the DAD but the centralized SCADA level.
The SCADA creates the time-stamp when the data is
received. This procedure yields uncertainty on the age
of data that are collected at the centralized level.

In this paper, we investigate the effect of time uncer-
tainty on flow monitoring problem. Aiming at produc-
ing an analysis of the observations formulated by field
practitioners, we conduct investigations on a “toy prob-
lem”. As will appear, the model we propose shows that
time uncertainty can produce false alarms in loss detec-
tion algorithms, which are usually considered as partic-
ularly annoying for production engineers. This under-
estimated problem can be as troublesome as the usual
noises corrupting measurements. We believe that the
conclusions that we draw here are sufficiently alarming
to spur a general interest in this datation problem.

The paper is organized as follows. In Section 2.
we formulate a simple transport model of a bulk mate-
rial conveyor, the flow of which is monitored thanks to
measurements produced by one inlet flow sensor and
one outlet flow sensor. The measurements are pro-
duced almost periodically, due to the effect of a vary-
ing and unknown lag impacting each sample. Based
on a probabilistic model of the lag value distribution,
we establish the variance of the error introduced in the
balance equation in Section 3. This balance relation
serves as criterion for product-loss detection, and we
relate the probability of detection and of false alarms
to it. In Section 4. we determine flow pattern allow-
ing one to minimize this variance. Simulations are pre-
sented in Section 5. stressing the role of data timing
uncertainty, which, essentially increases the likelihood
of false alarms.

2. Model and Problem
Statement

Here, consider a bulk material conveyor with one input
sensor DADI and one output sensor DADO as repre-
sented in Fig. 1. Each DAD gives a local measurement
(qI or qO) of the material flow. Very generally, the sen-
sors could be volume or mass flow meters (in the case
of a pipeline as in the oil industry), or ultrasonic sensor
(in the case of solid material, see [18], as in the mining
or process industry [7]). The conveyor is assumed to
generate a flow q having constant velocity v with re-
spect to a fixed reference frame. Under this simplifying

consideration, q is solution of a simple delay equation.
This hypothesis is typically satisfied by conveyor belts
used for solid materials. The situation is more com-
plex for liquid pipelines, for which the water-hammer
equation is usually considered, see [3] and [17], or for
multiphase flow, see [8]. However, the approach advo-
cated in this article can be extended, at the expense of
including physics-based transformations, and possibly,
reaction terms.

For this “toy problem”, we wish to detect the occur-
rence of product losses by monitoring the sensor values.
Note l the length between the two measurement loca-
tions. In accordance with the assumptions above, our
simple model states that, in the absence of any product
loss, qI and qO are related by the delay equation:

qO

(
t+

l

v

)
= qI(t). (1)

SCADA

DAD
I

DAD
O

Fig. 1: Bulk material conveyor: two networked sensors commu-
nicate information to the SCADA.

For convenience, we assume that a loss has a linear
effect on qO, so that a fraction of the input flow is lost.
The delay equation becomes:

qO

(
t+

l

v

)
= λqI(t), (2)

where λ is a parameter in ]0, 1] representing the prod-
uct loss. Considering that a loss can randomly appear
along the transport path, λ is the realization of a ran-
dom variable Λ with values in ]0, 1], the occurrence of
a loss being equivalent to the random event Λ < 1.

A simple way to detect the occurrence of losses is
to monitor the mass imbalance over a time window of
width T : ∫ T

0

(
qI(t)− qO

(
t+

l

v

))
dt, (3)

which equals 0 if λ = 1. Consistently with com-
mon practice and implementations, the input and out-
put measurements are sampled at a frequency νs = T

N ,

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 31



CONTROL ENGINEERING VOLUME: 13 | NUMBER: 1 | 2015 | MARCH

transmitted to and processed by the SCADA. Due to-ill
synchronisation of sampling dates, buffering and var-
ious other sources of network processes, the sampling
time at which the measurements qO and qI are pro-
cessed by the SCADA may differ. Taking T = 1 (with-
out loss of generality) and the clock of the DADI as a
reference, the inlet sensor provides N input measure-
ments of the form:

yI [i] = qI

(
i+ 1

2

N

)
+ ni, i = 0, . . . , N − 1, (4)

where ni represents measurement noise. The synchro-
nization discrepancies are modeled by a biased random
time-shift (jitter) on the DADO measurements.

Namely, the output measurements have the form:

yO[i] = λqI

(
i+ 1

2

N
+ wi

)
︸ ︷︷ ︸

,ti

+n′i, i = 0, . . . , N − 1, (5)

where n′i represents measurement noise, and wi is the
realization of a zero-mean random variable Wi and we
have assumed that the delay l

v and the known aver-
age communication lag have been compensated by the
appropriate time-shift.

A typical loss detection algorithm compares a dis-
crete version of Eq. (3) such as:

b ,
1

N

N−1∑
i=0

(yI [i]− yO[i]), (6)

against a threshold value b∗, rising a loss flag when
b ≥ b∗.

In the following, we study in details the effects of
the law of the time uncertainty random variables Wi

on this detection algorithm.

3. Imbalance Estimator

3.1. Preliminary Assumptions

Consider the two following assumptions.

Assumption 1. The Wi have support in [−δ, δ] with
δ < 1

2N . Thus, for any realization of the Wi, one has
0 < t0 < . . . tN−1 < 1.

Assumption 2. qI is continuous on [0, 1] and affine
on every [ iN ,

i+1
N ].

The parameter δ scales the time uncertainty. Note
ai the slope of qIN on [ iN ,

i+1
N ]. We have, for all i,

yO[i] = λqI

(
i+ 1

2

N

)
+Nλaiwi + n′i. (7)

Without loss of generality, the total amount of bulk
material entering the conveyor over the time window
between 0 and 1 is unitary, i.e.:

1 =

∫ 1

0

qI(t)dt. (8)

As qI is affine on every [ iN ,
i+1
N ], we have, exactly,

1 =
1

N

N−1∑
i=0

qI

(
i+ 1

2

N

)
, (9)

and the imbalance estimator is:

b = 1− λ− λ
∑
i∈I

aiwi +
1

N

N−1∑
i=0

(ni − n′i), (10)

where I = {i = 0, . . . , N − 1 | ai 6= 0}.
In the following, we assume that I is nonempty, so

that the flow is not constant on the considered time-
window.

3.2. Estimator Probability Law

To emphasize the effect of time uncertainty, we first
consider a noise-free case where ni = n′i = 0. Then, b
appears as the realization of the random variable:

B = 1− Λ− Λ
∑
i∈I

aiWi. (11)

To establish the probability law of B, we assume
that:

• Λ and the Wi are jointly independent,

• theWi are identically distributed (IID) and have a
continuous probability density function (pdf ) fW
(with support [−δ, δ]),

• to account for the likelihood of a no-loss scenario,
Λ has a mixed-law comprising a Dirac at λ = 1 and
a continuous density h on an interval [α, β] ⊂]0, 1],
so that the pdf of λ is of the form:

fΛ(λ) = ph(λ) + (1− p)δ1(λ), (12)

where p = P (Λ < 1) is the probability of occur-
rence of a loss.

By the formula of total probability, the pdf fB of B
can be recovered as:

fB(b) = pfL(b) + (1− p)fL̄(b), (13)

where fL (respectively fL̄) is the pdf of B conditional
to the loss event Λ < 1 (respectively the loss-free event
Λ = 1). For λ = 1, we have b = −∑i∈I aiwi. Hence,

fL̄(b) = ~
i∈I

1

|ai|
fW

(
.

−ai

)
(b), (14)
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where ~ designates multiple convolution prod-
ucts. On the other hand, for any λ ∈ [α, β],
b = 1− λ− λ∑i∈I aiwi. Hence,

fL(b) =

∫ β

α

1

λ
fL̄

(
b− 1 + λ

λ

)
h(λ)dλ. (15)

Example 1. We take:

N = 10, p = 0.5, ai = sin

(
i

N

)
. (16)

We assume that theWi are independent Beta variables,
see [14], of parameter (2, 2) with support in [−δ, δ],
namely:

fW (w) =
3

4δ3
(δ2 − w2)1[−δ,δ](w) (17)

and that, h is uniform on [α, β] = [0.6, 0.9]. In Fig. 2,
we represent fL̄, fL and eventually fB for δ = 0.01 and
δ = 0.04. The larger the time uncertainty δ, the more
the two modes of the pdf of B overlap.

3.3. Conditional Probability of a
Loss Given the Measurement b

Consider the accuracy of measurement ε. A mea-
sured value b guarantees that B ∈ Iε ,]b− ε, b+ ε[.
We note:

pL(b) , PB∈Iε(Λ < 1), (18)

the conditional probability of a loss given B ∈ Iε.
As illustrated in Fig. 2, the supports of fL̄ and fL

depend on the value of δ (and of α, β and the ai).
Indeed, note:

|a|1 =

N−1∑
i=0

|ai|. (19)

According to Eq. (14) and Eq. (15), the respective sup-
ports SL̄ and SL of fL̄ and fL are, assuming δ|a|1 ≤ 1:

SL̄ = [−δ|a|1, δ|a|1], (20)

SL = [1− β(1 + δ|a|1), 1− α(1− δ|a|1)], (21)

and we have:

pL(b) = 1, ∀b ∈ SL \ SL̄, (22)

pL(b) = 0, ∀b ∈ SL̄ \ SL. (23)

Hence, if SL∩SL̄ is empty, the value of pL(b) is either
0 or 1 and the measure of b indicates a loss without any
ambiguity. Both supports are disjoint if and only if:

β(1 + δ|a|1) < 1− δ|a|1. (24)

Condition Eq. (24) fails to be met when the time
uncertainty becomes too large, namely when:

δ ≥ 1− β
|a|1(1 + β)

. (25)

This is illustrated in Fig. 2. In such a case, a measure
of b ∈ SL ∩ SL̄ is ambiguous. The Bayes formula [14]
yields:

pL(b) =
pPΛ<1(B ∈ Iε)

pPΛ<1(B ∈ Iε)p+ (1− p)PΛ=1(B ∈ Iε)

=
p
∫
Iε
fL(x)dx

p
∫
Iε
fL(x)dx+ (1− p)

∫
Iε
fL̄(x)dx

(26)

=
pfL(b)

pfL(b) + (1− p)fL̄(b)
+O(ε2).
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Fig. 2: pdf of B with parameters of Exm. 1 for δ = 0.01 (left) and δ = 0.04 (right). On the right, the overlap generated by the
time uncertainty causes some ambiguity.
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This probability is represented in Fig. 3 for the pa-
rameter values of Exm. 1 and various values of δ. The
probability pL varies from 0 to 1 with a slope, which
gets steeper as δ decreases. In the extreme case δ = 0,
the probability is a step from 0 to 1, in which case the
measurement b allows to identify a loss without ambi-
guity. The bigger δ, the further from this ideal case,
the harder it is to identify a loss.
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Fig. 3: Probability of a loss for values of b in the ambiguous
zone.

3.4. Loss Detection and False Alarms

For a given threshold value b∗, we are interested in:

• the probability pD of detecting a loss,

• the probability pF of an alarm being false.

We have:

pD = PΛ<1(b ≥ b∗) =

∫ ∞
b∗

fL(b)db, (27)

pF = Pb≥b∗(Λ = 1) =
(1− p)

∫∞
b∗
fL̄(b)db∫∞

b∗
fB(b)db

. (28)

Ideally, one wants pD as close to 1 as possible to de-
tect most losses, and pF as low as possible to avoid false

alarms. These probabilities decrease as the threshold
grows. We represent pD and pF in Tab. 1 for various
values of these parameters.

3.5. Impact of Measurement Noise

For realism, we now add measurement noise to the
model and assume that, for all i, ni (respectively n′i)
is the realization of a random variable Ni (respectively
N ′i) and that the Ni (respectively N ′i) are IID zero-
mean Gaussian variables with standard deviation σ0

(respectively σ1). We also assume that all the random
variables of the problem are jointly independent. With
these assumptions, Eq. (11) becomes:

B = 1− Λ− Λ
∑
i∈I

aiWi +
1

N

N−1∑
i=0

(Ni −N ′i), (29)

where:

1

N

N−1∑
i=0

(Ni −N ′i) (30)

is a zero-mean Gaussian variable with standard devia-
tion: √

σ2
0 + σ2

1

N
. (31)

Hence, the pdf fB computed in Section 3.2. is
simply convolved with a Gaussian pdf, and the same
applies to fL̄ and fL. As a result, pD and pF are altered
as is reported in Tab. 1, with σ0 = 0.1 and σ1 = 0.05.

To sum-up the information gathered in Tab. 1, we
can conclude that:

• the tuning of b∗ results from a trade-off between
the detection capabilities and the desired reliabil-
ity of the loss-detection algorithm. This tuning is
however difficult, as pD and pF also depend on the
time uncertainty scaled by δ,

• for any fixed threshold value b∗, the performance
of the loss-detection algorithm deteriorates with δ.

Tab. 1: Performances of loss-detection algorithm deteriorate with time uncertainty δ, pD (probability of loss detection), pF
(probability of false alarm).

Threshold, case without noise δ = 0.02 δ = 0.03 δ = 0.04
pD pF pD pF pD pF

b∗ = 0.03 1.000 0.024 1.000 0.086 1.000 0.137
b∗ = 0.07 0.999 0.000 0.996 0.001 0.991 0.011
b∗ = 0.11 0.951 0.000 0.944 0.000 0.936 0.000

Threshold, case with noise
b∗ = 0.03 0.999 0.167 0.998 0.180 0.996 0.194
b∗ = 0.07 0.984 0.031 0.981 0.043 0.976 0.059
b∗ = 0.11 0.927 0.002 0.922 0.004 0.917 0.009
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4. Choice of an Optimal Input
Flow Pattern

Time uncertainty has no effect under steady flow condi-
tions, as the ai are all zero and, irrespective of the time
uncertainty, the measurements will be identical (up to
noise). The detrimental effect of time uncertainty on
the detection algorithm performance will appear for
transient flow patterns. Then, a natural question is
to determine a way to alleviate these effects. As will
appear, an active control strategy brings a possible so-
lution. In this section we assume that the conveyor has
an actuator at the input point so that one can choose
the input pattern qI . The problem we consider is the
scheduling of the flow for a sudden overload consist-
ing of a unitary amount of bulk material spread over a
unitary time. We investigate the choice of an “optimal”
input pattern qI with respect to loss detection.

Consider a fixed value for λ. The expectancy of B
conditional to Λ = λ is exactly the imbalance. Indeed,
one has:

E

(
1− λ− λ

∑
i∈I

aiWi +
1

N

N−1∑
i=0

(Ni −N ′i)
)

= 1− λ.

(32)

The variance of B conditional to Λ = λ is in Eq. (44),
where σW is the standard deviation of the IID Wi.
Decreasing σ seems promising for loss-detection, as the
bias estimator will all the more accurately represent the
true imbalance 1− λ. We have, for all i,

qI(t) = qI(0) +Nai

(
t− i

N

)
+

+

i−1∑
j=0

aj ,∀t ∈
[
i

N
,
i+ 1

N

]
.

(33)

Starting from and returning to a steady flow qn, we
consider equations:

qI(0) = qI(1) = qn,

∫ 1

0

(qI(t)− qn)dt = 1, (34)

which directly translate into two affine constraints
bearing on the ai:

N−1∑
i=0

ai︸ ︷︷ ︸
,g1(a)

= 0, N +

N−1∑
i=0

iai︸ ︷︷ ︸
,g2(a)

= 0. (35)

Thus, in view of Eq. (44), we consider the following
problem.

Problem 1. Find a = (a0, . . . , aN−1) minimizing

|a|2 =

√∑
i

|ai|2 (36)

under the affine constraints (35).

Solution 1. Problem 1 has a unique solution a# given
by

a#
i =

6

N + 1
− 12 i

N2 − 1
, ∀i = 0, . . . , N − 1. (37)

Note q# the corresponding flow. The associated vari-
ance is:

σ2 =
12N

N2 − 1
λ2σ2

W +
σ2

0 + σ2
1

N
. (38)

Proof 1. As |.|2 is convex and radially unbounded, it
reaches a unique minimum under the affine constraints.
Note f(a) , |a|22

2 . Then a# satisfies the Lagrangian
equation [4]:

∇f(a) = λ1∇g1(a) + λ2∇g2(a)

⇔ ai = λ1 + i λ2, ∀i.
(39)

Injecting these relations into the constraint g1(a) = 0
yields:

Nλ1 + λ2

N−1∑
i=0

i = 0 ⇔ λ1 =
1−N

2
λ2. (40)

Injecting:

ai =

(
1−N

2
+ i

)
λ2, ∀i (41)

into the constraint g2(a) = 0 yields:

λ2

(
1−N

2

N−1∑
i=0

i+

N−1∑
i=0

i2

)
= −N

⇔ λ2 =
−12

N2 − 1
.

(42)

Hence, a# satisfies, for all i:

a#
i =

−12

N2 − 1
× 1−N

2
− 12

N2 − 1
i

=
6

N + 1
− 12 i

N2 − 1
.

(43)

Then calculation of the variance is straightforward.
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σ2 , var

(
1− λ− λ

N−1∑
i=0

aiWi +
1

N

N−1∑
i=0

(Ni −N ′i)
)

=

λσW√∑
i

|ai|2
2

+
σ2

0 + σ2
1

N
, (44)

Interestingly, note that Problem 1 is equivalent to
minimizing

∫ 1

0
q̇I(t)

2dt under Ass. 2. If this assumption
is relaxed and smooth flow patterns are considered, one
needs to solve the following straightforward calculus of
variations problem.

Problem 2. Minimizing
∫ 1

0
q̇I(t)

2dt under con-
straints:

qI(0) = qI(1) = qn,

∫ 1

0

(qI(t)− qn)dt = 1. (45)

Solution 2. Problem 2 has a unique solution given by:

qI(t) = q∗(t) , qn + 6t(1− t). (46)

The value of the minimum is:∫ 1

0

(q̇∗(t))2dt = 12. (47)

Proof 2. Note Q(t) =
∫ t

0
(qI(τ)− qn)dτ . Problem 2 is

equivalent to the auxiliary problem of finding Q mini-
mizing

J(Q) ,
∫ 1

0

Q̈2(t)dt, (48)

under the constraints:

Q(0) = 0, Q(1) = 1, Q̇(0) = 0, Q̇(1) = 0. (49)

The corresponding Euler-Lagrange equation is [5]:

d2

dt2
d

dQ̈
Q̈2 = 0 ⇔ d4

dt4
Q = 0. (50)

Hence, Q is of the form Q(t) = c3t
3 + c2t

2 +
c1t + c0. The constraints give a unique solution:
Q∗(t) = 2t3 − 3t2. As J is convex, Q∗ is the unique
solution to the auxiliary problem. Hence, Problem 2
also has a unique solution given by:

q∗(t) = qn + Q̇∗(t)

= qn + 6t(1− t).
(51)

The calculation of the corresponding value∫ 1

0
(q̇∗(t))2dt is straightforward.

5. Simulation Results

We now study the performance of the loss detection
algorithm on a theft scenario simulation for various in-
put patterns. In Fig. 4, we represent a conveyor belt

Fig. 4: Theft scenario.

connecting a production site to a storage facility. The
flow of bulk material is steady with nominal value qn
except for punctual overloads (of unitary time, without
loss of generality) randomly appearing with probability
p1. In such a case, the shape of the overloads is con-
trolled by a flow input pattern qI . Somewhere along
the conveyor, a group of thieves may steal bulk mate-
rial. One would like to detect this robbery.

We simulate Nsimu unitary windows. On every win-
dow, we consider two theft scenarios:

• Basic theft: the thieves act randomly (for example
whenever they are free of surveillance) with prob-
ability p. When they do so, they reroute a fraction
1− λ of the flow (steady or overload), λ following
the pdf fΛ.

• Smart theft: the thieves act with the same modus
operandi but only on the overloaded windows.

We use the following parameters: N = 20, δ = 0.08,
α = 0.6, β = 0.9, p = 0.3, σ0 = σ1 = 0.1, b∗ = 0.09,
Nsimu = 100000, p1 = 0.2.

We compare the performance of the loss detection al-
gorithm on those two cases for four different overload
controlled input pattern represented in Fig. 5. The
considered flows are the optimal patterns computed in
Section 4. , as well as a reference piecewise affine
pattern qa and a reference smooth pattern qs. As ex-
pected, we observe a strong similarity between both
optimal patterns, q# ' q∗. It is easy to show that q#

converges uniformly to q∗ as N goes to infinity.

The rate of loss detection and of false alarms for
the four flow patterns and the two theft strategies are
gathered in Tab. 2. The smart theft strategy is clearly
more efficient from the thief’s viewpoint. For all the
input patterns the losses are less detected, and the rate
of false alarms is much higher, which, in turn, deterio-
rates the reliability of the theft surveillance. Also, the
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Tab. 2: Impact of the input flow pattern and the theft strategy on the algorithm performance.

time uncertainty: δ = 0.08
random theft smart theft

detections false alarms detections false alarms
qa (ref.) 96.8 % 3.1 % 95.3 % 11.0 %

q# (opt.) 97.0 % 1.5 % 95.9 % 5.9 %
qs (ref.) 96.8 % 2.2 % 95.7 % 8.4 %
q∗ (opt.) 97.2 % 1.6 % 96.6 % 5.8 %

no time uncertainty: δ = 0
qa (ref.) 97.3 % 0.5 % 97.3 % 2.2 %

q# (opt.) 97.2 % 0.6 % 97.6 % 2.5 %
qs (ref.) 97.1 % 0.5 % 97.4 % 2.4 %
q∗ (opt.) 97.2 % 0.5 % 97.4 % 2.2 %
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Fig. 5: Optimal and reference flow input patterns, piecewise
affine (left) and smooth (right).

optimal patterns yield better overall performance than
the reference ones, especially regarding false alarms.
This difference is however smaller than the impact of
theft strategy. The false alarms are partly due to mea-
surement noise and partly to time uncertainty δ. To
emphasize the contribution of time uncertainty on the
algorithm performance, the same simulation has been
run with δ = 0.

6. Conclusions and
Perspectives

The study conducted in this article has shown that
the problem of accurate data timing, which surpris-
ingly has not generated significant theoretical studies
before, is of true importance for online monitoring ap-
plications. The analysis has been performed on a very
simple model, allowing one to derive explicit formulas
for estimator variance and probabilities of detection
and false alarms. Solutions to mitigate this malicious
effect have been derived. For the “naive” average imbal-
ance estimator, the variance is scaled by the L2 norm
of the input flow. More generally, investigations shall
be focused on determining to which extent this con-
clusion holds for more advanced estimation methods
such as (extended) Kalman filtering or state observers,
in various contexts. Also, applying the same method-
ology to more complex flow dynamics such as water
hammer equation for liquid pipelines is a topic for fu-
ture research.
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