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Abstract

Sequential Constraint Grammar (SCG)
(Karlsson, 1990) and its extensions have
lacked clear connections to formal lan-
guage theory. The purpose of this article is
to lay a foundation for these connections
by simplifying the definition of strings
processed by the grammar and by showing
that Nonmonotonic SCG is undecidable
and that derivations similar to the Gen-
erative Phonology exist. The current in-
vestigations propose resource bounds that
restrict the generative power of SCG to
a subset of context sensitive languages
and present a strong finite-state condition
for grammars as wholes. We show that
a grammar is equivalent to a finite-state
transducer if it is implemented with a Tur-
ing machine that runs in o(n logn) time.
This condition opens new finite-state hy-
potheses and avenues for deeper analysis
of SCG instances in the way inspired by
Finite-State Phonology.

1 Introduction

Lindberg and Eineborg (1998), Lager and Nivre
(2001) and Listenmaa (2016) have analyzed the
Sequential Constraint Grammar (SCG) (Karlsson,
1990) from the logical point of view, propos-
ing that the rules can be expressed in first-order
Horn clauses, first-order predicate logic or propo-
sitional logic. However, many first-order logi-
cal formalisms are themselves quite expressive as
Horn-clauses are only semi-decidable and first-
order logic is undecidable, thus at least as pow-
erful as SCG itself. Propositional logic is more
restricted but does not help us to analyse the ex-
pressive power of SCGs and to prove the finite-
stateness of grammars.

Instead of just reducing SCG to undecidable

or otherwise powerful formalisms, we are inter-
ested in the ultimate challenge that tries to prove
that a practical grammar is actually reducible to
a strictly weaker formalism. This goal is interest-
ing because this kind of narrowing reductions have
been proven extremely valuable. For example,
the proof that practical grammars in Generative
Phonology are actually equivalent to finite-state
transducers has turned out to be a game-changing
result. In fact, the reduction gave birth to the in-
fluential field of Finite-State Phonology.

It is noteworthy that prior efforts to analyse
SCG in finite-state terms have focused on the
finite-state nature of individual and parallel rules
(Peltonen, 2011; Hulden, 2011; Yli-Jyrä, 2011).
The efforts have mostly ignored the generative
power of the grammar system as a whole and that
of practical grammar instances.

In this paper, we are aiming to Finite-State Syn-
tax through reductions of practical SCGs. To set
the formal framework, we have to start, however,
from the total opposite: we show first that the
simplified formalism for Nonmonotonic SCGs is
Turing equivalent and thus similar to Generative
Phonology (Chomsky and Halle, 1968; Ristad,
1990) and Transformational Grammar (Chomsky,
1965; Peters and Ritchie, 1973). This founda-
tional result gives access to the large body of liter-
ature of bounded Turing machines and especially
to Hennie machines that run in O(n) time and are
equivalent o finite-state machines. Then the Gap
Theorem (Trakhtenbrot, 1964) gives us access to a
looser bound o(n logn) whose reasonable approxi-
mations are sufficient and decidable conditions for
finite-state equivalence. We present some ways in
which these bounds can be related to SCG parsing.

The article is structured as follows. Section 2
describes the alphabets, the strings and the deriva-
tion steps in SCG parsing. In Section 3, these are
used to show Turing equivalence of SCGs. In next
two sections, simple bounds are introduced and
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elaborated further to obtain specific conditions for
finite-state equivalence of grammars. Further links
to formal language theory and two important open
problems are presented in Section 6. Then the pa-
per is concluded.

2 SCG as a ”Phonological” Grammar

In the SCG literature, morphosyntactic readings
of tokens are usually represented as tag strings
like "<went>" "go" V PAST. The tag strings are
now viewed as a compressed representation for a
huge binary vector ( f0, f1, f2, ..., fk, ...). The se-
mantics of the grammar ignores some tags and
considers only k tags declared in advance in the
grammar. These k tags or features distinguish
readings from each other and define the reading
alphabet S = 2k.

An ambiguous token has more than one reading
associated to it. The elements of the cohort al-
phabet P(S) are called cohorts. This alphabet is
the powerset of the reading alphabet. Only a small
subset of all possible cohorts occur in practice.

The input of an SCG is produced by a de-
terministic finite-state function, Lexicon⇤ : T ⇤ !
(P(S))⇤, that maps token strings to lexical co-
hort strings of the same length. This function is
the concatenation closure of the function Lexicon :
T ! (P(S)) that maps every token to a cohort.

Since the image of each token is a set of
strings, Lexicon is internally a nondeterministic
lexical transducer (Karttunen, 1994; Chanod and
Tapanainen, 1995), but the image of each token is
viewed externally as a symbol in P(S), making
Lexicon a one-valued function.

An SCG processes the lexical cohort string
by iterated application of a derivation step ):
(P(S))⇤ ! (P(S))⇤ that affects one cohort at a
time. The contexts conditions of each derivation
step are normally defined using an existing SCG
formalism for contextual tests. Monadic Second
Order Logic (Büchi, 1960; Elgot, 1961; Trakhten-
brot, 1961) provides an alternative formalism that
can express all finite state languages over P(S).

The parser defines the parsing strategy that re-
solves the conflicts between rules that could be ap-
plied simultaneously. A typical strategy chooses
always the most reliable rule and the leftmost tar-
get position. When the plain contextual tests are
combined with the application strategy, we obtain
a total functional transducer (Skut et al., 2004; Yli-
Jyrä, 2008; Hulden, 2009). E.g., the transducer in
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Figure 1: A simple) relation as an FST

Fig. 1 is total and replaces A by B in the first pos-
sible occurrence position.

The semantics of an SCG grammar G is defined
as the relation

[[G]] = {(i,o) | i 2P(S)⇤,o 2 I, i)⇤ o}

where I ✓P(S)⇤ as {x | (x,x) 2)}. This seman-
tics makes SCG grammars similar to grammars in
Generative Phonology (Chomsky and Halle, 1968)
as both grammars relate the lexical string into
some kind of output string by applying a sequence
of alternation rules.

3 Nonmonotonic SCG

Two recent SCG implementations (Tapanainen,
1996; Didriksen, 2017) are nonmonotonic: they
do not always reduce the input but they can insert
tags, readings and even cohorts. In this section, we
study the expressive power of such SCGs.

3.1 Minimal Definition
For the sake of minimality, we define the Non-
monotonic SCG (NM-SCG) as a rule system that
supports the following kinds of local transforma-
tion rules:

• REPLACE (old ) (new ) (cond )+

• INSCOHORT (targ ) (cond )+

• REMCOHORT (targ ) (cond )+

The first rule template in the above replaces the
leftmost cohort containing the reading old with a
cohort that contains the reading new if the relative
context condition cond is satisfied. The familiar
SELECT and DELETE rules are seen as shorthands
for sets of REPLACE rules. The second and the
third rule templates are used to insert or remove a
target cohort matching the pattern targ when the
condition cond is satisfied. The plus (+) indicates
that more than one condition can be present.

Our simplified context conditions are of the
form (d tags ) or (d NOT tags ) where the
first tests the presence of the pattern tags in the
relative cohort location d. The second is true when
the location does not contain the pattern.
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3.2 One-Tape Turing Machine
A one-tape deterministic Turing machine (TM)
has a finite control unit and an infinite rewritable
tape with a pointer (Fig. 2). A configuration of the
machine consists of the current state q, the current
pointer value and the contents of the working tape.

LB A B C A B C RB RB · · ·
q "

Figure 2: A one-tape Turing machine

The tape is divided into squares that hold a left
boundary LB, a right boundary RB, or a symbol
from the tape alphabet W. Given the input string
x 2 W⇤, the first square of the tape is pointed and
the tape is initialized with the prefix LBxRB that is
followed by an infinite number of right boundary
symbols.

The control unit is a deterministic finite automa-
ton where each transition s

(A,B,d)! t specifies the
source state s, the target state t, the input sym-
bol A, the output symbol B, and a head move
d 2 {�1,0,1}. On each transition, the machine
overwrites the symbol A in the pointed square with
the symbol B, changes its state from s to t and
then moves the pointer d steps to the right. All
but the leftmost square are over-writable (B = A if
A = LB), but the machine never moves beyond the
first right boundary without overwriting it with a
tape symbol and never writes RB between two tape
symbols.

The computation of the machine starts from
state q0. At each step, the machine takes the next
transition based on the current state and the cur-
rently pointed symbol on the memory tape. The
computation continues as long as the next transi-
tion is defined and then halts by reaching a state
from which there is no transition on the current in-
put. If the halting state is among the final states
F , the machine accepts the input contents and re-
lates it with the string x0 2W stored to the memory
tape. Otherwise, the machine either gets stuck to
an infinite computation or gives up, leaving some
ill-formed string to the memory tape.

3.3 Reduction to Nonmonotonic SCG
Now we show that any one-tape Turing machine
can be simulated with a nonmonotonic SCG.

In our simulation, each square in the initial por-
tion of the memory tape corresponds to a cohort in

the input. Each cohort is a singleton set in P(S)
i.e. represents just one reading in S. Each reading
is a collection of positive features from F. These
features include the tape symbols W, the boundary
symbols {LB, RB}, and the markers that that we
need to keep track of the computation steps.

The pointed square corresponds to a cohort that
contains a marker. Since SCG can change only
one cohort at a time, movement of the pointer
involves two temporarily marked positions and
markers: the first indicates the previously pointed
square and the second indicates the new pointed
square. One marker represent the source state and
the other represents the transition in progress.

A transition q A,B,d! r, RB /2 {A,B}, corresponds
to a sequence of three rule applications that change
one cohort at a time. Since the set of transitions,
the sets of states Q and the tape alphabet W are
finite, each step is described with a finite set of
non-monotonic SCG rules:

1. Given the state marker Qq 2 {Qs | s 2Q}✓F
in cohort i and no other marked cohorts, add
a transition marker T-q-A2F to cohort i+d
that previously contains a tape symbol C 2W:

REPLACE (C) (T-q-A C) (�d Qq A)

2. Given a transition marker T-q-A in cohort i+
d, overwrite, in cohort i, the reading contain-
ing the tape symbol A and the state marker Qq
with a reading containing the tape symbol B:

REPLACE (Qq A) (B) (d T-q-A)

3. When no state marker is present, replace the
transition marker T-q-A with the marker for
the target state Qr while keeping the remain-
der C 2 S in the changed cohort:

REPLACE (T-q-A C) (Qr C) (�d NOT Qq)

A transition q RB,A,0! r, A 2 W, corresponds to the
application of rules:

ADDCOHORT (T-q-RB A) (1 Qq RB)

REPLACE (Qq RB) (RB) (-1 T-q-RB A)
REPLACE (T-q-RB A) (Qr A) (1 NOT Qq RB)

When the previous cohort contains tape symbol
C 2W, a transition q A,RB,�1! r, where A 2W, corre-
sponds to the application of rules:

REPLACE (C) (T-q-A C) (1 Qq A) (2 RB)

REMCOHORT (Qq A) (1 T-q-A)
REPLACE (T-q-A C) (Qr C) (1 NOT Qq A)
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Transitions q RB,A,�1! r, q RB,A,1! r and q A,RB,0! r, A 2
W, reduce to a sequence of two transitions.

The SCG parser halts when the tape contents
does not trigger any of these rules that simulate
transitions. The simulation accepts the input if
some cohort contains a marker Qq such that q 2 F .

Proposition 1. NM-SCGs can simulate TMs.

Since NM-SCG is itself an algorithm, we have:

Proposition 2. There is a one-tape deterministic
TM that implements the NM-SCG parser.

Proposition 3. NM-SCGs are equivalent to TMs.

4 Bounded Nonmonotonic SCGs

The undecidability of Nonmonotonic SCG creates
a need to restrict the formalism in ways that en-
sure decidability. In this section, we propose two
parameters that set important bounds on the re-
sources available to grammars.

4.1 The O(n) Space Bound
The fertility f 2 N[{•} of a nonmonotonic SCG
grammar is the maximum number of new cohorts
that each the grammar inserts before any of the
n cohorts in the original sentence (with RB). Note
that fertility f > 0 implies nonmonotonicity.

Proposition 4. In finite-fertility SCGs, the length
` of the output string is linearly bounded.

The bounded length of the cohort string is an
important restriction to Nonmonotonic SCGs be-
cause it ensures that any infinite loop in the com-
putation can be detected after a bounded number
of computation steps because the number of dis-
tinct tape contents is bounded.

Proposition 5. The termination of a finite-fertility
SCG is decidable.

We also know that the preconditions of each
rule can tested with a finite automaton and that the
actual effect on the target cohort is a functional
finite-state computation that can be implemented
in linear space according to the length of the co-
hort string.

Proposition 6. The space requirement of a finite-
fertility SCG is linear to the maximum length of
the cohort string during the derivation.

A deterministic linear-bounded automaton
(DLBA) (Myhill, 1960) is a special case of
Turing machines with the restriction that the right
boundary is fixed and cannot be overwritten. The

LBA computations can be initialized so that the
space available for storing the cohort string is
linearly bounded by the length of the initial cohort
string.

Proposition 7. A nonmonotonic SCG with finite
fertility is simulated by an DLBA.

The power of DLBAs is restricted to a strict sub-
set of context-sensitive languages (Kuroda, 1964).

Proposition 8. The cohort language accepted by
a finite-fertility SCG is context sensitive.

4.2 The O(n2) Time Bound
By studying only monotonic SCGs with the read-
ing count r in cohorts, and the sentence length
n (including RB), Tapanainen (1999) has given a
lower bound for the parsing time:

Proposition 9 (Tapanainen 1999). Any monotonic
SCG performs O(nr) rule applications.

The volume v 2 {1,2, ...}[ {•} of cohorts is a
parameter that tells the maximum number of op-
erations that can be applied to any cohort. This
new notion is a nonmonotonic generalization of
the maximum number of readings in one cohort.
Finite volume basically turns every finite fertility
SCG into a monotonic SCG.

Finite fertility helps us to generalize the above
proposition to nonmonotonic SCGs.

Proposition 10. Any NM-SCG performs O((1+
f )nv) rule applications.

Assuming again that any rule of the grammar
can be applied in linear time according to the num-
ber of cohorts, we obtain a time complexity result:

Proposition 11. Any NM-SCG runs in O((1 +
f )2n2v) time.

5 Finite-State Hypotheses

A deterministic linear bounded automaton is a
special case of one-tape deterministic Turing ma-
chines that gives us a context where many inter-
esting conditions for finite-stateness aka regularity
become applicable.

5.1 The o(n logn) Time Bound
Hennie (1965) showed that a deterministic one-
tape TM running in O(n) is equivalent to a finite
automaton. By defining the relation between the
initial and final tape contents, we can extend Hen-
nie’s result to regular relations:
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Proposition 12 (Hennie 1965). A one-tape deter-
ministic TM running in O(n) time is equivalent to
a functional finite-state transducer.

The Borodin-Trakhtenbrot Gap Theorem
(Trakhtenbrot, 1964) states that expanded
resources do not always expand the set of com-
putable functions. In other words, it is possible
that O(n) is unnecessarily tight time bound
for finite-state equivalence. A less tight time
bound is now expressed with the little-o notation:
t(n) 2 o( f (n)) means that the upper bound f (n)
grows much faster than the running time t(n)
when n tends to infinity: limn!• t(n)/ f (n) = 0.

Hartmanis (1968) and Trakhtenbrot (1964)
showed independently that the time resource of a
finite-state equivalent deterministic one-tape TM
can be expanded from O(n) to o(n logn) without
expanding the characterized languages. More re-
cently, Tadaki et al. (2010) showed that the bound
o(n logn) applies also to nondeterministic one-
tape TMs that explore all accepting computations.

Proposition 13 (Tadaki et al. 2010). A one-tape
TM running in o(n logn) time is equivalent to a
finite automaton/transducer.

A sufficient condition for finite-state equiva-
lence of a TM is satisfied if the running time of
the machine is bounded by a function t(n) that is
in o(n logn). For any reasonable function t(n), this
sufficient condition is decidable (Gajser, 2015).
However, to decide finite-state equivalence of any
TM, it would be necessary to consider all func-
tions t(n) 2 o(n logn).

We will assume a one-tape TM implementation
for finite-fertility SCGs. The tape is initialized in
such a way that f empty squares are reserved for
latent cohorts at every cohort boundary.

We assume the representation of the grammar
rules and the related application strategy by a func-
tional transducer such as in Figure 1. Its opti-
mization via the inward deterministic bimachine
constructions (Yli-Jyrä, 2011; Hulden, 2011) op-
timizes the tape moves between derivation steps.

The parallel testing of all context conditions in-
volves (i) the initialization step and (ii) a number
of maintenance steps. The initialization step com-
putes the validity of all context conditions at ev-
ery tape squares in amortised O(n) time. After
this, the total amortised time needed to maintain
the contexts is then bounded by the total number
of moves needed to perform the subsequent rule
applications.
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Figure 6: Average running times of CG-2 in the Financial Times

The average running time is then plotted in Figures 4 to 6. In addition to
the running time, there are four function curves: linear ( ), quadratic ( ),
cubic ( ) and . I set a coefficient for all of these functions so that
they go through the same point which denotes the sentence length 25. The
time in the y axis is in milliseconds.
The running time curve from parsing the novels seems smooth in Fig-

ure 4, closely following the curve. Figure 5 shows the curves
for the short sentences in more detail. On the other hand, the curve of the
newspaper text in Figure 6 seems somewhat more complex. The newspa-
per obviously has a larger variation in the running time. Nevertheless, the

time seems a reasonable approximation for the average running
time of CG-2 in both cases.

2.7.3 Worst case asymptotic running time of intersection grammars

The theoretical worst case running time of the intersection grammars is
discussed in Tapanainen (1997). There, I showed that this type of engine
runs in linear time , where is the size of the combined compiled
grammar and is the size of the sentence compiled into a finite-state au-
tomaton. The size is linear to the length of the sentence if the amount of
ambiguity that an individual token may get is limited. Paradoxically, Vou-
tilainen (1998) reports that due to the massive computation needed with

16

Figure 3: Average running time of CG-2 in Finan-
cial Times (according to Tapanainen 1999) seems
to follow the curve O(n logn)

Proposition 14. The time used to maintain the
context conditions is dominated by the time used
to move between target cohorts.

NM-SCGs based on a one-tape TM have now a
regularity condition:
Proposition 15. An NM-SCG is equivalent to a
finite automaton/transducer if its one-tape TM im-
plementation runs in o(n logn) time.

This proposition can be compared to an interest-
ing empirical observation by Tapanainen (1999)
who reports experiments with a practical SCG
(CG-2) system. According to the experiments, the
average running time of the system follows closely
the O(n logn) curve (Fig. 3).

On the basis of the experiments by Tapanainen,
we cannot exclude the hypothesis that the asymp-
totic running time is actually in o(n logn).
Whether the used grammar is actually equivalent
to a finite-state transducer is not known.

If the given NM-SCG instance would be equiv-
alent to a finite-state transducer, there would be
a possibility to carry out monotonic SCG parsing
in linear time and thus improve the parser’s effi-
ciency considerably. In case that the transducer is
extremely large, the improvement remains solely
as a theoretical possibility but the discovered reg-
ularity may still give valuable insight.

5.2 The O(n) Time Bound
Hennie’s finite-stateness condition (Hennie, 1965)
for deterministic one-tape TMs and its general-
ization to nondeterministic one-tape TMs (Tadaki
et al., 2010) are insightful and provide a method
to construct the equivalent finite-state transducer
when the finite-stateness condition is met.
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LB W O R D I N G RB · · ·
q0 q1 q2 q3 q4

q7 q6 q5  -
,! q8 q9 q10 q11 . . .

Figure 4: A crossing sequence between squares

A Hennie machine refers to a one-tape TM
whose running time is O(n). Hennie analysed
the expressive power of such machines using the
concept of crossing sequence, aka schema (Rabin,
1963; Trakhtenbrot, 1964). This concept is a pow-
erful tool in the analysis of the behaviour of two-
way automata and one-tape TMs.

A crossing sequence is the sequence of target
states s1,s2, ... visited by a TM when its pointer
crosses the boundary between a pair of adjacent
tape squares. States s1,s3, ... are reached when
the pointer moves forward and states s2,s4, ... are
reached when pointer moves backwards. Figure 4
shows how states are visited during a computation.
The crossing sequence between the 3rd and the 4th
squares is (s1,s2,s3) = (q3,q6,q9).

Every Hennie machine satisfies the property
that the length of its crossing sequences is
bounded by an integer k 2 N. The finiteness of
the crossing sequences of a given TM is undecid-
able (Průša, 2014) but if a finite upper bound k ex-
ists, this constant is computable (Kobayashi, 1985;
Tadaki et al., 2010).

Finiteness of crossing sequences implies that
the TM is equivalent to a finite-state automa-
ton/transducer. Furthermore, the bound lets us
construct this finite-state device. Unfortunately,
the size complexity of the constructed machine is
large in comparison to the original TM:

Proposition 16 (Průša 2014). Each |Q|-state, |W|-
symbol deterministic Hennie machine can be sim-
ulated by a nondeterministic finite automaton with
2O(|W| log |Q|) states.

Testing the finite-stateness of already con-
structed TMs requires more effort than to de-
sign and construct machines that are immediately
known to be Hennie machines. We will now men-
tion a few immediate constructions.

Průša (2014)’s construction is based on a finite
weight w 2 N of the tape squares. Every time
when a square is visited or passed, the weight
associated with the square is reduced. Once the

weight is zero, further visits to the square are
blocked.
Proposition 17 (Průša 2014). A weight-reducing
one-tape TM is a Hennie machine.

Analogously, we can define an NM-SCG whose
cohorts has a weight w that is reduced whenever
the pointer of the associated TM implementation
visits the corresponding square. The cohorts of
such an NM-SCG have obviously a finite volume
v w and can be changed at most w times.
Proposition 18. A finite-fertility NM-SCG im-
plemented by a weight-reducing one-tape TM is
equivalent to a finite-state transducer.

The second way to construct a Hennie-machine
based NM-SCG is to set the maximum distance
m 2 N[{•} between adjacent rule applications.1

When combined with the linear bound for rule ap-
plications, we obtain the O(n) bound and finite-
state equivalence:
Proposition 19. A finite-fertility NM-SCG runs in
O(m( f + 1)vn) time and is equivalent to a finite-
state transducer if m, f ,v 2 N.

The third way is to assume fertility f 2 N and
w= 1. Since no square can be revisited, this forces
the SCG to move constantly into one direction af-
ter all rule applications. This special case resem-
bles the rewriting rules in finite-state phonology
whose fundamental theorem (Johnson, 1972; Ka-
plan and Kay, 1994) states that if a phonological
rule does not reapply to its own output (but instead
moves on), it is regular.

The fourth way to construct a Hennie machine
from an SCG is based on the number of times the
context conditions for a cohort has to be updated.
A monotonic SCG reduces the ambiguity of the
sentence at every rule application. The reduced
ambiguity causes occasional updates in context
conditions of cohorts. Depending on the context
conditions, such updates at a cohort boundary may
have an infinite or finite bound. Due to functional-
ity and inward determinism of the )-transducer,
the pointer moves from one cohort to another only
if the context conditions of the latter have changed
as a result of a rule application. Thus, the number
of context updates bound the number of moves:
Proposition 20. If the context conditions can be
updated only finitely often at every cohort, then
the SCG is equivalent to a finite-state transducer.

1This approach was pursued and developed further by
the current author in an earlier manuscript (Yli-Jyrä, unpub-
lished) that is available on request.
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6 Open Problems

6.1 Aperiodic Context Conditions

Yli-Jyrä (2003) showed that the context condi-
tions used in a realistic Finite-State Intersection
Grammar (FSIG) are not only regular but star-free.
Since context conditions of SCG rules are strictly
weaker than those of FSIG (Tapanainen, 1999), we
have a strong conjecture that contexts in practical
SCG are also star-free.

Star-free languages are definable in the monadic
first-order logic of order, FO[<], a decidable logic
that is equivalent to LTL (Pnueli, 1977) and loop-
free alternating finite automata (LF-AFA) (Salo-
maa and Yu, 2000). The states in an LF-AFA are
totally ordered in such a way that every state is in-
dependent from all the preceding states in this or-
der. This is a major restriction to the structure and
expressive power of alternating finite automata.

While preserving possible star-freeness has led
improvements in fundamental algorithms (Yli-
Jyrä and Koskenniemi, 2004), we have not been
able to solve the following open problem:

Open Problem 1. Determine whether the con-
struction of Hennie machines could benefit from
star-freeness of the context conditions, possibly in
combination with other conditions.

6.2 Full Parsing

Reductionistic parsing (Koskenniemi, 1990;
Maruyama, 1990; Voutilainen and Tapanainen,
1993; Gross, 1997; Eisner and Smith, 2005)
is closely related to the consistency enforcing
methods used in image recognition (Huffman,
1971; Clowes, 1971) and to the satisfiability in
logic (Listenmaa, 2016). All these methods use
some idea of domains that are then constrained.

Karlsson (1990) introduced the term cohort for
ambiguity domains or lists of readings associated
with tokens. Lauri Karttunen has then proposed
(p.c., see also Voutilainen 1994) that the cohorts
can be treated as strings and processed by finite-
state transducers. This idea has been implemented
later by others (Peltonen, 2011; Hulden, 2011).

Interestingly, the idea of processing ambiguity
domains, i.e. cohorts, as strings is actually older
than the SCG tradition. In the context of formal
language theory, it dates back to Greibach (1973)
and has been appreciated recently, e.g. by Okhotin
(2013). What is interesting in Greibach’s origi-
nal use of cohorts is that these cohorts are used

to represent parse trees instead of just morpholog-
ical ambiguity. The decomposition of trees and
digraphs into local trees in the lexicon is actu-
ally due to the tradition of Categorial Grammar
(Ajdukiewicz, 1935; Bar-Hillel, 1953; Lambek,
1958). This suggests an avenue for future SCG-
related research.
Open Problem 2. Develop an SCG grammar that
performs full parsing on the basis of the structural
ambiguity encoded into lexical categories.

7 Conclusions
In this paper, the author has laid foundations for
the analysis of the generative power of SCGs.

• The parsing is viewed as a derivation that re-
sembles that of Generative Phonology.

• The equivalence between Nonmonotonic
SCG and Turing machines is established,
thus linking Constraint Grammar to Undecid-
ability and the Chomsky hierarchy.

• Finite-fertility SCGs are shown to be context
sensitive and running in quadratic time.

• A loose time bound o(n logn) for finite-state
equivalent SCG instances (running on a TM)
is provided and related to prior experiments.

• Specific conditions for constructing finite-
state equivalent SCGs are given.

• Two open problems related to the potential of
the star-freeness restriction of context condi-
tions and the structural categories in the lexi-
con are presented.

The current work has demonstrated that the SCG
formalism is not just a programming language for
text linguistics but a formal framework that lends
itself to connections to the richness of formal lan-
guage theory and rigorous formal analysis of the
related parsing complexities, culminating to at-
tempts to reduce grammars into finite transducers.
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lished) under earlier funding from the first agency
(dec. 128536).

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 29



References
Kazimierz Ajdukiewicz. 1935. Die syntaktische kon-

nexität. In Storrs McCall, editor, Polish Logic 1920-
1939, page 207231. Oxford University Press, Ox-
ford. Translated from Studia Philosophica, 1, 1-27.

Yehoshua Bar-Hillel. 1953. A quasi-arithmetical nota-
tion for syntactic description. Language, 29:4758.
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