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Background: Genome-wide association studies (GWAS) is a major method for studying the genetics of complex
diseases. Finding all sequence variants to explain fully the aetiology of a disease is difficult because of their
small effect sizes. To better explain disease mechanisms, pathway analysis is used to consolidate the effects of
multiple variants, and hence increase the power of the study. While pathway analysis has previously been per-
formed within GWAS only, it can now be extended to examining rare variants, other “-omics” and interaction
data.
Scope of review: 1. Factors to consider in the choice of software for GWAS pathway analysis. 2. Examples of how
pathway analysis is used to analyse rare variants, other “-omics” and interaction data.
Major conclusions: To choose appropriate software tools, factors for consideration include covariate compatibility,
null hypothesis, one- or two-step analysis required, curation method of gene sets, size of pathways, and size of
flanking regions to define gene boundaries. For rare variants, analysis performance depends on consistency be-
tween assumed and actual effect distribution of variants. Integration of other “-omics” data and interaction can
better explain gene functions.
General significance: Pathway analysis methods will be more readily used for integration of multiple sources of
data, and enable more accurate prediction of phenotypes.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction – why pathway analysis?

The growth in knowledge of our genome and new development in
genomic technologies have enabled the identification of risk factors of
complex diseases using genome-wide association studies (GWAS).
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“Complex” diseases are so called because they are caused by multiple
genetic and environmental risk factors. In complex diseases, the causa-
tive genetic factors usually have small effect sizes. In GWAS, a huge
number of genetic variants are tested simultaneously. To account for
multiple testing, the p-value threshold of a single-variant test for declar-
ing genome-wide significancewas suggested to be 5 × 10−8 [1]. Despite
opinions to relax this threshold to the order of 10−7 [2], the threshold is
still very stringent. Given these factors (small effect sizes of variants, and
required stringent statistics because ofmultiple testing), it is a challeng-
ing task to perform GWAS powerful enough to map disease genes for
complex diseases successfully.

To increase the power of a GWAS, onemethod is to takemissing her-
itability into account. Missing heritability refers to the inability for the
disease-susceptible variants found from GWAS to explain the complete
genetic component contributing to the increased risk of a phenotype
[3]. One reason is that the genetic variants of complex diseases, each
only having a small effect, cannot all be detected by single-variant statis-
tical analyses. To address this issue, it is better to consider collectively
effects of interesting variants together in a meaningful way in order to
increase statistical power and reduce the burden of multiple testing [4].

Pathway analysis complements single-variant analysis in two ways.
First, by combining weaker but related single-variant signals, the
resulting statistics could be improved if these variants are collectively
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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related to the phenotype (a situation described as searching a “string” of
needles in the haystack rather than needle-by-needle) [5]. It is particu-
larly useful for pilot studies with small sample sizes (which have small
single-marker statistics even for the most significant loci) to allow in-
vestigators to prioritise variants for follow-up analysis. Second, path-
way-based studies can allow the discovery of novel sets of genetic
variants with related functions, which helps explain the observed
data. In both cases, we hope to increase the power of the hypothesis-
free GWAS by providing functional annotations, and combine effects
of variants within appropriate functional units.

Pathway analysis combines signals of multiple variants. However,
what is the biological meaning of such analysis? There are two main
goals in biomedical research: understanding of molecular mechanisms
underlying a phenotype or disease on the one hand, and discovery
and design of drugs for disease treatment on the other hand [6]. To
achieve these aims, effects on the body caused by inherited genetic
background and external (environmental) changes have to be consid-
ered collectively. In the past, experimentswere analysed in a reduction-
istmanner, forwhich only a single level of datawas considered at a time
because of the lack of tools for analysis [7]. Take GWAS as an example, a
set of variants can be obtained by extracting variants passing a pre-de-
fined p-value threshold in association tests. However, the functions
and biologicalmeaning of this set of variants or genes cannot be inferred
by p-values alone. The retrieval of such information requires yet another
layer of evaluation separate from the association study [7]. Pathway
analysis can serve as a proxy in filling the gap here to infer the relation-
ship among the observed set of selected genes represented by signifi-
cant variants, and the strengths of the relationship. As a result, the
association findings could be interpreted more easily.

There are other reviews focusing on pathway analysis of GWAS [5,8–
11]. This review is broadly divided into two parts. The first part dis-
cusses technical aspects that researchersmayfinduseful before carrying
out pathway analysis for GWAS data. It aims to describe how to carry
out pathway analysis for common variants in GWAS, and discuss the as-
pects that researchers (especially those with experience in common
variant analysis only) may consider if they wish to carry out the analy-
ses. The second part discusses possible steps that enable prediction of
phenotypes more accurately by using extra -omics data. We deliberate
on how pathway analysis is extended to integrating rare variants,
other “-omics” data, and gene-environmental interactions. We hope
this review article will enable researchers of GWAS to get started with
pathway analysis right away. Meanwhile, they will also appreciate the
possibility and value of expanding the analysis paradigm to other data
types. Ultimately, this would help us understand the aetiology of dis-
eases better, and could possibly shed light onmore effective therapeutic
measures.

Readers should note that, throughout the text, pathway analysis is
referred to as having almost the samemeaning as network analysis un-
less otherwise specified, which bothmean a broader sense of multi-SNP
analysis based on certain information. However, we would like to draw
readers' attention to the fact that, in a narrower sense, pathway and net-
work analyses are not the same based on the relationship of the genes
included for analysis (Fig. 1; see Box 1 for a detailed description of path-
way definitions).

1.1. Steps involved in GWAS pathway analysis – how pathway analysis is
done: the big picture

There are three basic steps in pathway analysis of GWAS data
(Fig. 2). First, users need to choose and determine the gene set defini-
tions of the pathways to be used for pathway analysis. Second, input
variants aremapped onto the genes they belong to for preparing the cal-
culation of gene and/or pathway-based statistics. Finally, pathway sta-
tistics are calculated, either by a one-step approach, which only
reports the pathway-based statistics; or by a two-step approach,
which calculates pathway-based statistics using intermediate gene-
based statistics. Various aspects that will affect the choice of analysis
software tools will be discussed below.

2. How should we choose analysis software? Aspects to be consid-
ered for choosing gene set definition and analysis software

2.1. Input data – do you have covariates?

Table 1 lists software packages for pathway analysis (and interaction
analysis). Pathway analysis software packages accept various input data
formats, including p-values of single-marker association tests [12–16],
keywords/gene list [17–19], or raw genotype data [9,20,21]. If covari-
ates are to be considered in pathway analysis, it is better to control for
it at an early stage of generating individual variant-level statistics. If
raw data are available, obtaining covariate-adjusted statistics from
raw data is straightforward. Genetic analysis software packages, such
as PLINK [20] (which reports association statistics using genotype data
as input) and SNPTEST [22] (which reports association statistics using
allele dosage results from imputation software IMPUTE [23]), are cus-
tom-made to generate covariate-adjusted test statistics for single-mark-
er association analysis from genotype data. The covariate-adjusted p-
values can then be used in downstream pathway analysis. However, it
should be noted that covariates usually cannot be incorporated into
pathway analysis algorithms directly. Therefore, if covariate adjustment
is crucial to analysis, it is advised that adjustment of covariates is first
carried out in single-marker analysis. Pathway analysis is then carried
out using methods that allow p-values as the input data.

2.2. Input data affects choice of software: competitive vs self-contained

Based on the difference in the hypothesis being tested for generating
pathway p-values, pathway analysis methods can be divided into either
self-contained or competitive (Fig. 3) [5]. For the self-contained ap-
proach, we test the hypothesis that the observed pathway is associated
with a phenotype by comparing against a null genetic background (as-
suming to have no association). For the competitive approach, we test
the hypothesis that the statistics of genes within a pathway is signifi-
cantly different from that not within the pathway. To reflect the differ-
ence, the competitive approach is named as “enrichment” methods
while self-contained approach is named as “association” methods [24].

What data are available limits the choice of appropriate analysis ap-
proach and hence analysis software tools andmethodology. To carry out
analysis using the competitive approach, data of genes not within the
pathway of interest must also be available. In contrast, the self-
contained approach does not require such data (as it can be obtained
by permutations). Therefore, the competitive approach is not applicable
to candidate-gene data (since there are no data for other genes not
within the candidate gene set), while the self-contained approach is ap-
plicable to both genome-wide and candidate-gene data [11]. In some
studies, the competitive approach is used in the discovery stage of
GWAS, and then followed by the self-contained approach for replica-
tion. A recent evaluation of the statistical properties of gene-set enrich-
ment methods suggests that competitive approach have an advantage
over self-contained approach in that self-contained approach fails to
take into consideration information from other biological pathways
[25].

2.3. Sources of gene set definition

Defining gene sets is an essential step in pathway analysis. Table 2
lists some common databases for annotating pathways. The gene set in-
formation of these data sources can be classified into functional path-
ways, networks, gene ontology, and associated gene sets (see Box 1).
Some software packages allow multiple sources of gene set definitions
for more comprehensive analysis. For example, i-GSEA4GWAS [13,14]
(see Table 1) allows users to choose among online datasets including
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Fig. 1. Types of gene set definitions. There are four main categories of gene set definitions. Biological pathways have a specific starting point and an outcome, with the outcome being
molecule or certain cellular status. Networks do not necessarily have an end point, and only describe relationships between genes and/or their products. Gene ontologies (GO)
describe gene properties from a hierarchical class structure of three main aspects: molecular functions, biological processes, and cellular components. Illustrated as an example is the
partial graph (produced from OBO-Edit, an open-source ontology editing tool) using the GO term “eye development” (GO:0001654). The last type of gene set definition is disease
biomarkers. These markers may not have functional relevance, and may be created, for instance, by extracting significant variants from association studies.
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Box 1
Definitions of pathways.

A “pathway” does not necessarily mean a visualised network of
genes. It can refer to a group of genes that are related to each other ac-
cording to certain definitions [5]. According to the nature of the gene
sets defined, these pathways can be grouped into biological path-
ways, interacting networks, gene ontologies, and biomarkers (signifi-
cant variants) (Fig. 1) [29].
Biological pathway
Biological pathway has the “strictest” definition among different types of
pathways. Each biological pathway is a means for one “endpoint” (being
a product or a biological function) reaching another (Fig. 1). To describe
pathways precisely and to distinguish one pathway from another, it is
crucial to know the endpoints (final outcomes of the pathways) as well
as the intermediate steps involved. According to the nature of the “end-
points”, biological pathways can be further categorised into molecular,
cellular, organ/system and disease/intervention pathways. For molecular
pathways, the endpoints are molecules or basic biochemical reactions.
Endpoints of cellular and organ/system pathways are more complex.
They include global cell status and higher tissue organisations, such as
cell apoptosis and memory storage respectively. Disease pathways in-
clude events and/or reactions which can lead to disease onset. Interven-
tion pathways, on the other hand, include those events and/or reactions
which can alter disease presentation status. These endpoints can be out-
comes of one or more combinations of the lower-order pathways de-
scribed above. An example of disease pathway is Alzheimer's disease
pathway in KEGG (entry: PATHWAY: map05010) [50], which includes
lower-order molecular and cellular pathways such as calcium signalling,
apoptosis and oxidative phosphorylation. Sometimes members in an in-
tervention pathway are found to be associated with a phenotype, but
without the actual mechanism known [9]. In that case, these members
should only qualify as “biomarkers” (see below) because the knowledge
of intermediate steps is missing [29].
Networks
Networks, on the other hand, do not necessarily have a distinct “end-
point” of biological function (Fig. 1) [29]. A network is more like a simple
catalogue of all logical relationships among elements predicted or experi-
mentally discovered. Various methodologies have been adopted in the
curation for these databases [29,177], including yeast-two-hybrid sys-
tem [178,179], affinity purification followed by mass spectrometry
[180], protein complementation assay [181], co-immunoprecipitation,
chromatin immunoprecipitation with DNA microarray, gene expression
and text-mining [182]. The diversity in curation methods means that
the databases are heterogeneous [29], and therefore very difficult to
compare [177]. Although the exact mechanism of how genetic variants
affect diseases is yet to be delineated, network data can allow us to un-
derstand the role of genetics in causing a disease [177].
Gene ontologies (GO)
GO endeavours to provide evidence-supported annotations to genomic
products (includinggenes, proteins, non-codingRNAsandchemical com-
plexes) to describe their biological roles [159].Within GOare graph struc-
tures of GO classes which catalogue properties of the products (Fig. 1).
These properties include molecular functions, biological processes and
cellular locations (cellular components) of the products. AGO annotation
of a specific product describes the relationship between it and aGOclass,
and all the evidence supporting the relationships [183]. However, while
GO can help in discovering novel relationships, information of known re-
lationship may not be easily inferred backwards accurately using group-
ings in GO. Therefore, when results are examined, it is important to
also know the context of evidence – for example, whether the data are
experimentally validated or computationally inferred [29].
Disease biomarkers
Another type of gene sets associated with a phenotype is disease bio-
markers. Unlike other gene sets, disease biomarkers may not share simi-
lar functions or interact with each other. Biomarkers are suggested to be
genomicmarkers that collectively associate betterwith a phenotype than
individual genes.Such evidenceusually comes frommanydifferent study
populations. In addition, the hypothesis sometimes cannot hold because
the marker sets may just reflect disease heterogeneity rather than a bio-
marker with power in disease prediction [29].
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gene ontology (GO), Kyoto Encyclopaedia of Genes and Genomes
(KEGG) and BioCarta pathways to define their gene sets for data analy-
sis. Other software packages such as Ingenuity Pathway Analysis (IPA)
[26] use their own curated databases to define gene sets. Some pro-
grams require users to input gene set definitions, and statistics are cal-
culated for the input gene sets. Examples of such programs include
adaptive rank truncated product (ARTP) method [27] and PLINK [20]
set association.

There are both pros and cons for choosing software packages
using available gene set definitions and those using user-defined
definitions. The most obvious advantage of using a curated data-
base is that users do not need to create their own gene sets. In ad-
dition, the gene sets involved are also created based on known
functional knowledge, through which researchers can interpret
their results easier. However, using defined pathways may deprive
the users of the flexibility in defining gene sets. If researchers wish
to test a customised set of genes based on their own hypotheses,
then they must choose software that allows user-input gene set
definitions. The web server i-GSEA4GWAS, for example, allows def-
inition of gene sets from either curated databases or user-input
gene set. Users should therefore choose appropriate software ac-
cording to their hypothesis (Table 1).
2.4. One-step and two-step: which step should I make?

One method to categorise pathway analysis software is accord-
ing to whether it is “one-step” or “two-step” [11] (Fig. 2). In a
two-step design, p-values of individual variants of a gene are first
considered to give a gene-based p-value or score. Pathway analysis
is then performed using the gene-based statistics. The one-step ap-
proach, however, does not produce gene-based statistics, and path-
way-based statistics are calculated from input variants directly [5,
11]. There is no best answer for choosing one method over the
other because there is no consensus yet on the best approach to
combining single-variant statistics [28]. However, it is advisable
to use all variants and analyse the data with pathways as units at
an early stage so that most information can be obtained from path-
way analyses [29].
2.5. Parameters for using software: size and nature of pathway

Pathway size (i.e. the number of genes in a pathway) imposes a
significant impact on analysis results. Large pathways include more
genes, and therefore may have a larger number of significant genes
by sheer chance. On the other hand, small pathways may also lead
to false positive results by including a few isolated significant var-
iants [29]. To balance out the effects of both, the number of genes
per pathway has been suggested to be 100 – 400 genes [9].

Besides the pathway size (number of genes), the composition of
pathways may also affect results. Genes having large effects on a
phenotype and genes involved in a number of pathways may ren-
der over-representation of pathways consisting of such genes,
and therefore create a misinterpretation that other genes within
the pathways also contribute to the phenotype. It is advised that
if such genes exist in the test gene set, results should be compared
using data without these genes to investigate whether there is a
need to drop these genes as a quality control measure before path-
way analysis. For example, the human leukocyte antigen (HLA)
gene is a known genetic risk factor for both psoriasis and multiple
sclerosis. In order to reduce the influence of HLA, a psoriasis study
followed up only pathways that were significant before and after
including HLA [30]. Similarly, a GWAS study of multiple sclerosis
directly excluded HLA from pathway analysis to avoid complexity
in interpreting results [31].
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Fig. 2. Workflow of a pathway analysis for genetic studies. A typical pathway analysis includes three basic steps. First, gene set definitions are selected from various gene set databases.
Second, different software tools will map variants onto the genes they belong to. Finally, for one-step analysis, pathway p-values are directly calculated from genotype data without
returning gene p-values. For two-step analysis, gene p-values are first produced, before returning the final pathway p-values.
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2.6. Parameter for using software: flanking size for mapping variants to
genes

To produce gene- and pathway-based statistics, variants must first
be assigned to their relevant genes. A simple approach is to relate only
single-nucleotide polymorphisms (SNPs) within genes to their relevant
genes. Nevertheless, this is not satisfactory because a large number of
variants located outside gene exonswill be excluded. Onemethod to re-
lieve this is to assign genetic variants in gene-flanking regions to their
relevant genes. There is no exact answer to the covering region of inter-
est. Despite the suggestions that most regulatory elements exist within
20-kb regions flanking a gene [28,32], values from 5 kb [33] to over 100
kb [34] have been used in different studies.

2.7. Other considerations

In addition to the technical aspects of the software, user friendliness,
flexibility and expandability could improve ease of use. For example,
programs such as IPA [26] and MetaCore [19] (Table 1) provide built-
in options for network visualisation. Other software packages such as
Cytoscape [35] (Table 1) may provide a platform which allows installa-
tion of “apps”, i.e. plug-ins which can perform various tasks. Analysis
and visualisation are therefore possible in one single platform with
the possibility of adding new algorithms for analysis by installing new
apps.

Table 3 lists some diseases for which pathway analysis has been ap-
plied to examine their genetic data. The corresponding software pack-
ages are also indicated.

3. Paradigm shift: from GWAS and beyond

In the past few years, the advancement in next-generation sequenc-
ing (NGS) technologies and multi-omics technologies has made the
entire analysis paradigm walk “the extra mile”. From the input-variant
(“horizontal”) perspective, sequencing technologies enable the detec-
tion and therefore analysis of rare variants. Multi-omics technologies
provide data beyond the genetic level, thus allowing integrative (“longi-
tudinal”) analysis using other -omics data. In this section, we discuss
some aspects of pathway analysis involving rare variants and other “-
omics” platforms. This allows readers to compare and contrast such
analyses with analysis of GWAS data, and appreciate how genetic data
can be analysed together with other -omics data.

3.1. Rare variants

3.1.1. Why should we analyse multiple rare variants together?
The introduction of NGS has made deep sequencing of a large num-

ber of individual samples possible at a much lower cost. This has led to
the discovery of numerous low-frequency variants (minor allele fre-
quency (MAF) ranging from 1% to 5%) and rare variants (MAF b 1%).
For ease of discussion in this article, we shall refer to all these variants
collectively as “rare variants” (RVs). RV analysis has the potential to re-
veal novel variants predisposing to or causing diseases. Annotations of
RVs are also more complete because functional units with clearer sug-
gested roles are usually selected in targeted and exome sequencing
studies. Together with the lowering sequencing cost, these factors
have driven rapid growth in the number of RV analyses in the past de-
cade [36].

In GWAS, single-variant analysis is the simplest and typical analysis
method. For rare-variant analysis, single-variant analysis is also possible
if the samples size is large enough to produce genome-wide significant
results. However, even for a disease variant with large effect (e.g. an
odds ratio of 2), it will require more than 100,000 samples for its detec-
tionwith 80% power if itsMAF is low (say 0.1%). Togetherwith themul-
tiple-testing penalty required to correct for the huge number of rare
variants, obtaining adequate sample size for a powerful single-variant
analysis is extremely challenging [37]. Therefore, region-based analysis



Table 1
List of software packages for pathway analysis and interaction analysis.

Software Input Description URL/source

Pathway analysis software for GWAS
Adaptive rank
truncated product
(ARTP) method [27]

Raw genotypes/SNP
p-values

Two-step approach using top ranked (i.e. most significant)
p-values.
Choice of rank is by an efficient approach without the need for
another layer of permutation.

http://dceg.cancer.gov/tools/analysis/artp

ALIGATOR [12] SNP p-values Users specify p-value cut-off for significant SNPs. Significant
pathways are then counted.

http://x004.psycm.uwcm.ac.uk/~peter/

Chlibot [17] Proteins/genes/keywords Abstract text searching software for NCBI databases. Looks for
relationships between abstracts using natural language
programming (NLP) techniques.

http://www.chilibot.net/

Cytoscape [35] (depend on “Apps”) Software platforms of “Apps” which allows integration of a
variety of plug-ins.

http://www.cytoscape.org/

dmGWAS [132] SNP p-values Topology-based method using dense module searching (DMS),
which tries to look for protein-protein interaction (PPI)
sub-networks enriched with genes with small p-values.

https://bioinfo.uth.edu/dmGWAS/

GenGen [133] Raw genotype Gene statistics are represented by the most significant SNP signal
of the genes. Pathway statistics is produced by calculating the
Kolmogorov-Smirnov-like sum statistics of constituent genes.

http://gengen.openbioinformatics.org/

GRAIL [134] SNPs/gene regions The software tries to search similarities in published text among
input genes.

https://www.broadinstitute.org/mpg/grail/

GSA-SNP [135] SNP p-values Java-based portal implementing p-value based pathway analysis http://sourceforge.net/projects/gsa-snp/
GSEA-P [136] Gene list of interest Modified gene set enrichment analysis (GSEA) that calculates the

degree of over-representation of input gene list among the most
significant genes with improvements in calculating significance
levels.

http://www.broadinstitute.org/gsea/index.jsp

GSEA-SNP [43] SNP p-values Modified GSEA method that allows genotype-based (recessive,
dominant or additive) model for calculating SNP-based p-values.

https://www.nr.no/en/projects/software-genomics

HYST [137,138] SNP p-values SNP p-values are combined using Simes' test followed by a
processing considering LD among the SNPs. PPI-based association
then identifies gene pairs in which all genes are
disease-susceptible.

http://statgenpro.psychiatry.hku.hk/limx/kgg/

ICSNPathway [139] SNP p-values Implements an improved GSEA algorithm. http://icsnpathway.psych.ac.cn/
Ingenuity Pathway
Analysis (IPA) [26]

Gene list of interest Commercial software that utilises its IPA database for calculating
edge statistics.

http://www.ingenuity.com/products/ipa

i-GSEA4GWAS [13] and
i-GSEA4GWAS v2 [14]

SNP p-values or gene list Modified GSEA with new features in v2 adding functional
annotation and analyses

version 1: http://gsea4gwas.psych.ac.cn/
version 2: http://gsea4gwas-v2.psych.ac.cn/

MAGENTA [15] SNP p-values Modified GSEA http://www.broadinstitute.org/mpg/magenta/
MAGMA [140] Raw genotypes Based on a multiple regression model. Can be extended to

gene-environment interaction analysis.
http://ctg.cncr.nl/software/magma

MetaCore [18,19] SNP/gene list Calculates pathway p-values of constituent genes using
hypergeometric distribution based on published pathways.

http://thomsonreuters.com/metacore/

PARIS [141] SNP p-values SNPs are grouped in linkage disequilibrium (LD) features and
single SNP features in LD. Pathway significance are then
calculated using these features by permutations.

https://ritchielab.psu.edu/software/paris-download

Pathway-PDT [142] Raw genotypes Performs pathway analysis based on raw genotypes in
family-based GWAS.

http://sourceforge.net/projects/pathway-pdt/

PINBPA [143] VEGAS output A network analysis package implemented in Cytoscape http://apps.cytoscape.org/apps/pinbpa
PLINK set based tests
[20]

Raw genotypes Enrichment score of input gene set is calculated with user
specified SNPs.

http://pngu.mgh.harvard.edu/~purcell/plink/

SET SCREEN test [144] SNP p-values (but raw
genotypes required for
PLINK)

Approximation of Fisher's statistics to partially account for SNPs'
p-value dependence due to LD. Implemented in PLINK.

http://pngu.mgh.harvard.edu/~purcell/plink/

Seq2Pathway [145] Raw sequences R package for analysis of next generating sequencing (NGS) data.
It provides four tests for gene set enrichment. https://www.bioconductor.org/packages/release/bioc/

html/seq2pathway.html/
SNP ratio test [21] Raw genotypes Ratio of significant SNPs within vs. outside of pathway is

compared using permutation tests.
https://sourceforge.net/projects/snpratiotest/

VEGAS [16] SNP p-values Calculates gene-based statistics through simulation from
multivariate normal distribution of p-values, with consideration
of LD.

http://gump.qimr.edu.au/VEGAS/

PathVisio [146] (for visualisation) Platform allowing user submitted plug-ins
which can let researchers perform visualisation and pathway
analysis.

http://www.pathvisio.org/

Methodologies and Software for multiple “-omics” platform
Genotyping, eQTL and
disease phenotype
association [64,65]

Two-stage analysis. First, SNPs associated with gene expression
pattern (eSNPs) are extracted. Then, pathway analysis is carried
out among eSNPs and disease status to look for
expression-associated loci associated with disease.

DEPICT [72] Based on expression data in tissues, it can prioritise the most
likely causal genes at associated loci, highlight enriched pathways
and identify tissues/cell types where genes from associated loci
are highly expressed.

http://www.broadinstitute.org/mpg/depict/

GSAA [84] Simultaneously measures genome-wide patterns of genetic and
gene expression variation to identify sets of genes enriched for
differential expression and/or trait-associated genetic markers.

http://gsaa.unc.edu
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http://dceg.cancer.gov/tools/analysis/artp
http://x004.psycm.uwcm.ac.uk/~peter/
http://www.chilibot.net
http://www.cytoscape.org
http://bioinfo.mc.vanderbilt.edu/dmGWAS/
http://gengen.openbioinformatics.org
https://www.broadinstitute.org/mpg/grail/
http://sourceforge.net/projects/gsa-snp/
http://www.broadinstitute.org/gsea/index.jsp
https://www.nr.no/en/projects/software-genomics
http://statgenpro.psychiatry.hku.hk/limx/kgg/
http://icsnpathway.psych.ac.cn
http://www.ingenuity.com/products/ipa
http://gsea4gwas-v2.psych.ac.cn
http://gsea4gwas-v2.psych.ac.cn
http://www.broadinstitute.org/mpg/magenta/
http://ctg.cncr.nl/software/magma
http://thomsonreuters.com/metacore/
https://ritchielab.psu.edu/software/paris-download
http://sourceforge.net/projects/pathway-pdt/
http://apps.cytoscape.org/apps/pinbpa
http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/
https://www.bioconductor.org/packages/release/bioc/html/seq2pathway.html
https://www.bioconductor.org/packages/release/bioc/html/seq2pathway.html
https://sourceforge.net/projects/snpratiotest/
http://gump.qimr.edu.au/VEGAS/
http://www.pathvisio.org
http://www.broadinstitute.org/mpg/depict/
http://gsaa.unc.edu


Table 1 (continued)

Software Input Description URL/source

iGWAS [85] Relations among SNPs, gene expression, and disease are modelled
within a mediation analysis framework to separate genetic
effects due to expression or other factors. Effects for both
fractions are then tested.

SPATIAL [147] A multi-pathway analysis tool. It contains a set of pathway
analysis methods to carry out system-wide analysis that tries to
consider inter-pathway interactions and combined signals from
multiple pathways.

Transcriptome-wide
association study
[70]

Genotype and expression data are first obtained from a small
cohort to identify information of strength of SNP-gene
expression. This information is then used to impute expression
profile of an independent cohort with GWAS data only for
predicting gene expression or association of expression and trait.

WGCNA [82] Contains a collection of R scripts for building gene coexpression
networks. Originally for gene expression data, it can also be
applied in other contexts.

https://labs.genetics.ucla.edu/horvath/Coexpression
Network/Rpackages/WGCNA/

Software for association analysis considering gene-gene and gene-environment interactions
AprioriGWAS [148] Software for detecting gene interactions. Consists of two steps of

(1) defining the best genotype pattern to be added, and (2)
testing the pattern again disease status.

BOOST [149] Speeds up interaction test using log-likelihood ratio statistics in
both screening and testing stages.

http://bioinformatics.ust.hk/BOOST.html

EPIBLASTER [150] Difference in Pearson's correlation coefficients is first computed
between controls and cases across all possible SNP pairs to flag
those warranting further analysis. Pairs that are deemed
potentially significant will be tested in a second-stage analysis
using the likelihood ratio test.

http://www.mybiosoftware.com/epiblaster-1-0-two-
locus-epistasis-detection-strategy-gpu.html

Epi2Loc [151] Provides a convenient utility for converting, comparing, and
interpreting epistatic models with flexibility.

http://cran.us.
r-project.org/index.html

FastEpistasis [152] A multi-threaded epistasis testing algorithm that supports testing
interactions in parallel CPU threads.

http://www.vital-it.ch/software/FastEpistasis

INTERSNP [153,154] Based on logistic regression framework. Allows the selection of
various statistical models for analysis. Functional annotations
from KEGG is incorporated for analysis.
Meta-analysis of results are carried out using METAINTER [155].

http://intersnp.meb.uni-bonn.de/

Software for selecting interacting pairs for gene-gene and gene-environment interactions
Epi2Loc [151] An R package that compares two-SNP interaction models for

selecting most proper parameters to be included for analysis
SIXPAC [156] A search algorithm reporting, with approximation, the most

likely interacting SNP pairs
http://www.cs.columbia.edu/~snehitp/sixpac/
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methods for RVs have been developed to increase power and reduce the
multiple-testing penalty [36,38].

3.1.2. Can we apply pathway analysis methodologies for common variants
to RVs?

There are specific methods for grouping rare variants together for
analysis. Such methods have been reviewed previously [37,39,40]. One
question is interesting in our current context. Given that pathway anal-
ysis methods for common variants and region-based analysis methods
for RVs are both for aggregating single-variant information, are these
methods applicable to pathway analyses for both rare and common
variants?

To address this, the performances of pathway-based association
methods, originally for GWAS, were compared to that of region-based
associationmethods for RVs in a simulated dataset [41].When common
and rare variants were jointly analysed, direct application of pathway
analysis software was not satisfactory. It was suggested that rare vari-
ants should be given higher weighting for better analysis performance
[41].

Later, a direct comparison between GWAS pathway analysis soft-
ware and rare-variant region-based methods was carried out [42]. In
this study, a modified version of GSEA-SNP [43] using weighted Kolmo-
gorov–Smirnov (WKS) statistics for gene-set enrichment score (as in
original GSEA [44]) was chosen to represent GWAS pathway analysis
software for comparison. Meanwhile, four RV region-based association
methods were tested, namely weighted-sum test (WSS) [45], simple-
sum test (SS) [46], collapsing test in combinedmultivariate and collaps-
ing (CMC) method [47], and sequence kernel association test (SKAT)
[48]. Input variants included 40,918 coding variants from 822 individ-
uals under 1000 Genomes Project [49], after excluding indels and in-
cluding biallelic variants within annotated pathways in KEGG only
[50]. The effects of variants were simulated to depend on two factors:
(1) increasing effect with decreasing minor allele frequency, and (2)
whether it was one variant of genes from a randomly selected “causa-
tive” KEGG pathway. Four scenarios were simulated, which represented
combinations of two effect-size models (as assumed by WSS and SKAT
in their algorithms) and two different numbers of input causative path-
ways. Pathway analysis of 1000 simulated datasets was carried out
using 11 methods, which included variations using the five methods
mentioned above. Power (assessed by the proportion of tests that the
“causative” pathway's p-value can pass Bonferroni multiple-testing
threshold after correcting for the total number of pathways) and type
I error (false positive) rate (number of pathways passing Bonferroni
multiple-testing threshold for simulated data with no causative path-
way) were evaluated to estimate the performance of the methods.
Overall, no single method performed particularly better [42]. Type I
error was found to be inflated inmost of the pathway analysis methods.
However, using all SNPs' p-values for gene-based statistics and then
combinedwithWKS (WKS-variantmethod)was powerfulwithmoder-
ate type I error in all simulation scenarios. Moreover, pathway-based

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/
https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/
http://bioinformatics.ust.hk/BOOST.html
http://www.mybiosoftware.com/epiblaster-1-0-two-locus-epistasis-detection-strategy-gpu.html
http://www.mybiosoftware.com/epiblaster-1-0-two-locus-epistasis-detection-strategy-gpu.html
http://r-project.org/index.html
http://r-project.org/index.html
http://www.vital-it.ch/software/FastEpistasis
http://intersnp.meb.uni-bonn.de
http://www.cs.columbia.edu/~snehitp/sixpac/
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methods had higher power than region-based methods, where their
power was sensitive to whether or not the effect size of the data
matched the methods' assumptions. If the model of effect sizes fitted
the software's assumption, region-based software was powerful; other-
wise, there could be lack of power. This is consistent with the descrip-
tions in Lee et al. [39] that the power of RV analysis depends on the
assumed underlying effects model. Furthermore, using variant-level in-
formation for pathway analysis was more powerful than collapsing
variants' information into gene units first [42]. This indicates that that
one-step analysis may bemore powerful than two-step pathway analy-
sis. In brief, while analysing RVs using pathway analysis software is
technically feasible, the performance depends on the consistency be-
tween assumed and actual model of variants.

3.1.3. What are the pathway analysis software tools that can be applied to
common variants and RVs?

Recently, there are software tools developed particularly for path-
way analysis of both common and rare variants. The aSPUPath test
[51] is a self-contained pathway analysis test modified from adaptive
sum of powered score (aSPU) [52], which was originally developed for
RV analysis. It can, by incorporating suitable weighting, cater for both
common and rare variants. Parameters can be adjusted to modify the
assumed direction and proportion of associated variants. This can help
increase power by fitting a statisticalmodel closer to the actual situation
by which variants confer their effects. Another software tool uses
smoothed functional principal component analysis [53]. In this test, ge-
netic variants under consideration are formulated to be represented by
a functional principal component score. The difference of the average
scores between cases and controls are tested. Smoothed functional prin-
cipal component analysis has been shown to have better power and bet-
ter-controlled type I error rates than other common region-based RV
analysis software. One reason for the better power is the software's
a. Self-contained approach P

Probability that difference of statistics
1 
and

/
statistics

observed

Proportion of statistics
1..n

that is bette
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Fig. 3. Self-contained vs. competitive approaches of pathway analysis. For self-contained approa
versus that assuming there is no association (null hypothesis). Usually, null data are assumed
approach, the observed statistics of the gene set of interest is compared with those of gene set
not within the current gene set of interest must be available, therefore limiting its use to geno
ability to capture all variants' information in constructing the principal
component score [53].

3.1.4. What are some challenges and points to note for carrying out path-
way analysis of RVs?

Unlike GWAS, which usually cover both genes and inter-genic re-
gions, sequencing studies currently focus more on functional regions
of the genome (most notably exons) or targeted regions of particular in-
terest. This is mainly because the cost of NGS is still high and because
more deleterious mutations may be present in these regions [39].
Many RV analyses require a weight to indicate the relative importance
of each variant during analysis (Table 4), which can help increase anal-
ysis power [38,54]. Assignment of weights based on functions for
targeted and exome sequencing is easier because functional annota-
tions are more likely known before experiment (Table 4). However, it
remains a question as to how the weights are determined for non-cod-
ing regions since functions may not be known explicitly, and therefore
only minor allele frequency [55] may be used as the most readily avail-
able information for determination. Population stratification, as in anal-
ysis of common variants, may adversely affect results. This can be
captured and corrected by traditional methods used in GWAS (such as
principal component analysis) [36,56]. Moreover, meta-analysis
methods have also been developed for combined analysis of multiple
RV studies [57]. As more sequencing studies are carried out, it will be
worth investigating if they are applicable to analysis of both common
and rare variants for better capture of genetic architecture for analysis.

Unlike pathway analysis for common variants, for rare variants, the
concept of “pathway analysis” (involving variants of multiple genes)
and “multiple-variant” analysis (involving variants of the same genes
only) is not clearly distinguished now (Table 4). Further investigation
is still needed whether multiple-variant analyses within genes can be
directly applied to pathway context.
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Table 2
Common pathway annotation databases. Besides these databases, Pathguide [157] (http://www.pathguide.org/) also provides comprehensive lists of pathway-related databases and re-
sources catalogued according to their nature, such as metabolic or signalling pathways.

Name Description URL

BioCarta [158] Users input research data to construct the knowledge base http://www.biocarta.com
Gene Ontology (GO) [159] Large hierarchy of terms representing biological concept http://geneontology.org/
Kyoto Encyclopaedia of Genes
and Genomes (KEGG) [50]

Provides higher-order (genomic and pathway annotations) information from input of
molecular data for various organisms

http://www.genome.jp/kegg/

MetaCore [19] Extensive pathways derived from publications. Allows users to modify pathway elements for
illustration purpose

http://thomsonreuters.com/metacore/

MetaCyc [160] Contains metabolic and enzymatic pathways from various organisms experimentally validated
in literature

http://metacyc.org/

MSigDB [136] Contains a collection of annotated gene sets for use with their gene-set enrichment analysis
(GSEA) software. The collection includes various gene sets defined by biological functions, GO,
KEGG, positions, sequence regulation information etc.

http://www.broadinstitute.org/gsea/msigdb/

Pathway Interaction Database
(PID) [161]

A highly-structured, curated collection of information about known biomolecular interactions
and key cellular processes assembled into signalling pathways

http://pid.nci.nih.gov/

REACTOME [162] Provides a platform for annotating and visualising data from major databases such as NCBI
Gene, Ensembl and UniProt databases, UCSC & HapMap Genome Browsers, KEGG Compound
and ChEBI small molecule databases, PubMed, and Gene Ontology

http://www.reactome.org/
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One interesting question is whether pathway analysis of RVs con-
veys the same biological meaning as that for common variants. “Partial-
ly correct” is a short answer to this question. The argument against the
statement is that traditionally RVs are believed to have relatively larger
effect size. Therefore, once an associated RV is identified, it is likely that
the identified locus is already causative [58]. From this perspective,
pathway analysis is not necessary for RVs. However, this is not entirely
the whole picture for common diseases because some RVs only exert
medium or small effects [59]. To investigate this, Kryukov et al. tried
to estimate the proportion of mildly deleterious missense mutations
aswell as their fractions amonghumanRVs in various variation datasets
[60]. It was found that over half (53%) of all de novomissensemutations
are mildly deleterious. Moreover, the majority (52–71%) of amino acid
substitutions with observed frequency b1% are also mildly deleterious.
The combined findings show that low-frequency missense mutations
are deleterious. In addition, it has been estimated that the majority of
rare missense polymorphisms in humans have small selection coeffi-
cients (0.001–0.003). This suggests that the purifying selection acting
on them (i.e. the removal of these polymorphisms from population) is
relatively mild. Therefore, these rare mutations can accumulate in the
population, resulting in a highly heterogeneous spectrum of individual
alleles with very low frequencies [60]. A better model to study genetics
of such phenotypes would be to consider the cumulative frequencies of
all RVs (instead of individual ones) in interested genes and compare
Table 3
Disease study examples that adopted pathway analysis methodologies.

Disease Reference Software used

Alzheimer's disease [163] WebGestalt
Esophageal squamous
cell carcinoma

[164] ICSNPathway server applies the i-GSEA
(improved GSEA)

Multiple sclerosis [31] Cytoscape
Olfactory behaviour
(Drosophila)

[165] R spider

Biliary cirrhosis [166] LRT (first stage), i-GSEA4GWAS (second
stage)

Bladder cancer [167] GSEA and ARTP, using union of the results
Bipolar disorder [168] IPA (first stage), GSEA-SNP (Second stage)
Parkinson disease [169] ALIGATOR and GSEA
Schizophrenia [170] ICSNPathway server applies the i-GSEA
Major depressive
disorder

[171] GSEA, hypergeometric test, sum-square
statistic and sum-statistic.

Schizophrenia [172] MAGENTA, ALIGATOR, INRICH and Set Screen
Coronary heart
disease

[173] Variable set enrichment analysis (VSEA) in
genome-wide association studies

Preterm birth [33] GSEA (gene set enhancement analysis)
Kawasaki disease [174] MetaCore
Testicular germ cell
tumour

[34] iGSEA4GWAS, MAGENTA, GSA-SNP
them between cases and controls. Previously, the high cost of sequenc-
ing and the difficulty in selecting deleterious missense RVs (instead of
neutral ones) had limited the use of themethod [60].With the advance-
ment in technologies, the cost of sequencing keeps going down. Mean-
while, pathway analysis methodologies may help differentiating
deleterious RVs from neutral ones. For example, using pathway analysis
approach, structural differences were identified in multiple genes in-
volved in signalling networks controlling neurodevelopment [61], and
this approach identified rare structural variants in neurodevelopmental
pathways to be associated with schizophrenia. This example demon-
strated that rare variants involving multiple genes could be discovered
using pathway analysis approach.

3.2. From genetics and beyond: multi-omics analysis and non-genetic
analyses

One goal of genetic studies is to predict the outcome of a disease or
phenotype. However, when genetic information is passed from DNA
to RNA and then to protein through the central dogma of molecular bi-
ology, variable factors may interfere with the intermediate steps and
therefore affect the final outcome. These factors could be “intrinsic”,
i.e. regulatory events that happen inside an organism without external
stimuli, such as post-transcriptional and post-translational modifica-
tions or gene-gene interactions. The factors may also be “extrinsic”,
where environmental factors and external stimuli play important
roles. In this section, how information other than DNA genotype data
may be integrated with genetic pathway analysis will be briefly
discussed.

3.2.1. Why do we need multi-omics data analysis?
Because of the complexity in biological systems, integrating infor-

mation of multiple “-omics” platforms (including genomic,
transcriptomic, proteomic and, more recently reactomic data) can pro-
vide extra insight into how genetic information is conveyed to the for-
mation of phenotypes [62]. Although the idea of pathway analysis
methods for GWAS originated from analysis of expression data, tradi-
tionally data of different “-omics” platforms were analysed separately.
Recently, because of the availability of high-throughput expression
and proteomic data, data integration has gained much attention.

3.2.2. How integration is done? What software packages can be used?
Integration of genetic and other data can be divided into “multi-

stage” and “meta-dimensional” approaches [63]. For multi-stage analy-
ses, two different types of data (e.g. genotype and expression data, ex-
pression and phenotype data, etc.) are considered at each stage. A
linear pipeline that uses results from a previous analysis step carries
out integration of data. On the other hand, meta-dimensional analyses

http://www.pathguide.org
http://www.biocarta.com
http://geneontology.org
http://www.genome.jp/kegg/
http://thomsonreuters.com/metacore/
http://metacyc.org
http://www.broadinstitute.org/gsea/msigdb/
http://pid.nci.nih.gov
http://www.reactome.org


Table 4
Comparison of pathway analysis methods for common and rare/low-frequency variants.

Aspect Common variants Rare variants⁎

Frequency of
minor alleles

Common (≥5%) Rare (b1%) / low-frequency
(1–b5%)

Role of pathway
analysis

Usually secondary to
single-marker analysis

Usually as “conventional”
testing as single-marker
analysis usually does not
have enough power

Importance of
weights of
individual
variants for
analysis

Optional as usually density of
SNPs is not high and the
number of variants per gene
is smaller. Dilution effects of
non-causative variants are
not as obvious

Crucial as there is high
density of variants. More
obvious dilution effects may
be resulted from
non-causative variants, and
therefore weights can help
reducing such effects.

Availability of
functional
annotations

Not readily available for
non-exonic regions.

More readily available as
study designs mostly focus
on regions with known
functions. However, for
whole-genome sequencing,
functional data may not be
available for non-exonic
regions.

⁎ Theboundaries of frequency for rare and low-frequency variants vary in the literature.
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try to combine all data types and predict phenotype outcome using the
combined data in one step [63].

3.2.3. Examples of multi-omics data analyses: coexpression analysis
One good example of integration between genetics, gene expression

and phenotype outcome is obesity. Emilsson et al. [64] tried to explain
this using a two-step approach. First, they analysed over 23,000 tran-
scripts in blood and adipose tissue in 470 individuals to look for expres-
sion traits, i.e. gene transcripts with good correlation with clinical
phenotypes for obesity. Then, linkage analysis was carried out using
1732 microsatellite markers near to genes corresponding to the tran-
scripts from the same individuals to estimate “heritability” of the ex-
pression traits. It was found that expression traits with high
heritability in blood and adipose tissues were highly reproducible be-
tween the two tissues. For the expression traits that were within the
top 25th percentile for heritability in blood, 70% of them had a signifi-
cant cis-acting expression quantitative trait locus (eQTL) in both adi-
pose tissue and blood. This showed that expression of genes had a
high genetic component. This study is important because it linked
gene expression with clinical phenotypes, where such evidence was
previously given by studies of cell lines only.

Later, Zhong et al. tried to achieve integration for type 2 diabetes
using pathway analysis approach [65]. They first obtained SNPs associ-
ated with gene expression (eSNPs) in 707 liver, 916 omental adipose
and 870 subcutaneous adipose tissues. A total of 20,563 eSNPs were
identified in 9,964 genes. Association of these eSNPs with type 2 diabe-
tes phenotype was then assessed using a GWAS of over 3,400 individ-
uals, after imputing eSNPs present in expression analysis but not in
the GWAS. Pathway analysis using modified GSEA [44] was then used
to identify significant pathways with representing eSNPs. Nine path-
ways were finally identified, which were successfully validated using
an independent cohort [65]. This pipeline of analysis has further
shown that integration of genetic and expression data is possible with
the use of pathway analysis. Similar approaches have been adopted
for other phenotypes, including basal cell carcinoma [66], allergic rhini-
tis [67], coronary artery disease [68] and blood pressure [69].

This idea was extended by Gusev et al. for transcriptome-wide asso-
ciation study [70] (Table 1). In short, both genetic and gene expression
data were available from a small set of individuals. In a larger set of in-
dividuals with GWAS data only, expression data were obtained by im-
putation, and association between imputed expression data and
phenotype was then carried out. The main advantage for this approach
is that expression data is hard to obtain for all samples under study. This
study will allow expression-phenotype association analysis with ex-
pression data being generated using an indirect approach. Using this ap-
proach, 69 loci significantly associated with obesity-related phenotypes
were found [70].

Recently, Locke et al. [71] carried out a large-scale GWAS of body
mass index (BMI) using nearly 334,000 individuals. In this study, 97 sig-
nificant loci were successfully identified. Different sources of evidence
were used to identify significant SNPs associated with BMI. These
sources included genes having or close to significant SNPs, results
from pathway analysis software DEPICT [72] and MAGENTA [15] (see
Table 1), cis-eQTL and literature search to identify overlapping SNPs.
They have successfully found overlapping pathways, including those re-
lated to central nervous system, obesity, insulin secretion and/or
adipogenesis.

3.2.4. Gene coexpression network (GCN): undirected coexpression net-
works. How does it help in identifying functions of non-coding RNA?

Gene coexpression networks (GCN) and gene regulatory networks
(GRN, see Section 3.2.5) are related and yet conceptually different
types of networks. Both networks consist of edges that connect genes
with certain “relationships”. In GCN, this relationship refers to the
coexpression pattern observed between two (or more) genes. An edge
can be establishedwhen the correlation of the genes' expression (repre-
sented by statistical correlationmeasures such as Pearson's correlation)
exceeds a defined threshold. This simple definition does not imply any
causal relationship. In other words, GCNs are undirected. On the other
hand, GRNs describe the explicit causal relationships of developmental
processes [73]. GRNs explain how genomic sequences can regulate the
expression of a set of genes, which in turn gives rise to the collective de-
velopmental pattern and state of differentiation.

GCN is a versatile and powerful method. For example, it was used to
investigate the conservation of gene expression patterns among differ-
ent organisms. In Stuart et al.'s study, GCNwas used to study the expres-
sion patterns of humans, flies, worms, and yeast [74]. First, 6307
“metagenes” were defined using gene sets with similar protein se-
quences across the different species. The aim was to find out pairs of
metagenes with coexpression. To achieve this, the coexpression of
each pair of genes between two organisms was represented by
Pearson's correlation. The correlations of all genes were ranked. A prob-
abilistic method was then used to determine how likely to see the com-
bination of ranks across all organisms by chance. Connected by 22,163
edges, 3416 metagenes were obtained using a p-value cutoff at 0.05.
Five metagenes with previously unknown functions were selected for
investigation of their biological functions using information from their
GCNs. These metagenes showed conserved coexpression with the
genes involved in cell proliferation and cell cycle. Biological experi-
ments confirmed the functions of the metagenes in cell proliferation
and cell cycle. This example shows that GCNconstructed acrossmultiple
species can beused to infer functions of geneswith previously unknown
functions in addition to coexpression patterns.

Depending on the context of transcripts used for building the net-
works, GCN can also be extended to study the functions of non-coding
transcripts. In Yao et al.'s study, GCN was used to study enhancers
expressed in the brain and their gene targets [75]. Enhancers are non-
coding DNA sequences that can carry out regulatory functions. Active
enhancers have signature chromatin marks. Their transcription results
in non-coding enhancer RNAs. In this study, 908 enhancer regions
were first identified using RNA-seq of cell and tissue samples. Of
these, 673 were intronic/intergenic. By comparing RNA-seq results
from adult human frontal, temporal and occipital cortices, and cerebel-
lum, 131 brain-expressed enhancers (BEEs) were identified and 103 of
these, defined as robust BEEs (rBEEs), were found to overlap with en-
hancer-specific histone marks H3K4me1 or H3K27ac. In order to locate
the targets of rBEEs, a GCNwas constructed between rBEEs and gene ex-
pression data of the brain. The authors drew several conclusions from
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the GCN. First, out of all 19 coexpression interaction modules found, 12
showed brain region-specific or developmental stage-specific expres-
sion. Most obvious variation in spatiotemporal gene expression oc-
curred in the transition from fetal to postnatal brain. Moreover, the
largest GCN node contained genes more highly expressed in fetal
brain than in all regions of adult brain. Other GCN nodes were specific
to brain regions. This indicated the importance of brain enhancers in
regulating the stage of brain development. Second, in the GCNmodules,
there was higher topological overlap consisting of rBEE-closest gene
pairs. This indicated that rBEEs were more likely to coexpress, and
therefore regulate nearby genes. Third, among all the top genes
coexpressed with each of the rBEEs and also located in cis (within
500MB)with the corresponding rBEE, there were genes related to neu-
ronal differentiation and autism spectrum disorders. This indicated
rBEE's targets identified by GCN had functional relevance to brain cell
development and brain-related clinical phenotypes.

One potential use of GCN of RNA-seq data in non-coding RNA is the
annotation of long intervening non-coding RNAs (lincRNAs). Recently, a
protocol was introduced to identify lincRNAs and to characterise their
functions using a GCN [76]. The GCN integrates the expression of pro-
tein-coding and lincRNA genes. In short, lincRNAs were first identified
using coding-noncoding index (CNCI), a tool that catalogues coding
and non-coding sequence features of different species. Functions of
the lincRNAs were then predicted using ncFAN. ncFAN first tries to con-
struct a GCN between lincRNA and protein-coding genes. Then, accord-
ing to the functional terms annotated for the coding genes connected in
a certain hub, the function of the hub can be predicted. This example
suggests another possible application of GCN in predicting the functions
of non-coding sequences.

One noteworthy point is that previous expression profiles were cap-
tured mainly by microarrays. Because of the advancement in NGS, ex-
pression profiling using RNA-seq has become more popular. The
debate of whether using RNA-seq or DNA microarray is beyond the
scope of this paper although both technologies have their strengths
and weaknesses [77–80].
3.2.5. Gene regulatory network (GRN) – integrating genomics and proteo-
mics data

GCNs are undirected networks that only show coexpression pattern.
However, if we have both protein and expression data, it is possible to
construct directed gene regulatory networks (GRN), which is able to ex-
plain more about the causal relationship between genes. This idea was
Central 
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Fig. 4. Analysis paradigms for future pathway analysis. a. The expected information that can be
combined for analysis. b. Traditionally, pathway analysiswas carried out for germlinemutations
be included for pathway analysis includes time point, which can capture changes in the body i
used for identifying GCNs and GRNs in maize [81]. The study included
three types of datasets for 23 tissue samples spanning across the vege-
tative and reproductive stages ofmaize. The three types of data included
messenger RNA sequencing (mRNA-seq), electrospray ionization tan-
dem mass spectrometry data of unmodified protein, and that of phos-
phorylated protein. Weighted gene coexpression network analysis
(WGCNA) [82], an R package for construction of GCN, was used to dis-
cover similarly expressed genes. In total, 36 genes with similar expres-
sion patterns in at least 4 tissues were discovered. The
phosphorylation patterns of genes were similar to their mRNA profile.
Their phosphorylation also occurred in tissues known to be related to
developmental phenotype. These suggested that the phosphorylation
of these proteins was important in determining their functions. GRN, a
directed regulatory network, was then used to further explore expres-
sion pattern of genes together with protein data. GRNs were construct-
ed by observing the expression correlation betweenmRNA, protein, and
phosphoprotein expression profile of transcription factors (TFs). It was
found, using data from two previously validated TFs (KN1 and
Opaque2), that GRNs constructed using protein data predicted target
genes better. When this method was extended to all TFs, it was found
that different data sources resulted in disparate GRN predictions.
Using combinations of the data sources to build GRNs were found to
have better predicting power than single-input GRNs. This study pro-
vides an example of extending analysis of genomics to proteomics
data, as well as how this enables the direction of gene regulation to be
discovered.
3.2.6. Some software packages
In the earlier BMI example (see Section 3.2.3), the evidence shows

that BMI may be related to the control of appetite [71] because DEPICT
[72] also identified brain tissues (which is related to appetite) to be a re-
lated tissue enriched in the dataset. This example has shown that inte-
grating different sources in a meta-dimensional manner can deduce
possible pathways related to a phenotype. DEPICT [72] was built on
the data from a cancer expression study that tried to investigate the re-
lationship between copy number and expression level in cancer cells
[83]. In the software, there are 14,461 “reconstituted” gene sets that
capture gene sets with similar functions and expression patterns. The
set was curated based on the expression pattern of 77,840 samples
and the functional annotation of constituent genes. In addition, tissue/
cell type enrichmentwas carried out using another set of 37,427micro-
arrays of human tissues/cells to determine if genes are highly expressed
Vs.

alysis of somatic mutations

ysis of germline mutations

d.
t = 1

t = 2

t = ……

integrated for pathway analysis. Basically, all levels of multi-omics data are expected to be
. c. Single-cellmethodologies enable analysis of somaticmutations. d. One possible factor to
n response to external stress such as viral infections.
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in any of the tissue and cell type annotations of the human subjects.
Using this information, DEPICT can help identify genes in associated
loci using input SNPs, “reconstituted” gene sets enriched in genes of as-
sociated loci, and tissue/cell types implicated by the associated loci [72].

Another integrated analysis software is Gene Set Association Analy-
sis (GSAA) [84] (Table 1). The software tries to carry out gene set asso-
ciation analysis using both GWAS and expression data. GSAA is based on
multi-layer association tests of gene expression and genetic association
data. First, a single SNP score is produced using one of the five methods
provided by the software. Then, a SNP set is defined as the SNPswithin a
gene and the gene's flanking region. SNP set association score of the re-
gion is given by the maximum single SNP score among all SNPs in the
region. Second, a gene expression score is calculated (using one of the
Table 5
Issues and solutions for pathway analysis.

Questions/issues Suggested solution

Analytical issues
1. How to summarise SNP-level effects?
2. How to evaluate pathway-level statistics?

1. Researchers should compare and repo
of various methods to identify the spe
model each software performs best

2. Suggested information to be included
a. Source of gene set information
b. Statistical methods and potential b
c. Report SNP- and gene-level effects,

GWAS results, and individual gene
d. SNP- and gene-level statistics
e. Any possible gene set overlap, exam

correction of crosstalk effects of ge
f. Biological context as supporting evi

3. Biological Connection Markup Langua
standard method to report pathway in
was proposed

3. How to produce a standardised dataset to
confirm/compare pathway analysis results
and compare among methodologies?

There is no consensus drawn yet. There are
cons for using biological system and stan
simulated datasets as reference dataset.

4. How should we adjust for covariates in
pathway analysis?

For two-step analyses, p-values may be adj
SNP p-value stage.

Curation issues
1. What is the best way to include intergenic

variants to genes?
New area of future work on how to inclu
variants.

2. How should we include disease and cell
condition-specific information in analysis?
How to improve annotation data integrity
of the experiments?

1. Development of disease-specific databa
2. MIAME-like report in standard forma

report of experiments

Other areas
1. How can we take both genetic and non--

genetic risk factors into account?
Include environmental data into conside
predicting diseases

2. How to account for temporal effects due to
environmental change and response to
stimuli?

Collection of data at different time points t
dynamics of the genome

3. How to extend to rare-variant analysis? Open area of research. Studies show that ra
region-based analysis methods may be u
pathway analysis. However, assumption
disease model must be carefully made be
methods can predict associations accurat
research is needed to develop methods o
analyse rare variants without such assum
very often the actual disease model is no
study).

4. Stability of results – Are results replicable
for different individuals (due to genetic
heterogeneity)?

1. Study gene sets instead of individual ma
2. Using genes instead of individual vari

analysis
four methods in the software) using the difference in the means of ex-
pression between the phenotypic classes divided by standard deviation.
Third, a gene association score is given by combining the SNP set associ-
ation score and gene expression score using either Z-score sum, Fisher's
method or rank summethod provided by the software. Finally, Kolmo-
gorov-Smirnov test is used to determinewhich gene sets are associated
with the phenotypemost (by testing gene scores of constituent genes in
the gene set). It was found that, in Crohn's disease data, GSAA was able
to report more significant pathways than GSEA, which only uses gene
expression data [84].

iGWAS [85] (see Table 1) is a method that uses mediation [86] to
model effects of SNPs and gene expression on disease phenotype. In
brief, the authors previously tried to model total genetic effects, i.e.
Challenges in tackling References

rt the ability
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are

ias/limitations
original
contribution

ination/-
ne sets, if any
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ge (BCML), a
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[29,175]
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Using well-studied biological data as reference dataset
for replication can be better than using simulated data
as the end-results can be accurately known. However,
how the actual biology (i.e. the intermediate steps)
leads to the end results cannot be observed. Also
different gene set definitions can attribute same results
to different pathways, which makes interpretation of
results difficult

[10,28]

usted at the 1. Not easy to carry out adjustment for software using
raw genotypes as input due to methodology
constraints

2. The dependence between covariates and pathways
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[5]
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burden. However, including too few may exclude
causative variants.
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Box 2
Challenges for pathway analysis.

Analytical aspects
In terms of analytical aspects, themost important issue is the lack
of reproducible results between methods. This is mainly because
of the lack of consensus on summarising SNP- and gene-level sta-
tistics. There is no standard protocol or procedure in analysis be-
cause of the wide variety of analysis methodologies and gene
set definitions. Therefore, studies should report enough informa-
tion for users to understand the strengths and weaknesses of
analysis and to choose the most appropriate software. Biological
ConnectionMarkup Language (BCML)was proposed for reporting
pathway analysis [175]. This may provide a starting point for
achieving more information reporting of pathway analysis data.
To compare or confirm among pathway methodologies in a fair
manner, the availability of a standard replication dataset is impor-
tant. However, there is no rule of thumb whether it is better to
use simulated dataset or a standard biological system. Replicated
dataset can be generated by simulation of random disease out-
comes or random permutations of samples [28]. On the one hand,
simulated/permuted data are more homogeneous because the un-
derlying statistics for simulation or methods in permutation are
based on theory. On the other hand, simulated/permuted data can-
not represent all the biological events happening in a real organism.
Therefore, there is still value to carry out experiments to obtain bio-
logical data for comparison of analysismethods [10].While the final
effects of certain hypotheses can be observed in the end, how the
intermediate biological events are produced is still extremely hard to
be discovered fully [10]. Therefore, confirming pathway analysis
results remains a challenging mission.
Currently,many software tools do not accept adjustment for covar-
iates in the analysis [9]. Algorithms have been developed to deal
with this issue, such as supervised principal component analysis
[184] and regression-based method [185]. However, covariates
are still mainly controlled at the single-variant analysis stage in
two-step analysis, where covariates are adjusted in producing
single-variant p-values. It is more difficult to carry out covariate
adjustment for raw-genotype-based methodologies because these
methods cannot handle covariates, or strong assumptions have to
be made about the independence between the covariates and the
pathways [5].
Curation aspects
It still remains an issue how best to map variants into genes.
Meanwhile, expression of genes and their consequences may be
different between diseases and in normal tissues, different tissue
types and at different time points. Therefore, it is useful to incor-
porate other information sources to report tissue- anddisease-spe-
cific data [10] (see Section 4 “future perspectives”).
Including tissue-specific data can improve quality of pathway anal-
ysis [176]. Because of the diversity in experiments, reporting how
databases are curated will allow users to understand strengths
and limitations of the data. The standardisation of reporting experi-
mental data has been suggested for expression microarray data for
pathway analysis [10] via the framework of minimum information
about a microarray experiment (MIAME) [186]. MIAME describes
six elements of microarray experiments that will allow researchers
to understand results of experiments.Note that using such standard
as MIAME should not limit researchers what to report according to
particular methodology. Instead, it should encourage detailed cata-
logue of methodologies and results such that interested groups can
understand how results are generated and how results are conclud-
ed by proper description and annotations [186]. Thiswill finally help
interpret, and ultimately combine results in a more meaningful and
understandable manner.
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the total effects of SNPs and gene expression, on a phenotype [87].
iGWAS extended the method by adopting counterfactuals [88] to sepa-
rate total genetic effects on phenotype into two components: one that
can be mediated through gene expression (mediation effect), and the
other notmediated through gene expression (alternative effect, effected
through environmental factors, for example). iGWAS can test the asso-
ciation of both components using an omnibus test. With asthma as an
example, iGWAS has been found to be able to confirm previously re-
ported associated genes [85].

Another example is weighted gene coexpression network analysis
(WGCNA) [82]. WCGNA is widely used for the construction of GCNs. It
consists of a collection of R scripts for different stages of building net-
works, including network construction, module detection, and calcula-
tions of topological properties [82]. Compared with Bayesian
networks, WCGNA requires less time and fewer samples for training.
Besides, when compared with GSEA, there is no need of a priori infor-
mation as input. Multiple-testing threshold can also be alleviated be-
cause WGCNA only considers a subset of edges for network
construction [89]. While originally designed for expression analysis, it
has the potential to be used for other data type too [82].

GWAS results can be extended by making use of information about
metabolism, known as metabolomics GWAS (mGWAS; see Section
3.2.8), to infer consequences of genetic variants at the metabolite level
[90]. Software tools, such as iPEAP (integrative Pathway Enrichment
Analysis Platform) [91], are available [92] for applications from “tradi-
tional”GWAS [93] to state-of-the-art NGS experiments [94], which sug-
gests the promising prospect of analysis in the area.

3.2.7. What are the challenges in multi-omics analysis?
Although integrating data from multi-omics platforms can provide

insight into the relationship between genes and phenotypes, there are
issues to be resolved. Firstly, while it is relatively easy to obtain geno-
type data (through extracting DNA fromparticipating subjects), expres-
sion and metabolomic data are more difficult and costly to obtain.
Moreover, while obtaining both genotypes and gene expression profiles
for the same individuals would be best for building disease prediction
models, it is very hard to have a large sample size. Some software
tools were developed using their own genotype and expression data
(such as DEPICT [72]) so that users can carry out analysis without
their own expression data. However, if the disease/tissue to be analysed
is not in the default database of such software, producing expression
data with experiments is still an inevitable step. Furthermore, the rela-
tionships between different levels of data may not be linear [95],
which may render the use of simple regression models not applicable
or more difficult. Further development in statistical tools may help cap-
ture such non-linear relationships [95]. Overall, increased sample size
should be the most direct approach to improving the power of a
study. However, validation using independent sample set, or cross-val-
idation using sub-groups of dataset in handmay also help improve pre-
dictive ability with limited numbers of samples and resources [63].

3.2.8. Integration of data in other functional “-omics” data
While bioinformatics analysis using information from the central

dogma (genomics and proteomics) allows us to understand our biology,
there are yet other levels of information that allow us to further under-
stand the molecular biology in the body. Here we wish to briefly go
through a few examples of glycomics and metabolomics analysis.

DNA sequences determine the sequence of a protein. However, the
structure and function of the protein can bemodified by a very complex
process of glycosylation involving regulation of many genes [96]. There
are a number of modifications that can affect the structure of glycopro-
teins, and can each be represented by one level of information. These
levels include glycogenomics (genomics of genes and enzymes involved
in glycosylation pathways), glycoproteomics (study of glycosylatedpro-
teins and their glycosylation sites) and glycomics (identification of gly-
cans present) [97]. Integration of various sources of data is still at an
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early stage because there are still several hurdles in data analysis (e.g.
how to format input data, and lack of analysis tools) [97]. Despite this,
there are a few pioneering studies in glycomics. For example, Brennan
et al. tried to analyse mass spectral and gene expression data [98]. In
the study, they compared the glycosylation patterns of androgen-de-
pendent and androgen-independent lymph node carcinoma of the
prostate (LNCaP) cells. They utilised several layers of mathematical
rules to generate networks to infer the abundance of glycan structures.
An increase in H type II and Lewis Y glycan structures in the androgen-
independent cells and the corresponding elevated activity of a
fucosyltransferase (FUT1) could be found. However, this could not be
foundby single-stage analysis [98]. This example showed that a systems
biology approach combining expression and mass spectrometry data
could be used to discover novel findings.

Another possible multiple -omics application is in metabolomics
analysis. Metabolomics is the study of chemical traces of the cell during
certain cellular activities. Expression-based analysis allows the observa-
tion of themolecules present in the cells [99]. By incorporating genetics,
hopefully the variations that causes such dynamics could be predicted.
This is achieved by GWAS with metabolic traits, or mGWAS [100]. Sim-
ilar to genetic studies, detection of metabolic traits can be divided into
targeted or non-targeted methods. Targeted methods are mainly
based on mass spectrometry (MS) [101] while non-targeted methods
use both MS and nuclear magnetic resonance (NMR) [102]. The first
mGWAS is a study of metabolite profile in serum [103]. The study in-
cluded a GWAS analysis of 363 metabolites in 284 males. Four signifi-
cant variants coding for enzymes were identified, where the
corresponding phenotype matched the pathway in which the enzymes
were involved [103]. For lipidomics, Hicks et al. carried out a GWASwith
sphingolipid traits. Lipids were quantified using electrospray ionization
tandem mass spectrometry (ESI-MS/MS) [104]. Thirty-two variants
passed genome-wide significance threshold. The strongest signal
spanned across 7 genes that function in ceramide biosynthesis and traf-
ficking [105]. Another example is a GWAS to identify genetic risk factors
for polyunsaturated fatty acids [106]. Variants of the FADS cluster
showed the strongest association with plasma fatty acid concentration,
and also a second strongest locus in EVOVL2 associated with longer
chain n-3 fatty acids [106].

3.3. Analysis of interaction and environmental factors

3.3.1. Environmental factors and interaction analysis
Besides genetics, environmental factors and gene-gene (G-G) inter-

actions also play a crucial role in the aetiology of a phenotype. In fact, the
manifestation of a disease or phenotype can be viewed as the interplay
between genomics, epigenomics, and environment factors (extrinsic
factors such as behaviour or stimuli from living environment) [107].
Studying genetic (as well gene expression and/or proteomic) data to-
gether with environmental variables will help us understand how the
body responds to changes in external conditions. Other papers focus
on study design and analysis methods [108–110]. Here, we wish to
focus on giving a brief idea of how gene-environment (G-E) interaction
is considered in GWAS with incorporation in the context of pathway
analysis. Users may wish to refer to other references for interaction in
candidate gene studies [111,112] as well as experimental designs [113].

3.3.2. Pathway analysis and gene-environmental interaction
Previously, G-E interaction analysis mainly focused on candidate

gene regions with suggested functions (hypothesis-driven) [110]. One
example is the interaction study between Y402H (a common coding
variant in the complement factor H gene) and lifestyle factors in age-re-
lated macular degeneration [114]. It was found that individuals having
the CC genotype of Y402H and higher BMI or smoking conferred the
greatest risks. With the emerging number of GWAS, analysis of G-E in-
teractions has also evolved from hypothesis-driven candidate approach
to genome-wide scale (non-hypothesis-driven). Studies that carry out
G-E interaction analysis on a genome-wide scale, i.e. genome-wide in-
teraction studies (GEWIS/GWIS), can be viewed as an extension of
GWAS. GEWIS has been carried out for several diseases. For example,
a GEWIS of asthma investigated the interaction between genetic vari-
ants and two environmental factors, in utero and early childhood tobac-
co exposures, in 2654 cases and 3073 controls [115]. In this study, a
logistic regression model containing independent variables
representing genetic effects, tobacco exposures, and an interaction
term was used for analysis. Variants in EPB41L3 and PACRG were
found to be the most significant after considering interaction with in
utero and early childhood exposures, respectively. In a GEWIS ofmyopia
[116], a joint meta-analysis of interaction between genetics and educa-
tion level in refractive error was performed. It was found that three var-
iants in AREG, GABRR1 and PDE10A have strong evidence of interaction
with education among Asian cohorts.

Studies of G-E and G-G interactions both involve a large number of
multiple-testing penalties due to the huge number of tests for all possi-
ble interacting pairs. Some software tools can help us select more prob-
able interacting gene pairs (Table 1). Gene-based and pathway-based
interaction analyses can improve the power of GEWIS by combining sig-
nals within functional units. This can be done in amulti-stage approach,
where GEWIS is carried out in the first stage, followed by gene-based
and pathway-based analyses. One example is a GEWIS of lung cancer in-
vestigating the disease susceptibility in relation with asbestos exposure
[117]. This study included over 300,000 SNPs with over 1100 cases and
controls. Three level of analyses, namely single-variant level, gene level
and pathway level, were carried out. In single-variant level of analysis
(using p-value of interaction term reported by PLINK) and gene-level
analysis (using VEGAS [16]), no significant results were found. Howev-
er, in pathway-level analysis using i-GSEA [13], Fas signaling and anti-
gen processing pathways, which are related to apoptosis and immune
function regulation respectively, were found to be significant [117].
This study illustrates a relatively simple approach of how GEWIS can
be combined with pathway analysis methods for the discovery of
novel disease pathways.

3.3.3. Challenges in studying environmental factors and future directions
Indeed, taking cancer as an example, genome-wide G-E interaction

study is only at its start-up stage, and many G-E interaction studies
still adopted a candidate-gene approach [118]. The main challenge in
studying G-E interaction is data collection. As in the case for multi-
omics analysis, there are very few collected datasets large and wide
enough for comprehensive interaction analysis [107]. This situation is
slowly improving with the progress of Environmental Genome Project
(http://egp.gs.washington.edu/) [119] and Toxicogenome Project
[107]. How an individual develops an illness can be considered as how
he/she responds to the environmentally induced stress, given the
person's genetic background. Therefore, the Environmental Genome
Project aims to look for genes that are related to environmentally asso-
ciated diseases, and then carry out functional studies to validate the re-
sults in vivo. Moreover, one disease can occur simultaneously with
another, a phenomenon known as comorbidity [120]. By analysing envi-
ronmental interactions together, how an organism is “unwired” (i.e. to
respond to external environment by changing its own metabolism)
could be more clearly understood [120]. We hope that the information
can be utilised to advise authorities to improve health policies. For ex-
ample, if certain lifestyles are related to higher occurrence of certain dis-
eases, preventive policies can be made to advise the public to prevent
such activities in order to promote public health [107] – a paradigm
shift towards precision medicine [121].

4. Further perspectives

One trend for pathway analysis is its application to other “-omics”
data (Fig. 4). For example, copy number variation (CNV) data, an exam-
ple of structural variations, can be used to carry out combined analysis

http://egp.gs.washington.edu
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with expression data. In a meta-analysis of cancer transcriptomes, CNV
was compared with expression data to infer trans-acting gene sets
[122]. The correlation data were then used to look for enriched path-
ways to further explain the possible functional consequences of the re-
sults [122]. Another possible data type for analysis is epigenetics data
[123], which include the methylation patterns of DNA. One software
tool for pathway analysis of epigenetic data is LRPath [124]. It can report
enriched biological concepts (from information of a database containing
annotations from external sources) in input methylation data and com-
pare methylation profiles from multiple experiments. With the
expanding amount of data, the demand for software tools for multiple
data types will also increase.

In addition, the expression of genes within the body is dynamic.
One possible way to capture such information is to take expression
measurements and analysis at different time points (Fig. 4). For ex-
ample, Stanberry et al. tried to study the gene expression patterns
of a person during two episodes of viral infections [125]. The study
used the approach of integrative personal omics profile [126],
which tried to connect dynamic, longitudinal multiple -omics data
with disease status. In the study, clusters of genes having similar
temporal expression patterns during viral infections could be identi-
fied. This suggested that integrating different -omics data might help
model the dynamics of biological systems [125]. Moreover, tradi-
tional genomic analysis lacks cell- or tissue-specific data [10]. Recent
technological improvements in whole-genome amplification and
NGS havemade single-cell sequencing possible [127]. This would en-
able us to understand genes that have effects on cell state, and possi-
bly predict cell fate [128]. This is particularly important for cancer
studies because intra-tumour heterogeneity exists among cells of
the same individual [129]. Only with single-cell assays can variations
in genomes among cells be detected. This has proven to be successful
in breast cancer [130]. With pathway analysis, not only the genetic
variations among cells could be known, but also clues to the func-
tional background of how this happens and its consequences could
be discovered.

Further improvement of accuracy of pathway analysis requiresmore
comprehensive and replicable functional annotations, experimental
data and phenotype data. To obtain replicable functional annotations,
it has been suggested that functional data be reported in a standard for-
mat with minimal information, as suggested by Biological Dynamics
Markup Language (BDML), a format for reporting dynamic data [131].
Optimistically, the number of replicable pathway studies will be in-
creased by improving the quality in reporting results of experiments.
However, it should be noted that even with pathway analysis, function-
al analysis is still needed to confirm the actual genes and variants that
exert the most important effects.

Finally, we briefly summarise the issues in pathway analysis and
suggested solutions in Table 5, and some issues are deliberated in detail
in Box 2. This serves to inspire the readers for future development in this
area.

5. Conclusions

This concise review discusses different factors to be considered in
carrying out pathway analysis for GWAS to analyse complex diseases,
as well as how pathway analysis could be extended to rare variants,
and the possibility of including other “-omics” data and taking interac-
tion into consideration. Along with the advancement in -omics technol-
ogies are the large amounts of data generated from multiple platforms.
One strength of pathway analysis is its ability to integrate information
from different sources, as well as reducing dimension of analysis into
meaningful units so that the power of analysis can be improved. We
foresee that pathway analysis of complex disease will be “multi-dimen-
sional”, where “-omics” and environmental factors will be considered
simultaneously in analyses in order to model disease mechanisms
more accurately. By learning both “intrinsic” genomic factors and
external environmental factors causingdiseases, better health strategies
for personalised healthcare, and precise medicine based on a person's
genetic and exposed environment backgrounds for the prevention and
treatment of disease could be invented.
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