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Abstract 

This article is focused on the theory of straight and curved beams on elastic (Winkler's) foun-

dation. For solution of these problems of mechanics, the Finite Difference Method (i.e. Central Dif-

ference Method) can be applied. The basic information about finite differences and their application 

are explained. 

Abstrakt 

Článek je zaměřen na teorii přímých a křivých nosníků na pružném (Winklerově) podkladu. 

Pro řešení těchto úloh mechaniky, může být použita metoda konečných diferencí (tj. metoda centrál-

ních diferencí). Základní informace o konečných diferencích a jejich aplikacích jsou vysvětleny. 

1  INTRODUCTION TO THE THEORY OF BEAMS ON ELASTIC FOUNDATION 
The basic analysis 

of bending of beams on 

an elastic foundation, see 

references [1] to [4], is 

developed on the as-

sumption that the strains 

are small. 

In this context, an 

elastic foundation is 

defined as a support 

which is continuously or 

discontinuously distrib-

uted along the length of 

the beam. The reaction 

force 

  //Nmqq 1

RR

 x  distributed in a foundation is directly proportional to the deflection 

/m/)(xvv   of a straight beam, see Fig. 1, or proportional to the radial displacement 

/m/)(RR uu   of a curved beam (circular arches), see Fig. 2. 
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Fig. 1 Element of a straight beam on elastic foundation. 
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Fig. 2 Example of a curved beam on elastic foundation and its element. 

This article is focused on the solution of the straight and curved beams on elastic foundation, 

see Fig. 1 and 2, which leads to the solution of linear differential equations via Finite Difference 

Method (i.e. Central Difference Method). 

2  DIFFERENTIAL EQUATION FOR STRAIGHT BEAMS ON ELASTIC 

FOUNDATION 
The bending of straight beams on elastic foundations, see Fig. 1, can be described by ordinary 

linear differential equation: 
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where: E /Pa/ is modulus of elasticity of the beam, 
ZTJ  /m4/ is the major principal second moment of 

area A /m2/ of the beam cross-section, /1/  is shear deflection constant of the beam, G /Pa/ is shear 

modulus of the beam, N /N/ is normal force,   //Nmqq 1 x  is distributed load (intensity of force), 

m /N/ is distributed couple (intensity of moment), /deg/ 1

t

  is coefficient of thermal expansion of 

the beam, h /m/ is depth of the beam and /deg/tt 12   is transversal temperature increasing in the 

beam. Equation (1) is derived for the situations when input parameters E, 
ZTJ , N,  , G, A, 

t  and 

h are constant. For more information about the derivation of eq. (1), see references [1] to [6]. 

From the Winkler's theory, see references [1] to [4], it holds that: 

Kvkv bqR       (2) 
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where functions:   /Pa/xkk   is stiffness of the foundation and   //Nm 3 xKK  is modulus of 

the foundation which can be expressed as functions of variable x /m/ (i.e. longitudinal changes in 

the foundation) and b /m/ is width of the beam (see Fig. 3). 

Hence, from eq. (1) and (2) follows: 
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In the most situations, the influences of shearing force, temperature and intensity of moment 

can be neglected (or the beam is not exposed to them). Hence, from eq. (3) follows the simple form: 

ZTZTZT EJEJ

kv

dx

vd

EJ

N

dx

vd q
2

2

4

4

 .      (4) 

3  DIFFERENTIAL EQUATION FOR CURVED BEAMS ON ELASTIC 

FOUNDATION 
The bending of curved beams on elastic foundations, see Fig. 2, can be described by ordinary 

linear differential equation: 
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where: R /m/ is radius of the beam,  /rad/ is angle variable and parameter  /1/ is given by equation: 

ZT

4

1
JE

Rk
  .     (6) 

From the Winkler's theory, see references [1] to [4], it is evident that: 

RR Kuku bqR        (7) 

All others parameters mentioned in equations (4) to (7) are explained in former text. 

4  FINITE DIFFERENCES 
Let us consider an equidistant partition of the beam with a step /m/Δ  and nodal points 

(nodes) "i" along its length, see Fig. 3 (unloaded beam) and Fig. 4 (loaded beam). 

 

Fig. 3 Solved straight beam is divided into nodes "i". 
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Fig. 4 Solved straight beam is divided into nodes "i". 

Deflection curve v = v(x) of a straight beam and its derivatives are approximated by polygon 

curves, see Fig. 5. 

 
Fig. 5 Approximation of the deflections by polygon curve and approximation of first derivative. 

Finite differences can be defined as an approximation of derivatives. Hence, for the value of 

the first derivative, three types of differences can be defined according to Fig. 5: 

 Backward difference at the point "i": 
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 Forward difference at the point "i": 
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 Central difference at the point "i": 
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In some references (for example [6]) are symbols "i-", "i+" noted as "i-½" and "i+½". 

Central differences (CD) are more accurate, therefore they will be applied in the following 

text. Similarly, the higher derivatives (at the point "i") can be approximated by the central  

differences as: 
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Similarly, for a curved beams (i.e. approximations for derivatives of function )(RR uu  ), 

CD formulas can be derived by substitution of variables 
iv  (for example 
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5  CENTRAL DIFFERENCE METHOD (CDM) FOR STRAIGHT BEAMS 
According the Central Difference Method (CDM), the differential equations (4) for straight 

beams can be approximated at the general point "i" (see eq. (11) and (13)) as: 
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where 
ik  and 

iq  are the stiffness of the foundation and the distributed loading at the point "i", respec-

tively. 

Equation (16) can be written for all nodes n,,2,1,0i   (i.e. set of n+1 linear equations fol-

lowing from the discretization of eq. (4)), see Fig. 6. This set of equations, together with four 

discretized boundary conditons, lead to the solution of system of n+5 linear equations. There are 

always four fictitious nodes (-2, -1 and n+1, n+2) outside the ends of the beam, see Fig. 6. Hence, 

values of 
iv  at each node "i" (i.e. values of n+5 deflections) can be received, see also reference [3] 

and [7]. 

 

Fig. 6 Example solved in reference [3] (straight beam on elastic foundation loaded by couple M). 

Note: Theoretically, if step 0Δ  (i.e. n ) then the numerical solution converge to exact 

solution. 

Fig. 7 and 8 show the sparse matrices arising from CDM for beam on elastic foundation 

loaded by couple M, see Fig. 6. This example is solved in reference [3].  
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Fig. 7 Example solved in reference [3] (sparsity patterns of matrices in CDM, number of elements 

n = 5). 

 

Fig. 8 Example solved in reference [3] (sparsity patterns of matrices in CDM, number of elements 

n = 50). 
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6  CENTRAL DIFFERENCE METHOD (CDM) FOR CURVED BEAMS 
According the CDM, the differential equations (5) for curved beams can be approximated at 

the general point "i" (see modified eq. (12) and (14)) as: 
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first derivative of distributed load at the point "i", respectively. 

Equation (17) can be written for all nodes n,,2,1,0i   (i.e. set of n+1 linear equations fol-

lowing from the discretization of eq. (5)). This set of equations, together with five discretized 

boundary conditons, lead to the solution of system of n+7 linear equations. Hence, values of 
iR

u  at 

each node "i" (i.e. values of n+7 deflections) can be received, see also reference [3] and [7]. 

Note: Theoretically, if step 0Δ  (i.e. n ) then numerical solution converge to exact so-

lution. 

CONCLUSION 
This article shows derivations and way of application of the Central Difference Method 

(CDM) as a numerical method suitable for the solution of the straight or curved beams on elastic 

foundation. For more information about applications of CDM, see [3], [6], [7] and [8]. CDM seems to 

be a good alternative to widely spread Finite Element Method. 

Another ways of the solutions and applications of structures on elastic foundation are 

presented in [1] to [9]. 
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