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Abstract 

The article deals with the problem of optimal coverage of utility centres in transport network. 

We can often encounter similar types of tasks in a real life. A lot of cases relate to the public utility 

systems that mean systems intended for providing basic public services to all population in a certain 

territory. These services can include services of Integrated Rescue System. The tasks of this category 

are called maxD  tiling tasks in a scientific literature. The classic version of maxD  cover task is 

known for quite a long time but its shape does not always cover real traffic conditions. The aim of the 

article is to show other modifications of the basic variation of the tasks. The authors expect the 

proposed application will enable mathematical apparatus to be used to solve problems of this type 

to the greater extent.  

Abstrakt 

Článek se zabývá problémem optimálního pokrytí dopravní sítě obslužnými středisky. 

S podobnými typy úloh se můžeme setkat v reálném životě velice často. Velké množství případů se 

vztahuje k tzv. veřejným obslužným systémům, tj. systémům, které jsou určeny k zajištění základních 

veřejných služeb poskytovaných všemu obyvatelstvu na určitém území. Takovými službami mohou 

být např. služby integrovaného záchranného systému. Úlohy této kategorie se v odborné literatuře 

označují jako maxD  pokrývací úlohy. Klasická varianta maxD  pokrývací úlohy je známa poměrně 

dlouhou dobu, svým tvarem však vždy nevyhovuje podmínkám reálného provozu. Článek si klade 

za cíl ukázat další vybrané modifikace základní varianty úlohy. Autoři očekávají, že navržené 

aplikace umožní využívat matematický aparát k řešení tohoto typu úloh ve větší míře. 

1  INTRODUCTION 
Availability to the general public is a standard of efficiency for services provided by the state. 

In this context a fact is discussed that public services (education, health, transport and many other 

services that are guaranteed by state) must be available in the required time. These and similar tasks 

are possible to divide in the point of view of modelling into several categories. Further in the text the 

authors will deal with security service sites in the transport network - the coverage tasks. Some types 

of coverage tasks are formulated in publications [2], [4], [5] of this article [3]. In the article [3] there 
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is an important application shown - the use of maxD  coverage task in draft of designing emergency 

services in Slovakia. 

Let us now formulate the basic type of maxD  coverage task. 

2  FORMULATION OF THE BASIC TYPES OF TASKS 
A transport network is given in which there are two sets of vertices (they can or cannot be 

disjoint). The set of vertices I  which you can realize the operator from (here in after referred to 

"locations") and set of vertices J  that require operation (here in after referred to as "customers"). We 

know the distance ijd (or other information characterizing availability) from each location Ii  to 

every customer Jj . It is also defined value maxD  that represents the maximum limit of 

availability. If maxij Dd   is true we say that the customer Jj  is available from the 

location Ii . If maxij Dd >  is true we say that the customer Jj is not available from the 

location Ii . Assuming at this phase and even in other variations to the model that each customer 

can be covered by at least one location; the researchers expect to determine the locations in which 

service centres should be provided. The requirements are that each customer is covered by a 

minimum of one centre and the total number of operation centres is minimal. 

If decisions are expected to be formulated by the authors; a decision bivalent variable iy  has 

to be implemented into the task 

Therefore together with a common used convention the following can be applied: if 1iy , 

then the operation centre will be provided in the locality Ii , if 0iy , then the operation centre 

will not be in the locality Ii . Because we implement bivalent variable into each locality, the 

number of the decisive variables is the same as the number of the localities. Thy symbol jI describes 

a set of localities where the customer Jj
 
is available. Now, we can formulate the model of 

optimization. Mathematical formulation for a basic type of optimization model maxD  of the tilling 

task is the following:  

 

  



Ii

iyyfmin

         (1) 

subject to 

 

1
 jIi

iy for Jj   (2) 

 10;yi  for Ii   (3) 

 

The expression (1) represents an objective function – total number of operating utility centres 

in localities. The group of the constraints (2) ensures that each customer will be covered from at least 

one locality, where the utility centre will operate. The number of constraints in the group represents 

the number of customers. The group of constraints (3) declares domains of variables. 

To avoid too complicated entry of the model into the optimization software, it is more suitable 

to introduce incidence matrix A . In case 1ija the customer Jj  is available from the 

locality Ii . In case 0ija , then the customer Jj  is not available from the locality Ii .  
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The group of restricted conditions (2) will consequently come to the format: 

1
Ii

iij ya

for Jj   (4) 

 

The following chapter will deal with some modifications of the basic format to the task. 

 

3  MODIFICATIONS OF THE BASIC TASKS 
The content of the chapter 3 includes three modifications of the original task. The aim is 

to demonstrate further usability of this type of tasks for practical solutions.  

 

Option 1 – limited amount of operating costs  

Let us suppose we use the entry formulated in chapter 2. The difference to the entry is 

a presumption of the fact that operating the centre in locality Ii will raise a certain amount of 

operating costs if . Total amount of costs available for operating the utility centres is F . Additional 

data input initializes creating a restriction which ensures the total amount of operational costs in 

utility centres will not exceed the limited amount of F . 

Mathematical formulation of maxD optimization model covering tasks with a limited operating 

expense for the centre is the following:  

  



Ii

iyyfmin   (5) 

subject to:  

1
Ii

iij ya

 

for Jj   (6) 

Fyf
Ii

ii 


  (7) 

 10;yi   
for Ii   (8) 

 

Meanings of the objective function and groups restricting conditions (6) and (8) are the same 

as in the basic variant. Constraint (7) is the only one and ensures compliance of the additional 

condition, that means ensures that the costs for operating centres do not exceed the available limited 

amount.  

The authors consider correct to point out that the variant 1 of the model has one significant 

drawback. As the available amount intended to operate the service centres may not be sufficient to 

ensure that each customer will be covered from at least one operated centre. In that case the solving 

algorithm evaluates the situation in the way the set of acceptable solutions is empty and the 

calculation is finished, without any proposed suitable solution. If we want to prepare for the situation, 

ensure solvability and at the same time also determine the minimal amount to be used to ensure basic 

performance of the solved system we need to modify the model. A new variable must be introduced, 

let us mark it z . The new variable signals the amount which the limited amount F  must be higher 

of, to ensure performance of the solved system.  

The constraint (7) comes to the form of (9) 

zFyf
Ii

ii 


  (9) 

and the original objective function comes to the form of scalar multi-objective function (10) 

 

  zyTzyf
Ii

i  


,min   (10) 
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Objective function defined that way causes the value of the variant z will be stated as a 

minimum necessary to fulfil the restricted condition (9). If all customers are successfully covered 

within the available limited amount F , the objective function (10) defines that 0z . If we do not 

add the variable z , the value of the objective function would be independent to the variable z  and 

the solved algorithm would not be motivated to state its value as a necessary minimum (the amount 

necessary to fulfil the condition might be distorted). 

In order to emphasize the importance of the first part of the objective function, the element 

was multiplied by suitable so-called prohibiting constant (justification of the step is provided further 

in the text). 

Missing obligatory condition for the variable z must of course be added, that is: 

0z   (11) 

It is important to realize, the value of the objective function (10) does not have any 

unambiguous economic importance as values in the objective function included are economically 

inconsistent (the expression 
Ii

iy
represents the number of centres operated and the expression 

z financial amount needed to spend for necessary coverage of all customers). As a result we need to 

analyse the value of the objective function according to particular units and consequently interpret 

them individually.  

 

Option 2 – minimizing total operating costs in the centres 

Let us suppose we use the entry formulated in chapter 2. The difference to the entry is 

a presumption of the fact that operating the centre in locality Ii will rise operational costs valued 

if . Our task is to decide which localities should be used to operate the utility centres in order to 

cover each customer by at least one centre and the total cost related to the services are minimized. 

The difference between the option 1 and option 2 is the fact that there is no need to add any 

more variants nor constraints in 2. But we need to change the objective function as it should not 

express the number of operation centres but the total costs related to the operation. 

Mathematical formulation of optimizing model maxD  covering tasks ensuring minimal total 

costs needed to operate the centres is as followed:  

  



Ii

ii yfyfmin   (12) 

subject to 

 

1
Ii

iij ya  for Jj   (13) 

 1;0iy  for Ii   (14) 

 

Expression (12) represents a new objective function – total operating costs for centres, 

meanings of groups of condition restricting (13) and (14) are the same as the meanings of groups 

of condition restricting (3) and (4) in the basic option of the model. 

Yet it remains to be noted that in the option 2 there is no risk, as it is in the option 1, of not 

being able to cover all the customers within the available limited amount of money. The option 2 

works with the amount stated at minimal value. 

 

Option 3 - multiple criteria maxD tiling task 

All above mentioned options of maxD  tiling task (with an exception including the z variant) 

were drawn up as single criterion. Single criterion option is not always considered to be the optimal 
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for a practical usage. The reason is usually because the practical usage requires multiple criteria to be 

taken into account. Our statement is declared in the following easy example. 

There are two localities suitable for operating service centres and two customers, requiring the 

service we have to provide. In accordance to the specifications of the basic task we also have matrix 

of time availability of the customers from localities D  . 











125

2016
D   

and value 20max D . 

At defined value 20max D  it is immediately clear that in the basic option there are two 

optimal solutions. The first of them is a solution with the service centre to be placed to the 1L  

locality, the second centre is placed in 2L locality. For the objective function value we can apply 

1
2

1


i

iy  in both cases. Both of the solutions seem to be of the same quality for optimizing 

algorithm with conceived criterion in the form of 


2

1i

iy . 

But it is obvious that better solution seems to be the one with the service centre located in 2L  

locality as the sum of the time availability values of both serviced customers from the locality is 

better in both cases. 

In case we want to take into account minimization of time availabilities when solving the task 

(of finding suitable localities), we also have to take into account the second objective function. 

The result of the thoughts will be two-criteria optimizing task.   

In optimization tasks with more criteria, each of the criterion should be assigned a certain 

weight. Firstly it should be pointed out, that the weight to each criterion should be decided by a 

contractor. The weight of the criterion expresses the contractor´s priority in solving the task. For this 

case we decide to give higher priority to the criterion meaning the number of operating centres. 

The basic part of general formulation in option 3 task is not so far from formulation of the 

basic type task. The difference is in time availabilities which will appear explicitly, not through the 

incidence matrix A  (as so far). 

In our model we need to ensure that each customer is supplied from at least one service centre, 

further the allocation of a customer to the locality initializes operation of the centre in the locality. 

Formulation of the mentioned restrictions reminds of unlimited capacity location task, as for example 

in [1] publication. Apart from variants iy  modelling decisions about the service centres we also 

introduce another group of variants into the model - variants ijx . Variant ijx  will be modelling 

decision about allocating (or not allocating) the customer Jj  to the locality Ii . 

Mathematical model of optimization task will then be formulated in the following form: 

  
 


Ii Jj

ijij

Ii

i xdyTyfmin   (15) 

Subject to 

1
Ii

ijijxa  for Jj   (16) 

iij yx   for Ii Jj   (17) 

 1;0ijx  for Ii Jj   (18) 

 1;0iy  for Ii   (19) 
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Expression (15) represents associated cost function. The element
Ii

iy , whose weight 

is emphasised by prohibited constant, again represents number of operated centres; the element 


 Ii Jj

ijijxd  represents aspects of time availability. The meaning of a group of restricting conditions 

(16) is the same as the one of the group of restricting conditions (4). The group of restricting 

conditions (17) ensures the fact that if we allocate a customer Jj  to the locality Ii , a centre 

will operate the locality Ii . If there is no centre in the locality Ii no customer will be allocated 

there. The group of restricted conditions (18) and (19) defines the variable domains. 

 

4  COMPUTATIONAL EXPERIMENTS WITH PROPOSED MODELS 
Performance of all proposed model options was proved at a number of experiments. 

Numerical experiments were performed in optimization software Xpress-IVE and the difference was 

in the number of localities, and number of served customers – so called dimension of task. We used 

a demo version of the software, which is available free for academic purposes (Xpress). In the wider 

range tasks, exceeding the capacity of the demo version, we used the dynamic array function for the 

purpose of reducing the number of variants and constraints. 

In numerical experiments with optimizing models we also have to observe their effectiveness 

that means what time is needed for reaching the optimal solution. Effectiveness is interesting for 

wider range tasks above all. Minimal range of task used for testing the calculation was 40 x 50; 

it means 40 locations and 50 customers. The time of calculation did not exceed 0.1 sec. for any of the 

proposed model. So we can suppose that all the options of the models are fast enough to the extent 

of the 40 x 50 range.  

 

5  CONCLUSION 
The article deals with issues of coverage tasks. It states the basic formulation of coverage 

tasks and three modifications to the basic model. Modifications include costs restrictions and costs 

criteria. One of the modifications consists of multi-criteria type of task. The case takes into account 

not only the basic criterion (number of operating centres) but also minimizing time availabilities.  

 

 

The article was created in accordance to a grant at Faculty of Mechanical Engineering, VSB 

Technical University of Ostrava SP2012/113 Development of New Methods Encouraging Planning 

and Management in Transport Processes. 
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