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Abstract

This article is focused on the theory of straight and curved beams on elastic (Winkler's) foun-
dation. For solution of these problems of mechanics, the Finite Difference Method (i.e. Central Dif-
ference Method) can be applied. The basic information about finite differences and their application
are explained.

Abstrakt

Clanek je zaméfen na teorii piimych a kiivych nosnikti na pruzném (Winklerové) podkladu.
Pro feSeni téchto uloh mechaniky, mtze byt pouzita metoda kone¢nych diferenci (tj. metoda central-
nich diferenci). Zékladni informace o kone¢nych diferencich a jejich aplikacich jsou vysvétleny.

1 INTRODUCTION TO THE THEORY OF BEAMS ON ELASTIC FOUNDATION
The basic analysis X dreds

of bending of beams on  Refore loading: 1 2 Beam
an elastic foundation, see :*T 0T ————f--————._. ——< _|___X9
references [1] to [4], is ) <i : : §>
developed on the as- e ! )
sumption that the strains 2 : i | Foundation
are small. vV = Y B M.+ dM

In this context, an  After loading: : —';\ ’ ?
elastic  foundation is -y 1\
defined as a support > >
which is continuously or [ l N+dN
discontinuously  distrib- q I dT

R

uted along the length of
the beam. The reaction
force

dr :qR(x) /Nm™/ distributed in a foundation is directly proportional to the deflection

Fig. 1 Element of a straight beam on elastic foundation.

v=w(x) /m/ of a straight beam, see Fig.1, or proportional to the radial displacement

u, =u,(p) /m/ of acurved beam (circular arches), see Fig. 2.
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Fig. 2 Example of a curved beam on elastic foundation and its element.

This article is focused on the solution of the straight and curved beams on elastic foundation,
see Fig. 1 and 2, which leads to the solution of linear differential equations via Finite Difference
Method (i.e. Central Difference Method).

2 DIFFERENTIAL EQUATION FOR STRAIGHT BEAMS ON ELASTIC

FOUNDATION

The bending of straight beams on elastic foundations, see Fig. 1, can be described by ordinary
linear differential equation:
dv_ N & B dqy, 4 _ 1 ( _d’”}rﬂdz‘l_“rdz(tftl) )
dx* EJ, d* GA dx* EJ, EJ, dx) GAdx* h dx?
where: E /Pa/ is modulus of elasticity of the beam, J . /m*/ is the major principal second moment of

area A /m*/ of the beam cross-section, B /1/ is shear deflection constant of the beam, G /Pa/ is shear

modulus of the beam, N /N/ is normal force, q = q(x) /Nm™/ is distributed load (intensity of force),
m /N/ is distributed couple (intensity of moment), o, / deg"/ is coefficient of thermal expansion of
the beam, h /m/ is depth of the beam and t, —t, /deg/ is transversal temperature increasing in the
beam. Equation (1) is derived for the situations when input parameters £, J,., N, §, G, 4, o, and

h are constant. For more information about the derivation of eq. (1), see references [1] to [6].
From the Winkler's theory, see references [1] to [4], it holds that:

qr =kv=DbKv (2)
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where functions: k = k(x) /Pa/ is stiffness of the foundation and K =K(x) /Nm™/ is modulus of
the foundation which can be expressed as functions of variable x /m/ (i.e. longitudinal changes in
the foundation) and b /m/ is width of the beam (see Fig. 3).

Hence, from eq. (1) and (2) follows:
dv_ N dv p k) kv _ 1 ( _‘1’"]+ﬂ€12‘1_0‘1d2(t2‘t1) 3)
dx* EJ, d<® GA d<*> EJ, EJ, dx) GAdx* h  dx’

In the most situations, the influences of shearing force, temperature and intensity of moment
can be neglected (or the beam is not exposed to them). Hence, from eq. (3) follows the simple form:

4 2

&' EJ, d’ EJ, EJ,

3 DIFFERENTIAL EQUATION FOR CURVED BEAMS ON ELASTIC
FOUNDATION
The bending of curved beams on elastic foundations, see Fig. 2, can be described by ordinary
linear differential equation:
d’ d’ R*
uSR +2 MSR +Q2uR:7@, %
do do EJ, do
where: R /m/ is radius of the beam, ¢ /rad/ is angle variable and parameter Q /1/ is given by equation:

4
Q= |1+ kR (6)
EJ

From the Winkler's theory, see references [1] to [4], it is evident that:
qr =ku, =bKu, (7)
All others parameters mentioned in equations (4) to (7) are explained in former text.

4 FINITE DIFFERENCES
Let us consider an equidistant partition of the beam with a step A /m/ and nodal points

(nodes) "i" along its length, see Fig. 3 (unloaded beam) and Fig. 4 (loaded beam).

A A A A A A A A A

[ 1 -1 T -1 [ -1
S| 0 li—4i-3i-2i-1 i i+l i+2 i+3 i+d X T
= & -~\-<>-—->—-—->—- g — ool o o—-— ~,L-9 W 7

<’§ ? %
Xi3 \/\ b

Xi-2 Pocatecni stav (nedeformovany)

Xi1 Initial state (undeformed)
Xi
Xin
Xis
Xiv3
Y

HiH'

Fig. 3 Solved straight beam is divided into nodes
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Koneény stav (deformovany)
Final state (deformed)

Fig. 4 Solved straight beam is divided into nodes "i".

Deflection curve v = v(x) of a straight beam and its derivatives are approximated by polygon
curves, see Fig. 5.

Aproximace:
0 X Approximations:

a._ ... zpétné diference
backward differences

A A a; .. centralni diference
central differences

o, ... dopiedné diference
, forward differences

} w s ,
v, » L Koneény stav (deformovany)

i Y § .
Y Final state (deformed)

Fig. 5 Approximation of the deflections by polygon curve and approximation of first derivative.

Finite differences can be defined as an approximation of derivatives. Hence, for the value of
the first derivative, three types of differences can be defined according to Fig. 5:
e Backward difference at the point "i":

o dv(ﬁ; =) tan(e, )= L ®
:‘ Forward difference at the point "i":
VO = "V(’; =x) tan(er;, ) = LA‘ . ©)
ox Central difference at the point "i":
0 2 BE=0) gy 2 (10)
dx 2 24

In some references (for example [6]) are symbols "i-", "i+" noted as "i-%4" and "i+%".

Central differences (CD) are more accurate, therefore they will be applied in the following
text. Similarly, the higher derivatives (at the point "i") can be approximated by the central
differences as:

dzv(x = xi) Via — 2V, + Vi,

2) _ ~
v = e ~ Ve ) an
3 _ d3v(x = xi) Vi T v, +2v, v, (12)
ST e T 24 ’
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v d4v(x = xi) ~ Vi —4v, 6V, —4v +v, , (13)
' dx* A*

O dsv(x = xi) ~ Vi3 —4v,, +5v, =5V +4v, -V ; (14)
' dx’ 24°

,O _ dv(x=x,) < Vi — 6V, +15v, =20y, +15v, —6v, 5 4V 5 (15)
i I 6

Similarly, for a curved beams (i.e. approximations for derivatives of function u, =u, (¢)),

CD formulas can be derived by substitution of variables v, (for example

du,(p=0,) o Y, —u
00 Up\D = D; ~ tan(ar, ) = Ri+ Ri- _ Ugrin Ri-l efc.).

fi do 2 24

5 CENTRAL DIFFERENCE METHOD (CDM) FOR STRAIGHT BEAMS
According the Central Difference Method (CDM), the differential equations (4) for straight
beams can be approximated at the general point "i" (see eq. (11) and (13)) as:

2 > kA 2 4
Vi _[4+Z§V]A]v”' +[6+ 2NA” K Jvi _(4+gf}” +v,, = L (16)

zZT E']ZT E]ZT T E‘]ZT
where k. and q; are the stiffness of the foundation and the distributed loading at the point

Hi"

, respec-
tively.

Equation (16) can be written for all nodes i =0, 1, 2, ...,n (i.e. set of n+1 linear equations fol-
lowing from the discretization of eq. (4)), see Fig. 6. This set of equations, together with four
discretized boundary conditons, lead to the solution of system of n+5 linear equations. There are
always four fictitious nodes (-2, -1 and n+1, n+2) outside the ends of the beam, see Fig. 6. Hence,
values of v, at each node "i" (i.e. values of n+5 deflections) can be received, see also reference [3]

and [7].

Pocateéni stav (nedeformovany)
Initial state (undeformed)

Fiktivni uzly Fiktivni uzly
Fictitious nodes X M Fictitious nodes
=t Pt
2 1 0 .AL_.?-._.-E# ~ 02 n-l 0 nidne2
AlA|lA|A]lA AlA|A|lA|lA
|
Y

Fig. 6 Example solved in reference [3] (straight beam on elastic foundation loaded by couple M).

Note: Theoretically, if step 4 — 0 (i.e. n — 00) then the numerical solution converge to exact
solution.

Fig. 7 and 8 show the sparse matrices arising from CDM for beam on elastic foundation
loaded by couple M, see Fig. 6. This example is solved in reference [3].
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+«nenulové prvky
n=5 |+nonzero elements

Tre . - - .
z - - - - »
: e n+1 Fadki (diferenciilni rovnice)
4 e s s s n+1 rows (differential equation)
= 5F . . = = .
ch‘ 313 » - » » »
T » - -
Bre » =t 4 ¥4dKky (okrajové podminky)
al . s 4 rows (boundary conditions)
10 . . PR

12 2 4 5 8 7 8 9 10
Column

podet nenulovych prvki = 44
number of nonzero elements = 44

podet nulovych prvki = 56
number of zero elements = 56

Fig. 7 Example solved in reference [3] (sparsity patterns of matrices in CDM, number of elements
n=>5).

«nenulové prvky
n=750 |*nonzero elements

Tr *hibts }
i,
i,
10 s,
s,
i,

20} i,
B ':i%gk. n+1 Fidki (diferencialni rovnice)
S h 222 n+1 rows (differential equation)
a2 .

o s,

s,
i,
40 ':ia&
i,
e
22 I SO, el g Fadky (okrajové podminky)
. ‘ ‘ ) ‘ % 7 4 rows (boundary conditions)
1 10 20 30 40 50 55
Column

pocet nenulovych prvki = 269
number of nonzero elements = 269

pocet nulovych prvkii = 2756
number of zero elements = 2756

Fig. 8 Example solved in reference [3] (sparsity patterns of matrices in CDM, number of elements
n = 50).
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6 CENTRAL DIFFERENCE METHOD (CDM) FOR CURVED BEAMS
According the CDM, the differential equations (5) for curved beams can be approximated at
the general point "i" (see modified eq. (12) and (14)) as:

g + (247 —4)uy,,, +(5-447 + Q24 Ju, , +

R . (17)
(54447 24" uy,  +(- 247 +4)uy, , —uy, , =,
E"]ZT
4 _
where k, Q. = [1+ KR and q’ = M are stiffness of the foundation, parameter and
1 EJ yx do

Hi"

first derivative of distributed load at the point "i", respectively.
Equation (17) can be written for all nodes i =0, 1, 2, ...,n (i.e. set of n+1 linear equations fol-

lowing from the discretization of eq. (5)). This set of equations, together with five discretized
boundary conditons, lead to the solution of system of n+7 linear equations. Hence, values of 1,  at
each node "i" (i.e. values of n+7 deflections) can be received, see also reference [3] and [7].

Note: Theoretically, if step 4 — 0 (i.e. n — o00) then numerical solution converge to exact so-

lution.

CONCLUSION

This article shows derivations and way of application of the Central Difference Method
(CDM) as a numerical method suitable for the solution of the straight or curved beams on elastic
foundation. For more information about applications of CDM, see [3], [6], [7] and [8]. CDM seems to
be a good alternative to widely spread Finite Element Method.

Another ways of the solutions and applications of structures on elastic foundation are
presented in [1] to [9].
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