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Abstract 

The paper presents the numerical solution of gas flow in a spiral heat exchanger, which 

flowing water is heated. Gaseous combustion products are derived from the combustion of natural 

gas in micro-turbine, which reaches tens of power [kW]. The paper defines a mathematical model of 

gas flow in the exchanger, including consideration of heat transfer through the conductive spiral heat 

exchanger. Conductive heat exchanger areas are different wall and the insulation layer that surrounds 

the heat exchanger itself. Inlet boundary conditions for gas and water were got from the experimental 

measurements. Then defined mathematical model was solved numerically in programming software 

ANSYS Fluent13. The results of numerical simulations are presented in the basic distribution of 

current values in the individual sections of exchanger. Subsequently, variables are evaluated to 

determine the energy analysis of the heat exchanger. 

Abstrakt 

Příspěvek prezentuje numerické řešení proudění spalin ve spirálovém výměníku tepla, kterým 

se ohřívá proudící voda. Plynné spaliny jsou získány ze spalování zemního plynu V mikroturbíně, 

která dosahuje výkonu řádově desítky [kW]. V příspěvku je definován matematický model proudění 

spalin ve výměníku včetně uvažování přestupu tepla skrz vodivé oblasti spirálového výměníku. 

Vodivými oblastmi výměníku tepla jsou jednotlivé stěny a vrstva izolace, která obklopuje samotný 

výměník. Vstupní okrajové podmínky pro spaliny a vodu byly získány na základě experimentálního 

měření. Definovaný matematický model byl následně řešen numericky V programovém prostředí 

ANSYS Fluent13. Výsledky numerické simulace jsou prezentovány rozložením základních 

proudových veličin V jednotlivých řezech výměníkem. Následně jsou vyhodnoceny veličiny 

K stanovení energetické analýze výměníku tepla. 

1  INTRODUCTION 
This paper deals with the possibility of using waste heat gases that are produced by small 

micro-turbine using numerical modeling in programming environment ANSYS Fluent13. One way to 
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increase the thermal efficiency of energy processes based on combustion of gaseous fuels is design of 

various types of heat exchangers that use waste heat produced by combustion in various stages of 

energy process. By comparing the heat exchangers of various structures are examined in a number of 

authors [1], [2] who have just pointed out to design heat factor, particularly in relation to a reduction 

in pressure loss of flowing air. Efforts to increase the thermal (or overall) efficiency of the process are 

mainly located in the field of heat directly from the combustion equipment such as casing 

microturbine or combustion chamber. 

Little attention is now devoted to the possibilities of obtaining the residual heat from the 

combustion of small and medium-sized micro turbines. There are studies that focus on heat transfer, 

depending on the thickness of the wall heat exchange surface, the shape of ribs and their number. 

Similarly is conceived the design of heat exchanger due to the size or efficiency of energy units. 

Waste gases, although already a large part of its potential transmit the intake combustion air, but still 

contain a relatively large portion of heat which is not used. Reducing the temperature of outgoing 

gases at the outlet of the vent (chimney) can provide increased heat, respectively overall efficiency of 

the process, which is undeniable contribution to the energy. Energy recovery of waste heat and 

reducing gas flow temperature of outgoing gases (flue gases) into the atmosphere is also a positive 

environmental benefit. 

Among partial benefits include utilization of part waste heat for heating water and reduce gas 

outlet temperature of the atmosphere during application in cogeneration units. This paper provides 

information about the newly proposed type exchanger. It is a heat exchanger, where heated fluid 

(water) flow through the spiral pipe flows and cooled gas flow in interior space heat exchanger. 

a characteristic of the spiral heat exchanger is shown in Fig 1. The figure shows the inputs and 

outputs of individual media. Subsequently, from the flow of water in spiral tube is clear that heat is in 

some stage as same stream in the next phase as opposite stream flow, so it is not a classic same 

stream or opposite stream flow of heat exchanger. 

 

Fig. 1 The geometry of the spiral heat exchanger (water-gas). 

The actual design of spiral heat exchanger is shown in Fig 2. The picture shows a spiral heat 

exchanger, including the supply and exhaust gases. Then from the picture is visible inlet and outlet of 

heated water and itself micro-turbine is captured to burning natural gas. 

 

Fig. 2 Spiral heat exchanger including a turbine. 
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Mathematical modeling of fluid flow includes real now widely applied in many industry 

applications (From the metallurgical industry, chemical industry to environmental issues). In this 

paper a mathematical model is characterized by flowing gaseous mixture and water in the spiral heat 

exchanger. a characteristic of the heat exchanger is described above. In addition, in the mathematical 

model of heat transfer is considered the individual heat exchanger walls, and defining by their 

thickness and material properties. Moreover, outer layer of insulation is considered as the by creating 

a conductive area in which is taken into account the calculation of heat transfer. Insulation layer is 

shown in Fig 1. Current approaches to solving the problems are presented by several authors [3], [4]. 

2  DEFINITION OF MATHEMATICAL MODEL OF GAS AND WATER FLOW 
Based on the characteristics of the issue of gas and water flow in the heat exchanger is defined 

turbulent Realizable k- model with heat transfer. Below are defined the basic balance equations of 

a mathematical model: 

Mass equation: 
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Momentum equations: 
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where: 

p  - the pressure   Pa  

  - the dynamic viscosity  sPa  

t  - the turbulent viscosity   sPa  

 Equation of turbulent kinetic energy: 
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where: 

k  - the turbulence kinetic energy 

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k  - the empirical constant   , 1k  

kG  - the generation of turbulence kinetic energy due to the mean velocity gradients 

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bG  - the generation of turbulence kinetic energy due to buoyancy 
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MY  - the dilatation dissipation term 
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Generation of turbulence kinetic energy due to the mean velocity gradients kG , generation of 

turbulence kinetic energy due to buoyancy bG , and dilatation dissipation term MY  are defined in [6]. 
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Equation rate of dissipation: 
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where: 
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Defined equations represent the basic equations describing the turbulent flow of real fluids. 

Other equations in the resulting mathematical model are equations of energy, heat transfer equations 

in conductive areas (insulation) and the equation for the transfer of gaseous species, see [5], [6]. 

The resulting mathematical model of a spiral heat exchanger can be described as a 3D 

stationary mathematical model of turbulent flow of gaseous mixture and water and heat transfer when 

the flow of gaseous mixture is considered as compressible. Gas flow through heat exchanger is 

composed of (CO2, H2O, N2, O2). Calculation of the gas density is defined by the ideal gas equation 

for compressible gas. Other physical properties (viscosity, specific heat capacity, thermal 

conductivity) for gas mixtures are defined by mixing laws. With regard to the calculation of heat 

transfer from the gas through wall spiral pipe into the water is considered the actual wall thickness of 

pipe including the physical properties of wall material. Furthermore, in the heat exchanger model is 

considered as an insulating layer of material as conductive area with defined physical properties 

(density, specific heat capacity, thermal conductivity). 

3  DEFINITION OF PHYSICAL PROPERTIES AND BOUNDARY CONDITIONS 

Physical properties 
In the final mathematical model of a spiral heat exchanger is defined gaseous, liquid and 

solids material. If we define the gas flow then gaseous mixture contains of carbon dioxide (CO2), 

water vapor (H2O), nitrogen (N2) and oxygen (O2). As the heated liquid is water (H2O). Solid 

materials are stainless steel (wall heat exchanger), copper (spiral tube) and Sibral (heat insulation). If 

we define the gaseous mixture flow then mixture is defined as compressible flow, ie. calculate the 

density of the gaseous mixture is defined by the ideal gas equation according to the following 
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The remaining physical properties of the gas (viscosity, specific heat capacity and thermal 

conductivity) are defined by the mixing laws are discussed in [6]. 

For heated water we defined density   , viscosity   , specific heat capacity  pc  and thermal 

conductivity    by piecewise linear functions. 

 

In the case of density    we defined the following density functional formula for the 

calculation: 
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Similarly we define the functional formula of the remaining physical properties of OO. 

Then we define the physical properties of solid materials (Sibral, stainless steel and copper) that are 

listed in Tab. 1. 

Tab. 1 Physical properties of solid materials. 

Material Stainless steel Copper Sibral 

Density   [kg·m-3] 8030 8978    130     

Specific heat capacity pc  [J·kg-1K-1] 502 381    950     

Thermal conductivity   [W·m-1K-1] 40 387.6 0.07 

Boundary conditions 
The corresponding boundary conditions have to be defined on the individual boundary of 

computational model of the heat exchanger. In the spiral heat exchanger is used three types of 

boundary conditions: 

 

 inlet boundary conditions – mass-flow boundary conditions ("mass-flow-Inlet") 

 outlet boundary conditions – pressure boundary conditions ("pressure-outlet") 

 walls - ("wall") 

 

Inlet boundary conditions are defined for the inlet gas and water into a spiral heat exchanger 

as shown in Fig 1. Inlet boundary conditions are defined as mass-flow ("mass-flow-Inlet"). Sizes of 

inlet parameters on the inlet flow areas for the individual media are defined by measurement. If we 

define the gas mass flow  1 skgQm , temperature  CT   and mass fractions  /i
Y  of gaseous 

components of flue gases. For water we define the water mass flow  1 skgQm  and temperature 

 CT  . Sizes of inlet parameters are listed in Tab. 2. Outlet boundary conditions are defined as the 

pressure ("pressure-outlet"), which define the zero pressure, and then discharge into the atmosphere. 

Marking the output boundary conditions for gas and water are similarly shown in Fig 1. 

 

Tab. 2 Specification of inlet boundary conditions. 

 Gases Water 

Mass flow rate  1 skgQm  0.211565 0.05 

Temperature  CT   291     13  

Mass fractions of species  /i
Y  0223.0

2
COY , 0176.0

2
OHY  

1997.0
2
OY , 7604.0

2
NY  

 

  

The remaining boundary of spiral heat exchanger model is defined as the walls. For walls of 

the heat exchanger we defined stainless steel and for pipe spiral wall we defined copper. With regard 

to defining the calculation of heat transfer we corresponding to specify the thickness of walls, which 

were obtained from the actual heat exchanger, see Fig. 2. 
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4 RESULTS OF NUMERICAL SIMULATION 
In the first phase are evaluated graphical outputs of the numerical simulation of temperature 

distribution in the longitudinal section and cross sections of heat exchanger. Location longitudinal 

section and cross sections are shown in Fig. 3. 

 
 

Fig. 3 Schematic representation of each section to evaluate.  

 

  

Fig. 4 Temperature field in the longitudinal 

section (T[°C]). 

Fig. 5 Temperature field in the cross sections 

(T[°C]). 

Temperature field in a longitudinal section through the center heat exchanger is shown in 

Fig. 4. Temperature range is 291°C to 16°C. The maximum temperature of 291°C corresponds to 

inlet gas temperature (white color) and towards the exit of gas temperature decreases (dark color). 

The Fig. 5 shows the temperature field in four cross sections. Temperature range is 291°C to 13°C. 

The maximum temperature again corresponds to the inlet gas temperature (white color) and minimum 

temperature of 13°C corresponds to the inlet water temperature. Cross sections show that the gas 

temperature gradually decreases towards the outlet (darker color). Area of minimum temperature 

(around 13°C) is shown in cross section (in the flow of water spiral tube), which passes just beyond 

the inlet of cold water (13°C) to the heat exchanger.  

In the second stage, variables are evaluated to determine the energy analysis of the heat 

exchanger. Based on numerical simulation in software ANSYS Fluent 13.0 are the inlet and outlet to 

a heat exchanger for the gas and water evaluated following physical quantities (mean temperature 

Ts [°C] and specific heat capacity cp [J·kg-1·K-1]), see. Tab. 3. 

  

Tab. 3 Evaluated physical quantities at the inlet and outlet flue gas and water. 

 Mean temperature Ts [°C] Specific heat capacity cp [J·kg-1·K-1] 

Gas at the inlet 291      1055.3 

Gas at the outlet 221.85 1039.5 

Water at the inlet 13      4188.4 

Water at the outlet 71.85 4190.6 

Inlet of gas 

Outlet of gas 

Inlet of water 

Outlet of water 

Cross sections 
Longitudinal section 
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Then the energy analysis is determined of the heat exchanger. Energy analysis is based on the 

calorimetric equation that describes the heat exchange of two bodies. Calorimetric equation assumes 

immobile body. The equations of index c it means heated fluid (water) and index h means cooled 

fluid (gas). 

 
 II
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where:  

cp
c

,
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t  - inlet of hot fluid (gas)  C  

0

h
t  - outlet of cooled fluid (gas)  C  

I

c
t  - inlet of cold fluid (water)  C  

0

c
t  - outlet of heated fluid (water)  C  

 

The above defined quantities are evaluated from numerical simulations in Tab. 3. The mass 

flow rates of gas and water are defined in Tab. 2. 

After substituting into relation (7) we get for water: 

     W12332134.418885.716.419005.0
,,

00

,  II

cmc ccpccp
tctcQP  

After substituting into relation (7) we get for gas: 

     W16180291.3.105585.2215.1039211565.0
,,

00

,  II
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If the system was completely isolated, so the powers of cooled and heated fluids were 

identical. This does not apply in this case, because as the lower wall heat exchanger is not insulated, 

spiral tube is partially led out outside the heat exchanger, etc. .. The heated fluid (water) power cP  is 

positive, because the outlet water temperature is higher than the inlet I

cc
tt 0 . In other words, heated 

fluid receives heat, so power is positive. The cooled fluid (gas) is the conversely outlet temperature 

lower than the inlet I

hh
tt 0 , power hP  is so negative, because fluid heat surrenders. In absolute terms, 

however, these powers positive achievements. The difference between these performances is a power 

dissipation of the heat exchanger  W38481233216180  chZ PPP . 

5  CONCLUSION 
Article a detailed define 3D mathematical model the flow of gaseous combustion products and 

water in a spiral heat exchanger including a heat conduction and convection. In the introduction is 

characterized by a spiral heat exchanger, which behaves as same stream and opposite stream flow 

heat exchanger. The following chapters the basic balance equations are defined by a mathematical 

model, including physical properties and boundary conditions. The values of the inlet boundary 

conditions for gas and water have been defined based on experimental measurements. The results of 

numerical simulations are presented by the temperature fields, which are evaluated in longitudinal 

section and in the center of heat exchanger and in the cross sections. From graphical output can be 

seen cooling of flow gas, when the gas at the inlet has the temperature T = 291°C. Gas temperature in 

the outlet section is in the range T = 123°C - 270°C and mean temperature is Ts = 221.85°C. In the 

second stage, variables are evaluated to determine the energy analysis of the heat exchanger (Mean 

temperature Ts [°C] and specific heat capacity cp [J·kg-1·K-1]) at the inlet and outlet for gas and water. 
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Subsequently, from the calculated heat flow (heat, which receives water and heat which, divert gas) is 

the heat loss  W3848ZP .  

The work was supported by project of Ministry of Environment (MŽP ČR) SPII2f1/27/07 

„Minimalizace emisní zátěže kogenerační jednotky výzkumem technologických postupů pro využití 

V komunální sféře“. 
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