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The localization of mobile robots in outdoor and indoor environments is a complex issue. Many sophisticated approaches, based
on various types of sensory inputs and different computational concepts, are used to accomplish this task. However, many of the
most efficient methods for mobile robot localization suffer from high computational costs and/or the need for high resolution
sensory inputs. Scan cross-correlation is a traditional approach that can be, in special cases, used to match temporally aligned scans
of robot environment. This work proposes a set of novel modifications to the cross-correlation method that extend its capability
beyond these special cases to general scan matching and mitigate its computational costs so that it is usable in practical settings.
The properties and validity of the proposed approach are in this study illustrated on a number of computational experiments.

1. Introduction

Accurate and efficient positioning and localization is a fun-
damental problem of mobile robotics. It involves estimation
of robots’ position relative to a map of an environment [1].
To accomplish this task, mobile robots adopt two high-level
localization approaches. They can determine their position
by receiving signals from beacons, such as in the case of
fingerprinting algorithms [2] or employ various sensory
subsystems that inform them about their vicinity [3]. Devices
commonly used for beaconless localization are wheel sensors
(odometers) and ultrasonic and optical rangefinders [4].

Optical rangefinders perform 2D laser scans of robot
surroundings and provide data with high resolution and at
high sampling rates. In general, the processing of such data
is computationally expensive and usually requires massive
computing resources [5]. On the contrary, control systems
of mobile robots are usually low-consumption embedded
devices with limited resources, low performance, and small
memory. Therefore, there is a clear need for innovative laser

scan processing methods with a good trade-off between
accuracy and computational complexity. In this paper, a novel
cross-correlation-based scan matching method suitable for
low-performance microcontrollers is proposed and evalu-
ated. It is an efficient cloud point-matching algorithm that can
be in mobile robots instead of the traditional methods such
as the Iterative Closest Point (ICP) [6], Cox [7], complete line
segment (CLS) [8], Normal Distributions Transform (NDT)
[9], Perimeter-Based Polar Scan Matching (PB-PSM) [10],
and, for example, pIC [11] algorithm.

The novel cross-correlation-based [12] scan matching
method, proposed in this work, uses laser scans obtained
by optical rangefinder to solve the simultaneous localization
and mapping (SLAM) problem [13] and to determine robot
position in an unknown environment. The proposed algo-
rithm has been implemented in C# and evaluated in a series
of computational experiments involving a realistic mobile
robot platform equipped with a specific optical rangefinder
(SICK LMS 100 [14]). The accuracy and performance of
the proposed method have been compared to a standard
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scan matching algorithm, ICP, and found better in terms of
processing time and the accuracy of estimated position.

The rest of this paper is organized as follows. The scan
matching problem, a general classification of scan matching
methods, and the definition of selected baseline scan match-
ing methods is provided in Section 2. Section 3 gives a brief
overview of recent related work and relevant approaches.
An efficient and robust scan matching algorithm, based on
the cross-correlation of rasterized LiDAR scans, is proposed
in Section 4. Section 5 describes the experiments conducted
in order to verify the approach and to assess its properties.
Finally, conclusions are drawn and future work is outlined in
Section 6.

2. Scan Matching

Informally, scanmatching (cloud pointmatching) is a general
procedure that aims at aligning current scan of an envi-
ronment with a reference scan [15]. Many methods, based
on various principles and different formal approaches, have
been proposed for scan matching in the past. However,
most of them suffer from high computational costs [16]
and only a limited ability to work efficiently in different
environments [17] (e.g., themethod described in [18] requires
an environment with perpendicular walls).

Scan matching-based robot localization methods utilize
information about the distance between the device and the
nearest obstacle. This information can be obtained with
high accuracy using a laser range finder (LiDAR) [14]. In
these devices, a measuring beam is often swept in one axis
and provides the information about the distance to the
nearest obstacle at every measured angle. Common LiDARs
provide approximately 10–50 such scans per second. Each
scan contains information about the distances to the nearest
obstacle within a plane in front of the device (2D LiDAR). A
typical LiDAR, such as the SICKLMS 100, has ameasurement
range of 270

∘ with an angular resolution 0.25
∘ [14]. Effective

measurement distance ranges from several meters to tens of
meters, depending on sensor types and properties. Besides
traditional 2D LiDARs, devices able to provide 3D scans of
their environment are becoming increasingly popular [19].

Thanks to their favourable properties, 2D LiDARs have
become considerably popular in robotics. There are several
methods, based on various heuristics and principles, that
can be employed to determine the position of a robot in
an environment. Methods that align current scan of an
environment with a reference scan or with a map are called
scan matching methods.

Scan matching methods can be divided into two large
groups. Conventional scan matching methods use the appara-
tus of classical mathematics, while probabilistic scanmatching
methods evaluate the likelihood of a robot being at certain
place. Typical examples of conventional and probabilistic
methods are the Iterative Closest Point algorithm [6] and the
Normal Distribution Transform algorithm [20], respectively.

Another classification of scan matching procedures is
based on the way scan data is being processed. The point-
to-point scan matching strategies process all individual points

in environment scans. They provide localization with a high
accuracy but suffer from high computational costs. However,
they are very well usable in both complex and nonstructured
environments. The feature-to-feature methods extract from
the scans higher-level features before the actualmatching and
localization take place.The extracted features can be diverse.
They usually include basic geometric shapes such as lines,
arcs, edges, polygons, and, for example, 3D features. These
algorithms have lower computational cost of the matching
phase but can operate only in sufficiently feature-rich (i.e.,
structured) environments. They perform well in buildings
with well-structured environmental elements consisting of
large, flat surfaces and regular, geometric shapes. In the
following, the standard scan matching methods from both
categories are summarized.

2.1. Point-Based Scan Matching Methods

2.1.1. Iterative Closest Point Algorithm. The ICP is an iterative
algorithm that looks for the pairs of closest points in a pair of
environment scans. An affine transformation, T, that makes
projection of one point to another is calculated between two
different scans, A and B. The algorithm minimizes a loss
function, 𝑓(𝑝

𝑥
, 𝑝
𝑦

, 𝜔), defined as
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, (1)

where T is the affine transformation, 𝑝
𝑥
and 𝑝

𝑦
are transla-

tions in the direction of the 𝑥- and 𝑦-axes, respectively, 𝜔 is
rotation, and 𝜗 is a function that finds in the second scan, B,
index of a point that is closest to the point from the original
scan with index 𝑖.

The result of the minimization is a three-element vector
that represents the translations in 𝑥- and 𝑦-axes and the
rotation of the test scanwith respect to the reference scan [21].
The ICP algorithm can be summarized as follows [6]:

(1) Preprocessing: removal of the remote points.
(2) Assignment: finding pairs of the closest points (the

first point is from the reference scan; the second point
is from the test scan).

(3) Rejection: removal of the pairs with the long distance.
(4) The loss function calculation: equation (1).
(5) The loss function minimization: iterative process

(e.g., Newton method or Lorentzian estimator [22]).

Loss function minimization is the key part of the algorithm.
Minimizationmethodswith good trade-off between accuracy
(i.e., the ability to find good transformations) and compu-
tational costs are required for mobile robots equipped with
energy and resource constrained microcontrollers.

2.1.2. Histogram Correlation. Correlation methods based on
histograms, such as the Extended Histogram Matching algo-
rithm, can be used to accomplish scan matching as well [12].
However, traditional correlation can be applied only for scans
that differ in rotation only. For two arbitrary scans that differ
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in rotation, the function 𝑟(Φ) that represents the laser scan
differs in shift in theΦ axis. If the scans differ in both, rotation
and translation, the function 𝑟(Φ) differs in distribution and
the algorithms may produce misleading results (i.e., wrong
matching).

Histogram-based correlation methods therefore use his-
tograms, including the angle histogram [12], to determine the
rotation and translation of the matched scans. They compute
a histogram of the angles between every pair of points, 𝑟(Φ

𝑖
)

and 𝑟(Φ
(𝑖+1)

), measured in the scan. The function, obtained
in this way, is invariant towards displacement. The 𝑥- and
𝑦-axis histograms show the distributions of points scanned
in these two directions. Histogram-based scan correlation is
described in detail in [12].

2.2. Feature-Based Methods. A typical example of feature-
based scan matching methods is the complete line segment
(CLS) algorithm that compares complete line segments,
extracted from two different scans. It can be also used to
match a scan with a reference map of environment. This
method has been successfully applied to scan matching [8]
and for SLAM [23].

The CLS extracts from each LiDAR scan line segments
that represent high-level real-world objects found in robot
environment.The lines can be either complete or incomplete.
An incomplete line is a sign of one object occluded by another.
A complete line segment, on the other hand, describes a real-
world object in plain view of the robot. The algorithm is
especially concerned with complete line segments. It assumes
that a complete line segment has an unique Euclidean length
within the environment.Themap of an environment is made
up of a set of lines with defined start and end points and
corresponding length. However, the lines can be defined also
by their center point, orientation, and length.

Line comparisons (i.e., scan matching) are performed in
CLS using the length of line segments, relative position of
their center points, and their relative rotation. Let us consider
two complete line segments 𝐿 and 𝐺. 𝐿 is a segment from a
local map, and 𝐺 is a segment from a global map. Together,
they form a pair. The CLS works in the following way. For all
line segments from the local map, 𝐿

𝑖
, one by one, it builds

a set of segments from the global map, 𝐺
𝑚
, with similar

length. Then, it calculates for each pair 𝐿
𝑖
and 𝐺

𝑖
∈ 𝐺
𝑚
the

relative position of their centers and their relative rotation.
The segment, 𝑖, is matched if the following condition is
satisfied:

𝐿 𝑠𝐿 𝑠𝑖
 ≐

𝐺𝑠𝐺𝑠𝑖
 ∧ 𝐿
𝛼

− 𝐺
𝛼

≐ 𝐿
𝛼𝑖

− 𝐺
𝛼𝑖

∧
𝐿 𝑖

 ≐
𝐺𝑖

 , (2)

where themidpoint of a segment is denoted by subscript 𝑠 and
the relative rotation by subscript 𝛼. The more the segments
meet the condition given by (2), the greater the credibility of
the test match is.

If the testmatch contains at least two corresponding pairs,
it is possible to calculate the angle, 𝜔, and the displacement
parameters,𝑝

𝑥
and𝑝
𝑦
, respectively.The angle,𝜔, is calculated

from two pairs of complete line segments as a difference
between an orientation vector, created from the midpoints
of the local line segments, 𝐿

𝑠𝑖
and 𝐿

𝑠𝑗
, and a vector created

from the midpoints of the global line segments, 𝐺
𝑠𝑖
and 𝐺

𝑠𝑗
.

It is possible to use any of those two pairs of segments for
the calculation. The displacement parameters are computed
using

𝑝
𝑥

= 𝑥
𝐺

− (𝑥
𝐶
cos𝜔 − 𝑦

𝐶
sin𝜔) ,

𝑝
𝑦

= 𝑦
𝐺

− (𝑦
𝐶
cos𝜔 + 𝑥

𝐶
sin𝜔) .

(3)

The scan matching procedure, proposed in this work,
is a novel point-based method developed especially for the
segment of energy and power constrained devices such as
mobile robots. In the next section, we briefly summarize
relevant related approaches.

3. Related Work

A SLAM method based on stereo vision and the ICP
algorithm has been described in [24]. SLAM method based
on laser scan matching has been introduced in [25], where
authors use polar coordinates for scan matching. The com-
bination of the ICP algorithm and correlation histogram is
used in [26] for large scale SLAM. In [27] the SLAMmethod
based on entropy is presented. In [28] authors propose a
beam selection method. The laser sensor beam is filtered
and only the most important beams are used for SLAM. The
representative of a multiagent approach is presented in [29].

6-DoF low dimensionality SLAM (L-SLAM) is intro-
duced in [19]. Authors use 3D kinematic model instead of
2D. The particle filter and Kalman filter are used in that
SLAM. The alternative approach is introduced in [30] that
uses Extended Kalman Filter (EKF). Authors also present the
SLAM comparison.

Another frequently used approach is based on the extrac-
tion of geometric primitives. For example, these primi-
tives can take form of line segments [8] or more complex
3D segments [31]. In [31] the authors use 3D landmarks
for feature-based SLAM. Another example of feature-based
SLAM method is in [32], where the linear group algorithm
(LGA) and stereo vision is used for SLAM. In [33] authors
deal with a kidnap problem. They use a upward-looking
camera for a first pose estimation.

Variety of additional information can be included in the
maps.Those pieces of information can be used in subsequent
analysis of explored area. The mobile robot that explores
a waste rock is described in [34]. The concentration of a
carbon monoxide and methane is measured and collected.
The global positioning system (GPS) and online maps are
used for localization. Another research is referred to in [35],
where a mobile robotic device for mapping a distribution of
a gas is presented.

In [36] the wireless node localization is proposed. This
method is suitable for indoor use, while GPS signal is not
present. Monte Carlo localization is used for wireless node
identification.The localized nodes can be afterwards used for
backward localization.

The following section describes the proposed novel cross-
correlation-based scanmatchingmethod in detail. It provides
an efficient an accurate algorithm for evaluating the degree
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of similarity between two laser scans, called correlation coef-
ficient. The correlation coefficient is in this work a number
that represents the overlay of two LiDAR scans. The larger
the correlation coefficient is, the better the match is obtained
between the investigated LiDAR scans.The calculation of the
correlation coefficient is crucial for computational costs of
the scan matching procedure. In this approach, the 2D point
cloud, generated by the sensor, is transformed into a lower-
resolution raster and then used to evaluate how much the
borders of the investigated scans collide.

4. Point-to-Point Scan Matching Algorithm
Based on Cross-Correlation

In this work, we propose a robot localization strategy using
a novel point-to-point scan matching algorithm based on
cross-correlation. The proposed method has low compu-
tational requirements and high accuracy and is therefore
suitable for the use with embedded devices that are frequently
found in mobile robot platforms. The cross-correlation is
in this approach used to determine relative translation and
rotation of consecutive LiDAR scans performed by a moving
robot. Each LiDAR scan can be in this context understood
as a momentary snapshot of a floor plan of a room (more
general, environment) where the robot is located. The scans
have usually angular resolution of 1

∘ and cover the entire
neighborhood of the robot (i.e., 360

∘). They contain for each
measured angle a number of points that indicate the distance
between the robot and nearest obstacle in the corresponding
direction.

Intuitively, two LiDAR scans performed in the same
environment shortly after each other will be similar.The pro-
posed scanmatching approach finds an affine transformation
vector, p, that is the best projection between an actual and a
reference LiDAR scan. The transformation vector consists of
three elements, transformation parameters, that correspond
to translations, 𝑝

𝑥
and 𝑝

𝑦
, and rotation, 𝜔.

Consider a set of all possible affine transformation vec-
tors, Ψ, and a vector, p:

p = (𝑝
𝑥
, 𝑝
𝑦

, 𝜔) , p ∈ Ψ, (4)

where 𝑝
𝑥
and 𝑝

𝑦
are the translation and 𝜔 is the rotation.

An affine transformation,T, based on a parameter vector,
p = (𝑝

𝑥
, 𝑝
𝑦

, 𝜔), is defined by

T : (

𝑏
𝑥

𝑏
𝑦
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cos𝜔 − sin𝜔

sin𝜔 cos𝜔
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𝑝
𝑥

𝑝
𝑦

) , (5)

where (𝑎
𝑥
, 𝑎
𝑦

) and (𝑏
𝑥
, 𝑏
𝑦

) are the coordinates of a point,
(𝑥, 𝑦), in two LiDAR scans, A and B, respectively.

There is a handful of methods, based on different formal
approaches and designed for various applications, that can
find the parameter vector for the affine transformation
between A and B. Some of them are summarized in Section 2.
In the following, a novel cross-correlation-based method
suitable for embedded microcontrollers is proposed. The
method is first defined for two scans that differ only in
translation and then extended to match scans when both,
translation and rotation, are performed.
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Figure 1: Two scans with different rotation (three points only).

4.1. Cross-Correlation of Rotated-Only LiDAR Scans. Con-
sider two LiDAR scans, A and B, that differ only by rotation.
Assume that they were captured in a sufficiently indented
environment so that the functions 𝑟(Φ) and 𝑠(Φ), represent-
ing the scans A and B, respectively, as a function of rotation
angle, Φ, have a period of 2𝜋. An example of this scenario
is illustrated in Figure 1. The figure shows three points, 1, 2,
and 3, in scans A and B, respectively. Each point, 𝑖, is in scan
A represented by 𝑟(Φ

𝑟𝑖
) and in scan B by 𝑠(Φ

𝑠𝑖
). The cross-

correlation of two rotated-only 2D scans, A andB, can be then
evaluated using [37]

(𝑟 ∗ 𝑠) (Φ) = ∫

2𝜋

0

𝑟 (𝜏) ⋅ 𝑠 (Φ + 𝜏) ⋅ d𝜏. (6)

Formula (6) is a function of scan similarity that depends on
the angle, Φ, only.The rotation between the matched scans A
and B, Φ

𝑀
, is then simply calculated by

Φ
𝑀

= arg max
Φ∈[0,2𝜋]

{(𝑟 ∗ 𝑠) (Φ)} . (7)

The value of Φ
𝑀

can be easily obtained from (7) using
a single scan along the domain of Φ at selected angular
resolution. This intuitive approach requires only a single
program loop and is computationally acceptable even for
low-power embedded devices. Unfortunately, the cross-
correlation problem is significantly more complex for a
general case of two LiDAR scans that differ in both rotation
and translation.

4.2. Cross-Correlation of Arbitrary LiDAR Scans. An example
of two LiDAR scans, A and B, differing by rotation and
translation at the same time, is shown in Figure 2. Amodified,
computationally efficient, cross-correlation algorithm needs
to be introduced to obtain both rotation and translation in
order to match such arbitrary LiDAR scans.

Let us define modified correlation as a function of three
parameters, (𝑟∗𝑠)(p). In order to evaluate (𝑟∗𝑠), several steps
need to be carried out. First, it is appropriate to convert the
scans into Cartesian coordinates to calculate the translation.
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Figure 2: Two scans with different rotation and translation. Only
three points, 1, 2, and 3, are displayed.

The conversion frompolar toCartesian coordinates is defined
by

(

𝑥

𝑦
) = (

𝑟 (Φ) ⋅ cosΦ

𝑟 (Φ) ⋅ sinΦ
) . (8)

Next, we assume an abstract operation,⊙, that will replace
the conventional correlation so that the value of themodified
correlation function, (𝑟 ∗ 𝑠)(p), will reflect the degree of
alignment of two LiDAR scans for each transformation vector
p = (𝑝

𝑥
, 𝑝
𝑦

, 𝜔):

(𝑟 ∗ 𝑠) (𝑝
𝑥
, 𝑝
𝑦

, 𝜔)

= (

𝑟 (Φ) ⋅ cosΦ

𝑟 (Φ) ⋅ sinΦ

)

⊙ (

𝑠 (Φ + 𝜔) ⋅ cos (Φ + 𝜔) + 𝑝
𝑥

𝑠 (Φ + 𝜔) ⋅ sin (Φ + 𝜔) + 𝑝
𝑦

) .

(9)

The result of this operation is a positive real number called
correlation coefficient.The correlation coefficient corresponds
to the degree of similarity between the LiDAR scansmodified
by p. The best transformation vector, p

𝑀
, describing the

rotation and translation betweenAandBmost accurately, can
be obtained from (9) using

p
𝑀

= arg max
(𝑥𝑀,𝑦𝑀,𝜔𝑀)

{(𝑟 ∗ 𝑠) (𝑥
𝑀

, 𝑦
𝑀

, 𝜔
𝑀

)} . (10)

When finding p
𝑀
, an exhaustive search along the domains of

𝑥
𝑀
, 𝑦
𝑀
, and 𝜔

𝑀
is performed to solve (10). Such exhaustive

search or any suitable real parameter optimization method
that can be employed to find an optimum solution to (10)
requires many evaluations of (𝑟 ∗ 𝑠)(𝑝

𝑥
, 𝑝
𝑦

, 𝜔). Apparently,
a reasonable and computationally lightweight ⊙ is crucial for
practical determination of p

𝑀
.

4.3. Correlation Coefficient. A computationally efficient but
sensitive and accurate method for the evaluation of (9) is
the key element of the proposed scan matching approach.
In this section, we discuss computational methods for the
evaluation of (9) anddevise an algorithm suitable for practical
deployment in the field of mobile robot localization.

Scan A
Scan B

Intersection
Intersection area

Figure 3: Intersection representation of correlation coefficient.

4.3.1. Simple CorrelationCoefficient Evaluation. Abasic, intu-
itive, representation of the correlation coefficient can be based
on a sum of the functional representations of two LiDAR
scans, A and B, 𝑟(Φ) and 𝑠(Φ), respectively. This is in the
general case generally defined by (6). In practice, the scans
are sampled from 𝑟(Φ) and 𝑠(Φ) at certain angular resolution
and the formula is discretized as

(𝑟 ∗ 𝑠) (𝑛) =

𝑛

∑

𝑖=0

𝑟 (𝑖) 𝑠 (𝑛 + 𝑖) . (11)

The calculation of the best transformation vector, defined
by (10), is a computationally intensive task. An exhaustive
search a cross the domains of 𝑥

𝑀
, 𝑦
𝑀
, and 𝜔

𝑀
requires

three nested loops and triggers a very large number of ⊙

evaluations. This operator can be numerically expressed in
different ways and its choice affects the efficiency of the scan
matching procedure substantially.

Figure 3 displays twomutually shifted and rotated LiDAR
scans. One way to define ⊙ in this arbitrary case is to measure
the overlapping area of both matched scans. The most
accurate transformation vector, p, is for two matched scans
obtained when the area of the intersection is maximized.

The scans are in general polygons and thus this approach
requires finding the intersection of two general polygons.
This can be accomplished, for example, by the Weiler-
Atherton algorithm [38]. However, one laser scan consists of
hundreds to thousands of values and intersection calculation
is very computationally expensive. In our experiments, it took
more than 30 seconds in laboratory conditions. Moreover,
finding the intersection is only the first step and the area
of the overlapping region has to be computed as well. This
näıve approach is clearly too computationally expensive and
infeasible for the use in microcontrollers of mobile robots.

4.3.2. Raster-Based Correlation Coefficient Evaluation. A
more efficient way to obtain the correlation coefficient is
via rasterization of the 2D scans. The overlapping area (i.e.,
the correlation coefficient) is then the number of raster cells
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Scan A

Scan A
Scan B Scan B

Intersection

(a)

Scan A

Scan A
Scan B Scan B

Intersection

(b)

Figure 4: Correlation coefficient representation in raster. (a) Area representation, (b) boundary representation.

that occur in both scans at the same time. This is illus-
trated in Figure 4(a). However, this approach still requires a
determination whether each cell is inside or outside of the
polygons. That requires time and resources and, as shown in
the following, is not really necessary for the evaluation of a
suitable correlation coefficient.

The proposed algorithm avoids the computation of the
overlapping area altogether. The correlation coefficient is
computed solely on the basis of the boundaries of the
polygons obtained from scan A and scan B, respectively.
In order compute the intersection of rasterized polygons
accurately, the matched LiDAR scans have to describe the
environment with sufficient detail and the data has to be
dense. A concept of cell weight is defined to adjust the
evaluation of the correlation coefficient. Cell weight,𝑤

𝑎
, is the

count of measured points that belong to a particular cell, 𝑎.
The experiments show that the use of cell weight can mitigate
the error introduced by bad measurements and outliers by
suppressing the influence of cells with little measured points.
A visual example of this approach is displayed in Figure 4(b).
Needless to say, this method is the least computationally
expensive algorithm for correlation coefficient calculation.
However, it requires that the matched LiDAR scans describe
the environment with sufficient detail and the data is dense.

4.4. An Efficient Implementation of Correlation Coefficient
Evaluation. The raster-based approach to the correlation
coefficient evaluation requires an efficient implementation
for a practical deployment in low-power embedded devices.
The degree of similarity between two LiDAR scans is in
the examples, given in Figure 4, evaluated by scanning two
10 × 10 rasters of weighted cells. A brute-force comparison of

both rasters requires 100 steps. However, the actual polygons
interfere only with a small number of raster cells (a total of
29 in the example in Figure 4). In order to achieve a memory
efficient LiDAR scan storage and a faster calculation of the
correlation coefficient, a sparse representation of the rasters
is adopted. The representation, utilizing a sparse matrix as
the data structure to store the matched scans, is illustrated in
Figure 5. An evaluation of the correlation coefficient requires
with this data structure a significantly lower number of steps
equal to the total number of nonoverlapping raster cells
occupied by both rasterized scans.

The optimum size of the cells in the raster, suitable for
practical use by mobile robots, was determined empirically
based on the initial experiments. The experiments have
shown that 200mm is the optimum size of a cell that achieves
a good trade-off between accuracy and computational costs.
Larger cell sizes lead to wrong scan matching results (low
accuracy) and smaller cell sizes increase the required com-
putational effort and compromise the robustness of the
algorithm.

The complete scan matching procedure, proposed in this
paper, is implemented using the following simple steps:

(1) Fetch next cell from the reference sparse matrix, A.
(2) If the current scan, B, includes on the corresponding

position, 𝑥, 𝑦, a nonempty cell, increase the correla-
tion coefficient.

(3) Go back to (1), until all cells in A are processed.

The update of the correlation coefficient, V, performed in
step (2) of the scan matching procedure outlined above,
can be implemented using a number of distinct strategies.
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Figure 5: Sparse matrix representation; scan A is represented by a
set of occupied cells; numbers in cells represent coordinates (𝑥, 𝑦)
in scan raster; scan B is represented by complete scan raster.

Two approaches have been found suitable by computational
experiments. The correlation coefficient can be increased by
the arithmetic mean of the weight of the matched cells, 𝑎 and
𝑏:

V
(𝑘+1)

= V
(𝑘)

+ 𝑤
𝑎

+ 𝑤
𝑏
. (12)

Another correlation coefficient update method uses the
square root of the product of the weights of both cells:

V
(𝑘+1)

= V
(𝑘)

+ √𝑤
𝑎

⋅ 𝑤
𝑏
. (13)

The mobile robot localization strategy, based on the pro-
posed cross-correlation procedure, continuously compares
two LiDAR scans. This process can be executed in parallel
to exploit the capabilities of modern multicore processors.
The data-parallel algorithm is executed by multiple threads
of execution at the same time. Each thread seeks for the best
transformation vector, p

𝑝
, in a section of the rotation interval,

Ψ
𝑝

∈ Ψ. The complete rotation interval, Ψ, is divided into 𝑝

disjoint intervals, Ψ
1
, Ψ
2
, . . . , Ψ

𝑝
, so that

Ψ
1
, Ψ
𝑝2

, . . . , Ψ
𝑝

⊂ Ψ,

Ψ
1

∪ Ψ
2

∪ ⋅ ⋅ ⋅ ∪ Ψ
𝑝

= Ψ,

Ψ
𝑖

∩ Ψ
𝑗

= 0, for 𝑖 ̸= 𝑗.

(14)

One transformation vector, p
𝑝
is found for each rotation

interval subset, Ψ
𝑝
. The cross-correlation algorithm is then

applied again to find the most appropriate transformation

Reference scan
Scan match

Figure 6: Scan matching verification 1.

Reference scan
Scan match
Reference raster

Scan match raster
Intersection raster

Figure 7: Raster map representation.

vector, p = (𝑥
𝑀

, 𝑦
𝑀

, 𝜔
𝑀

), from all locally matched transfor-
mation vectors, p

𝑝
.

5. Experiments and Results

In order to verify the proposed scan matching algorithm, a
test and simulation platform was conceived. The application
was implemented in C# and linked to a LMS 100 laser sensor
to allow an online testing and verification. The application
provides a user interface that displays the LiDAR scans
and provides a well-designed environment for computational
experiments and their evaluation. Figures 6, 7, and 8 are
screen captures, taken directly from the application.

5.1. Basic Verification. A verification of the proposed cross-
correlation method in a real-world experiment is shown in
Figure 6. The screen capture shows a test scan, displayed
by the dark-gray dots, that is visually well aligned with a
reference scan, outlined by the light-gray dots. An auxiliary
numerical similarity degree, 𝜆, of two rasterized scans, based
on their mutual overlap, is used to easily evaluate the results
of the scan matching process. It is defined as the ratio of
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Figure 8: Dynamic objects robustness.

the cells that occur in both matched scans and the total
number of cells in the raster.

The similarity degree of the two scans, displayed in
Figure 6, is equal to 38%. Even though the corresponding
transformation vector, p = (0, 2000, −48

∘

), matches the real
translation and rotation of the mobile robot, the experiments
clearly confirm that the proposed approach is robust and
copeswell evenwith large changes in translation and rotation.
Another example of two correctly matched scans is shown
in Figure 7. This figure also demonstrates another feature of
the test environment, the reference rasters of both scans, and
their intersection. The transformation vector of this example
is p = (−600, 400, −158

∘

) and the degree of similarity, 𝜆, is in
this case equal to 46%.

5.2. Robustness to Dynamic Objects. An important advantage
of the proposed algorithm is its robustness towards dynamic
objects (e.g., animals, people, and vehicles) in the envi-
ronment. More specifically, dynamic objects are previously
nonexisting entities that had appeared in the environment
between the reference scan and the current scan. The per-
formed experiment demonstrates the ability of the proposed
algorithm to deal with objects that appear in the vicinity of
the robot. It examines how the number of dynamic objects
and their location relative to the sensor affect the results of
position estimation. The direction and speed of the objects is
not considered in this experiment because the main impact
on the position estimation is caused by the obstruction of the
sensor’s angular field of view.

The experiment started with a reference scan of the envi-
ronment without any dynamic objects. Then, five obstacles
were distributed around the sensor randomly in a 2-meter
distance to simulate a dynamic scene with moving objects.
The distance between the objects and the sensor was then
reduced to 1.5, 1.0, and 0.5 meters, respectively. After every
change, a LiDAR scan was performed and matched with
the original reference scan. The results of this matching are
displayed in Table 1. It shows that the presence of multiple
moving objects does not affect the results of the matching
algorithm until the distance dropped to 0.5 meters. Although

Table 1: The dynamic objects robustness verification in zero posi-
tion.

𝑥 (mm) 𝑦 (mm) 𝜔 (∘) 𝜆 (%) 𝑥 (mm) 𝑦 (mm) 𝜔 (∘) 𝜆 (%)
5 obstacles 2m 5 obstacles 1m

0 0 0 77 0 0 0 53
0 0 0 69 0 0 0 53
0 0 0 70 0 0 0 56
0 0 0 76 0 0 0 61
0 0 0 72 0 0 0 59

5 obstacles 1.5m 5 obstacles 0.5m
0 0 0 67 0 0 0 34
0 0 0 67 0 0 0 21
0 0 0 64 3000 3200 28 11
0 0 0 65 3000 3200 38 7
0 0 0 63 0 0 0 27

Table 2: Dynamic objects robustness verification in position
[630, 800].

𝑥 (mm) 𝑦 (mm) 𝜔 (∘) 𝜆 (%) 𝑥 (mm) 𝑦 (mm) 𝜔 (∘) 𝜆 (%)
5 obstacles 2m 5 obstacles 1m

600 −800 30 44 600 −800 30 33
600 −800 30 45 600 −800 30 29
600 −800 30 44 600 −800 30 30
600 −800 30 40 600 −800 30 25
600 −800 30 38 600 −800 30 23

5 obstacles 1.5m 5 obstacles 0.5m
600 −800 30 44 600 −800 30 26
600 −800 30 41 1000 −400 38 21
600 −800 30 37 400 3200 34 18
600 −800 30 35 600 −800 30 38
600 −800 30 31 600 −800 30 23

the scan similarity degree, 𝜆, changed with every scene
change, zero translation and rotation were reported. This
is a correct result since the position of the sensor did not
change during the experiment. When the distance between
the sensor and the moving objects dropped to 0.5 meters, the
visibility of the environment fell below an acceptable thresh-
old and an incorrect translation and rotation were calculated.
This also illustrates another property of the proposed scan
matching algorithm: if the difference between the reference
scan and the current scan is above certain threshold, the scan
matching ends with an incorrect result. The higher the speed
of the robot is, the faster this happens.

Table 2 shows the results of an extended version of this
experiment. The sensor was again surrounded by a set of five
objects, approaching its original location. However, it was
relocated between the LiDAR scans this time. Also in this
case, the proposed scanmatching procedureworked correctly
until the distance between the sensor and the moving objects
fell to 0.5 meters. The experiment is illustrated by a screen
from the test environment shown in Figure 8.
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Table 3: Time cost comparison.

𝐵
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Figure 9: Time consumption comparison.

5.3. Computational Costs of the Algorithm. In order to assess
the practical time requirements of the proposed algorithm
and to compare themwith a standard scanmatchingmethod,
ICP, a large number of LiDARmeasurements and scanmatch-
ings were performed by bothmethods.The experiments were
performed on a laboratory laptop with an Intel� Core� i5-
3360M CPU @ 2.80GHz and 8GiB of main memory. The
results of 1,000measurements andmatchings are displayed as
a box plot in Figure 9 and statistically evaluated inTable 3.The
columns in Table 3 represent the lower and upper adjacent
values (𝐵

𝐷
and 𝐵

𝑈
) and first (𝑄

0.25
), second (𝑄

0.50
), and

third quartile (𝑄
0.75

), respectively. It shows that the typical
execution time of the proposed algorithm is between 16ms
and 30ms. That makes it approximately 10 times faster than
the ICP method.This comparison shows that it is suitable for
an online usage.

5.4. Measurement Error. The accuracy of the localization,
based on the proposed cross-correlation method, was com-
pared with the ICP localization in a series of experiments. In
general, absolute error, defined by

𝜖 = 𝑋
𝑚

− 𝑋actual, (15)

and relative error, given by

𝛿 =
𝑋
𝑚

− 𝑋actual
𝑋actual

, (16)

were evaluated. In the above, 𝑋
𝑚
is a measured value of an

arbitrary variable and 𝑋actual is an actual quantity of this

Table 4: Absolute and relative error comparison.

Corr. ICP
𝜖 (mm) 𝛿 (%) 𝜖 (mm) 𝛿 (%)

𝐵
𝐷

−100 −4.23 −16.99 −4.00
𝑄
0.25

−50 −0.99 −4.00 −1.11
𝑄
0.50

0 0 0 0
𝑄
0.75

50 1.41 5.01 0.85
𝐵
𝑈

100 4.92 12.39 3.61

variable.The accuracy of the proposedmethodwas compared
to the ICP when determining the translation between two
LiDAR scan.

The experiment started by taking a reference scan of
the environment in an initial location. Then, the robot was
moved ahead in a sequence of 5 cm steps. 100 scans were
executed at each step and matched to the reference scan.
The distance from the initial location ranged up to 8m. The
cell size in the correlation algorithm was set to 200mm.
The actual translation, 𝑋actual, was measured manually by an
accurate tape meter.The results of this experiment are shown
in Figure 10 and summarized in Table 4. Together, they show
that the upper adjacent value of the absolute error, which is
taken as a representative value of this measure, was ±100mm
for the cross-correlation method and between −16.99mm
and 12.39mm for the ICP algorithm.

Figure 10(b) shows the distribution of the relative mea-
surement error obtained by the proposed method and the
ICP. Although the absolute error of the ICP is significantly
lower, the relative errors of both algorithms are comparable.
It is caused by the fact that the ICP was not able to match
the scans after the distance from the initial point increased to
more than 2 meters.Therefore, no valid comparison between
the cross-correlation and the ICP is available for these longer
distances and the relative errors turn out similar. The upper
and lower adjacent values of the population of all measured
relative errors obtained by the cross-correlationmethod were
−4.23% and 4.92%, respectively.

6. Conclusions and Future Work

A new scan matching algorithm based on cross-correlation
is proposed and evaluated in this work. It was devised as
an efficient mobile robot localization method with high
accuracy and low computational costs. Extensive practical
experiments, conducted within the scope of this research,
have shown that the proposed algorithm is able to match
LiDAR scans with a high accuracy and is robust towards
dynamic changes in the environment and moving objects.

The proposed method is computationally lightweight,
suitable for the use in low-power mobile devices, and
has no special requirements on sensor subsystems. It has
been extensively tested and compared with a standard scan
matching method, ICP. The comparison has shown that it
is approximately 10 times faster and has a wider operating
range. The disadvantages of the proposed method include
the relatively rough resolution of the obtained transformation
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Figure 10: Error comparison: (a) absolute error, (b) relative error.

vectors, slightly higher relative error (approx. 5%), and the
need to set a fixed resolution of the raster. Raster resolution,
suitable for the employed LiDAR sensor and the intended
application, was set to 200mm.

This work can continue in several directions. Advanced
methods for real parameter optimization, including, for
example, bioinspired optimization metaheuristics [39], can
be employed to determine the optimum scan matching
parameter vector. The resolution of the proposed method
can be improved by seeking an optimum raster cell size
with a good trade-off between time complexity andmatching
accuracy.
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