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The objective of the paper is to present a way to shorten the time required to perform laboratory tests of materials 
in metallurgy. The paper finds a relation between the time to perform a test of materials and the number of techni-
cians carrying out the test. The relation can be used to optimize the number of technicians. The approach is based 
on probability theory, as the amount of material to be tested is unknown in advance, and uses powerful modelling 
techniques involving the generalized estimating equations.
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INTRODUCTION

In metallurgy, quality of materials and final products 
is heavily tested [1]. The tests involve control of me-
chanical and other properties of the products, and are 
carried out in laboratories by certified personnel. The 
laboratories are often owned by metallurgical compa-
nies, which is one of the reasons why the companies 
urge the laboratories to test quality fast so that product 
distribution is not delayed. Any delays mean additional 
costs because the firms fund their daily activities with 
short-term bank credits, and they also rent freight trains 
to transport the output [2]. The same companies, how-
ever, do not pay much attention to whether it is possible 
at all to run the tests swiftly without sacrificing their 
precision. The precision can be ensured, but sometimes 
only at the cost of hiring more technicians. In that case, 
a proper number of technicians must be determined, 
which is not a straightforward task because it depends 
on the amount of work to be done, and that amount fluc-
tuates randomly. Due to the randomness, one can only 
hope of estimating the proper number of technicians in 
such a way that there will be a low probability of not 
getting the work done in time. To achieve this objective, 
it is convenient to explore the mechanisms of testing 
embedded in the historical data of a laboratory, and use 
the mechanisms found to set up a mathematical model 
which could describe the testing time as a function of 
the amount of products tested. Such a model may then 
imply how many technicians are needed. The aim of the 
paper is to formulate such a model, based on experience 
from a specific testing environment in a North Moravi-
an metallographic laboratory. One of the features of this 
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environment was the way the laboratory stored its data 
on testing because the storage created dependences in 
the data. The paper is divided into several sections. In 
the first section, the process of testing in the laboratory 
is described. In the following sections, models for test-
ing times are presented, discussed and compared 
through simulation.

TESTING IN THE LABORATORY

The observed laboratory received in the course of 
time doses of production to be tested on quality. Each 
dose contained product samples. When a dose reached 
the storage room of the laboratory, it was divided into 
two batches of the same size so that cluttering was 
avoided during the testing. After the samples were pre-
processed in line with a technical norm, the first batch 
was transferred to the laboratory and underwent an ex-
amination. The time during which the samples resided 
in the laboratory until their testing was over was record-
ed in a computer. Next, the second batch arrived at the 
laboratory, but wasn’t tested immediately, because the 
staff finished tasks on the first batch, as well – it re-
corded the testing time also on paper, it removed the 
tested samples, and so on. During this pause, however, 
the time of testing the second batch had begun. This 
pause was proportional to the size of the first batch. One 
might say that a necessary delay ocurred when the sec-
ond batch was about to be processed by the laboratory. 
On the other hand, the second batch was not encum-
bered with the preparatory work that accompanied the 
first batch, which involved a more complex initiation of 
microscopes, labour division, etc. Figure 1 shows the 
timeline of how the two batches were processed. The 
handling itself of the first batch lasted from a time point 
A to a time point B, and this was the time recorded for 
the batch. As for the second batch, its recorded time 
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spanned the period from the point B to a point D, al-
though the batch was handled from a point C to the 
point D. The point C was not recorded. The times B – A 
and D – C could be regarded as independent.

i-th batch by Zi, and using Yi to denote the time of actu-
ally processing it, we may write for the batches from the 
same dose: Z1 = Y1, Z2 = Y2+ φ · Y1, where φ · Y1 reflects 
the fact that processing the second batch depends on 
how long the first batch is processed because this af-
fects the necessary delay time C - B. If the Yi’s, i = 1, 2, 
are independent random variables, the covariance of Z1 
and Z2 is cov(Z1, Z2) = φ · var(Y1). This implies the re-
corded times are not independent for φ ≠ 0, a fact that 
can be exploited when building a model that would de-
scribe the testing time as a function of the batch size. It 
will be discussed in the following text.

MODEL FOR INDEPENDENT DATA

In this section, we shall describe a model that deter-
mines how many technicians are needed to process 
batches on time with a high probability. The recorded 
times needed to process the batches are assumed to be 
independent random variables first, as this serves well 
as a starting point for a more complex situation. Since 
the processing times of batches from the same dose 
were similar, we also assume their distributions are the 
same. All times are modelled with gamma distributions 
which are typically used for these and similar purposes. 
The relation for the required number of technicians can 
now be built within the framework of generalized linear 
models [3]. Let Z(xi)~Γ(μ(xi), ϕ, i = 1,2, …, m, where 
Z (xi) is the recorded time of processing a batch of size 
xi, and μ(xi) = E[Z(xi)] and ϕ are the two parameters of 
the distribution. The effect the batch size has on its re-
corded processing time is described by a link function 
which, for gamma distributions, may be logarithmic:

  (1)

Knowing the historically recorded times zij, the sym-
bol denoting the recorded processing time for the j-th 
batch of size xi, the unknown parameters β0, β1, ϕ of the 
model can be estimated by the maximum likelihood 
method, i.e. by maximizing the parameter function

  , (2)

where the function f (z,μ(xi), ϕ) is the density of the 
gamma distribution. This problem can be solved in Sta-
ta software with the command [4]:

 glm z x, family(gamma) link(log)

We note that this calculation is based on the existing 
number of technicians k. Having the estimates , 
it is possible to estimate the probability that the record-
ed time Z exceeds an upper time limit L. If the batch 
size X is considered a random variable, taking on values 
x1,x2, …, xm, the probability P (Z > L) equals

  (3)

  (4)

  (5)

Figure 1  Timeline of processing two batches making up 
a single production dose

Figure 2  Sequence: each rectangular is a batch, two 
neighbouring batches form a dose

The laboratory was required to test each batch so 
that the test wouldn’t last longer than specified. Figure 
2 shows the character of a sequence of batches to be 
processed. Each rectangular represents a batch, the rec-
tangulars of the same type describe the batches of the 
same size.

Each batch contained samples the technicians tested 
simultaneously. The technicians were also certified and 
experienced similarly, and so they differed from one an-
other neglegibly in terms of how much time each of 
them needed to test a single sample. These facts point to 
the principles that determine the rate of work accelera-
tion when the number of technicians is altered. To il-
lustrate the principles, let us imagine a batch of eleven 
samples. If there are three technicians in the laboratory, 
the first three samples will be processed in t1 hours. It 
can also be said that each technician processes a sample 
in t1 hours because of the simultaneity in their work. A 
similar time can be expected for the second triplet, the 
third triplet and the final pair of samples. Thus, the 
batch can be expected to be processed in about 4 · t1 
hours. If the number of technicians is raised to four, for 
instance, four samples will be processed at virtually 
the same time, and the batch will be processed in about 
3 · t1 hours. This way, one can imagine batches of differ-
ent sizes and various changes in the number of techni-
cians, and set up a function f (k,x) of two variables, 
where k is a new number of technicians and x is a batch 
size. The function would calculate the work accelera-
tion for given values of the two variables. We shall refer 
to it as the conversion function.

There is also another aspect related to the observed 
process. Denoting the recorded time of processing the 
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P {X = xi} can be estimated by the relative frequency 
of occurence of the batch size xi in the past, whereas 
P {Z > L|X = xi} can be calculated with .

All that remains is to determine a new number of 
technicians k*, so that P (Z > L) is low. For a given k*, 
the time Z (xi) shifts to time f (k*, xi) · Z (xi), where the 
term f (k*, xi) is the conversion function, and so we ob-
tain , given the 
properties of any gamma distribution. The new density 
can now be used again to calculate P (Z > L) for the new 
number of workers.

MODEL FOR DEPENDENT DATA

The model just described can be improved. We work 
with m data panels, the i-th of which is defined by the 
batch size xi, and contains processing times zij, j = 1,2, 
…, ni. In the i-th panel, the times zi1, …, zini

 are realiza-
tions of random variables Z1(xi), …, Zni

(xi) from the dis-
tribution Γ(μ(xi), ϕ). We may form a random vector  
v(xi) = (Zk1

(xi), …, Zkni
(xi)) from these variables, so that 

the first and second component of the vector relate to 
the same dose of size 2 · xi, and the same is true for its 
third and fourth component, fifth and sixth, etc. To see 
this, refer to Figure 2. In this case, the first and second 
batch times would be the first two components of the 
vector, and the fifth and sixth batch times would be its 
third and fourth component. This representation of a 
panel is convenient because the vector v(xi) has the 
same correlation matrix, regardless of the panel:

  (6)

Due to the constant form (6), the parameters β0, β1, ϕ 
can be estimated by the generalized estimating equa-
tions (GEE) [5], which utilize the information embed-
ded in the correlation. The method may give more ac-
curate estimates of β0, β1, ϕ [6,7]. Once the estimates are 
obtained, the resulting model can be used the same way 
as before to determine the necessary number of techni-
cians. In Stata, this version of GEE is run by typing the 
command:

 xtgee z x, family(gamma) link(log)
 corr(nonstationary 1).

SIMULATION

It is convenient to compare the two approaches just 
described, therefore a standard simulation procedure 
was also run [8] in this case. A thousand sequences of 
batches, each the length of four hundred batches, was 
generated. Also, different batch sizes were randomly se-

lected. The size, as suggested by the historical data from 
the analysed laboratory, varied from six to thirty - two 
samples. The expected value of the recorded processing 
time related to the smallest batch was set to two hours, 
for other batch sizes, the value was shifted using the 
conversion function and a normally distributed noise 
with a small variance. The parameter  was set to values 
0,1, 0,3 and 0,5. The simulation showed that when at 
least 6 panels were present, and  was at least 0,3, the 
model based on the dependent data led to parameter es-
timates with smaller variances. This suggests that a 
fairly low correlation can already justify the use of the 
GEE - based model here because it leads to more pre-
cise estimates of the model, the precision being meas-
ured by variance. The models based on independent and 
dependent data may as well be compared in practice, 
using the QIC criterion, a generalized version of the 
Akaike’s Information Criterion [9].

CONCLUSION

In order to guarantee smooth quality testing of mate-
rials in metallurgy, testing laboratories must have, aside 
from good management practices [10] and proper meas-
uring equipment [11], enough certified personnel at 
hand, which depends on the amount of testing to be per-
formed. Since that amount is unknown in advance be-
cause of its random fluctuation, a stochastic model 
should be established to estimate how many workers 
are needed at a laboratory. Several models of this sort 
were presented in the paper, drawing on findings from a 
specific metallographic laboratory, and performance of 
the models was compared through standard simulation 
techniques. It turns out that reflecting dependence in the 
data will often be a better approach to building the mod-
el for the working environment similar to the one ana-
lysed.
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