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Abstract 

The steady-state response of a two-crack rotor system is investigated by computational 

simulations in the paper. The rotor system supported by radial active magnetic bearings is excited by 

centrifugal forces of discs unbalances. A flexibility matrix of Bernoulli beam element takes into 

account coupling phenomena between directions of vibration. The phenomenon occurs in cracked 

rotors. The couplings express relations between vibration in different directions, i.e. bending-torsion, 

bending-longitudinal, and torsion-longitudinal. The flexibility matrix elements of the cracked rotor 

are derived using the concepts of fracture mechanics for transverse surface crack. Partial 

opening/closing of cracks implemented in motion equations is determined by sign of stress intensity 

factor for mode I. The factor is computed for the crack edge. The motion equations are nonlinear 

because the system response depends on breathing of cracks and nonlinear force coupling is 

introduced by radial active magnetic bearings. Parametric studies of the system response were carried 

out in order to examine influence of various angles between two cracks. Several recommendations for 

detection of cracks and monitoring of the cracked rotor are suggested. 

Abstrakt 

V této práci jsou užity výpočetní simulace ke zkoumání ustálené složky odezvy na buzení 

odstředivými silami nevyvážených disků rotorové soustavy se dvěma trhlinami, jenž je uložená 

v radiálních aktivních magnetických ložiskách. Matice poddajnosti Bernoulliho nosníkového prvku je 

upravena tak, aby se uvážily všechny vazby v kmitání, které existují v rotoru s trhlinou, tj. ohybově-

torzní, ohybově-podélné a torzně-podélné. Prvky matice poddajnosti s trhlinou jsou odvozeny na 

základě teorie lomové mechaniky pro příčnou povrchovou trhlinu. Částečné otevření/zavření trhlin 

zahrnuté do pohybové rovnice je řízeno podle znaménka součinitele intenzity napětí I. módu zatížení 

vypočítaného na hraně trhliny. Pohybové rovnice rotorové soustavy jsou nelineární kvůli odezvě 

závislé na dýchání trhlin a nelineární silové vazbě zavedené radiálními aktivními magnetickými 

ložisky. Byla provedena parametrická studie s cílem zkoumat vliv různých hodnot úhlu mezi 

trhlinami na ustálený stav odezvy rotorové soustavy. Taktéž jsou prezentovány doporučení pro 

detekci a monitorování rotoru se dvěma trhlinami. 
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1  INTRODUCTION 
Transverse fatigue cracks can originate by cyclic bending loading of a shaft. The fatigue 

cracks occur in places of crack initiators (constructional and structural notches). The cracks influence 

rotor response due to change of shaft flexibility [1]. 

Many works deal with influence of transverse surface crack on dynamic properties of rotor 

systems. The issue of rotor with several cracks is rarely solved. Sekhar [2] presented numerical study 

of bending vibrations for rotor system including two transverse open cracks. The shaft of the rotor is 

discretized into finite beam elements in the computational model. Transverse cracks are introduced 

by local flexibility matrix. The flexibility matrix is derived from strain energy concentration in 

vicinity of crack tips. Eigenvalues and system stability analyses of two-crack rotor system were 

provided as parametrical. Parameters were crack depth and crack location. In [3], Darpe et al. studied 

a simple Jeffcott rotor with two transverse surface cracks. Breathing behaviour of cracks has been 

examined by means of nonlinear model using signs of the stress intensity factor for Mode I. The 

effects of mutual cracks orientation on unbalance responses and on the breathing behaviour of two 

cracks are presented. The computational simulations proved influence of the mutual crack orientation 

on the response is higher at lower speeds.  

The topic of actively controlled rotor system with a crack was investigated in few articles as 

Ewins et al. [4], [5] and Kasarda et al. [6]. The Jeffcott rotor supported by rigid bearings is controlled 

by active magnetic bearing in these papers. Ferfecki [7] presented results of numerical simulations on 

a actively controlled rotor system with shaft containing a transverse crack or a slant crack or 

combination of both. Influence of changing of controller parameters on steady-state response caused 

by unbalance is negligible. 

In the work, computational simulation is utilized to study the steady-state response  

of unbalanced rotor with two surface transverse cracks. The investigated rotor system is supported by 

two identical radial active magnetic bearings controlled by current PD feedback controllers.  

The presence of both transverse cracks is described by a local flexibility matrix introduced by 

Papadopoulos and Dimarogonas, in [8]. The local flexibility matrix is considered for six degrees of 

freedom in one node of shaft element. Breathing of cracks is implicated in the equations of motion 

and partial opening and closing of cracks is determined by signs of stress intensity factors along crack 

edges. Response of rotor system is obtained by direct integration of nonlinear motion equations.  

The influence of various orientations of cracks is discussed using orbit plots, vibration responses and 

frequency spectra. 

2  EQUATIONS OF MOTION OF A TWO-CRACK ROTOR SYSTEM 
Transverse surface cracks introduce an increase of a local flexibility of a shaft, which can be 

described by the local cracked flexibility matrix and by the coupling between lateral, longitudinal and 

torsional vibration. Let’s consider a cracked shaft element. The crack is situated at a distance x from 

the first node as shown in Fig. 1a. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 (a) A cracked shaft element (b) The cross-section of shaft with the crack. 
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The shaft element has the diameter D and the length L. The generalized nodal forces for 

 the first node are shear forces f1 and f2 in y and z direction respectively, bending moments f3 and f4 

about y and z axes respectively, axial force f5, and torsional moment f6. The generalized nodal forces 

for the second node are shear forces f7 and f8 in y and z direction respectively, bending moments f9 

and f10 about y and z axes respectively, axial force f11, and torsional moment f12. 

Matrix of local flexibility of the cracked shaft element is determined on basis concepts of 

fracture mechanics. Flexibility matrix is derived using Castingliano’s theorem. Additional 

displacements due to the crack are found using strain energy. Strain energy density function of the 

cracked element is stated by stress intensity factors for Mode I, II, and III. The stress intensity factors 

are not expressed for the crack in a shaft with circular cross section, see Fig. 1b. Therefore the factors 

have to be compounded from elementary rectangular strips (α´·dγ) and their total value is given by 

integration over surface of the crack with depth a. All elements of a local cracked flexibility matrix 

can be found in the article of Darpe, et al. [9]. The total flexibility matrix of a cracked shaft element 

is given by sum of the flexibility matrix without the crack and the local flexibility matrix of the crack. 

The total flexibility matrix of a cracked shaft element has to be transformed to the fixed coordinate 

system, because the equations of motion for the system are expressed in this coordinate system.  

During a rotating of shaft, the transverse crack can be opened, closed or these two states can 

change one to another. Vibration of rotor systems with opened crack is treated similar as vibration of 

non-symmetrical cross-section shaft. If the crack keeps opening and closing during a shaft rotation, 

we refer it as „breathing” crack. This may occur if vibration amplitude excited by centrifugal forces is 

lower than static deflection. 

In case of the breathing crack, elements of the flexibility matrix of a shaft element with the 

crack are dependent on size of opening or closing of the crack. Implementation of the breathing crack 

to mathematical model is provided by „crack closure line“ method (CCL). The method was proposed 

in the paper [9], where CCL is defined as a virtual line perpendicular to the edge of the crack and 

simultaneously the line separates opened and closed part of the crack. The crack front is divided by 

several uniformly spaced points, where the total stress intensity factor is determined, considering 

Mode I of loading. Positive value of stress intensity factor shows, there is tensile loading in examined 

point thus the crack is opened and vice versa. The mathematical model of the breathing crack using 

signs of stress intensity factors in the described points gives the most accurate approach known in the 

present. The approach is applicable in whole range of operational revolutions and also in case of 

transient problems. 

It is assumed the model of the cracked rotor system has following properties: (i) shaft is 

represented by a flexible beam-like body that is discretized into finite elements, (ii) shaft element is 

derived by using Bernoulli's beam theory, (iii) stationary part is rigid, (iv) discs are considered to be 

absolutely rigid axisymmetric bodies, (v) inertia and gyroscopic effects of the rotating parts are taken 

into account, (vi) material damping of the shaft and other types of damping are assumed linear, (vii) 

connection of stationary part and the shaft is provided by the radial magnetic bearings and massless 

axial bearing, (viii) there are transverse cracks in the shaft, crack edges are straight and the cracks 

affects only stiffness matrix of the rotor system, (ix) the rotor is loaded by discrete and distributed 

forces of constant or periodic time behaviour and (x) the rotor rotates at constant angular velocity. 

Considering the cracked rotor, the equations of motion for the rotor system supported by the 

radial magnetic bearings are expressed in the fixed coordinate system as follows  

M, B, G, K, KSH and KC denote mass matrix, damping matrix (external damping and material 

damping of stationary part), matrix of gyroscopic effects, stiffness matrix of the rotor system with the 

cracks, stiffness matrix of the shaft and circulation matrix of the rotor system, qqq  ,,  are vectors of 

generalized displacements, velocities and accelerations, 00OP ,, qqq   denote vectors of boundary and 

initial conditions, fM, fA, fV, i are vectors of magnetic forces, generalized forces exerting on the 

   VAMCSHV )(),()()()()()( ffiqfqKqKqGKBqM  ttttt   , 

)(OPOP tqq  ,      0)0( qq  ,      0)0( qq   . 
  (1) 

http://slovnik.seznam.cz/?q=centrifugal%20force&lang=en_cz
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system (external and constraint forces), controlling currents in coils of electromagnet, ηV is material 

damping coefficient of the shaft, ω is angular velocity of the shaft and t denotes time. 

Magnetic forces are incorporated into the equations of motion (1) by nonlinear vector of 

additional loading fM. If the breathing crack model is used, then the stiffness matrix of the system is 

dependent on the vector of generalized displacements. For this purpose the stiffness matrix is updated 

after every single degree of rotation. 

3  THE INVESTIGATED ROTOR SYSTEM 
The examined rotor system (Fig. 2a) consists of shaft (SH) driven by electromotor (EM) and 

two discs (D1, D2) mounted at the end of the shaft. The shaft and electromotor are connected by 

coupling (CO). The rotor is supported by two radial active magnetic bearings (MB1, MB2) and these 

are connected to base platform (BP). There is the first crack (CR1) between disc 1 and magnetic 

bearing 2 and there is the second crack (CR2) between magnetic bearing 1 and magnetic bearing 2. 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a) Scheme of the testing rotor system with the two transverse cracks  

(b) Orientation of the cracks. 

The rotor system is supported by the two identical radial active magnetic bearings consisting 

of four electromagnets, which are uniformly distributed around the bearing circumference. The 

magnetic bearings are in horizontal and vertical direction controlled by two independent current PD 

feedback controllers. The discrete axial bearing stiffness is in the axial direction 15

x mN101 k  and 

torsional stiffness is 1

t radmN1 k . Unless otherwise indicated, eccentricities (ε = 0.005 mm) of both 

discs are identical and placed on the symmetry axis of the crack CR1 (positive coordinate of z axis in 

Fig. 1b and Fig. 2b). We suppose, angle between cracks axes is not changing. The angle is denoted by 

ψ (see Fig. 2b). More detailed data regarding to the investigated rotor, radial active magnetic bearings 

and PD controllers are given in [10]. 

In the computational model the shaft was represented by a beam-like body that was discretized 

into fifty four finite elements of equal length. Discs are implemented by moments of inertia and 

masses applied in nodes accordant with centres of discs.  

The task was to analyze the effect of mutual position of two cracks on steady-state vibration 

excited by centrifugal forces, in conjunction with rotor system actively controlled. Numerical 

experiments were provided in computer system MATLAB, considering the described system with the 

two breathing cracks sketched in Fig. 2a. Depth of the cracks is 17.6 mm; for CR1 it is 20 % of shaft 

diameter and for CR2 it is 18.5 % of shaft diameter. Value of revolutions of 18.1 rad·s-1 is more than 

twice lower than first bending critical revolutions. 

4  RESULTS OF THE COMPUTATIONAL SIMULATIONS 
Orbits of the shaft centre in D2 location are shown in Fig. 3 to 4. The orbits are plotted for 

variety angles between the two cracks (CR1 and CR2) ψ = 0°, ψ = 90°, ψ = 180° and ψ = 270°. The 

orbit is shaped into complex curve and there is small loop in the upper part of the orbit. The loop is 

a b a 
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corresponding to the second multiplication of rotation revolutions. The loop position depends on the 

orientation of the cracks. The loop is the most significant in case of crack axes orientation of 180°.  

  

Fig. 3 Trajectory of D2 centre in steady-state for the rotor system with two cracks of depth 17.6 mm; 

(a) ψ = 0° (b) ψ = 90°. 

 

  

Fig. 4 Trajectory of D2 centre in steady-state for the rotor system with two cracks of depth 17.6 mm; 

(a) ψ = 180° (b) ψ = 270°. 

After Fourier's transformation to frequency domain, we obtain graphs shown in Fig. 5 to 8. 

For ψ = 0°, so directions of crack axes are identical; first and second multiple of revolution frequency 

have similar value, considering frequency spectrum of horizontal displacements. Third multiple is 

also significant and 2.5 times lower. In case of vertical displacements, first four multiples (w, 2w, 3w, 

4w) of revolution frequency are significant. Values of multiple amplitudes are decreasing with 

increasing frequency.  

For ψ = 90°, so axes of the cracks are perpendicular to each other; frequency spectrum 

changes significantly in both directions, see Fig. 6. Amplitude accordant with revolution frequency 

dominates in both directions of vibration. Amplitude accordant with second multiple of revolution 

frequency is 2.6 times lower than the revolution frequency amplitude in case of horizontal direction, 

see Fig. 6a. As for vertical direction, this frequency does not appear at all. Orbit is a half smaller 

comparing with ψ = 0° and shape has slightly changed, see Fig. 3.  
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Fig. 5 (a) Fourier’s transformation of displacements in horizontal direction in D2 location 

(b) Fourier’s transformation of displacements in vertical direction in D2 location. 

 

  

Fig. 6 (a) Fourier’s transformation of displacements in horizontal direction in D2 location 

(b) Fourier’s transformation of displacements in vertical direction in D2 location. 

 

  

Fig. 7 (a) Fourier’s transformation of displacements in horizontal direction in D2 location 

(b) Fourier’s transformation of displacements in vertical direction in D2 location. 



63 

If angle of cracks axes is ψ = 180°; frequency spectrum changes significantly once again, see 

Fig. 7. Amplitude of second revolution frequency multiple dominates over the frequency spectrum in 

both directions. This implies, orbit is shaped into double loop, see Fig. 4a. 

Amplitudes and distribution of revolution frequency multiples is shown in Fig. 8 for angle 

ψ = 270°. These characteristics are similar to those ones measured for angle ψ = 90°, see Fig. 6. 

Orbits are different, but orbit sizes are almost same; compare Fig. 3b and Fig. 4b. 

  

Fig. 8 (a) Fourier’s transformation of displacements in horizontal direction in D2 location 

(b) Fourier’s transformation of displacements in vertical direction in D2 location. 

 

  

Fig. 9 (a) Time behaviour of axial displacements of D2 centre and  

(b) time behaviour of torsion of D2 centre. 

Excitation by centrifugal forces initiated also axial and torsional vibration of the rotor, see 

Fig. 9. The phenomenon is caused by the presence of the transverse cracks. Frequency spectrums 

obtained by Fourier’s transformation are shown in Fig. 10 to 13.  

In case of axial vibration, amplitude of revolution frequency was dominant for all cases of 

angle between axes of cracks (ψ = 0°, ψ = 90°, ψ = 180° and ψ = 270°). Just for angle of cracks 

ψ = 180°, second multiple of revolution frequency was excited with magnitude 6.7 times smaller, see 

Fig. 12a. The highest amplitude of revolution frequency is excited for angle ψ = 0° and it is lowest 

for angle ψ = 180° and values of amplitudes of revolution frequency for angles ψ = 90° and ψ = 270° 

are between these extremes. 
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Fig. 10 (a) Fourier’s transformation of axial displacements in D2 location  

(b) Fourier’s transformation of torsion in D2 location. 

 

  

Fig. 11 (a) Fourier’s transformation of axial displacements in D2 location  

(b) Fourier’s transformation of torsion in D2 location. 

 

  

Fig. 12 (a) Fourier’s transformation of axial displacements in D2 location  

(b) Fourier’s transformation of torsion in D2 location. 
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Considering torsional vibration, frequency spectrums are characteristic by significant 

amplitudes corresponding with first and second multiple of revolution frequency for all cases of 

angles between cracks axes (ψ = 0°, ψ = 90°, ψ = 180° and ψ = 270°), see Fig. 10 to 13. Ratio of 

second to first multiple of revolution frequency is the highest for angles ψ = 90° and ψ = 270° and the 

lowest for ψ = 180°. 

 
 

Fig. 13 (a) Fourier’s transformation of axial displacements in D2 location  

(b) Fourier’s transformation of torsion in D2 location. 

5  CONCLUSIONS 
The paper deals with influence of two transverse surface cracks on the rotor system supported 

by radial active magnetic bearings. Response of the rotor system was determined from the equations 

of motion, where the cracks were implemented by nonlinear breathing model. The breathing model 

employs of stress intensity factor for Mode I.  

Time behaviours and frequency spectrums of bending, axial and torsional vibration were 

calculated. Significant influences of the cracks were found for low operating revolutions. Various 

multiples of revolution frequency were excited and also ratios of amplitudes corresponding with these 

multiples were essentially different. Therefore presented results provide proposals of detection of 

transverse surface cracks in the shaft. 
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