
VŠB – Technická univerzita Ostrava
Fakulta elektrotechniky a informatiky

Katedra informatiky

Netradiční výpočty zobecněných
inverzí matic

Unconventional computations of
generalized inverses

2015 Jan Pacholek









Rád bych na tomto místě poděkoval Doc. RNDr. Radku Kučerovi,Ph.D., vedoucímu mé
bakalářské práce, za cenné rady, připomínky, za čas strávený při konzultacích a odkazy
na zdroje informací a bez něhož by tato práce nevznikla.



Abstrakt

V tomto textu se budeme zabývat inverzními maticemi a jak takové matice spočítat. Poté,
pomocí podobného algoritmu, zkusíme spočítat zobecněné inverze matic, které jsou reg-
ulární. Budeme hledat způsob, kterým převedeme singulární matici na regulární, aby-
chom mohli spočítat její inverzi a poté jak najít blok takové inverze, který bude právě
onou zobecněnou inverzí. Další věcí kterou zde zmíníme je aplikace zobecněné inverze
a její využití při řešení Stouksova problému.

Klíčová slova: zobecněná inverze, Moore-Penroseova pseudoinverze, Stouksův prob-
lém, inverzní matice

Abstract

This text deals with inverse matrices, where we discuss some of the ways how to calculate
an inverse to a matrix. Then, using a similar algorithm, we try to calculate generalized
inverses of matrices that are singular. We will find a way, how to make such matrix sin-
gular, so that it’s inverse can be calculated and then how a block of this inverse is the
generalized inverse. Another thing we are going to discuss is the application of general-
ized inverses in solving the Stokes problem.

Keywords: generalized inverse, Moore-Penrose pseudoinverse, the Stokes problem, in-
verse matrix



List of used abbreviations and symbols

R – set of real numbers
Rn – vector space of n-dimensional vectors
Rm×n – space of matrices of the type m× n
R(A) – range-space of A ∈ Rm×n,

i.e. R(A) = {x ∈ Rm : x = Ay, y ∈ Rn}
N (A) – null-space of A ∈ Rm×n, i.e. N (A) = {x ∈ Rn : Ax = 0}
I – identity matrix
0 – zero matrix, zero vector, or zero
MP – Moore-Penrose pseudoinverse
ChD – Cholesky decomposition
GChD – generalized Cholesky decomposition



1

Contents

1 Introduction 5

2 Inverse matrix 6

3 Generalized inverses 7

4 The Moore-Penrose pseudoinverse 9
4.1 Pseudoinverse based on the generalized Cholesky decomposition . . . . . 12
4.2 Implementation in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Application of the Moore-Penrose pseudoinverse 18
5.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Standard finite element approximation . . . . . . . . . . . . . . . . . . . . . 18
5.3 Discretizations with the TFETI . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 The solver based on the velocity-pressure elimination . . . . . . . . . . . . 20
5.5 Numerical experiments with the generalized inverses . . . . . . . . . . . . 24
5.6 Numerical experiments with iteration methods . . . . . . . . . . . . . . . . 28

6 Conclusion 30

7 References 31

Appendix 31

A Inverse matrix 32

B The Moore-Penrose pseudoinverse 33



2

List of Tables

1 Accuracy of our function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Accuracy of MATLAB’s function . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Accuracy of the MP pseudoinverse (using the block strategy) . . . . . . . . 25
4 Accuracy of the MP pseudoinverse (using the GChD) . . . . . . . . . . . . 25
5 Accuracy of the generalized inverse . . . . . . . . . . . . . . . . . . . . . . 27
6 Efficiency of BiCGSTAB (the MP pseudoinverse) . . . . . . . . . . . . . . . 28
7 Efficiency of BiCGSTAB (the generalized inverse) . . . . . . . . . . . . . . 28
8 Efficiency of CGM (the MP pseudoinverse) . . . . . . . . . . . . . . . . . . 29
9 Efficiency of CGM (the generalized inverse) . . . . . . . . . . . . . . . . . . 29



3

List of Figures

1 MP pseudoinverse in a block matrix . . . . . . . . . . . . . . . . . . . . . . 11
2 The matrix Mk, Lk, Uk, and Pk (without regularization) . . . . . . . . . . . 24
3 The matrix Mk, LMk

, UMk
, and PMk

(with regularization) . . . . . . . . . . 26



4

List of Source Codes

1 The generalized Cholesky decomposition - MATLAB function . . . . . . . 15
2 The action of the MP pseudoinverse - MATLAB function . . . . . . . . . . 15



5

1 Introduction

In this thesis we are going to deal with the generalized inverses of matrices. Based on
some of the algorithms that are used for calculating the inverses of regular matrices, we
will try to find a similar algorithm to calculate the generalized inverse. We are going to
compare different types of the generalized inverses and different ways how to calculate
them.

In section 2 we will briefly remind the reader what the definition of an inverse matrix
is, what is a non-singular and singular matrix and show an example of calculating an
inverse matrix. In section 3 we are going to define the generalized inverse, show got to
calculate them using the singular value decomposition and the QR decomposition.

Section 4 deals with the Moore-Penrose (MP) pseudoinverse, which is one kind of the
generalized pseudoinverse, with more strict properties. Using the null-space, we will
show how to turn a singular matrix into a non-singular one and, later in the section,
we will calculate an example and show how to calculate the MP pseudoinverse, using
a similar algorithm to calculating regular matrices. We will also mention a method to
calculate the action of MP pseudoinverse using the Cholesky decomposition, which we
will later implement in MATLAB and use to compute the actual MP pseudoinverse itself,
comparing it to other methods of calculations.

In the last section we will mention the application of the generalized inverse in the
Stokes problem. For the sake of completness and so that the reader can see, where the
generalized inverses are used, we will show how the Stokes problem, using the TFETI
approximation, is converted into system of linear equations and then compare several
types of the generalized inverses used to solve the system. By the end we should know,
what method of calculating the generalized inverse is the most effective, requires the least
iterations, and is the most precise.



6

2 Inverse matrix

Definition 2.1 Let A be a square matrix. If there exists a matrix B such that

AB = BA = I, (1)

then B is called the inverse to A. A square matrix, that has an inverse, is called non-singular. If
a matrix does not have any inverse, then it is called singular.

Theorem 2.1 For any nonsingular matrix A, there is an unique inverse matrix.

Proof. Let A be nonsingular and B, C be the inverse matrices to A such that

AB = I and AC = I .

From that follows
B = BI = B(AC) = (BA)C = IC = C.

We have shown that B = C, meaning that A has the unique inverse matrix.

We will denote the inverse matrix to A as A−1.

Example 2.1 We have the given matrix:

A =

2 −3 1
1 2 −1
2 1 1

 .

Our aim is to find it’s inverse A−1. To calculate the inverse, we will use the Gauss elimi-
nation with the identity matrix on the right side. By the end of the calculations, we will
have our matrix A replaced by the identity matrix and on the right by the inverse (for a
step-by-step solution, see Appendix A. So, the inverse to A is

A−1 =
1

12

 3 4 1
−3 0 3
3 8 −7

 .

To prove, that A−1 is truly an inverse matrix, it must satisfy (1). To do that, we would
have to calculate both equations mentioned in (1).



7

3 Generalized inverses

We have defined the inverse matrix to the square, non-singular matrix in the previous
section. But there exist generalized inverses to singular matrices and to matrices that are
not square. We are going to talk about these generalized inverses more in this section.

Definition 3.1 Let A be an arbitrary matrix. The generalized inverse to A is a matrix X such
that

AXA = A. (2)

If A ∈ Rm×n, then X ∈ Rn×m.

Theorem 3.1 The equality (2) is the neccessary and sufficient condition guaranting that

x0 = Xb

is the solution to any consistent linear system Ax = b, i.e the system with b ∈ R(A).

Proof. First, we prove the sufficiency. Let (2) hold and b = Ax̂. Then

Ax0 = AXb = AXAx̂ = Ax̂ = b.

Now we prove the necessity. Assume that x0 = Xb solves Ax = b, where b = Ax̂. Then

Ax̂ = b = Ax0 = AXb = AXAx̂.

We get (A−AXA)x̂ = 0 for any x̂. Using the unit vectors e1, e2, ..., en as x̂, we get (2).

Unlike inverse matrices, generalized inverses exist for any matrix, but they are not
unique. We are going to discuss several generalized inverses to A.

Definition 3.2 The singular value decomposition to A ∈ Rm×n is given as follows:

A = V Σ̂UT ,

where V ∈ Rm×m and U ∈ Rn×n are orthogonal and

Σ̂ =


Σ 0
0 0


∈ Rm×n,

where Σ = diag(σ1, σ2, ..., σs) and σi > 0, i = 1, ..., s are the singular values of A.

Remark 3.1 If s = m or s = n, then the last block row or block column in Σ̂, respectively,
is omitted.

Theorem 3.2 The matrix X = U Σ̃V T with

Σ̃ =


Σ−1 K
L M


is the generalized inverse to A with arbitrary matrices K, L and M of an appropriate type.



8

Proof. Using (2), we get the following equalities:

AXA = V Σ̂UTU Σ̃V TV Σ̂UT = V Σ̂Σ̃Σ̂UT = A,

since

Σ̂Σ̃Σ̂ =


Σ 0
0 0


Σ−1 K
L M


Σ 0
0 0


=


Σ 0
0 0


= Σ̂.

Generalized inverses may also be computed by the orthogonal (QR) decomposition
of a matrix. For the sake of simplicity, we restrict ourselves to the simplest variant of
the QR decomposition. The other variants are more involved, but principaly analogous.
Note that the QR decomposition is the Gram-Schmidt orthogonalization process on the
matrix level.

Definition 3.3 Let A ∈ Rm×n be a full column rank matix with m ≥ n. The QR decomposition
of A is given as follows:

A = QR,

where Q ∈ Rm×n is orthogonal and R ∈ Rn×n is upper triangular and non-singular.

Theorem 3.3 The matrix X = R−1QT is the generalized inverse to A.

Proof. Recall that QTQ = I . We get

AXA = QRR−1QTQR = QR = A.



9

4 The Moore-Penrose pseudoinverse

The Moore-Penrose (MP) pseudoinverse is a special kind of the generalized inverse. Un-
like generalized inverses, the MP pseudoinverse is unique for each matrix. In this and
the following sections, we are going to discuss some of the methods used to calculate the
MP pseudoinverse and it’s applications.

Definition 4.1 Let A ∈ Rm×n and X ∈ Rn×m. The matrix X is called the MP pseudoinverse
to A, if the following conditions hold:

AXA = A, XAX = X, (AX)T = AX, (XA)T = XA.

Theorem 4.1 For any matrix A ∈ Rm×n, there exists a unique matrix X , which satisfies Defi-
nition 4.1.

Proof. See [2].

The MP pseudoinverse is denoted by A+. The following lemma is introduced for
completness of our theory.

Lemma 4.2 Let A ∈ Rm×n, M ∈ Rm×l(AT ), and N ∈ Rn×l(A), where l(AT ) = dim N (AT )

and l(A) = dim N (A), be given and let RT
ATM,RT

AN be nonsingular, where RAT ∈ Rm×l(AT )

and RA ∈ Rn×l(A) are full rank matrices whose columns span N (AT ) and N (A), respectively.
Then

PM = I −M(RT
ATM)−1RT

AT , PN = I −N(RT
AN)−1RT

A

are the projectors for which:

R(PM ) = R(A),

N (PM ) = R(M),

N (P T
M ) = N (AT ),

R(P T
M ) = N (MT ),

R(PN ) = R(AT ),

N (PN ) = R(N),

N (P T
N ) = N (A),

R(P T
N ) = N (NT ).

Proof. See [2]



10

Theorem 4.3 Let M , N ∈ Rn×l, where l is the defect of A ∈ Rn×n, be such that RT
ATM,RT

AN

are nonsingular, where RAT , RA ∈ Rn×l are full rank matrices whose columns span the null-space
of A and AT respectively. Let us consider the following problem: find the pair (ū, λ̄) ∈ Rn × Rl

solving 
A M
NT 0


u
λ


=


b
0


, (3)

where b ∈ Rn. Then
ū = XM,Nb,

where XM,N is the generalized inverse to A, with the range-space equal to the null-space of NT

and the null-space equal to the range-space of M .

Proof. First we prove that the matrix in (3) is nonsingular. To this end we search for the
solution (u0, λ0) to the homogeneous system:

Au0 +Mλ0 = 0, (4)

NTu0 = 0. (5)

Multiplying (4) by RT
AT , we get RT

ATMλ0 = 0 implying λ0 = 0. Then (4) yields u0 belongs
to the null-space of A so that u0 = RAα0 for an appropriate α0 ∈ Rl. Substituting this
result into (5), we arrive at NTRAα0 = 0 that gives α0 = 0. Consequently we get u0 = 0
so that the nonsingularity is proved.

The first equation in (3) implies λ = (RT
ATM)−1RT

AT b and then

Aū = (I −M(RT
ATM)−1RT

AT )b = PMb.

Therefore
ū = XPMb+RAᾱ, (6)

where X is an arbitrary generalized inverse to A and ᾱ ∈ Rl. The second equation in
(3) implies ᾱ = −(NTRA)

−1NTXPMb. Substituting this result in (6), we get ū = (I −
M(RT

ATM)−1NT )XPMb = P T
NXPMb. The proof is complete.

Remark 4.1 If A ∈ Rn×n is symmetric, i.e. A = AT , then RAT = RA = R. Moreover,
if we put M = N = R, we get the MP pseudoinverse via (3). Let K denote the matrix
from (3). Since K is nonsingular, one can calculate it’s standard inverse K−1. The block
in K−1 corresponding to A in K is the MP pseudoinverse (see Figure 1).



11

R

RT

A

0

= K A+

= K−1

Figure 1: MP pseudoinverse in a block matrix

Example 4.1 We have the given matrix

A =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .

Using the knowledge from previous sections, we will calculate it’s MP pseudoinverse.
First, we need to create the matrix K. It is easy to see, that

R =


1
1
1
1

 ,

since AR = 0. Knowing this, we can create

K =


1 −1 0 0 1
−1 2 −1 0 1
0 −1 2 −1 1
0 0 −1 1 1

1 1 1 1 0

 ,

which gives us a nonsingular matrix. Using the Gauss elimination and extracting the
respective block from the final matrix, we arrive at the following pseudoinverse (for step-
by-step solution, see Appendix B):

A+ =


7
8

1
8 −3

8 −5
8

1
8

3
8 −1

8 −3
8

−3
8 −1

8
3
8

1
8

−5
8 −3

8
1
8

7
8

 ,

which satisfies all properties of Definition 4.1.



12

4.1 Pseudoinverse based on the generalized Cholesky decomposition

In order to work with the Cholesky decomposition, we need to define positive definite
and positive semi-definite matrices.

Definition 4.2 A matrix A ∈ Rn×n is called positive definite, if

xTAx > 0 ∀x ∈ Rn, x ̸= 0.

Definition 4.3 A matrix A ∈ Rn×n is called positive semi-definite, if

xTAx ≥ 0 ∀x ∈ Rn.

Now that we defined what a positive definite and positive semi-definite matrix is, we
can define what the Cholesky decomposition is.

Definition 4.4 Let A ∈ Rn×n be a symmetric, positive definite matrix. The Cholesky decompo-
sition (ChD) of A is given as follows:

A = UTU,

where U ∈ Rn×n is upper triangular with positive diagonal entries.

Definition 4.5 Let A ∈ Rn×n be a symmetric, positive semi-definite, and singular matrix. The
generalized Cholesky decomposition (GChD) of A is given as follows:

A = UTU, (7)

where U ∈ Rn×n is upper triangular with non-negative diagonal entries.

Let 1 ≤ l < n be the defect of A. Then U from (7) has exactly l zeros on its diagonal
and, moreover, all entries in the respective rows are zeros as well. Using an appropriate
permutation, the zero diagonal entries can be located at the end of the diagonal of U . For
the sake of simplicity we will use this modification of the GChD below.

If we have a symmetric positive semi-definite and singular matrix A, we can calculate
it’s pseudoinverse using the GChD. We suppose that

A =


UT
1

UT
2 0


U1 U2

0


=


UT
1 U1 UT

1 U2

UT
2 U1 UT

2 U2


,

where U1 ∈ R(n−l)×(n−l) is upper triangular and non-singular and U2 ∈ R(n−l)×l.

Lemma 4.4 The matrix R ∈ Rn×l, whose columns are the linearly independent basis of N (A) is
given as follows:

R =


−U−1

1 U2

I


.



13

Proof. We get

AR =


UT
1 U1 UT

1 U2

UT
2 U1 UT

2 U2


−U−1

1 U2

I


=


0
0


.

Furthermore,
RTR = U2U

−T
1 U−1

1 U2 + I

is symmetric, positive definite and, hence, non-singular. Therefore, the column-rank of
R is equal to l.

These results used in (3) lead to the following system: UT
1 U1 UT

1 U2 −U−1
1 U2

UT
2 U1 UT

2 U2 I

−UT
2 U

−T
1 I 0

x1
x2
λ

 =

b1
b2
0

 , (8)

with which we are going to work with further and ultimately reach a solution to calcu-
lating the pseudoinverse.

From the third row and the second row in (8), it is easy to see that

x2 = UT
2 U

−T
1 (9)

and
λ = b2 − UT

2 U1x1 − UT
2 U2x2, (10)

respectively. Now, if we express the first row from (8), we arrive at the following equa-
tion:

UT
1 U1x1 + UT

1 U2x2 + U−1
1 U2U

T
2 U1x1 + U−1

1 U2U
T
2 U2x2 = b1 + U−1

1 U2b2.

As a next step, we re-organize the equation to make it easier to work with

(UT
1 U1 + U−1

1 U2U
T
2 U1)x1 + (UT

1 U2 + U−1
1 U2U

T
2 U2)x2 = b1 + U−1

1 U2b2.

Now we substitute x2 from (9), re-organize the equation again and after extracting x1, we
arrive at:

(UT
1 U1 + U−1

1 U2U
T
2 U1)x1 + (UT

1 U2 + U−1
1 U2U

T
2 U2)U

T
2 U

−T
1 x1 = b1 + U−1

1 U2b2,

which changes into

(UT
1 U1 + U−1

1 U2U
T
2 U1 + UT

1 U2U
T
2 U

−T
1 + U−1

1 U2U
T
2 U2U

T
2 U

−T
1 )x1 = b1 + U−1

1 U2b2. (11)

After extracting UT
1 and U−1

1 U2U
T
2 from (11), we receive

[UT
1 (U1 + U2U

T
2 U

−T
1 ) + U−1

1 U2U
T
2 (U1 + U2U

T
2 U

−T
1 )]x1 = b1 + U−1

1 U2b2,

which can be re-written as

(UT
1 + U−1

1 U2U
T
2 )(U1 + U2U

T
2 U

−T
1 )x1 = b1 + U−1

1 U2b2 (12)



14

making it less confusing. Last step is to simply multiply both sides of (12) with U1 from
left, which will give us this final equation that we can further work with

(U1U
T
1 + U2U

T
2 )(U1U

T
1 + U2U

T
2 )U

−T
1 x1 = U1b1 + U2b2. (13)

To help us solve (13), we use the substitution y1 = (U1U
T
1 + U2U

T
2 )U

−T
1 x1 and solve the

following system of linear equations

(U1U
T
1 + U2U

T
2 )y1 = U1b1 + U2b2, (14)

which is easy to compute, since U1U
T
1 + U2U

T
2 will give us a positive definite square

matrix, meaning it can be solved by using the usual Cholesky decomposition. After we
have found our y1, we can use another substitution of z1 = U−T

1 x1 and solve another
system of linear equations, with the same left side as before

(U1U
T
1 + U2U

T
2 )z1 = y1. (15)

Then we need to only calculate x1 and x2, where

x1 = UT
1 z1,

x2 = UT
2 z1.

The process that has been described is called the action of the MP pseudoinverse
matrix. We divide it into two algorithmic schemes. In the first one, we create all the
necessary matrices from A.

ALGORITHMIC SCHEME 1 (PREPROCESSING):

Input : A ∈ Rn×n symmetric, positive semi-definite, and singular.
Step 1: Compute the GChD A = UTU .
Step 2: Identify in U the blocks U1 and U2.
Step 3: Compute ChD U1U

T
1 + U2U

T
2 = CCT .

Output : U1 ∈ R(n−l)×(n−l), U2 ∈ R(n−l)×l, C ∈ R(n−l)×(n−l).

Now, that we have created all the necessary matrices, we can continue with the rest of
the algorithm, where we get to the iterative part, which is the main purpose for creating
the matrices U1, U2, and C beforehand.

ALGORITHMIC SCHEME 2 (ACTION):

Input : U1 ∈ R(n−l)×(n−l), U2 ∈ R(n−l)×l, C ∈ R(n−l)×(n−l), b ∈ Rn.
Step 1: Split b such that b = (bT1 , b

T
2 )

T , where b1 ∈ Rn−l and b2 ∈ Rl.
Step 2: y1 = C−T (C−1(U1b1 + U2b2)).
Step 3: z1 = C−T (C−1y1).
Step 4: x = (zT1 U1, z

T
1 U2)

T .
Output : x = A+b ∈ Rn.

Remark 4.2 The presented algorithm is a variant of the rank decomposition method
(see [3]).



15

4.2 Implementation in MATLAB

While we implement our functions in MATLAB, we consider completely general situa-
tions including permutations.

The first thing that we need to do, is to compute U of the GChD using the LU de-
composition. In order to do that, we convert A to a sparse matrix first. This prevents
the permutation of rows caused by the LU decomposition. Now, that we have U , we di-
vide each row by the square root of its diagonal entry, giving us the new form of U from
GChD.

The next step is to identify the blocks U1 and U2. To identify the block matrix U1, we
can use the indeces of non-zero values on the diagonal of U , while using the indeces of
zero values to identify the block matrix U2, respectively. The last step of our function is
to compute the ChD of U1U

T
1 + U2U

T
2 .

function [U1,U2,C,ind] = preprocessing (A)
%Step1
A = sparse(A);
[L,U] = lu(A,0); d = diag(U);
for i = 1:numel(d)

if abs(d(i) ) <= 1e−7
d( i ) = 1/sqrt(d( i ) ) ;

else d( i ) = 0;
end

end
U = diag(d)∗U;
%Step2
ind = diag(U)~= 0;
U1 = U(ind,ind);
U2 = U(ind,~ind);
%Step3
C = chol(U1∗U1’+U2∗U2’,’upper’);

Code 1: The generalized Cholesky decomposition - MATLAB function

Now, all we have to do is to split the vector b appropriately and solve the systems of
linear equations.

function x = action(U1,U2,C,ind,b)
%Step1
b1 = b(ind) ; b2 = b(~ind);
%Step2
y1 = C\((U1∗b1+U2∗b2)’/C)’;
%Step3
z1 = C\(y1 ’/C) ’;
%Step4
x1 = (z1’∗U1)’; x2 = (z1’∗U2)’;
x(ind) = x1; x(~ind) = x2;

Code 2: The action of the MP pseudoinverse - MATLAB function



16

4.3 Numerical experiments

The following table shows the accuracy of our MP pseudoinverse calculated by Code
1 and Code 2. The MP pseudoinverses are assembled by our functions applied on the
columns of the identity matrix. The first column of the tables represents the size of matrix
A, which was randomly generated. The remaining columns represent the accuracy for
each condition of the MP pseudoinverse mentioned in Definiton 4.1.

From the first table we can see that the accuracy of our calculations is satisfying even
for bigger matrices. We need to mention that our calculations are affected by the round
errors, which cause inaccuracies while checking the fulfillment of the MP pseudoinverse
defining equalities.

Size of A AA+A = A A+AA+ = A+ (AA+)T = AA+ (A+A)T = A+A

5 2.04e-14 4.34e-13 2.68e-14 2.60e-14
10 5.84e-15 2.99e-14 5.51e-15 4.99e-15
20 8.43e-16 6.81e-17 1.92e-16 1.89e-16
40 1.47e-14 6.17e-15 3.02e-15 3.05e-15
80 4.23e-14 1.53e-15 3.62e-15 3.62e-15
160 9.69e-14 7.01e-16 1.97e-15 1.97e-15
320 9.60e-13 1.53e-14 2.32e-14 2.32e-14
640 1.56e-11 6.65e-15 1.01e-13 1.01e-13
1280 2.72e-13 2.09e-16 4.93e-15 4.93e-15
2560 1.31e-11 9.52e-15 2.02e-13 2.02e-13
5120 7.62e-12 1.05e-16 1.01e-14 1.01e-14

Table 1: Accuracy of our function



17

The next table represents the same tests as Table 1, only this time, we have used MAT-
LAB’s function pinv to calculate the MP pseudoinverse.

Size of A AA+A = A A+AA+ = A+ (AA+)T = AA+ (A+A)T = A+A

5 4.95e-16 1.27e-14 2.83e-15 1.73e-15
10 1.76e-15 1.31e-15 1.71e-15 5.26e-16
20 3.04e-16 2.80e-17 1.07e-16 1.27e-16
40 3.55e-15 5.88e-16 5.90e-16 5.01e-16
80 4.04e-15 2.40e-17 1.48e-16 2.49e-16
160 1.18e-14 2.17e-17 1.53e-16 1.44e-16
320 3.21e-13 2.37e-16 1.10e-15 6.70e-16
640 1.37e-15 3.62e-20 1.12e-17 7.16e-18
1280 6.35e-14 2.30e-19 2.95e-17 2.25e-17
2560 5.31e-13 1.40e-18 8.81e-17 5.80e-17
5120 1.59e-13 4.99e-20 1.06e-17 1.19e-17

Table 2: Accuracy of MATLAB’s function

If we compare both tables, we can see that MATLAB’s function offers a bit more ac-
curate results.



18

5 Application of the Moore-Penrose pseudoinverse

The action of pseudoinverse is used and needed in some of the engineering problems. In
this section, we are going to discuss the Stokes problem.

5.1 Formulation of the problem

Let Ω be a bounded domain in R2 with a sufficiently smooth boundary ∂Ω. We consider
a Stokes flow in Ω given by the equations:

−ν∆u +∇p = f in Ω, (16)
∇u = 0 in Ω, (17)

where u = (u1, u2) is the vector function describing flow velocity, p is the scalar pres-
sure function, f = (f1, f2) describes forces acting on the fluid, and ν > 0 is a kinematic
viscosity. We assume that the Dirichlet boundary condition is given on γ = ∂Ω:

u = uD on γ. (18)

It is well-known that the velocity is always unique and the pressure is only unique up to a
hydrostatic constant. To guarantee the uniqueness, we will also satisfy the zero pressure
average condition on the matrix level: 

Ω
p dx = 0. (19)

In next sections we introduce the finite element approximation based on P1-bubble/P1
finite elements and the algebraic problem arising from the TFETI domain decomposition
method.

5.2 Standard finite element approximation

We consider the finite element approximation based on P1-bubble/P1 FEM [4]. The alge-
braic problem arising from the finite element approximation reads as follows:

Find (u, p) ∈ Rnu × Rnp such that
A BT

B −E


u
p


=


b
c


,

(20)

where A ∈ Rnu×nu is the symmetric, positive definite stiffness matrix, B ∈ Rnp×nu is the
diveregence matrix, E ∈ Rnp×np is the stabilization matrix, b ∈ Rnu , c ∈ Rnp . We use
the following notation: np is the number of nodes, nd is the number of nodes with the
Dirichlet boundary condition, and nu = 2np − 2nd is the number of velocity components
corresponding to nodes belonging to the interior of Ω.

To quarantee the uniqueness of the solution of (20), we need one additional condition.
We prefer two choices.



19

(a) Prescribing zero pressure at the last node. The last row in B, E, c, and the last column
in E are omitted. We arrive formally at the linear system with the same 2-by-2 block
structure as (20), but now with the non-singular matrix. After computing the solution
component p̂ ∈ Rnp−1, we get the solution to (20) as p = (p̂T , 0)T .

(b) The zero pressure average condition. The algebraic representation of (19) reads as fol-
lows:

aT p = 0, (21)

where a ∈ Rnp . We arrive formally at the linear system with the same 2-by-2 block
structure as (20).

5.3 Discretizations with the TFETI

We consider the domain Ω divided into s non-empty, non-overlaping subdomains Ωk so
that

Ω =

s
k=1

Ωk.

The decomposition of the problem onto subdomains leads to the block diagonal struc-
ture of the stiffness matrix A, the divergence matrix B, and the stabilization matrix E as
follows:

A = diag(A1, . . . , As) ∈ R2np×2np ,

B = diag(B1, . . . , Bs) ∈ Rnp×2np ,

E = diag(E1, . . . , Es) ∈ Rnp×np ,

where Ak ∈ R2npk×2npk , Bk ∈ Rnpk×2npk , Ek ∈ Rnpk×npk , 1 ≤ k ≤ s. It follows easily that
Bk has full row-rank, Ek is symmetric, positive definite, and Ak is symmetric, positive
semidefinite, and singular. Note that npk is the number of nodes belonging to Ωk and
np =

s
k=1 npk is the total number of nodes. The analogous block structure exhibits also

the right hand side vectors:

b = (bT1 , . . . , b
T
s )

T ∈ R2np ,

c = (cT1 , . . . , c
T
s )

T ∈ Rnp ,

where bk ∈ R2npk , ck ∈ Rnpk , 1 ≤ k ≤ s. The continuity of the velocity and the pressure
components along interfaces of subdomains is enforced by the gluing matrix:

Bg = (Bg1, . . . , Bgs) ∈ Rmg×np ,

where Bgk ∈ Rmg×npk , 1 ≤ k ≤ s, and mg is the number of nodes, in which the continuity
is required (without redundancy). The Dirichlet boundary condition for the velocity is
ensured by the matrix:

Bd = (Bd1, . . . , Bds) ∈ Rmd×np ,



20

where Bdk ∈ Rmd×npk , 1 ≤ k ≤ s, and md is the number of nodes, in which the Dirichlet
boundary condition given by uD ∈ Rmd is required (without redundancy). One addi-
tional condition guarantees the uniqueness of the pressure solution component. We use
the same two choices as in the previous case, both realized by one Lagrange multiplier.

(a) Prescribing zero pressure at the last node. We consider the vector a := enp ∈ Rnp con-
taining one at the position of the last entry and zeros elsewhere.

(b) The zero pressure average condition. It is realized by the block vector a := (aT1 , . . . , a
T
s )

T ∈
Rnp , where ak ∈ Rnkp , 1 ≤ k ≤ s.

The algebraic representation in both cases is the same:

aT p = 0.

The algebraic problem arising from the TFETI approximation reads as follows:

Find (u, p, λu, λp) ∈ R2np × Rnp × Rmu × Rmp such that
A BT BT

u 0
B −E 0 BT

p

Bu 0 0 0
0 Bp 0 0




u
p
λu

λp

 =


b
c
uD
0

 ,
(22)

where mu = 2mg + 2md, mp = mg + 1, and

Bu =


Bg 0
0 Bg

Bd 0
0 Bd

 ∈ Rmu×2np , Bp =


Bg

aT


∈ Rmp×np .

5.4 The solver based on the velocity-pressure elimination

We consider in (22) an appropriate permutation leading to the following block partition
of this system : 

K BT
K

BK 0


ū
λ̄


=


b̄
ūD


, (23)

where K takes the form K = diag(K1, . . . ,Ks) with

Kk :=


Ak BT

k

Bk −Ek


, 1 ≤ k ≤ s.

The block BK ∈ R(mu+mp)×3np , the vector b ∈ R3np , and the unknown ū ∈ R3np are given
by the permutations of the blocks from Bu, Bp, from b, c, and from u, p, respectively, and
ūD = (uTD, 0

T )T ∈ Rmu+mp . The defect of each Kk is 2 and the matrix whose columns are
the basis to the null-space of Kk is given by

R̄k =

 e 0
0 e
0 0

 ∈ R3npk×2, 1 ≤ k ≤ s,



21

where e ∈ Rnpk is the vector of all ones. The matrix whose columns are basis to the
null-space of K reads as

R̄ = diag(R̄1, . . . , R̄s) ∈ R3np×2s.

The first equation in (23) is satisfied, when:

b̄−BT
K λ̄ ∈ R(K) (24)

and
ū = K+(b̄−BT

K λ̄) + R̄ᾱ (25)

for an appropriate ᾱ ∈ R2s. If we substitute (25) into the second equation in (23), we
arrive at

−BKK+BT
K λ̄+BKR̄ᾱ = ūD −BKK+b̄. (26)

Moreover, (24) is equivalent to

R̄T (b̄−BT
K λ̄) = 0. (27)

We have shown that (λ̄, ᾱ) ∈ Rmu+mp × R2s satisfies the dual system:
F GT

G 0


λ̄
ᾱ


=


d̄
ē


, (28)

where F = BKK+BT
K , G = −R̄TBT

K , d̄ = BKK+b̄ − ūD, and ē = −R̄T b̄. To solve this
system, we use the orthogonal projector onto N (G) given by:

PG = I −GT (GGT )−1G.

Applying this projector on the first equation in (28), we obtain that λ̄ satisfies

PGFλ̄ = PGd, Gλ̄ = ē. (29)

To arrange (29) as one equation on the vector space N (G), we decompose the solution λ̄
into λ̄N ∈ N (G) and λ̄R ∈ R(GT ) so that

λ̄ = λ̄N + λ̄R. (30)

Since λ̄R is easily available via

λ̄R = GT (GGT )−1ē,

we still have to show how to get λ̄N . If we substitute (30) into (29), we can see that λ̄N
satisfies:

PGFλ̄N = PG(d̄− Fλ̄R). (31)

Knowing λ̄, the solution component ᾱ is given by

ᾱ = (GGT )−1G(d̄− Fλ̄).



22

We summarize our results in the algorithmic scheme:

ALGORITHMIC SCHEME:

(1.a) Assemble G = −R̄TBT
K , H = (GGT )−1, d̄ = BKK+b̄− ūD, ē = −R̄T b̄.

(1.b) Assemble λ̄R = GT (GGT )−1ē.
(1.c) Assemble d̃ = PG(d̄− Fλ̄R).
(1.d) Compute λ̄N by solving PGFλ̄N = d̃ on N (G).
(1.e) Assemble λ̄ = λ̄N + λ̄R.
(2) Assemble ᾱ = HG(d̄− Fλ̄).
(3) Assemble ū = K+(b̄−BT

K λ̄) + R̄ᾱ.

The matrices F and PG may not be assembled explicitly. Their actions on λ̄ can be
evaluated successively as it is indicated by parentheses on the right hand-sides of

Fλ = BK(K+(BT λ̄)) and PGλ̄ = λ̄−G(H(GT λ̄)).

The actions of K+ will be discussed below.

5.4.1 The MP pseudoinverse

For each of the matrices Kk, we compute the LU decomposition of

Mk :=


Kk R̄k

R̄T
k 0


so that

PkMk = LkUk

for 1 ≤ k ≤ s. This computation is the preprocessing step.
To compute actions of the MP pseudoinverse K+ on a vector x, we use the loop over

all subdomains.

Input: x = (xT1 , . . . , x
T
s )

T

for k = 1 : s
x̃k = (xTk , 0, 0)

T

ỹk = U−1
k (L−1

k (Pkx̃k))
yk = ỹk(1 : end − 2)

end
Ouput: y = (yT1 , . . . , y

T
s )

T

5.4.2 The generalised inverse based on the regularization

For each of the matrices Kk, we compute the LU decomposition of of the regularized
matrix Mk := Kk redefined as follows:

Mk(1, 1) := Mk(1, 1) + 1, Mk(npk + 1, npk + 1) := Mk(npk + 1, npk + 1) + 1



23

so that
PkMk = LkUk

for 1 ≤ k ≤ s. This computation is the preprocessing step.
To compute actions of the generalized inverse K+ on a vector x, we use the loop over

all subdomains again.

Input: x = (xT1 , . . . , x
T
s )

T

for k = 1 : s
yk = U−1

k (L−1
k (Pkxk))

end
Ouput: y = (yT1 , . . . , y

T
s )

T



24

5.5 Numerical experiments with the generalized inverses

In this section we present our experiments with the generalized inverses to Mk intro-
duced in Subsection 5.4.1 and 5.4.2. The tables then represent the division of the domain
Ω onto Ωk and the accuracy of one calculated MP pseudoinverse matrix from the domain.

5.5.1 The first example

On the figures below, we can observe the structure of the matrices Mk, Lk, Uk, and Pk

from Subsection 5.4.1.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 871
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 1528

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 1764
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 77

Figure 2: The matrix Mk, Lk, Uk, and Pk (without regularization)



25

The first table represents the accuracy of the MP pseudoinverse matrix calculated
using the block strategy represented by Figure 1.

Division AA+A = A A+AA+ = A+ (AA+)T = AA+ (A+A)T = A+A

4x4 5.19e-18 2.61e-16 1.53e-17 3.72e-17
8x8 2.05e-18 1.69e-16 8.64e-18 3.14e-17
12x12 1.65e-18 2.42e-16 6.30e-18 4.19e-17
16x16 1.11e-18 1.98e-16 4.67e-18 3.44e-17
20x20 8.95e-19 2.91e-16 3.75e-18 3.85e-17
24x24 7.52e-19 2.56e-16 3.82e-18 4.43e-17
28x28 6.59e-19 2.53e-16 2.83e-18 4.06e-17
32x32 5.68e-19 2.05e-16 2.55e-18 3.76e-17
36x36 5.26e-19 2.31e-16 2.23e-18 3.96e-17
40x40 4.70e-19 2.12e-16 1.97e-18 4.11e-17

Table 3: Accuracy of the MP pseudoinverse (using the block strategy)

In the second table, we have assembled the MP pseudoinverse using the idea pre-
sented in Subsection 5.4.1 onto columns of the identity matrix (for one Mk).

Division AA+A = A A+AA+ = A+ (AA+)T = AA+ (A+A)T = A+A

4x4 8.55e-18 2.37e-15 2.86e-17 2.24e-16
8x8 1.77e-17 3.68e-15 3.22e-17 4.95e-16
12x12 3.85e-17 4.48e-15 4.03e-17 5.04e-16
16x16 6.17e-17 7.77e-15 4.63e-17 1.19e-15
20x20 9.23e-17 6.71e-15 6.01e-17 7.67e-16
24x24 1.53e-16 7.72e-15 1.05e-16 9.78e-16
28x28 1.87e-16 1.01e-14 9.63e-17 1.75e-15
32x32 2.50e-16 1.33e-14 1.24e-16 2.28e-15
36x36 3.25e-16 1.68e-14 1.54e-16 2.35e-15
40x40 3.64e-16 1.65e-14 1.83e-16 1.50e-15

Table 4: Accuracy of the MP pseudoinverse (using the GChD)

As we can see from the tables, the first computation gives us more stable and accurate
results even with bigger matrices. If we look at the second table, we can notice that the
accuracies decrease as we increase the size of the matrix, but are still acceptable.



26

5.5.2 The second example

In the next example, we have used the idea for the generalised inverse based on the
regularization. This idea might save us some time, but the resulting inverse matrix will
not be the MP pseudoinverse, but only a generalized inverse.

Once again, we will present the structures of the matrices Mk, Lk, Uk, and Pk in the
following figures. We can notice, how the structure of Mk is similar to the one in Example
5.5.1, except for being a little smaller. Another difference easily noticable is the change of
the permutation matrix Pk, which in this case is the identity matrix.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 771
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 1425

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 1425
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 75

Figure 3: The matrix Mk, LMk
, UMk

, and PMk
(with regularization)



27

Division AXA = A XAX = X (AX)T = AX (XA)T = XA

4x4 5.83e-17 5.03e-02 9.86e-03 9.86e-03
8x8 5.05e-17 4.56e-02 5.04e-03 5.04e-03
12x12 6.52e-17 4.33e-02 3.32e-03 3.32e-03
16x16 5.55e-17 4.19e-02 2.46e-03 2.46e-03
20x20 1.17e-16 4.10e-02 1.95e-03 1.95e-03
24x24 1.00e-16 4.03e-02 1.61e-03 1.61e-03
28x28 8.78e-17 3.99e-02 1.38e-03 1.38e-03
32x32 5.44e-17 3.96e-02 1.20e-03 1.20e-03
36x36 9.06e-17 3.93e-02 1.06e-03 1.06e-03
40x40 1.04e-16 3.91e-02 9.54e-04 9.54e-04

Table 5: Accuracy of the generalized inverse

And as we can see from the table, the matrix is indeed a generalized inverse as it sat-
isfies only the first from the MP pseudoinverse conditions. Yet, we are going to continue
using this algorithm in future experiments, as it might yield interesting results compared
to the MP pseudoinverse.



28

5.6 Numerical experiments with iteration methods

Now, that we have analyzed the accuracies of our pseudoinverses and generalized ma-
trices, we can continue and try solving the Stokes problem based on the algorithm in
Subsection 5.4. We will no longer calculate the solution for just one Ωk domain, but for
all. We will observe the overall effectivness of calculations with regard to the H/h ratio,
where H is the diameter of the largest subdomain Ωk and h is the stepsize of the finite
element mesh.

5.6.1 The first example

To solve the linear systems, we are going to use two iteration methods. One of them is
BiCGSTAB [5] algorithm that is used for the numerical solution of non-symmetric linear
systems. In the Tables 6 and 7 we can see how many iterations does it take to solve
the linear system and the accuracy of the calculations (the relative norm of the residual
vector). The difference between Table 6 and Table 7 is in the used type of the generalized
inverse. In Table 6 we have used the MP pseudoinverse to solve the system. For Table 7
we used the generalized inverse based on the regularization.

Ratio H
h = 2 H

h = 4 H
h = 6 H

h = 8 H
h = 10

Nx = 2 123, 5.9e-4 909, 9.4e-4 1957, 9.5e-4 2087, 9.1e-4 3863, 9.4e-4
Nx = 4 261, 8.8e-4 1327, 9.4e-4 1419, 9.0e-4 2571, 9.4e-4 2023, 9.8e-4
Nx = 6 345, 7.7e-4 1897, 8.7e-4 2185, 9.7e-4 1903, 9.8e-4 2381, 9.6e-4
Nx = 8 401, 9.7e-4 2081, 9.6e-4 4463, 9.4e-4 1929, - 3261, 9.8e-4
Nx = 10 693, 9.5e-4 3693, 9.8e-4 3715, 9.7e-4 5961, 9.0e-4 7519, 9.7e-4

Table 6: Efficiency of BiCGSTAB (the MP pseudoinverse)

Ratio H
h = 2 H

h = 4 H
h = 6 H

h = 8 H
h = 10

Nx = 2 145, 7.4e-4 877, 8.1e-4 1741, 9.8e-4 1773, 9.7e-4 3119, 9.6e-4
Nx = 4 245, 8.0e-4 1027, 7.8e-4 1749, 9.8e-4 3573, 9.2e-4 1727, 9.8e-4
Nx = 6 401, 9.2e-4 2577, 9.2e-4 2207, 8.8e-4 2563, 9.4e-4 2667, 9.3e-4
Nx = 8 383, 9.7e-4 2307, 9.5e-4 3263, 9.8e-4 3781, 9.3e-4 3509, 9.5e-4
Nx = 10 485, 8.2e-4 3811, 9.8e-4 4759, - 7349, 9.8e-4 6355, 9.0e-4

Table 7: Efficiency of BiCGSTAB (the generalized inverse)

As we can see from the tables, BiCGSTAB algorithm requires a lot of iterations, but
offers a quite precise results. As far as the type of generalized inverse goes, it does not
seem to have much effect on the results. Since this algorithm is an iterative method for
indefinite matrices and since it is known to cause breakdowns, it is unable to give us
results for all our calculations, hence some of the accuracies are missing.



29

5.6.2 The second example

As the second iteration method we are going to use the conjugate gradient method [6].
We are experimenting with this method, as it is designed for use with symmetric, positive
definite matrices, whereas we are working with indefinite matrices. What we will try to
do, is to use this method and see if it allows us to calculate the systems of linear equations
and if it does, then in how many iterations will it complete the calculations.

Ratio H
h = 2 H

h = 4 H
h = 6 H

h = 8 H
h = 10

Nx = 2 97, 7.2e-4 301, 9.2e-4 373, 9.5e-4 463, 9.9e-4 485, 9.8e-4
Nx = 4 125, 8.6e-4 319, 5.0e-4 373, 6.8e-4 385, 7.9e-4 349, 8.8e-4
Nx = 6 157, 7.9e-4 303, 8.4e-4 325, 8.5e-4 353, 7.6e-4 315, 9.8e-4
Nx = 8 163, 8.3e-4 319, 9.0e-4 333, 8.6e-4 309, 9.3e-4 323, 7.7e-4
Nx = 10 175, 8.5e-4 315, 7.9e-4 319, 9.0e-4 343, 5.3e-4 283, 9.4e-4

Table 8: Efficiency of CGM (the MP pseudoinverse)

Ratio H
h = 2 H

h = 4 H
h = 6 H

h = 8 H
h = 10

Nx = 2 97, 6.6e-4 305, 6.2e-4 399, 6.0e-4 463, 8.9e-4 485, 9.9e-4
Nx = 4 125, 9.1e-4 321, 5.3e-4 373, 6.9e-4 385, 7.7e-4 349, 8.8e-4
Nx = 6 159, 9.0e-4 303, 8.5e-4 325, 8.5e-4 353, 7.6e-4 315, 9.8e-4
Nx = 8 167, 9.5e-4 319, 7.7e-4 333, 9.5e-4 309, 9.3e-4 323, 7.7e-4
Nx = 10 189, 9.3e-4 315, 8.1e-4 319, 9.0e-4 343, 5.3e-4 283, 9.4e-4

Table 9: Efficiency of CGM (the generalized inverse)

As we can see from the residual norms, which are below the level of the terminating
tolerance, the CGM can be used to solve the systems of linear equations. We can see that
the CGM is undoubtebly more efficient and reliable than the BiCGSTAB method. Not
only does it require far less iterations, but gave us results for each calculation as well.
More than that, we have made an interesting discovery, where the number of iterations
for both types of the generalized inverses are very similar, with only little differences.



30

6 Conclusion

The aim of this thesis was to test several ways of calculating the generalized inverses
based on the algorithms used for calculating the inverses of non-singular matrices. We
have shown how to transform a singular matrix into non-singular one and which block
of the inverse of the non-singular matrix is the generalized inverse of the original matrix.
More than that, we presented two more ways of computing a generalized inverse. We
have found out that using the block strategy offers the most accurate results and, by the
end of the thesis, we have solved systems of linear equations arising from the Stokes
problem using two types of the generalized inverses.

Jan Pacholek



31

7 References

[1] Kučera R., Kozubek T., Markopoulos A., Machálková J., Numerical Linear Algebra
with Applications: 677 - 699, Wiley Online Library, John Wiley & Sons, Ltd., 18. Octo-
ber 2011.

[2] Kučera R., Kozubek T., Markopoulos A., Linear Algebra and its Applications 438: 3011
- 3029, Elsevier, Elsevier Inc., 4. January 2013.

[3] Ben-Israel A., Greville T., Generalized Inverses: Theory and Applications, New York:
Wiley, 1974.

[4] Koko J., Vectorized Matlab codes for the Stokes problem with P1-bubble/P1 finite element,
at: www.isima.fr/~jkoko/Codes.html, 2012.

[5] Van der Vorst H. A., Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for
the Solution of Non Symmetric Linear Systems, SIAM Journal on Scientific and Statisti-
cal Computing 13 (2): 631 - 644, March 1992

[6] Golub J., Van Loan C. F., Matrix Computations, Third Edition, Baltimore, Johns Hop-
kins University Press, 15. October 1996

[7] Dostál Z., Vondrák V., Lineární algebra, at:
mi21.vsb.cz/sites/mi21.vsb.cz/files/unit/linearni_algebra.pdf,
24.4.2012



32

A Inverse matrix

Here is the solution for the example calculated in Section 2: 2 −3 1 1 0 0
1 2 −1 0 1 0
2 1 1 0 0 1

 2r2 − r1
−r1

→

 2 −3 1 1 0 0
0 7 −3 −1 2 0
0 4 0 −1 0 1


−r2

→

 2 −3 1 1 0 0
0 4 0 −1 0 1
0 7 −3 −1 2 0


4r3 − 7r2

→

 2 −3 1 1 0 0
0 4 0 −1 0 1
0 0 −12 3 8 −7

 4r1 + 3r2

→

 8 0 4 1 0 3
0 4 0 −1 0 1
0 0 −12 3 8 −7

 3r1 + r3
→

 24 0 0 6 8 2
0 4 0 −1 0 1
0 0 −12 3 8 −7





33

B The Moore-Penrose pseudoinverse

Here is the solution for the example calculated in Section 4:
1 −1 0 0 1 1 0 0 0 0
−1 2 −1 0 1 0 1 0 0 0
0 −1 2 −1 1 0 0 1 0 0
0 0 −1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1


+r1

−r1

→


1 −1 0 0 1 1 0 0 0 0
0 1 −1 0 2 1 1 0 0 0
0 −1 2 −1 1 0 0 1 0 0
0 0 −1 1 1 0 0 0 1 0
0 2 1 −1 −1 −1 0 0 0 1

 +r2

−2r2

→


1 −1 0 0 1 1 0 0 0 0
0 1 −1 0 2 1 1 0 0 0
0 0 1 −1 3 1 1 1 0 0
0 0 −1 1 1 0 0 0 1 0
0 0 3 1 −5 −3 −2 0 0 1

 +r3
−3r3

→


1 −1 0 0 1 1 0 0 0 0
0 1 −1 0 2 1 1 0 0 0
0 0 1 −1 3 1 1 1 0 0
0 0 0 0 4 1 1 1 1 0
0 0 0 4 −14 −6 −5 −3 0 1

 →


1 −1 0 0 1 1 0 0 0 0
0 1 −1 0 2 1 1 0 0 0
0 0 1 −1 3 1 1 1 0 0
0 0 0 4 −14 −6 −5 −3 0 1
0 0 0 0 1 1

4
1
4

1
4

1
4 0

+14r5

→


1 −1 0 0 1 1 0 0 0 0
0 1 −1 0 2 1 1 0 0 0
0 0 1 −1 3 1 1 1 0 0
0 0 0 4 0 −5

2 −3
2

1
2

7
2 1

0 0 0 0 1 1
4

1
4

1
4

1
4 0

 r4
4

→


1 −1 0 0 1 1 0 0 0 0
0 1 −1 0 2 1 1 0 0 0
0 0 1 −1 3 1 1 1 0 0
0 0 0 1 0 −5

8 −3
8

1
8

7
8

1
4

0 0 0 0 1 1
4

1
4

1
4

1
4 0


−r5
−2r5
−3r5 →


1 −1 0 0 0 3

4 −1
4 −1

4 −1
4 0

0 1 −1 0 0 1
2

1
2 −1

2 −1
2 0

0 0 1 −1 0 1
4

1
4

1
4 −3

4 0
0 0 0 1 0 −5

8 −3
8

1
8

7
8

1
4

0 0 0 0 1 1
4

1
4

1
4

1
4 0

+r4 →



34


1 −1 0 0 0 3

4 −1
4 −1

4 −1
4 0

0 1 −1 0 0 1
2

1
2 −1

2 −1
2 0

0 0 1 0 0 −3
8 −1

8
3
8

1
8

1
4

0 0 0 1 0 −5
8 −3

8
1
8

7
8

1
4

0 0 0 0 1 1
4

1
4

1
4

1
4 0


+r3

→


1 −1 0 0 0 3

4 −1
4 −1

4 −1
4 0

0 1 0 0 0 1
8

3
8 −1

8 −3
8

1
4

0 0 1 0 0 −3
8 −1

8
3
8

1
8

1
4

0 0 0 1 0 −5
8 −3

8
1
8

7
8

1
4

0 0 0 0 1 1
4

1
4

1
4

1
4 0


+r2

→


1 0 0 0 0 7

8
1
8 −3

8 −5
8

1
4

0 1 0 0 0 1
8

3
8 −1

8 −3
8

1
4

0 0 1 0 0 −3
8 −1

8
3
8

1
8

1
4

0 0 0 1 0 −5
8 −3

8
1
8

7
8

1
4

0 0 0 0 1 1
4

1
4

1
4

1
4 0




	Introduction
	Inverse matrix
	Generalized inverses
	The Moore-Penrose pseudoinverse
	Pseudoinverse based on the generalized Cholesky decomposition
	Implementation in MATLAB
	Numerical experiments

	Application of the Moore-Penrose pseudoinverse
	Formulation of the problem
	Standard finite element approximation
	Discretizations with the TFETI
	The solver based on the velocity-pressure elimination
	Numerical experiments with the generalized inverses
	Numerical experiments with iteration methods

	Conclusion
	References
	Appendix
	Inverse matrix
	The Moore-Penrose pseudoinverse

