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Abstract

There were done some proposal calculations for a new testing machine. This new testing
machine is determined for a dynamic fatigue testing of railway axles. The railway axles are subjected
to bending and rotation (centrifugal effects). For the right proposition of a new machine is very
important to know the basic dynamic characteristics of whole system. These dynamic characteristics
are solved via FEM (MSC.Marc/Mentat software) in combination with SBRA (Simulation-Based
Reliability Assessment) Method (probabilistic Monte Carlo approach, Anthill and Python software).
The proposed dimensions and springs of a new machine for fatigue testing of railway axles were used
for manufacturing. Application of the SBRA method connected with FEM in these areas is a new and
innovative trend in mechanics. This paper is continuation of former work (i.e. easier deterministic
approach) already presented in this journal in 2007.

Abstrakt

Byly provedeny navrhové vypocty nového zkusebniho stroje. Tento novy zkuSebni stroj je
uréen pro dynamické inavové testy zelezniénich naprav. Zelezniéni napravy jsou namahany ohybem
a rotaci (odstfedivé efekty). Pro spravny navrh nového stroje je velmi dualezité znat zakladni
dynamické charakteristiky celého systému. Tyto dynamické charakteristiky jsou feSeny MKP
(MSC.Marc/Mentat software) v kombinaci s metodou SBRA (Simulation-Based Reliability
Assessment - pravdépodobnostni pfistup Monte Carlo, Anthill a Python software). Navrzené rozméry
a pruziny nového stroje pro inavové testovani zelezni¢nich naprav byly pouzity pro vyrobu. Aplikace
metody SBRA spojené s MKP v této tloze, je novym a inovativnim trendem v mechanice. Tento
Clanek je nasledujicim pokraovanim diivéjsi prace (tj. jednoduchy deterministicky pfistup) jiz
prezentované v tomto Casopise v 1. 2007.

1 INTRODUCTION

Let us consider the Simulation-Based Reliability Assessment (SBRA) Method, see [5], [6],
[7], [9] and [10], a probabilistic direct Monte Carlo approach, in which all inputs are given by
bounded histograms. Bounded histograms include the real variability of the variables. Using SBRA
method, the probability of failure (i.e. the probability of undesirable situation) is obtained mainly by
analyzing the reliability function RF = RV — S, see Fig. 1. Where RV is the reference (allowable)
value and S is a variable representing the load effect combination. The probability of failure is the
probability that S exceeds RV (i.e. P(RF<0) ). The probability of failure is a relative value depending
on the definition of RV and it usually does not reflect an absolute value of the risk of failure.
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Fig. 1 Reliability function RF (SBRA Method) and definition of the acceptable probability of
overloading.

This paper focuses on the practical application of the probabilistic approach (i.e. SBRA
Method) applied in the area of machine design (i.e. designing of the new massive machine for fatigue
testing of railway axles). Today's European standards define material quality of railway axles
including requirements for chemical composition, material behaviour, stress-strain calculations in
individual points of axle-cross-sections, fatigue testing and its evaluation, see standards [1], [2] and
[3]- The determination of a fatigue limit for railway axles loaded by composed bending and rotation
is described in [3].

Hence, there were done some proposal calculations for a new testing machine. This new
testing machine is determined for a fatigue testing of railway axles, see Fig. 2. The railway axles are
subjected to bending and rotation (centrifugal effects). The fatigue tests for railway axles which are
made in actual size are very important for verifications of all calculations and acceptations of new
designs. In the past in the Czech Republic, only SVUM in Prague provided fatigue tests using Sinco-
TEC rezonator. Hence a new kind of rezonator was designed in the BONATRANS GROUP a.s.
(Bohumin, Czech Republic), see Fig. 2. The shaft exciter is described (loaded) via centrifugal force
Fo /N/.
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Fig. 2 Fatigue testing of railway axles (principles and measurements).
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2 NUMERICAL MODELLING

For the right proposition of a new machine for fatigue testing of railway axles (resonator) is
very important to know the basic dynamic characteristics of whole system. These dynamic
characteristics are solved via FEM (MSC.Marc/Mentat software, see Fig. 3). The base (botton part)
of the testing machine in made of concrete and the upper part (i.e. railway axle) is made of steel, see
Fig. 3. Two versions of testing machines with different dimensions and with 12 or 16 springs were
solved, see Fig. 4. The springs are described by non-linear stiffnesses in radial and axial directions.
Damping propperties of concrete and steel (elastic materials) was described by Rayleigh material
damping. For both versions of FE models were solved modal analyses via Lanczos method and
transient analyses (starting of machines to the steady-state conditions).
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Fig. 3 Fatigue testing of railway axles (Finite Element Method).
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Fig. 4 The FE models with 12 and 16 springs.
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3 DETERMINISTIC APPROACH (FEM)

A deterministic approach (i.e. all types of loading, dimensions and material parameters etc. are
constant) provides an older but simple way to simulate mechanical systems. However, a deterministic
approach cannot truly include the variability of all inputs (i.e. variability of material properties of the
ore), because nature and the world are stochastic. Solution of the ore disintegration process via
deterministic approach (i.e. basic simple solution) is shown in reference [4]. Deterministic approach
is applied in [8], [9] and [11] too.

4 PROBABILISTIC APPROACH (FEM + SBRA METHOD)

From the nature is known, that material properties and dimensions of the testing machine,
including railway axles, have stochastic variability. Hence, the stochastic approach (i.e. SBRA
Method in combination with FEM is applied). MSC.Marc/Mentat and Anthill software was used in
modelling this problem, see references [4] and [5].

Examples of 6 probabilistic inputs (i.e. histograms) for material properties (i.e. Poisson's
ratio /1/, modulus of elasticity /Pa/, and density /kgxm™) are shown in Fig. 5a (concrete) and in
Fig. 5b (steel).
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Fig. S Probabilistic inputs — a) histograms of concrete properties (Poisson's ratio, modulus of
elasticity, density) — b) histograms of steel properties (Poisson's ratio, modulus of elasticity, density).

From the results of modal analyses is possible to calculate the critical frequencies. For
example, the dominant frequency is the

7t — gth. critical frequency Histogram and Distribution Function
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Fig. 7 Total displacement in time ¢ =2.452 s (transient analysis, 16 springs, excitation n, =25 Hz).
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Fig. 8 Probabilistic outputs - dependence of displacement u,,, on excitation frequence n, (transient

analyses, 12 springs).
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Finally, the maximal bending stress o, /MPa/ can be calculated in the shaft (i.e.
o, = f(n,)), see Fig. 9. The higher values of bending stresses (higher than yield limit) are

calculated with accepted mistakes because the plasticity of materials was not enabled. But all the
basic dynamic characteristics are calculated correctly.
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Fig. 9 Probabilistic outputs - dependence of maximal bending stress o, on excitation frequency n, .

5 CONCLUSION

This paper combines the SBRA (Simulation Based Reliability Assessment) Method and FEM
as a suitable tool for simulating the complicated tasks of mechanics.

The dynamic characteristics were solved via FEM in combination with SBRA Method. From
the acquired results, see chapter 4, and required conditions of experiments, see [4], [5] and [10], is
known that the maximal bending stress o, =120 MPa. Hence, the interval of working

frequency n yopx € (21.708; 25.083) Hz can be determined, see Fig. 9. This interval represents the

variability of working mode of the proposed machine for fatigue testing of railway axles, where
minimum of working frequency is 21.708 Hz and maximum is 25.083 Hz. Hence, it is evident

that the workability of the proposed machine is in the interval from cca 1875571 to 2167171 loading
cycles/day. Therefore, this machine is suitable to perform fatigue tests of railway axles in a few days
(i.e. the proposed design is suitable for doing low-cycle and high-cycle fatigue tests).

The reliability functions RF|, to RF; are presented in Fig. 10. For more information see
reference [5]. Application of the SBRA method connected with FEM in these areas is a new and
innovative trend in mechanics. The proposed dimensions and springs of a new machine for fatigue
testing of railway axles were used for manufacturing.

72



Probabilistic reliability assessment (i.e. workability and experiment-ability assessment of the
proposed machine) — answer to the questions "Are the experiments possible?” and "Is the
design OK? ":
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Fig. 10 Probabilistic reliability assessment of the new design of the machine for fatigue testing of
railway axles.
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