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Abstract

This paper summarizes the methods and results of error modelling and propagation analyses in the Olse
and Stonavka confluence area. In terrain analyses, the outputs of the aforementioned analysis are always a
function of input. Two approaches according to the input data were used to generate field elevation errors which
subsequently entered the error propagation analysis. The main goal solved in this research was to show the
importance of input data in slope estimation and to estimate the elevation error propagation as well as to identify
DEM errors and their consequences. Dependencies were investigated as well to achieve a better prediction of
slope errors. Four different digital elevation model (DEM) resolutions (0.5, 1, 5 and 10 meters) were examined
with the Root Mean Square Error (RMSE) rating up to 0.317 meters (10 m DEM). They all originated from a
LIDAR survey. In the analyses, a stochastic Monte Carlo simulation was performed with 250 iterations. The
article focuses on the error propagation in a large-scale area using high quality input DEM and Monte Carlo
methods. The DEM uncertainty (RMSE) was obtained by sampling and ground research (RTK GPS) and from
subtraction of two DEMs. According to empirical error distribution a semivariogram was used to model spatially
autocorrelated uncertainty in elevation. The second procedure modelled the uncertainty without autocorrelation
using a random N(O,RMSE) error generator. Statistical summaries were drawn to investigate the expected
hypothesis. As expected, the error in slopes increases with the increasing vertical error in the input DEM.
According to similar studies the use of different DEM input data, high quality LIDAR input data decreases the
output uncertainty. Errors modelled without spatial autocorrelation do not result in a greater variance in the
resulting slope error. In this case, although the slope error results (comparing random uncorrelated and empirical
autocorrelated error fields) did not show any statistical significant difference, the input elevation error pattern
was not normally distributed and therefore the random error generator realization is not a suitable interpretation
of the true state of elevation errors. The normal distribution was rejected because of the high kurtosis and
extreme values (outliners). On the other hand, it can show an important insight into the expected elevation and
slope errors. Geology does not influence the slope error in the study area.
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Abstrakt

Tato praca zhina metédu a vysledky modelovania chyb a analyzu Sirenia chyb vo vypocte sklonov
z DMR ziskanych LIDAR-om v skimanej lokalite okolia sutoku riek Olse a Stonavka. V terénnych analyzach
vystupy uvedenej analyzy su vzdy funkciou vstupu. Na generovania pola vyskovych chyb boli pouzité dve
rozdielne metddy podla vstupnych dat. Modelované chyby v nadmorskych vyskach nasledne vstupovali do
analyzy Sirenia chyb. Hlavnym cielom prace bolo tak ako aj poukazanie na vyznam kvality vstupnych dat vo
vypocte sklonov a odhad $irenej chyby z nadmorskych vySok v sklonoch tak aj identifikacia chyb v DMR aich
dopad. Zavislosti chyb boli vyhodnotené hlavne pre lepsi odhad chyby v sklonoch. V simulaciach boli pouzité 4
vstupné DMR s rozlisenim 0.5, 1, 5 a 10 metrov s RMSE chybou do 0.317 metra (10 m DMR). Vsetky DMR
boli ziskané z mra¢na bodov ziskanych LIDAR metodou zberu dat. Sirenie chyb bolo modelované pomocou
stochastickej simuldcie Monte Carlo s 250 iterdciami. Clanok sa zameriava na §irenie chyb z vysoko presnych
vstupnych dat na malom uzemi. RMSE chyba bola ziskand v prvom pripade z dat ziskanych terénnym
prieskumom (RTK GPS) av druhom pripade z porovnania dvoch kvalitativne rozdielnych DMR. V prvom
pripade sa vypoditali chyby vo vyskach pomocou nahodného generatora chyb bez autokorelacie chyb. V druhom
pripade sa s pomocou semivariogramu namodelovalo autokorelované pole chyb vo vyskach. Pouzitim vhodnych
Statistik boli odvodené vysledky simulacie a overené stanovené hypotézy. Tak ako sa ocakavalo chyby
v sklonoch st vyssie s zvySujicou sa chybou v nadmorskych vyskach. Tiez zavislosti chyb od vypoéitanych
sklonov boli preskiimané, kde sa potvrdila zavislost' chyb na sklonoch. Na druhej strane geoldgia nemala ziaden
vplyv na chybu v sklonoch. Chyby namodelované bez autokorelacie nevedu vo vicsine pripadov k Statisticky
vyznamnej odchylke. Vzhladom vSak k rozmiestneniu chyb v priestore (vysoka autokorelacia, zamietnutie
normalneho rozdelenia pre vysoku Spicatost’ a extrémne hodnoty) nie je tato metéda vhodna. Napriek tomu dava
dobr moznost’ nahliadnutia do o¢akavanej chyby v sklonoch a nadmorskych vyskach.

Key words: Uncertainty, Error propagation, Monte Carlo simulation, LIDAR-derived DEM, Slope
estimation.

1 INTRODUCTION

Although many studies in the field of digital elevation model uncertainty and its error propagation were
carried out, still there are some unacceptable assumptions about the expected error. Firstly, the DEM error
disappears with more precise data acquisition and an optimal interpolation algorithm. Secondly, the DEM error
is thought to be as small as not affecting the outputs of the analyses using a DEM input. Last but not least, DEMs
are assumed and used as error-free models of reality, even though the existence of elevation uncertainty and
gross errors are widely recognized [38], [19]. In the last decades, geomorphometry based on fine topscale DEMs
have become popular in environmental science [35]. The accuracy of a digital elevation model is particularly
important with its intended use [35]. So the misjudgements increased the importance of solving DEMSs
uncertainty and the error propagation problem. The awareness that uncertainty propagates through spatial
analyses and may produce poor results that lead to wrong decisions triggered a lot of research on spatial
accuracy assessment and data quality management in GIS (e.g. [33], [10] , [36], [2]) [34]. The information on the
uncertainties in results from Geographic Information Systems (GIS) is needed for effective decision-making.
Current GISs, however, do not provide this information [10], [14], [23]. Furthermore, there is the demand for
presenting a level of accuracy (precision) [23]. Thus the long term vision in the research in spatial data
uncertainty, accordingly DEM as well, was to develop a general purpose “error button” for generating
information systems (GIS) [2]. There are two main ideas how to implement this button. GIS could incorporate
the button into the product metadata [30] or in a more sophisticated solution the button is seen as user-dependent,
which offers various possibilities for refining the error model according to the user’s level of expertise [32]. The
first steps towards the vision became a reality with building a data uncertainty engine, which implements the
general framework for characterising uncertain environmental variables with probability models [34]. According
to the authors, many other research groups worked on the design of an ‘error-aware GIS’, but very few have
reached the operational stage. After the call for the development of geographical information systems that can
handle uncertain data lasting at least for twenty years, Heuvelink, developing the Data Uncertainty Engine
(DUE) engine, filled the gap [34]. Just the first step towards the solution of the error propagation problem was
made. The DUE must be further elaborated and improved. The sustained development of science and technology
brought and will bring new methods of data collection and processing. The DUE as another potential software
application, using different or the same approaches, has to adjust to the changes. The usage of massive high-
resolution DEMs based on the airborne light detection and ranging (LIDAR) renewed some assumptions. Two
important factors appear to explain the lack of scientific knowledge about the use of LIDAR DEMs in an
uncertain-aware terrain analysis. Firstly, it was commonly believed that the high quality of LIDAR DEMs [13],
[1], [20] will make the uncertainty-aware terrain analysis unnecessary. Secondly, uncertainty propagation studies
typically made use of simulation methods, such as simulated annealing and sequential Gaussian simulations [31],

GeoScience Engineering Volume LIX (2013), No.2
http://gse.vsb.cz p. 25-39, ISSN 1802-5420



27

that are unsuitable for massive data sets because of their poor scalability [38], [10]. The aim of this paper is to
analyse the aforementioned problems.

2 DEM ERRORS

Spatial uncertainty is defined as the difference between the contents of a spatial database and the
corresponding phenomena in the real world. Because all contents of spatial databases are representations of the
real world, it is inevitable that differences will exist between them and the real phenomena that they purport to
represent [27]. An error is defined as the difference between reality and a representation of reality. In practice,
errors are not exactly known. At best, the distribution of values is known. The chances that the error is positive
or negative are equal [12]. The paper follows the taxonomy in which an error is a measurable and well-defined
(no ambiguities and vagueness in data) part of uncertainty [25]. This is a justifiable choice because the semantics
of elevation do not suffer from conceptual ambiguities which are common in, for example, defining the error in
area-class maps [38]. The detailed process, by which the errors in a DEM are created, depends on the type of
DEM and how it was created. Whatever method is used, DEM estimates are affected by several error sources,
which can be grouped generally under three main classes: accuracy, density and distribution of data, surface
characteristics, and interpolation algorithms [11] [9]. Uncertainty in DEMs originates from two sources, errors in
the lattice (gross, systematic, random) and accuracy loss due to the lattice representation of the terrain [37].
There is a difference between positional and attribute uncertainty. The attribute uncertainty represents the
deviation from true state of height and the positional uncertainty the shift in the object’s position. Understanding
the uncertainty is essential to correct modelling. The most frequent error in standard DEM products is reported
as the Root Mean Squared Error (RMSE). Various methods have been used for estimating the RMSE. Most
recently it is supposed to be estimated by comparison of elevations between well located sites in survey of higher
accuracy with the elevation recorded in DEM at a minimum of 20 test points. The test points may be contour
lines, bench marks, or spot elevations [8]. RMSE is based on the following formula:

RMSE = 1 Z:(Zn_h)z (@)

where z is the elevation recorded in the DEM; h is the elevation measured with higher precision and n is
the total number of tested locations (at least 20). The Gaussian error model (a mean is the estimate of true values
and a standard deviation is a measure of the uncertainty) makes only the most general assumptions about the
processes by which the error accumulates. [15]. To achieve an improved estimate of the error for any particular
area, a set of measurements made with higher precision is required, at best having another DEM of the same area
with higher precision. In this case, it is possible to compare all values [9]. The spot heights and DEM or both
DEMs have to be constructed separately; the independence is strictly required. When additional information is
available about the structure of errors in the data set, the Gaussian model should be replaced with a substituting
more accurate pattern of error (non-stationary or stationary spatial dependent random error field). According to
previous studies (e.g. [7] [10] [15] [17] [24] [32] [36]), DEM errors are spatially correlated; autocorrelation is a
natural characteristic of the error data. Hunter distinguished three cases of spatial dependences. Case one is
spatial independence (r = 0). The elevation of each point is considered to be spatially independent of its
neighbours (r = 0). In other words, the knowledge of the error present at one point provides no information on
the errors present at neighbouring points, even though the elevation may have similar values. The elevation
realization h at a x, y location is achieved by disturbing each observed elevation z at the same location by an
independent disturbance term N (0, RMSE), which is a normally distributed random variable with a mean 0 and
standard deviation RMSE (Eq. 2):

Ny = Z0cyy + N(0,RMSE) ©

(xy)

Case two is spatial dependence (limit r =1). At the other extreme, spatial autocorrelation reaches its
maximum. All errors are perfectly correlated, and there is only 1 degree of freedom in effect in the disturbance
field being applied to the DEM. It is unlikely that any DEM production process would generate a systematic
error in elevations. Case three is spatial dependence (0 < R < 1). The case of positive correlation less than 1 is
clearly most realistic [15] and the disturbance N(0,RMSE) is spatially correlated to a certain range following the
fitted error model. Exponential and Gaussian [38] spatial autocorrelation models were selected to represent the
correlation of the DEM error in the DEM uncertainty propagation studies. First exponential and later Gaussian
models were found to be realistic and suitable for topography [31]. The study investigates the type of the model,
range and the spatially independent random error pattern [10].
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2.1 Error propagation analysis

There are two main approaches to the error propagation of a continuous variable: the analytical and the
numerical error propagation. The analytical error propagation method uses an explicit mathematical model to
describe the mechanisms of error propagation for a particular multi-criteria decision rule [6]. In numerical
methods, the calculations are not made with exact numbers. Numerically generated random data sets are used
instead of exact numbers. Usually they are generated on a computer in case of too complicated data or a physical
model for analytical approach. In this study, the simulation of error was made stochastically using a Monte Carlo
simulation. This method is further subdivided into unconditioned and conditioned models [5]. Unconditional
error simulation models are based on the number of realizations of random functions. At their most basic level,
they comprise an algorithm to select independent and uncorrelated values drawn from a normal distribution
which can be added to the original DEM. The problem with unconditioned simulations is that they still make the
assumption that the pattern of error is uniform over the study area or a wider region. Conditional error models
directly honour observations of error at the sample locations. Such observations might have been obtained by
comparison between the DEM and a higher accuracy reference data set collected from the same area [5]. In else,
the parameters of an error model vary depending on the specific location. Comparing the results of using
different methods of error modelling, the best method, which gives widely implementable and defensible results,
is that based on a conditional stochastic simulation [9]. The most common uncertainty propagation analysis
approach makes use of a Monte Carlo stochastic simulation [22]. The utilisation of a Monte Carlo simulation,
which is the most flexible method for investigating the propagation of uncertainty in terrain analysis, is time-
consuming [17]. Despite this drawback the unconditional Monte Carlo simulation was used to propagate the
error. Tab. 1 shows the computation time cost for one simulation [10] modelled by the software R.

Tab. 1 Computational time for modelling one error pattern

DEM resolution Number of points Elapsed Time

10x 10 263 520 2 min 21 sec

5x5 1051997 40 min 57 sec

1x1 26 289 516 17 days 2 hrs

1x1 1275630 1 hr 1 min 38 sec
0.5x0.5 5051130 16 hrs 54 min 33 sec

Although the area is relatively small (11.26 km? respectively 1.25 km?) and the relative difference in
elevation less than 45 meters, the empirical error pattern was investigated to find out an anomaly or a trend
within. None of it was found in the error pattern. The outline of the Monte Carlo simulation is shown in Fig. 1
(used SW ArcGIS, own programming in C++ to calculate statistics). In simulations the initial DEM was used
(with a resolution of 0.5, 1, 5, 10 m). This DEM was considered as an error free representation of the true state of
elevation. Next the “error free slope” slope estimate was calculated. Then DEM error patterns were generated
according to the initial DEM and error model attributes. The initial DEM was perturbed with the generated
random error field (with and without autocorrelation). The resulting DEM had the essential properties of both the
error pattern and the initial raster. Thus 500 realizations of DEM (250 both with and without autocorrelation)
were generated and subsequently slope estimates were derived from alternative DEMs. The set of error patterns
in slopes was calculated as the difference between the error free slope and the particular alternative slope. Using
appropriate statistics the results of the simulation were derived. In some cases the absolute error value had to be
used instead of the error value [10].
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Fig.1 Outline of Monte Carlo simulation, here 1) denotes input DEM, 2) SLOPE calculated from 1 3) generated
DEM ERROR, 4) Alternative DEM, 5) Alternative slope, 6) Error in slope, 7) Statistics.

2.2 Algorithm of slope computation

A variety of methods can be used to estimate the slope from DEM. Weighted least squares fit of a plane
to a 3x3 neighbourhood centred on each point is the most amenable to a mathematical analysis of error
propagation [15]. Most of the GIS SWs (including the most used ArcGIS) use this method to compute the slope
from a DEM. In this paper, we decided to follow the aforementioned method’s algorithm. The output slope
derivate can be calculated in degrees (angular unit Eq. 8) or percentage (Eq. 7). The chosen units were degrees.
The slope in degrees is calculated multiplying the slope in radians with 57.29578. The slope calculation (Fig. 2)
is based on the change of height (rise) in the direction of x and y direction (run) - mathematically the first partial
derivation of z in x and y axes. Thus the slope (Eq. 5) is determined by the rate of change (Beta) in both
horizontal (HD Eq. 3) and vertical (VD Eq. 4) directions from the centre cell (E).

0z
HD=— 3
o 3)
VDza—Z 4
oy

The approximation of the partial derivatives was made by a third-order finite difference method (Eq. 5
and 6) [18]. The method uses the 3x3 neighbourhood (Fig. 3) of the elevation values obtained in the raster
around the centre cell. The distance between the elevation points denoted as wand represents also the cell (pixel)
size of raster [10].

A B C
D . F SLOPE LENGTH

RISE
G H 1 .

RUN

Fig. 2 Left the 3x3 neighbourhood window of the centre cell E and right the rise, run and beta description.
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The influence of data precision on the derived slope is highly related to grid resolution. While using a
high-resolution DEM (e.g. 1 m grid resolution), the influence of data precision becomes quite significant. DEM
resolution determines the level of details of the surface being described. It naturally influences the accuracy of
derived surface parameters. On the other side, usually the DEM error caused by data precision level is quite
minimal, except in flat areas where the rounding errors could be significant [Zhou, Liu, 2004]. The precision
significance was investigated as well, to prove or reject. We tried to minimize the rounding error because of flat
areas [10].

3 STUDY AREA

The error propagation was carried out along a 5.9 km stretch of the Olse River and a 3.2 km stretch of the
Stonavka River. Both river sections are located in the northeast region of the Czech Republic near its border with
Poland [16].The area is located south of the town of Karvina in the north-eastern part of the Moravian-Silesian
Region. The area is 5.544 km in length and 2.281 km in width spaced. After the area affected with gross error
was eliminated, a total area of 11.262 km? remained. Because of gross errors and uncertainty in the data
collection process caused by the atmosphere, three parts of the area (west) had to be clipped. Due the time-
consuming computational method the 1.250 km? large study was used in case of a higher precision data input
(Fig. 3). The elevation of the area varied between 211 and 256 (respectively 216 to 227 for small area) meters
over the sea level. The slope varied from 0°to 85° (respectively 0 to 67 degrees). The average slope values (1.95°
to 3.9° respectively 3° to 3.5°) and the data histograms revealed flat characteristics of the surface with few steep
slopes [10].

0 375 750 1500 M
T T

®  Points ZU 1960
®  Points ZU 2006
Measured points (RTK method)
|:| Boundary of small study area
|:| Boundary of study area

Fig. 3 Study area and measurement point locations for RMSE computation
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4 DATABASE CREATION

The GIS database comes from various sources, each having its own level of uncertainty, depending on the
specific technique used to acquire it [14]. The input data used to create the DEM in this study were obtained
using the LIDAR method (Light Detection and Ranging). The Swedish company TopEyeAB, working with the
MK-I1I laser system of its own design, carried out flights over the research area. The system consisted of a laser
scanner with a 50 kHz frequency, the Inertial Navigation System (INS) and the Global Positioning System (GPS)
systems. The optical portion of the scanner deviated the laser beam into circular traces. The system was equipped
with the Rollei digital air camera with a 16-megapixel resolution (4080 x 4076 pixels). The scanning was carried
out on the D-Hahn helicopter carrying the MKII-S/N 804 system at an altitude of 250 m [16]. The DEMs (0.5, 1,
5 and 10 m resolution) were computed independently of each other from a particular acquired LIDAR data point
cloud. The density of all data points was 19 points per square meter. The density of terrain points was 9 points
per square meter. The points were classified into three categories: terrain, vegetation under and over 3.5 meters
high. The RMSE in input data were calculated two times for every DEM to make the comparison of possible
inputs. First the error values were calculated subtracting the DEM from the DEM with higher precision
(resolution). The 0.2m resolution DEM was used for the 0.5m resolution DEM. Then the RMSE (0.317 for 10 m,
0.156 for 5 m, 0.04 for 1 m and 0.035 for 0.5 meter resolution) was calculated from the error values of the whole
area. This RMSE values were compared with the result of the second computation which was computed from 49
point measurements in the study area (Fig. 3). 22 of 49 points were created by CUZK (Land Survey Office of
Czech Republic) without any given information of the data gathering method and accuracy. The second RMSE
computation had a higher RMSE, which was effected by the location (sinking ground of mining area) of the 49
points. These are also not representative for the whole area and location. The 49 points were located often in
error prone surfaces (roadsides, river bank sides). The 10m resolution RMSE difference takes 5.7 cm (0.374 for
49 points and 0.317 for LIDAR), which is 17 % of the total value of the LIDAR RMSE. In other cases, it was
even worse (5 m—14.1cm, 1 and 0.5 m — 24.9 cm). It is necessary to mention that the LIDAR DEM of higher
accuracy showed a certain uncertainty too. LIDAR RMSE results were taken to fit the spatially uncorrelated
error pattern as a consequence of a better representation of the continuous empirical error pattern. The
autocorrelated error pattern was made by investigating the empirical elevation error (Chapter 5.1).

4.1 Simulation of random fields

The input error field was made by the investigation of the empirical error pattern obtained with the
aforementioned method (Chapter 2). The error propagation was modelled both with and without a spatially
autocorrelated error field. The real state of nature was other than the expected theoretical state. First, there is an
unjustified assumption that the mean error is zero [37]. The error mean statistics were close to zero, but all of
them were rejected as statistical zeroes using a t-test hypothesis test in the Statgraphics software (Tab. 2).

Tab. 2 DEM error statistics (Number of Elevation Points (samplings), Error Mean [meters], Standard Deviation
of Error [meters], and Maximum Absolute Error [meters])

DEM resolution NUMBER OF POINTS MEAN STD. MAX ABS ERROR
DEVIATION
10x 10 263 520 -3.2 10 0.692 11.942
5x5 1051 997 -1.2 10° 0.362 12.053
1x1 26 289 516 2.3 10° 0.085 9.567
0.5x0.5 83 963 724 1.0 10° 0.008 1.597

The best fit of the elevation error pattern is to follow the empirical model [9]. If the difference between
the elevation in the DEM and the actual surface (which equals the error surface) is done, the error surface should
have a large positive autocorrelation [26] [28] [29] [30]. It is assumed that the RMSE over the study area is
constant or spatially autocorrelated, which was confuted in previous researches (Fisher, Oksanen etc.). Although
the total area is 11.262 km? small and according to the terrain surface and the aforementioned research results
(RMSE should be constant), it was necessary to divide it into smaller subareas, where this statement was proved.
Any significant difference in parameters (range, partial sill and nugget) was not found. The area was searched for
trends. But none of them was found. The best fitted model was the Stable one. According to previous researches
the Exponential and Gaussian models were chosen to fit the pattern as well. The Gaussian and Spherical models
had almost the same results, but the Gaussian one better fitted the closest averaged values and that is why it was
chosen (Tab. 3, Fig. 4, Fig. 5). The appropriate shape of the model was not so critical as the computed
autocorrelation parameters.
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DEM Lag Size [m] Num. of Lags Nugget [m] Partial Sill [m] Range [m]
resolution
10x 10 10 12 0.254 0.163 52.925
5x5 5 12 0.068 0.042 31.100
1x1 1 12 8.7 10" 3.310° 8.178
0.5x0.5 0.5 12 3.210° 2.710° 3.897
2 Model: 0.0011657 * Nugget + 0.0049435 * Gaussian(13.752)
Nugget =0.001
Partial Sill = 0.005
1m7 Range =13.752
Lag Size =3.61
Number of Lags = 12
0847 +*
0678 +
+
0.508 / & ol * ¥ *
0.339 /
R =
0 0354 0788 1181 1575 1963 2363 2757 315 3544 3938 41332
= Mode! 4+ Averaged Distance (Meter), h 10"
Fig. 4 Gaussian error model for 1x1m resolution DEM
¥ 103 Model: 0.000031757 * Nugget + 0.000027221 * Gaussian (3.8974)
Nugget = 0.000031
Partial Sill =0.000027
0511 Range=3.8974

Lag Size =0.54434
Number of Lags =12
0383

0.255

0.128

+

+
0 0.5%4
= lModel = Averaged

+
1188 1781 2375 2963 3563 5538 6.532

Distance (Meter), h

Fig. 5 Gaussian error model for 0.5x0.5m resolution DEM

The theoretical Gaussian models were used to model the fields; Fig. 8 depicts the difference between the
spatially correlated and uncorrelated random fields (10 m DEM). The error fields were modelled 250 times for
each DEM to perform the Monte Carlo simulation. The outputs of the aforementioned stochastic error
propagation (Fig. 1) are mentioned in the following chapter results. The theoretical Gaussian error model of
0.5m resolution (Fig. 5) opens a question about the threshold; whether it is reasonable to use a spatially
autocorrelated model or just white noise [10].
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10x10_random1

Value
High : 1.3729

10x10_1

Value
High : 1.24269

Low : -1.3336

Low : -1.31369

Fig. 6 Left uncorrelated white noise (10x10_rndom1) and right spatially correlated random error field (10x10_1)
of 10 m DEM; randomness represented by granulation (left) and clustering of shades of grey (right) are
obviously different instances and also inputs of error propagation analyses.

5 RESULTS

The error propagation results are summarized in Tab. 4. For example, in case of 10x10 m DEM the error
input is expected to be 1.11° (respectively 0.66° without spatial autocorrelation) large slope error (the mean of
the means in column 5). For 5x5 m it is 1.08° (0.64°), 1x1 m 1.24° (0.78°) and for 0.5x0.5 m 2.18° (1.39°). The
greatest difference was in case of the 0.5x0.5m DEM resolution. The results are represented in absolute values.
The behaviour of the error when the value x and its opposite value —x represent the same deviation from the real
state of nature, made this representation possible. It is more natural to see the errors in positive values and it
enables better interpretations. The most representative number in the evaluation of errors, then it is the mean.
Fifty spot samples were randomly selected to prove the insignificant difference between the slope error result
derived from the inputs with and without autocorrelation [10] (Statgraphics SW).

Every spot sample has 250 alternative values which were used to compute a mean and standard deviation. Two
sample F test (standard deviation) and two sample t rest (mean) were used. The null hypothesis was set to: There
is no difference in the standard deviations (respectively a means) and the alternative hypothesis to: There is
statistically significant difference between the standard deviations (means). For example for the 1x1m resolution
we discovered that 46 in 50 cases for the mean, respectively 43 in 50 for the standard deviation do not differ
significantly. The errors without spatial autocorrelation do not result in a greater variance in the resulting slope
error (Oksanen got the same results). Although some statistically significant deviations (small values of slope
error means related to steeper surfaces and almost half of the values in case of 0.5x0.5m resolution) were found,
it is possible to state that majority of the results computed from the elevation field without autocorrelation is
slightly underestimated. Thus, it is possible that the use of less appropriate input data can lead to approximate the
estimation of slope error, which is slightly underestimated [10].

The outliners have to be also incorporated in the error model which was not done due to the lack of time. The
outliers were investigated only in the case of 10x10m resolution DEM (Fig. 9). They were connected with
specific land cover types — steep slopes of roadsides, dump sides and river banks. The RMSE of the modelled
elevation error pattern increased to 0.300 m by incorporating the outliners, which is close to the RMSE of the
empirical elevation error pattern (0.317). The average mean decreased from -3.2 102 to -2.9 10°°. The outliers
were almost uniformly distributed with a mean value of -2.15 for the negative (respectively 2.06 for positive)
outliers. Incorporating the outliers increased the average error slope from 1.11° to 1.24° [10].

The influence of elevation error was investigated comparing the LIDAR DEM with the photogrammetric DEM
of the same 10x10m resolution and area. As expected the error in slopes increases with the vertical error in
elevation. Using the LIDAR input for the 10m DEM the average slope error decreased to 78.36 % of the
photogrammetric input [10].
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Tab. 4 Error propagation results [m or °] (Particular DEM, Input DEM error standard deviation for all elevation
values, DEM RMSE, Output Slope absolute error statistics according to cells — mean, min, maximum, standard
deviation)

DEM Auto- Error in DEM Output Slope absolute error [degrees]
resolution correlation s. d. RMSE Mean Min Max standard deviation
10x 10 Yes 0.692 0.317 0.61-234 | 0-0.37 1.85-8.44 0.43-1.40
10 x 10 No 0.692 0.317 0.38-1.30 0-0.28 1.17-4.93 0.28 - 0.86
5x5 Yes 0.362 0.156 0.38-2.27 | 0-0.37 1.43-8.92 0.29-1.48
5x5 No 0.362 0.156 0.22-1.29 0-0.32 0.63-4.55 0.18 - 0.85
1x1 Yes 0.085 0.04 0.94- 1.58 0-0.55 2.69-5.95 0.43-0.88
1x1 No 0.085 0.04 0.58-1.44 | 0-0.36 0.92-5.75 0.21-0.87
0.5x0.5 Yes 0.008 0.035 164-280 | 0-0.97 | 341-11.25 0.79-1.59
0.5x0.5 No 0.008 0.035 0.54-259 | 0-0.76 0.72 10.65 0.17-1.56

Every spot sample has 100 alternative values which were used to compute the mean and the standard deviation.
Two sample F test (standard deviation) and two sample t rest (mean) were used. The null hypothesis set to:
There is no difference in the standard deviations (respectively means) and alternative hypothesis to: There is
statistically a significant difference between the standard deviations (means). For example for the 1x1m
resolution we discovered that 49 in 50 cases for the mean, respectively 47 in 50 for the standard deviation do not
differ significantly (Tab. 5 shows 5 examples). The errors without spatial autocorrelation do not result in a
greater variance in the resulting slope error (Oksanen got the same results). Therefore, it should be challenged, if
the error propagation without spatial autocorrelation represents sufficiently the true state of nature of the error
representation. In else, we proved that the DEM error input without autocorrelation does not result (few
exceptions) in a greater error estimate of slope. The 0.5x0.5m resolution DEM error input is critical; it leads to
more inequalities. This phenomenon should be further investigated to understand the reason [10].

Tab. 5 Two sample F-test respectively t-test for 5 spots. The hypothesis (Hg) (sigmal/sigma2 = 1.0) concerning
the ratio of the standard deviations of one spot sample of 100 observations for F-test, and the hypothesis
concerning the difference between the means (meanl-mean2 = 0.0, sigmal and 2 input needed too) for t-test.
(both 95.0% confidence level, P-value 0.05 and less rejects Hy) [10].

Random Slope | Autoco | White Noise Hypothesis Test:

Sample rvalue Value F(t) Statistics P-v. Null Hypothesis
1 std. deviation 17.536° 0.322 0.314 (F) 1.052 | 0.803 Do not reject, ratio = 1
2 std. deviation 11.232° 0.396 0.400 (F)1.051 | 0.803 Do not reject, ratio = 1
3 std. deviation 5.950° 0.407 0.416 (F) 0.957 | 0.828 Do not reject, ratio = 1
4 std. deviation 0.137° 0.442 0.392 (F)1.271 | 0.234 Do not reject, ratio = 1
5 std. deviation 0.226° 0.502 0.322 (F)2.435 | 1.10° Do reject, ratio <> 1
1 mean 17.536° 0.798 0.795 (t) 0.067 | 0.947 | Do not reject, difference =0
2 mean 11.232° 0.787 0.778 (t) 0.200 | 0.841 | Do not reject, difference =0
3 mean 5.950° 0.769 0.817 (t) -0.825 | 0.410 | Do not reject, difference = 0
4 mean 0.137° 1.117 1.155 (t) -0.643 | 0.521 | Do not reject, difference =0
5 mean 0.226° 1.008 0.894 (t) 1.911 | 0.057 | Do not reject, difference =0

Although the result of input error without autocorrelation did not show a greater aberration, it is not
suitable for modelling the elevation error pattern. In fine topscale and microscale (Oksanen 2005) scales, the
error patterns have large positive autocorrelation. Furthermore, in our case the outliers are responsible for the
rejection of the Gaussian distribution. The outliners also have to be incorporated into the error model, which was
not done due to the lack of time. The average variance and mean of the errors in slopes is not strictly increasing
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with steepness of the slope (e.g. Fig. 7). This causality should be further investigated; one of the reasons is the
insufficient number of samples with a steeper slope. The prevailing spatial distribution of slopes in study is also
partially captured in the mean slope error (Fig. 7, Fig. 8). The input based on the empirical elevation error (AC)
describes better the error pattern and leads to a more realistic and accurate spatial distribution of slope errors
according to the slope in the study area. The white noise (WN) input error field is closest to AC in a minimum
slope error distribution. Linear planar surfaces (roads etc.) are inadequately propagated. Planar surface is the
most error prone type. According to similar studies (Fisher, Goodchild etc.) using different DEM input data, the
high quality LIDAR input data decreases the output uncertainty. In our case, the autocorrelated model fitted the
error surface with exception of its outliers. Extreme values are higher in case of the theoretical model with
autocorrelation; a random number generator produces smaller extreme values as well. Autocorrelation also
expands the standard deviation of extreme values. On the one side, the extreme elevation error values were found
to be clustered around the steepest slopes, on the other side, the steeper slopes has a smaller slope error result
with the same elevation error input. The range of the fitted empirical error model (49.6 for 10x10, 31.1 for 5x5,
13.8 for 1x1 and 3.9 for 0.5x0.5) was decreasing with a higher resolution. We do assume that there should be a
specific resolution limit value where the range is close to 0. Geostatistical modelling is very time consuming. We
had to decrease the extent for the 0.5x0.5 and 1x1 meter resolution inputs. To compute one 1x1meter DEM
resolution error pattern (21 983 304 values in 5964 rows and 3686 columns) took 12 days and 17 hours (using 30
GB RAM and 4 processors Intel(R) Core (TM2)2 Quad CPU Q9300, 2.5 GHz). This computation requires a
super-computer.
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Fig. 7: Slope error dependent variable (vertical axis) vs. Slope independent variable (horizontal axis) (WN
randomly generated white noise, AC autocorrelation input according to empirical error pattern) showing the
decrease in slope error with increasing slope
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Fig. 8 Left the slope estimate (5x5 LIDAR DEM) and right the stochastic Monte Carlo result of an average slope
error for cells in a 5x5m resolution. The flat plain areas are the most error prone surfaces and have black colour
in the slope error image
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min AC min WN mean AC mean WN

Fig. 9 The statistics important to reconstruct the slope error distribution - mean, a variance (var), minimum (min)
and maximum (max) for 10x10m slope errors calculated from the autocorrelated input (AC) and the white noise
input (WN); the darker the colour, the higher the slope error value and the more planar the surface (see fig. 6).
The distribution of errors is normally distributed with the mean and variance (resp. standard deviation) value,
outliers represent the maximum and minimum value. These inputs are necessary to the best description of the
possible error in the result.

5 DISCUSSION

Although a lot of research has been made in the uncertainty and error propagation field over the last
decades, still many questions left unanswered. In this study, we focused on clearing antagonistic results provided
by Oksanen and Fisher. Oksanen declared that slope errors modelled without autocorrelation do not show worse
results. In else, the slope derivate has not a maximum variation with a spatially uncorellated random error. On
the other side, Fisher declared that the slope derivate computed from the uncorrelated random error is a worse
result because of a poor input elevation error representation. We found out that Oksanen is right. Fisher is correct
about the poor representation and that the research area should be always investigated before analysed. We were
not able to completely ascertain the character of the pattern error. Definitely, the underlying error pattern was
found. Some irregular outliners appeared which have to be incorporated. The next step should be the
investigation of the outliners. The empirical error model and the modelled error model have to be subtracted and
the product investigated (external data may help too — underlying geology, terrain roughness, land use, etc.). The
resulting pattern is an addendum to the underlying error pattern. There can be more functions describing local
shapes of error pattern. Sum of all functions (patterns) gives the resulting error pattern. We found that there
should be a threshold value, which in case of high precision and resolution data do not require the usage of
autocorrelation in error surface (in case of the high precision LIDAR data input and a relatively small area).

It is true that any given input data carry an error value significant enough to change the resulting slope — even the
high precision micro-scale LIDAR DEM. The results obtained with DEM inputs of the same resolution and
acquired with other methods (photogrammetric) could be used for a better comparison and calculation of the
exact LIDAR improvement in slope error estimation. Other software tools should be used to prove the simulated
reality with gstat. Because of the time demanding computational process, less consuming processes should be
investigated for the error pattern simulation, e.g. a fuzzy approach. The software development and new
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supercomputers could be another solution. There is still a doubt, pros and cons, whether the unconditional
Gaussian or sequential Gaussian simulation has to be used, how to model a non-stationary error field in larger
areas and what it is dependent on?

It is necessary to remember the main reason for dealing with the uncertainty: decreasing the risk that the
outcome will be incorrect and will lead to wrong decisions. This study was made as an error propagation
background to inundation area delineation with a GLUE method in the area. The processing of airborne
hyperspectral data introduces an uncertainty which is sufficient to change the product. To know the uncertainty
in the result is important in crisis management and other fields. Sometimes even one degree in slope can change
the situation and flooded area.

6 CONCLUSIONS

The main goals were fulfilled. Thus, the error assessment is an inevitable part of every result presentation.
The deviations or the uncertainty of outputs, which we have to be taken into account, should be presented.
Although there are high quality input data, they also introduce a certain uncertainty which can lead to a change
in decisions and have further consequences. So the use of high quality data does not make the uncertainty
analyses unnecessary.
Regarding to similar studies using different DEM input data, the high quality LIDAR input data decrease the
output uncertainty. The comparison with photogrammetric data input in our study area proved and emphasised
the statement that increased precision in input data decreases the uncertainty in result.
Although the result of input error without autocorrelation did not show a greater aberration, it does not interpret
and reflect the properties of real error pattern. In fine topscale and microscale scales, the error pattern has large
positive autocorrelation and its distribution is not the Gaussian one. In our case, the outliers (extreme values) are
responsible for the rejection of the Gaussian distribution. These outliers were investigated and reasoned. The
normal distribution was rejected because of the high kurtosis as well. Therefore, the realization of a random error
generator is not suitable interpretation of the true state of elevation errors. On the other side, it can show an
important insight into expected elevation and slope error. It is possible to improve the error result using
dependencies (in our case between slope error and slope, elevation error outliers and specific land use types) and
the fact that the error result (for random white noise input) is slightly underestimated. Geology does not
influence the slope error in the study area.
The underlying error pattern has to incorporate the outliers too. If there are any of them, then the sources of them
must be found. The simulated error pattern has to be as closest as possible to the empirical one. Error
propagation is irrelevant without a proper reconstruction of the empirical input error pattern. The research area
should be always investigated before analysed.
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RESUME

Clanok sa zaobera §irenim neistdt obsiahnutych vo vyskovych datach. Na jednej strane ¢&lanok
predstavuje vyznamny zdroj informacii o teorii $irenia chyb a zakonitosti neistét v nadmorskych vyskach. Na
druhej strane predstavuje vyznamny zdroj informacii o skutoénych odchylkach v redlnych datach na uzemi
Ceskej Republiky. Prave na zaklade vysledkov je mozné urobit’ si tisudok o moznych chybach vo vyskovych
datach. Podobné informacie o presnosti dat su vel'mi doleZité a pritom sa bezne neuvadzaju ako vo svete tak aj
v datach publikovanych v ¢eskom a slovenskom regione. V teoretickej Casti je mozné najst spdsob ako
vypocitat’ neistotu a nasledne aj modelovat’ jej Sirenie vo vypocte sklonov pomocou stochastickej metody Monte
Carlo. Ta sa da jednoducho prispdsobit’ aj vo vypoéte ostatnych charakteristik odvodenych z DMR jednoduchou
modifikaciou algoritmu. Vysledky tejto $tudie nemaji obdobu v regione Ceska a Slovenska (s vynimkou
publikacii tohto autorského kolektivu na konferenciach SDH v Bonne a Sympéziu GIS Ostrava), aj ked’ podobné
Stadie nie su vynimo¢né vo svetovom meradle.
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