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Chapter 1

Introduction

Research questions that are important both academically and for practical policy-making

were not difficult to find after the global financial crisis of the early 2000s. At the same

time interesting new methods for empirical macroeconomic research were developed. In

this thesis I show how applying these novel time series econometric methods can broaden

our understanding of highly topical policy questions.

Structural vector autoregressive (SVAR) models are an important tool in the empir-

ical analysis of monetary and fiscal policy. The difficulty with conventional SVARs is

the identification of structural shocks of interest needed for meaningful impulse response

analysis. The conventional setting requires restrictions derived from economic theory or

based on institutional knowledge. Typically either zero restrictions are imposed to ex-

clude instantaneous or permanent effects on some of the variables, or a set of impulse

response functions satisfying certain inequality constraints are admitted in the analysis.

In this thesis I opt for a fairly novel approach to identify economically interpretable

shocks which are then used to assess the effects of various economic policies on the macro-

economy. The so-called statistical identification methods are particularly attractive in

analyzing economic policies that are not so firmly based on theory to obtain theoretically

justified restrictions or when economic theory provides a range of predictions. This is the

case with the three research chapters of this thesis.

Characterized by a long period of steady growth and low and stable inflation, the

period before the global financial crisis was known as the Great Moderation. Central banks

conducted monetary policy within the framework of flexible inflation targeting. Already

prior to the crisis Borio and Lowe (2002) had expressed concerns about monetary policy

neglecting financial stability and Taylor (2007) soon showed that preceding the crisis the

Federal reserve’s monetary policy had been excessively loose compared to earlier times.

Conventional monetary policy transmission channels could not entirely explain the

role of monetary policy in the lead-up to the crisis (Bean et al. 2010) but Borio and

1



Zhu (2008) presented the idea that low interest rates particularly encouraged financial

intermediaries to excessive risk taking. Empirical analysis of the risk taking channel of

monetary policy surged before the phenomenon was theoretically well understood, and

this makes the statistical identification technique that I adopt in Chapter 2 particularly

attractive.

As a response to the global financial turmoil and the resulting drop in economic activ-

ity, major central banks lowered interest rates to or near the effective zero lower bounds.

Nonetheless economic recovery remained sluggish and many governments turned to fis-

cal policy, which is the topic of Chapter 3. In the third chapter I show that when the

empirical literature does not seem to reach a conclusion (in this case with respect to the

sign or size of the government fiscal multiplier), the identification strategy could play

a role. In this case the strength of the statistical identification method is being able to

discriminate between existing identification strategies. Even when based on theory, not

all of the identifying restrictions are necessarily supported by the data or there might be

various theoretically grounded identification schemes that may lead to different results.

The lack of consensus about the effectiveness of fiscal policy in stimulating the econ-

omy, its optimal design and eventually the high levels of government debt in many coun-

tries either limited or made the use of the fiscal policy instrument less attractive. The

eyes again turned to central banks. But central banks had exhausted their traditional

armory of methods to stimulate the economy and had to come up with something new. In

Chapter 4 I assess the effectiveness of these unconventional operations that were mostly

ad hoc measures based on central banks’ own judgement.

Similarly to the previous chapters, in Chapter 4 I show the virtue of being able to

combine statistical, data-based information with information from other sources to iden-

tify the structural model when economic theory is not conclusive or lags behind empirical

analysis. When the data lends support for the restrictions coming from other sources,

the statistically identified structural shocks and economic shocks are aligned. The assess-

ment of economic policy can then be based on impulse response functions that are both

economically meaningful and compatible with the sample data.
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1.1 Methodology

This section introduces the empirical methodology that I use in the thesis. I present the

identification problem of conventional structural vector autoregressive models and explain

at a general level how the issue can be solved based on nonnormalities.

1.1.1 From Reduced Form to Structural Vector Autoregressions

Consider first a standard K -dimensional reduced form vector autoregressive (VAR) model

with p lags (see e.g. Lütkepohl 2007, Ch 9):

yt= A1yt−1+ · · ·+Apyt−p+ut (1.1)

where yt is a K × 1 vector of observable time series variables, the Aj’s, j = 1, ..., p are

K×K coefficient matrices and the K×1 error term ut ∼ (0,Σu) is uncorrelated in time.
In the presentation of this section deterministic terms are excluded since they don’t affect

structural modelling and impulse response functions. A stationary process yt satisfies the

stability condition

det(In −A1z − · · ·−Apz
p) �= 0, |z| 1(z ∈ C),

and has a moving average (MA) representation

yt= ut+Φ1ut−1+Φ2ut−2 + ... (1.2)

withΦ0= IK and theΦs, s = 1, 2, ..matrices are obtained by the recursionΦs=
�s

j=1Φs−jAj.

The elements of the MA-matrices Φs contain the impulse responses of the system so that

the jk’th element of Φs captures the effect on variable j of a unit shock to variable k that

occurred s periods ago.

The reduced-form VAR model describes the joint dynamics of a multivariate time

series process and is useful for forecasting. In a system of simultaneous equations like the

VAR, all variables are endogenous and the error terms in different equations are likely to

be correlated, i.e. Σu is not a diagonal matrix. Because impulse response analysis involves

tracing out the effect of a single shock at a time on the other variables in the system, the

reduced form impulse response functions may not correctly reflect the relations between

the variables in the VAR, which is essential for policy analysis. In contrast, if the error
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terms of different equations are uncorrelated then it is reasonable to assume that a shock

occurs in one variable at a time. Therefore we are after structural shocks εt ∼ (0, IK)

that are some linear combinations of the reduced form errors ut = Bεt. The relations

εt= B
−1ut (1.3)

and

E(utu
�
t) = Σu= BΣεB

�= BB� (1.4)

illustrate that to obtain the structural shocks εt we have to find a suitable matrix B and

suggest using the estimated covariance matrix �Σu to recover B.
However, the fact that the covariance matrix is symmetric means that these relations

are not enough to identify the elements in B. For example, with K = 2, (1.4) becomes

�
σ21 σ12
σ12 σ22

�
=

�
b211 + b

2
12 b11b21 + b12b22

b11b21 + b12b22 b221 + b
2
22

�
which yields

σ21 = b211 + b
2
12

σ12 = b11b21 + b12b22
σ22 = b221 + b

2
22

(1.5)

The identification problem essentially means that the four parameters on the right hand

side of (1.5) cannot be solved based on the three equations. In general terms, the estimated

covariance matrix contains K(K+1)
2

distinct elements, while B has K2 unknowns.

Typically the identification problem is solved by restricting some of the elements of the

B matrix, for example. Specifically, K2 − K(K+1)
2

= K(K−1)
2

such restrictions are needed.

Substituting ut = Bεt into (1.1) gives the corresponding structural VAR (SVAR)

model, and makes clear that B contains the impact effects of the structural shocks on the

variables. Predetermining some of the elements of the B matrix hence mean imposing

restrictions on the impact effects.

Similarly to the reduced form VAR, a stable SVAR model has a MA-representation

yt= εt+Φ1Bεt−1+Φ2Bεt−2 + ... (1.6)

in which Φ0 = IK and the matrices Θi = ΦiB, i = 0, 1, ...contain the structural impulse

response functions. Therefore not only the B matrix contains the contemporaneous re-
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lations of the structural shocks but the choice of B affects the whole impulse response

analysis.

1.1.2 Nonstationarity and SVARs

In Chapter 3 I specify a model closely related to the SVAR model. When yt contains unit

root variables, the structural vector error correction (SVEC) model allows us to distinguish

between shocks that have transitory or permanent effects. The SVEC(p) model is

Δyt = αβ�yt−1+Γ1Δyt−1+ · · ·+Γp−1Δyt−p+1+Bεt
where Δ is the first difference operator such that Δyt = yt − yt−1, the K × 1 vector of
time series yt may contain unit roots, α is a K × r matrix of loading coefficients, β is a
K× r cointegration matrix, Γj is a K×K short run coefficient matrix for j = 1, ..., p− 1,
and the K × 1 vector εt ∼ (0, IK) contains the structural shocks. The long-run effects of
the shocks are captured by the common trends term (for details see e.g. Lütkepohl 2007,

Chapter 9)

ΞBΣt1=1εt (1.7)

with Ξ = β⊥
�
α�⊥
�
IK − Σp−1i=1Γi

�
β⊥
�−1

α�⊥. Here the symbols α⊥ and β⊥ denote the or-

thogonal complements of α and β respectively. In a SVEC model with a cointegration

rank of r < K, at most r of the shocks can have transitory effects only, and they are

associated with zero columns in the long run matrix ΞB. Therefore in the SVEC-model

the long run restrictions can be based on our knowledge or statistical evidence of the

cointegrating rank of the system.

1.1.3 Identification via Nonnormalities

In the last chapter I make use of sign restrictions used in the literature. These restrictions

are somewhat different from the ones presented above. Instead of fixing or excluding some

of the effects beforehand, this identification strategy consists of admitting a whole range

of impulse responses with a predetermined sign. However what all of these identification

strategies have in common is that any restrictions imposed by the researcher matter for the

subsequent impulse response analysis used for answering economic questions of interest.

On the other hand, whenever it is reasonable to assume or there is statistical evidence

of non-normal error distributions, modeling a more general or otherwise more appropriate
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distribution explicitly yields additional information for identification. I now briefly illus-

trate with the Lanne and Lütkepohl (2010) method, that I use in the first two research

chapters of the thesis, how nonnormalities can be exploited to identify the model and

structural shocks without restrictions.

Lanne and Lütkepohl (2010) assume the K-dimensional error term ut to be a mixture

of two serially independent normal random vectors

ut =

�
e1t∼ N(0,Σ1) with probability γ
e2t∼ N(0,Σ2) with probability 1− γ

(1.8)

where N(0,Σ) denotes a multivariate normal distribution with zero mean and covariance

matrix Σ. In the model Σ1 and Σ2 are K × K covariance matrices that are assumed

to be distinct (Σ1 �= Σ2) and γ is the mixture probability, 0 < γ < 1, a parameter of

the model. The covariance matrices can be decomposed as Σ1=WW� and Σ2=WΨW�

with a diagonal matrix Ψ = diag(ψ1,..., ψK), ψi > 0, i = 1, ..., K and a K ×K matrix

W which is locally unique except for a change in sign of a column, as long as all ψi’s are

distinct. The covariance matrix of the reduced form error vector ut now becomes

Σu = γWW� + (1− γ)WΨW� =W(γIK + (1− γ)Ψ)W� (1.9)

and following equation (1.4), a locally unique B is given by

B =W(γIK + (1− γ)Ψ)1/2 (1.10)

This B matrix diagonalizes the covariance of the reduced form errors and hence delivers

structural shocks that are contemporaneously uncorrelated as required. Given that the

equations
B−1ΣuB−1� = IK
B−1Σ1B

−1� = (γIK + (1− γ)Ψ)−1
B−1Σ2B

−1� = (γIK + (1− γ)Ψ)−1Ψ

are all diagonal matrices, this choice of B yields shocks that are orthogonal regardless of

the regime they come from. To see how this solves the identification problem, with K = 2

we now have the following equations

Σ1 =

�
σ21,1 σ12,1
σ12,1 σ22,1

�
=WW� =

�
w211 + w

2
12 w11w21 + w12w22

w11w21 + w12w22 w221 + w
2
22

�
and

Σ2 =

�
σ21,2 σ12,2
σ12,2 σ22,2

�
=WΨW� =

�
ψ1w

2
11 + ψ2w

2
12 ψ1w11w21 + ψ2w12w22

ψ1w11w21 + ψ2w12w22 ψ1w
2
21 + ψ2w

2
22

�
6



which yield the following six equations

σ21,1 = w211 + w
2
12

σ12,1 = w11w21 + w12w22
σ22,1 = w221 + w

2
22

σ21,2 = ψ1w
2
11 + ψ2w

2
12

σ12,2 = ψ1w11w21 + ψ2w12w22
σ22,2 = ψ1w

2
21 + ψ2w

2
22

(1.11)

From these we can solve for the six unknown structural parameters (w11, w12, w21, w22,ψ1,ψ2)

and finally recover the elements of B in (1.10).

More recently, Lanne et al. (2017) have introduced a yet more general approach that

allows more wide-ranging specifications for the error distribution, and encompasses the

mixed normal distribution as a special case. The authors show that identification obtains

by strengthening the assumptions typically imposed on the error term εt. Specifically,

they assume that the error process εt = (ε1,t, ..., εK,t) has at least K − 1 non-Gaussian
components that are independent both contemporaneously and temporally. In the conven-

tional Gaussian case, the mutual independence of the components εi,t, i = 1, ..., K is not

explicilty imposed but nonetheless obtains, because εt is assumed to be independent and

identically normally distributed with mean zero and a diagonal covariance matrix. Under

non-Gaussianity, the independence requirement is stronger than mere uncorrelatedness.

While statistical identification methods such as the ones presented above have facili-

tated statistical testing of exactly identifying short-run or long-run restrictions, they have

been less suitable to formally assess the plausibility of sign restrictions. The method put

forth by Lanne and Luoto (2016), which I apply in Chapter 4, is an exception to this, as

it allows the formal assessment of given sign restrictions. Also in this case identification is

achieved based on non-Gaussianity as in Lanne et al. (2017). The procedure then allows

to compute the conditional probabilities that given sign restrictions are compatible with

the data.

1.2 Summary of the Chapters

In this section I briefly summarize my main research questions, contributions and findings

in the following three chapters of the thesis.
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1.2.1 Chapter 2: Macro-Level Evidence of the Risk-Taking Channel from

SVAR with Nonnormal Errors

In this chapter I reconsider the SVARmodel of Adrian et al. (2010) to study the macroeco-

nomic effects of the risk-taking channel in the US. According to the mechanism analyzed

by Adrian et al. (2010), when loose monetary policy boosts asset prices, risk percep-

tions and the pricing of risk in the economy change. This in turn encourages financial

intermediaries to extend loans to riskier borrowers.

I apply the SVAR model proposed by Lanne and Lütkepohl (2010) in which identifica-

tion is achieved by means of nonnormal errors. The previously used identifying restrictions

then become over-identifying and statistically testable. The methodological improvement

allows us to learn about the impact effects between the variables from the data instead

of ruling out some of the effects beforehand.

I find that the data supports a recursive identification strategy different from the

benchmark paper’s. The resulting impulse response functions confirm previous empirical

findings that during the sample period monetary policy affected the balance sheet man-

agement of financial institutions, determination of risk premiums and consequently the

level of real activity in the US.

1.2.2 Chapter 3: Fiscal Multipliers in a Structural VEC Model with Mixed

Normal Errors

The third chapter addresses the question whether increasing government spending stim-

ulates real economic activity in the US. Unlike previous empirical research using SVARs

I estimate a vector error correction (VEC) model that takes into account cointegration

between the variables. Fiscal policy shocks are identified with the data driven Lanne and

Lütkepohl (2010) method. This paper is the first one to apply statistical identification

methods to fiscal policy.

The impulse response functions are quite different from those typically obtained from

SVAR models. The results show that a deficit financed government spending shock has

a weak negative effect on output, whereas a tax increase to finance government spending

has a positive impact on GDP.
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1.2.3 Chapter 4: Data-Driven Structural BVAR Analysis of Unconventional

Monetary Policy

In the last chapter of the thesis I study the macroeconomic effects of the Bank of Japan’s,

Federal Reserve’s and European Central Bank’s balance sheet policies. I use a novel

Bayesian vector autoregressive method due to Lanne and Luoto (2016) which allows me

to base the whole analysis on the data and to obtain structural shocks using nonnormal

error distributions. Importantly, the Lanne and Luoto (2016) method provides a formal

way to assess the plausibility of given sign restrictions against the data.

I find statistical support for the sign restrictions used in the literature. In contrast

to previous empirical research using SVARs, my data-based impulse response analysis

reveals differences in the output and price effects of the three central banks’ balance sheet

operations.
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Chapter 2

Macro-Level Evidence of the
Risk-Taking Channel from SVAR
with Nonnormal Errors

Abstract1

The identifying restrictions of a previously used SVAR model are validated to assess the

macroeconomic impact of the risk-taking channel of monetary policy in the US. Struc-

tural shocks are obtained by exploiting the nonnormality of errors. The data is found to

object to the previously imposed recursive ordering while a different recursive ordering

is supported. Based on the resulting impulse responses, there is statistically significant

evidence in favor of the risk-taking channel during the sample period. The main results

are in line with the predictions of the underlying theoretical model and confirm previous

empirical findings.

1This chapter is based on HECER Discussion Paper No. 394 (2015).

10



2.1 Introduction

The financial crisis of 2007-09 raised the question whether low levels of interest rates

induce excessive risk-taking in the financial sector. If the so-called risk-taking channel

of monetary policy (Borio and Zhu 2012) exists but is ignored, unsustainable economic

expansions may show up first in the form of financial imbalances rather than in the form

of rising inflation. According to Brunnermeier and Sannikov (2012) monetary policy

has direct effects on financial stability by affecting financial institutions’ balance sheets

through asset prices, but if central banks are forced to stabilize the financial sector then

long-run price stability may be compromised. As the future of central banking, monetary

policy and financial stability is widely debated at the moment, this paper contributes to

a discussion of direct practical relevance.

Even though the literature on monetary policy and banks’ risk taking has evolved

rapidly in recent years2, few studies (Adrian and Shin 2010, Adrian et al. 2010, Buch et

al. 2011) analyze the macro-level effects. Therefore this paper takes the empirical analysis

of Adrian et al. (2010) as a benchmark to assess empirically the macroeconomic impact

of the link between monetary policy, banks’ balance sheet management and measures of

risk.

The structural VAR (SVAR) and impulse response analysis in Adrian et al. (2010)

indicates that there is a connection between rapid growth of financial intermediary bal-

ance sheets, lower risk premiums and higher real activity. For methodological reasons

however, as acknowledged by the authors, their results cannot be taken as conclusive. As

is commonly done, Choleski decomposition is used to identify the economic shocks of in-

terest. Since there is not enough theory to determine a correct ordering for the variables,

the ordering is essentially arbitrary. This is of concern because in a recursively identified

model the ordering of the variables in the VAR matters for the results. Without further

identifying restrictions one cannot be sure that the shocks and impulse responses tell

us about the underlying economic processes we are essentially interested in. This gives

reason for further research.

Lanne and Lütkepohl (2008, 2010) and Rigobon (2003) among others have pointed

out that sometimes statistical properties of the data can yield further information for

identification in a SVAR framework. Examples of such statistical properties are residual

2See Section 2.2 for a literature review.
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distribution and structural breaks.3 Even when economic theory suffices to identify the

shocks of interest, often there is no over-identifying information to test theories against

data. Since theories on the risk-taking channel are relatively scarce, there is not much ad-

ditional theory to put structure in the empirical model. Therefore statistical identification

strategies are clearly invoked.

We apply the Lanne and Lütkepohl (2010) approach in which shock identification

is based on nonnormality of the errors. The errors are assumed to follow a mixture of

two normal distributions where the regimes cannot be determined beforehand but are

assigned endogenously. In addition to being relatively simple, the chosen method allows

us to exploit the fact that in applied work VAR residuals are often found to be nonnormal

(Lanne and Lütkepohl 2010). For the data at hand, normality of errors was strongly

rejected by statistical tests.4 This supports the proposed identification strategy and allows

us to test whether the just-identifying restrictions of the benchmark paper are consistent

with the data.

The methodological improvement enables us to learn about the impact effects between

the variables from the data instead of ruling out some of the effects ex ante. Even

though the method only guarantees a statistical identification, meaning that it delivers

orthogonalized shocks but does not give an economic interpretation, we find a recursive

ordering that is not rejected by the data. This facilitates attaching economic labels to the

statistically identified shocks. Our impulse response analysis provides statistical evidence

in favor of the risk-taking channel during the sample period.

The rest of the paper is organized as follows. Section 2.2 briefly presents the risk-

taking channel of monetary policy and the relevant literature. Technical details of the

empirical method are provided in Section 2.3. Section 2.4 covers the empirical analysis

and Section 2.5 concludes.
3For example, Rigobon (2003), Lanne and Lütkepohl (2008), Lanne, Lütkepohl and Maciejowska

(2010) and Lütkepohl and Netšunajev (2013) have exploited residual heteroskedasticity to extract fur-

ther identifying information from the data. Rigobon (2003) and Lanne and Lütkepohl (2008) assume

that changes in the volatility of shocks are determined exogeneously and partition the sample period

accordingly, while Lanne et al. (2010) as well as Lütkepohl and Netšunajev (2013) model the changes in

volatility endogenously as Markov switching (MS) regimes.
4See Section 2.4 for details.
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2.2 The Risk-Taking Channel of Monetary Policy

During normal times, expansionary monetary policy is expected to raise asset prices

through the conventional monetary transmission channel, as lower policy rates usually

lead to lower long-term interest rates. The risk-taking channel of monetary policy (Borio

and Zhu 2012) is based on the idea that when loose monetary policy boosts asset prices,

risk perceptions and hence risk premia change. Adrian and Shin (2010) and Adrian et

al. (2010) argue that this encourages financial intermediaries to extend loans to riskier

borrowers and so to further expand their balance sheets. It is when this risk-taking turns

excessive that risk accumulates and financial imbalances build up (Borio and Zhu 2012).

Literature on monetary policy transmission through the banking sector can be sub-

divided into two broad categories. The line of research following Bernanke and Getler

(1995) emphasizes the channel through demand for credit and borrowers’ balance sheet,

while the bank lending channel studied by Bernanke and Blinder (1992) focuses on the

impact of policy rate on credit supply. The risk-taking channel has common features with

the latter branch of research: interest lies in the passage of the policy rate through the

asset side of the banks’ balance sheets.

What makes the channel distinct however is the mechanism that links the policy rate to

banks’ balance sheets. In Bernanke and Blinder (1992) it is binding reserve requirements

of commercial banks. According to Adrian and Shin (2010), this approach is not applicable

to the 2007-09 financial crisis because reserve requirements were not binding and because

credit contraction did not originate from the commercial banking sector. In fact, Adrian

and Shin (2009) show that among all financial intermediaries it was credit supply by

market-based intermediaries, not traditional commercial banks that saw the most rapid

growth before the crisis — as well as the most dramatic contraction afterwards.5

The business of these institutions is to borrow short term and lend long term and

therefore the spread between the short and long term interest rates is indicative of their

expected profits. This is in contrast to the traditional view, where a bank is thought to

intermediate between depositors and borrowers and the effectiveness of monetary policy

is assessed by its impact on long rates only. Furthermore, since the supply of credit

in the US. has shifted from the traditional banking sector to market-based institutions,

5Market-based intermediaries include broker-dealers, issuers of asset-backed securities, finance com-

panies and funding corporations, the last three of which are called shadow banks.
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this distinction has to be taken into account in the empirical analysis of monetary policy

transmission.

The empirical analysis in Adrian et al. (2010) is based on a theoretical model due

to Shin (2010), which illustrates that the financial intermediary sector has an active role

in the business cycle through the pricing of risk and suggests the following mechanism:

monetary policy induced balance sheet adjustment by financial intermediaries leads to

a lower price of risk and higher real activity in the economy. When asset prices change

e.g. due to monetary policy changes, in addition to the normal valuation effect there is

an additional quantity adjustment of balance sheets. This sets in motion the amplifying

effect of financial intermediaries on the boom-bust cycle.

A common finding of the empirical studies at the micro level is that lax monetary

policy increases the riskiness of new loans by commercial banks. Using an extremely

large, confidential micro-level data set for Spain Jimenez et al. (2014) find, that in an

environment of low interest rates, the riskiness of bank portfolios is affected by both higher

collateral values and search for yield. In the short run, the default probability of bank

loans decreases, while it is found to increase in the long run when the search for yield

effect prevails.

Building on this Altunbas et al. (2010) construct various proxies for bank default risk

and analyze a panel dataset that covers banks operating in 16 OECD countries. They

find that interest rates below the Taylor rule increase the default probability of banks.

Maddaloni and Peydró (2011) use the European Central Bank’s Bank Lending Survey

to explore the determinants of bank lending standards in the Euro Area. According

to their panel regression a monetary expansion leads to lower credit standards for both

corporate and personal loans. De Santis and Surico (2013) study heterogeneity of bank

lending across euro area countries using BankScope data in panel regressions. The results

indicate that the bank lending channel in the eurozone is highly heterogeneous across the

four countries and bank typologies studied.

Finally, Buch et al. (2011) use a factor-augmented vector autoregressive (FAVAR)

model for macro-level data for the US. and find that small domestic banks respond to

expansionary monetary shock by increasing the amount of risky loans, but there is no

evidence of increased risk-taking for the banking system as a whole.
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2.3 SVAR Model with Nonnormal Errors

Consider first a standard K -dimensional reduced form stable VAR with p lags (see e.g.

Lütkepohl 2007, Ch 9):

yt= A1yt−1+ · · ·+Apyt−p+ut (2.12)

where yt is a K × 1 vector of observable time series variables, the Aj’s (j = 1 ,..., p)

are K ×K coefficient matrices and the error term ut is K -dimensional white noise with

ut ∼(0,Σu) . In the presentation of this section deterministic terms are excluded since
they don’t affect structural modelling and impulse response functions. Being a system of

simultaneous equations, all variables in the VAR are endogenous and the error terms in

different equations are likely to be correlated. Usually the purpose is to conduct impulse

response analysis, which means representing a stationary VAR -process in the following

Wold moving average (MA) form:

yt= ut+Φ1ut−1+Φ2ut−2 + ... (2.13)

where Φs=
�s

j=1Φs−jAj, s = 1, 2, ... and Φ0= Ik.

Interest then lies in the elements of the Φj, the MA coefficient matrices, which contain

the impulse responses of the system; responses of a variable to an impulse in another. If

the error terms are contemporaneously correlated —Σu is not a diagonal matrix — it means

that shocks come in a bunch. In this case setting all other error terms to zero to trace out

single impulses can be misleading. Impulses may not correctly reflect the relations between

the variables in the VAR. On the other hand if the error terms of different equations are

uncorrelated then it is reasonable to assume that a shock occurs in one variable at a time.

Therefore orthogonalizing the error terms implies identifying single shocks and impulses.

In a so-called B-model (see Lütkepohl 2007, Ch 9), to orthogonalize the error term of

the reduced form model means deriving shocks εt ∼ (0, IK) such that ut = Bεt. In other
words we want to find a matrix B such that

εt= B
−1ut (2.14)

and

E(utu
�
t) = Σu= BΣεB

�= BB�. (2.15)
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As the covariance matrix is symmetric, these equations only define K(K+1)
2

equations,

while B contains K2 elements. Hence K2 − K(K+1)
2

= K(K−1)
2

additional restrictions

on B are needed to identify all of its K2 elements. A common choice of B is a lower

triangular matrix obtained from a Choleski decomposition of Σu because it yields exactly

the right number of restrictions. This is done by decomposing the covariance matrix

Σu as Σu= PP� where P is a lower triangular matrix. Then by defining P = B and

Θi= ΦiP (i = 0, 1, 2, ...) one obtains shocks εt = P−1ut and the corresponding vector

moving average (VMA) representation

yt= Θ0ε0+Θ1ε1+Θ2ε2 + .... (2.16)

Since the components of εt are uncorrelated with unit variance, it is possible to inter-

pret the jk-th element of the matrixΘi as capturing the effect on variable j of a unit shock

in variable k that occurred i periods ago. This identification strategy based on Choleski

decomposition is easily and often used. However the B matrix obtained with Choleski de-

composition depends on the order of the variables in the vector yt. This implies that there

can be several triangular matrices that do the orthogonalization equally well. Moreover

as the B matrix contains instantaneous effects of the shocks on the variables (Θ0= B),

different choices of B can yield different results in terms of impulse responses.

The fact that the choice of B has an impact on results means that non-statistical infor-

mation is needed to impose restrictions. This requires economic theory that describes the

relationships of interest. In the case of Choleski decomposition this means determining,

which variables do not have an instantaneous impact on some others and then ordering

the variables in the vector yt accordingly. Other popular identification methods include

the use of inequality or sign restrictions (Canova and De Nicolò 2002, Uhlig 2005), where

a whole variety of shocks of a predetermined sign are admitted, or the exclusion of in-

stantaneous or long-run effects of variables (Blanchard and Quah 1989, Lütkepohl 2005),

where zero effects of some variables are assumed. The resulting VARs with restrictions

on the transformation matrix obtained from economic theory are called structural VARs.

In the B-model the error terms ut of the estimable reduced form VAR are seen as linear

functions of some meaningful economic disturbances, εt, called structural shocks. In other

words the information content of reduced form dynamics is transformed into behavioral

ones.
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A common feature of all these identification strategies is that they identify the struc-

tural shocks but do not allow the identification to be statistically tested. Without further

identifying restrictions one cannot be sure that the shocks and impulse responses tell us

about the underlying economic processes we are essentially interested in. Furthermore

sometimes there is not enough economic theory to obtain a full set of restrictions in which

case arbitrary restrictions are imposed.

Instead, if there is reason to believe, or there is evidence from a VAR analysis that

errors might not be normally distributed, then this information may be useful for identi-

fication. The error distribution might have heavy tails and produce “outliers”, which can

be thought to be generated by a different distribution — from a different stochastically

generated regime. As Lanne and Lütkepohl 2010 suggest, by modelling a more general

distribution explicitly, further identifying information can be extracted.

Consider again the reduced form VAR reported above. As in the model proposed

by Lanne and Lütkepohl (2010), now assume the K -dimensional error term ut to be a

mixture of two serially independent normal random vectors

ut =

�
e1t∼ N(0,Σ1) with probability γ
e2t∼ N(0,Σ2) with probability 1− γ (2.17)

where N(0,Σ) denotes a multivariate normal distribution with zero mean and covariance

matrix Σ. In the model Σ1 and Σ2 are K × K covariance matrices that are assumed

to be distinct, γ is the mixture probability, 0 < γ < 1, a parameter of the model. The

parameter γ is only identified if Σ1 �= Σ2 hence this is assumed to hold. If some parts of

Σ1 and Σ2 are identical then some components of ut may be normally distributed. In

any case there only needs to be one nonnormal component in ut. The distribution of the

reduced form error term now becomes

ut∼ (0,γΣ1+(1− γ)Σ2) (2.18)

The distributional assumption for ut allows to define a locally unique matrix B in the

following way. As shown in the Appendix A by Lanne and Lütkepohl (2010), a diagonal

matrix Ψ = diag(ψ1,..., ψK), ψi > 0, i = 1, ..., K and a K ×K matrixW exist such that

Σ1=WW� and Σ2=WΨW� and W is locally unique except for a change in sign of a

column, as long as all ψi’s are distinct. Now we can rewrite the covariance matrix of the

reduced form error vector ut as
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Σu = γWW� + (1− γ)WΨW� =W(γIK + (1− γ)Ψ)W� (2.19)

Then following equation (2.15) a locally unique B is given by

B =W(γIK + (1− γ)Ψ)1/2 (2.20)

This choice of B means that the orthogonality of shocks is independent of regimes.

This can be seen by applying (2.15) to the covariance matrices as

B−1ΣuB−1� = IK
B−1Σ1B

−1� = (γIK + (1− γ)Ψ)−1
B−1Σ2B

−1� = (γIK + (1− γ)Ψ)−1Ψ
(2.21)

As the equations in (2.21) are all diagonal matrices, the choice of B as in (2.20) yields

shocks that are orthogonal in both regimes.

The model is estimated with maximum likelihood (ML) method. Rewriting (2.12) in

lag operator form

A(L)yt= ut (2.22)

where A(L) = In−A1(L)− · · ·−ApL
p is a matrix polynomial in the lag operator L then

the conditional distribution of yt given Yt−1 = (yt−1, yt−2, ..., yt−p+1) can be written as

f(yt|Yt−1) = γdet(W)−1exp
�
−1
2
(A(L)yt)

�(WW�−1(A(L)yt)
�

+(1− γ)det(Ψ)−
1
2det(W)−1exp

�
−1
2
(A(L)yt)

� (WΨW�−1(A(L)yt)
� (2.23)

Collecting all the parameters into the vector θ, the log-likelihood is

lT (θ) =
T�
t=1

log f(yt|Yt−1) (2.24)

The log-likelihood function (2.24) can be maximized with standard nonlinear opti-

mization algorithms.

2.4 Empirical Analysis of Macro Dynamics

2.4.1 The Data and the VAR Model

There are two important variables in the theoretical model due to Shin (2010) that are

difficult to quantify: the price of risk in the economy and financial intermediaries’ risk
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taking capacity. Adrian et al. (2010) manage to overcome the problem by constructing

two proxy variables.6 This enables empirical analysis of the mechanism of interest.

The first one, called Macro Risk Premium, measures the hurdle rate of return for new

projects financed in the economy.7 It reflects the ease of credit conditions and is mea-

sured from yield spreads of fixed income securities. The second proxy variable is labelled

Financial Intermediary Risk Appetite Factor as it measures the looseness of financial in-

termediary capital constraints. This variable is important as it enables to circumvent the

problem of measuring marginal loan supply.

Since there is a variety of institutions that provide credit to the real economy, the

authors first choose the institutions that are most important in determining risk premiums.

In the US those turn out to be broker-dealers and shadow banks, whose liabilities are

short term and marked to market so that funding conditions in the economy are more

promptly reflected in the balance sheets. This is mostly not the case with traditional

banks. Therefore balance sheet measures of these institutions were used in the analysis.

We use the same variables and dataset as Adrian et al. (2010) who consider a five

variable VAR including quarterly GDP growth (�gdpt), inflation πt, Federal Funds target
rate (FFRt), macro risk premium (MRPt) and the financial intermediary risk appetite

factor (FIt). The data consists of quarterly US data for the period of 1985:1 - 2010:4 and

it was provided by the authors.

2.4.2 Previous Identification Restrictions

Identification in the benchmark paper is obtained with the following exclusion restrictions

on the transformation matrix B.

B =

⎡⎢⎣
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

⎤⎥⎦ (2.25)

The asterisks denote unrestricted elements and the zeros are imposed so that B is lower

triangular. The variable ordering

yt = (�gdpt, πt, FFRt,MRPt, F It)� (2.26)

6See Adrian et al. (2010) for details.
7Hurdle rate of return = minimum acceptable rate of return to accept a new project.
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implies that a shock to GDP growth is allowed to have a contemporaneous effect on all

other variables, whereas there is no instantaneous feedback effect from an impulse on

financial intermediary risk appetite to any of the variables. Is there a plausible economic

interpretation for the exclusion restrictions required by the identification scheme? The

theoretical model due to Shin (2010) illustrates how a positive shock to asset values, say

a decrease in short rates, that increases the capital buffer (equity) of banks, leads to a

lower risk premium and induces banks to take on additional debt to purchase more risky

securities, or to supply new loans. In the model, the amount of risky assets on the balance

sheets increases more than in the case of a mere valuation effect. An empirical hypothesis

of interest could then be formulated as the impact of monetary policy interest rate to the

risk premium and financial intermediaries’ risk taking capacity. Accordingly in (2.25) a

shock to federal funds target rate is allowed to affect contemporaneously both the macro

risk premium and financial intermediary risk appetite factor, and a shock to macro risk

premium is allowed to have a contemporaneous effect on risk appetite.

Lütkepohl and Netšunajev (2013) point out that even in those cases where restrictions

are derived from generally accepted economic models, the empirical and theoretical models

do not necessarily coincide. As potential reasons they name measurement errors, trend

and/or seasonal adjustment, and observation frequency for the data that is different from

that of the theoretical model. Moreover the variables in the empirical and theoretical

models might not perfectly coincide. In the present case the main challenge arises from

the frequency of the data. Is it likely that there is no feedback effect from the right to

the left of (2.26) within the same quarter? Another source of gap between the economic

and empirical models stems from the fundamental differences between the two modelling

approaches. A theoretical model is bound to abstract from some effects in order to describe

relations within a set of variables only. To avoid problems with omitted variables, an

empirical model on the other hand often requires the inclusion of variables outside of the

theoretical model that are known to be important in practice (Lütkepohl and Netšunajev

2013). From this point of view, the inclusion of the first two variables in (2.26) is easy to

justify.

Even without an appealing, justifiable theoretical reasoning a recursive identification

scheme is convenient whenever there is only one shock of interest, which can be ordered

at the bottom of the variable list (2.26). In all other cases identification via recursive
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ordering as in (2.25) necessarily implies that one is excluding certain impact effects ex-

ante rather than learning about it from the data. As explained in Section 2.3, if it is

reasonable to assume that the vector of reduced form errors ut follows a mixed normal

distribution with covariance matrix as in (2.19), and if the elements of the Ψ matrix are

all distinct, then these concerns become irrelevant since the validity of the restrictions in

(2.25) can be statistically tested as proposed by Lanne and Lütkepohl 2010.

Figure 2.1: Residuals of the linear VAR(1) model, QQ plots

QQ-plots of the residuals of the linear VAR(1) model are shown in Figure 2.1. The

plots feature a mostly linear pattern in the center of the data, while the tails show depar-

tures from the fitted line. Compared to a normal distribution, a slightly more S-shaped

curve emerges. This kind of distribution with heavy tails and outliers can be captured

by a mixture of normal distributions. The outliers can be thought to be generated by a

different distribution than the rest of the observations. Then identification of the shocks

is obtained from heteroskedasticity across regimes.

The results of normality tests are reported in Table 2.1.The Jarque-Bera test rejects

the null hypothesis of normality for each of the estimated residuals. The high overall

kurtosis of the Doornik-Hansen test for multivariate normality (p-value of < 0.001) yields

21



Table 2.1: Tests for normality of residuals
Skewness Kurtosis Jarque-Bera p-value

u1 -0.34 4.02 5.97 0.0506
u2 -0.19 4.89 14.75 0.0006
u3 -0.86 4.98 27.23 0.0000
u4 1.9 13.7 510.08 0.0000
u5 0.49 6.24 45.24 0.0000

further support for the mixture distribution. Hence formal tests support the proposed

identification strategy, and the exclusion restrictions in (2.25) can be statistically tested.

2.4.3 Statistical Analysis

To answer the main question of interest, i.e. whether the initial effects matrix B as in

(19) is supported by the data, we proceed as follows. Following the benchmark paper, lag

length of one is selected according to the Bayesian Information Criterion (BIC). We first

estimate an unrestricted SVAR(1) model with variable ordering (2.26) assuming that the

error term ut follows a mixture of normal distributions as in (2.17). The estimation results

Table 2.2: Estimation results for the SVAR(1) model with nonnormal errors
Model 1 Model 2

Parameter Unrestricted B Restricted B Unrestricted B Restricted B
γ̂ 0.80 (0.04) 0.87 (0.04) 0.44 (0.06) 0.41 (0.07)
ψ̂1 × 10 3.10 (1.18) 3.06 (2.05) 20.43 (7.34) 12.33 (5.07)
ψ̂2 × 10 0.44 (0.18) 0.57 (0.28) 0.78 (0.25) 0.83 (0.32)
ψ̂3 × 10 0.03 (0.01) 0.02 (0.01) 1.40 (0.54) 2.98 (1.02)
ψ̂4 × 10 0.06 (0.02) 0.03 (0.02) 0.49 (0.17) 0.75 (0.23)
ψ̂5 × 10 20.94 (8.11) 19.76 (11.8) 3.07 (1.02) 1.98 (1.01)
max lT (θ) 255.07 228.08 248.90 241.01
LR 53.97 15.77
p-value 4.919×10−8 0.1065

NOTES: Models 1 and 2 correspond to yt = (�gdpt,πt, FFRt,MRPt, F It) and
yt = (πt, FFRt,MRPt, F It,�gdpt), respectively. Standard errors in parenthesis are
obtained from the inverse Hessian of the log-likelihood function. LR = 2(logLT−logLrT )
where LrT denotes the maximum likelihood under H0: restricted B and LT denotes the

maximum likelihood for the model under H1: unrestricted B. p-values were computed

assuming asymptotic χ2(10) distribution for the LR test statistic. The estimated ψi’s

are multiplied by 10 for reporting purposes.

are reported in Table 2.2.9 In this case identification is obtained with a distributional

assumption, and the restrictions in (2.25) become over-identifying if the ψi’s are distinct.

9The computations were done with GAUSS programs. To compute the ML estimates, the BHHH

procedure of the Gauss CMLMT library was used. In a first step, VAR coefficients were estimated from
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Therefore we first need to ensure that a statistical identification of the shocks has been

obtained.

Although the standard errors in Table 2.2 indicate a fairly good estimation precision,

pairwise equality of the ψi’s has been tested with Wald tests. Since the estimators have

the usual normal limiting distributions, the Wald tests have asymptotic χ2-distributions.

The null hypotheses and the resulting p-values are listed in Table 2.3. The first column

shows that except for ψ3 and ψ4, the equality of all ψi’s can be rejected at the 10%

significance level and hence statistical identification of shocks has been obtained.

Table 2.3: p-values of Wald tests for equality of psi ’s for models from Table 1
Model 1 Model 2

H0 Unrestricted B Restricted B Unrestricted B Restricted B
ψ̂1 = ψ̂2 0.03 0.16 0.01 0.02
ψ̂1 = ψ̂3 0.01 0.09 0.01 0.07
ψ̂1 = ψ̂4 0.01 0.09 0.01 0.02
ψ̂1 = ψ̂5 0.03 0.18 0.02 0.05
ψ̂2 = ψ̂3 0.02 0.05 0.29 0.05
ψ̂2 = ψ̂4 0.03 0.05 0.35 0.87
ψ̂2 = ψ̂5 0.01 0.10 0.03 0.27
ψ̂3 = ψ̂4 0.32 0.59 0.11 0.03
ψ̂3 = ψ̂5 0.01 0.09 0.15 0.51
ψ̂4 = ψ̂5 0.01 0.09 0.01 0.25

NOTES: Models 1 and 2 correspond to yt = (�gdpt,πt, FFRt,mrpt, F It) and

yt = (πt, FFRt,MRPt, F It,�gdpt) , respectively, where�gdpt denotes quarterly GDP
growth, πt inflation, FFRt the Federal Funds target rate, MRPt is the macro risk

premium and FIt the financial intermediary risk appetite factor.

Now a statistical test of the exclusion restrictions (2.20) can be performed. To this

end we next estimate a restricted model by imposing the recursive ordering (2.25).11 The

statistical test then takes the form of a simple LR test, which has an asymptotic χ2(N)

distribution, where N is the number of restrictions. The hypotheses are H0: restricted B

andH1: unrestrictedB. The estimation results together with the LR test value (computed

assuming N = 10) and the associated p-value are also reported in Table 2.2.

a linear model. In a second step, these estimates were used as starting values to estimate the parameters

of the unrestricted model with a mixed normal distribution. Finally, the parameter estimates of the

unrestricted model were used as starting values of the restricted model. To ensure nonsingularity of the

covariance matrices, their determinants are bounded away from zero. Also the diagonal elements of the

Ψ matrix are bounded away from zero.
11In practice this is done with restrictions on the W matrix in B =W(γIn + (1− γ)Ψ)1/2.
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As the LR-test rejects theH0 at all significance levels, we conclude that the restrictions

are not compatible with the data. Note that the Wald tests for the restricted model in

the second column of Table 2.3 reveal that the pairwise equality of ψ1and ψ5 or ψ3 and

ψ4 cannot be rejected, which implies that the LR statistic has less than 10 degrees of

freedom. Given the high value for the LR, it still leads to rejection.

As pointed out in Section 2.4, a challenge that arises from the variable ordering (2.26)

is that no feedback effect from the right to the left within the same quarter is allowed.

Our method essentially allows us to test whether the statistically identified shocks satisfy

any recursive ordering. Therefore we can order the variables as

yt = (πt, FFRt,MRPt, F It,�gdpt)� (2.27)

In (2.27) the ordering of FFRt (Federal Funds target rate), MRPt (macro risk premium)

and FIt (financial intermediary risk appetite) still conforms with the theory, while the

inclusion of �gdpt (quarterly GDP growth) and πt (inflation) is again justified to avoid
omitted variable bias. The main difference with (2.26) is that now changes in the price of

risk and financial intermediaries’ risk appetite are allowed to affect economic fluctuations

within the same quarter already. The generally accepted view that changes in monetary

policy are reflected in GDP growth earlier than in inflation holds here as well.

The estimation results for this model are shown on the right hand side of Table 2.2.

Again, p-values of pairwise equality tests of the ψi’s are shown in Table 2.3 . The LR test

indicates that the H0: restricted B cannot be rejected even at the 10 % significance level.

At this time, taking into account that the equality of ψ2 and ψ3, ψ2 and ψ4, and ψ3 and

ψ5 cannot be rejected, there is still no strong evidence against the imposed restrictions.

Therefore we conclude that the data at hand does not strongly object to a recursive

ordering implied by (2.27). Inability to reject (2.27) simply tells us that during the sample

period monetary policy has been promptly transmitted from the financial sector to the

real economy. As the columns of a triangular matrix cannot be permuted, the ordering of

the shocks corresponds to the lower-triangular B-matrix so that the statistically identified

shocks can be economically labelled in line with the ordering in equation (2.27).

2.4.4 Robustness Analysis

To analyze the sensitivity of the results with respect to the proxy variables being used,

the models were additionally estimated with an alternative risk premium measure, the
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Table 2.4: Robustess of the estimation results for the SVAR(1) model with nonnormal

errors
Model 1 Model 2

Parameter Unrestricted B Restricted B Unrestricted B Restricted B
γ̂ 0.55 (0.06) 0.44 (0.15) 0.55 (0.06) 0.51 (0.06)
ψ̂1 × 10 5.11 (1.79) 5.30 (3.44) 13.35 (4.26) 9.10 (3.15)
ψ̂2 × 10 0.89 (0.30) 3.81 (1.97) 0.89 (0.30) 0.78 (0.28)
ψ̂3 × 10 0.26 (0.09) 1.55 (0.00) 0.79 (0.25) 0.68 (0.24)
ψ̂4 × 10 0.79 (0.24) 0.70 (0.44) 0.26 (0.09) 0.78 (0.25)
ψ̂5 × 10 13.35 (4.26) 12.64 (21.97) 5.11 (1.85) 6.39 (2.53)
max lT (θ) 191.49 165.53 191.49 184.65
LR 51.92 13.68
p-value 1.181×10−7 0.1881

NOTES: Models 1 and 2 correspond to yt = (�gdpt,πt, FFRt,MRPt, F It) and
yt = (πt, FFRt,MRPt, F It,�gdpt), respectively. Standard errors in parenthesis are
obtained from the inverse Hessian of the log-likelihood function. LR = 2(logLT−logLrT )
where LrT denotes the maximum likelihood under H0: restricted B and LT denotes the

maximum likelihood for the model under H1: unrestricted B. p-values were computed

assuming asymptotic χ2(10) distribution for the LR test statistic. The estimated ψi’s

are multiplied by 10 for reporting purposes.

Excess Bond Premium (EBP) of Gilchrist and Zakrajsek (2012). The EBP variable has

been constructed to capture cyclical changes in the relationship between measured default

risk and credit changes, and an increase in the excess bond premium reflects a reduction

in the effective risk-bearing capacity of the financial sector (Gilchrist and Zakrajsek 2012,

2), and is therefore suitable for our purposes. The estimation procedure is as in Section

2.4.3. The model with the EBP variable was first estimated with variable ordering as in

Adrian et al. (2010), or (2.26), and then according to (2.27). The estimation results are

reported in Table 2.4.

Given the high value of the LR in the first case, the test rejects the imposed restrictions

at all significance levels even if some of the ψi ’s were identical. Also in the second case

some of the ψi ’s may not be distinct (see Table 2.5), which would decrease the p-value of

LR-test. One would still not be able to reject the restrictions at usual significance levels.

As these results conform perfectly with those of the baseline case, we conclude that the

results are robust to the alternative proxy variable.
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Table 2.5: p-values of Wald tests for equality of psi ’s for models from Table 2
Model 1 Model 2

H0 Unrestricted B Restricted B Unrestricted B Restricted B
ψ̂1 = ψ̂2 0.02 0.77 0.00 0.01
ψ̂1 = ψ̂3 0.01 0.22 0.00 0.01
ψ̂1 = ψ̂4 0.02 0.22 0.00 0.01
ψ̂1 = ψ̂5 0.07 0.70 0.75 0.51
ψ̂2 = ψ̂3 0.04 0.05 0.80 0.78
ψ̂2 = ψ̂4 0.80 0.07 0.05 0.10
ψ̂2 = ψ̂5 0.00 0.70 0.02 0.03
ψ̂3 = ψ̂4 0.04 0.22 0.04 0.77
ψ̂3 = ψ̂5 0.00 0.62 0.02 0.02
ψ̂4 = ψ̂5 0.00 0.59 0.01 0.03

NOTES: Models 1 and 2 correspond to yt = (�gdpt,πt, FFRt,mrpt, F It) and

yt = (πt, FFRt,MRPt, F It,�gdpt) , respectively, where�gdpt denotes quarterly GDP
growth, πt inflation, FFRt the Federal Funds target rate, MRPt is the macro risk

premium and FIt the financial intermediary risk appetite factor.

2.4.5 Model Diagnostic

In models based on mixtures of distributions, statistical tests based on conventional resid-

uals cannot be used to check the model specification. In these cases, Kalliovirta (2012)

proposes a test based on quantile residuals, which are obtained by two transformations

of the estimated residuals. First, the estimated cumulative distribution function (CDF)

implied by the model is used to transform the observations into approximately indepen-

dent, uniformly distributed random variables. Second, the inverse of the CDF of the

standard normal distribution is used to get variables that are approximately independent

with standard normal distribution.

These results assume that the model is correctly specified and parameters consistently

estimated. Therefore quantile residuals that exhibit departures from these properties

provide evidence of model misspecification. This approach has been generalized to mul-

tivariate models in Kalliovirta and Saikkonen (2010), where tests based on univariate

joint quantile residuals are developed. Model misspecification can then be detected with

normality, autocorrelation and conditional heteroskedasticity tests of the joint quantile

residuals.

Figure 2.2 shows the QQ-plot of the joint quantile residuals obtained from the SVAR

with mixed normal errors. Apart from a few outliers at both tails, the normality as-
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sumption seems to hold reasonably well. A formal test of normality yields a p-value of

0.38, while autocorrelation and heteroskedasticity tests for different lags range from 0.23

to 0.90 and from 0.18 to 0.99, respectively. As a conclusion, the diagnostic tests provide

clear support for our model specification, where a mixed-normal distribution is assumed.

Figure 2.2: Joint quantile residuals, QQ plot

2.4.6 Impulse Response Analysis

Given that economically meaningful shocks have been identified, impulse response func-

tions based on the SVAR(1) model with nonnormal errors can be computed. Because of

the difficulties with the optimization of the likelihood function, confidence intervals for

the impulse response functions cannot be easily computed with classical residual based

bootstrap methods. Herwartz and Lütkepohl (2014) note that one has to ensure that only

bootstrap replications in the area of the parameter space of the original estimation step

are considered, and the same sign and ordering of the shocks is preserved. To this end, the

diagonal elements of Ψ and the transition probability γ are not subjected to resampling.

Bootstrap impulse response functions are obtained by nonlinear optimization of the log-

likelihood with ML estimates as starting values. The bootstrap confidence intervals are

the 16th and 84th quantiles of 1000 bootstrap replications.

Finally we are ready to analyze the macroeconomic effects of changing risk perceptions

and risk tolerance by financial intermediaries. The impulse responses most important from

the point of view of the mechanism of interest are displayed in Figure 2.3 together with
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Figure 2.3: Selected impulse responses based on the VAR(1) model with mixed normal

residuals and restricted B with 68% bootstrap confidence bands.

68 % bootstrap confidence intervals.14 The 68% confidence bands are common in the

literature, and the bootstrapped confidence bands tend to give a more precise picture of

the estimation uncertainty of the coefficients in a small sample.

The first picture in Figure 2.3 shows that a unit shock to financial intermediaries’ risk

appetite has a positive impact on GDP growth and the effect lasts for several quarters.

Based on the theory, a way to interpret this is that when financial intermediaries more

easily obtain funding, they increase the supply of credit, which contributes to higher GDP

growth.

The second picture in the first row plots the response of risk appetite to a positive

Federal Funds target shock. The impulse response suggests that a sudden monetary

policy tightening decreases intermediaries’ risk appetite for several periods, and the effect

becomes significant after one quarter.

14The rest of the impulse response functions are reported in the Appendix.
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The first picture in the middle row displays the response of macro risk premium to a

positive risk appetite shock. Per construction, the response is negative.

Plotted in the second picture of the middle row is the negative effect on GDP growth

of a higher macro risk premium. As the macro risk premium measures the hurdle rate of

return required to finance new projects in the economy, this can be interpreted as tighter

credit conditions having an adverse effect on GDP growth.

Finally, the fifth picture displays the response of Fed Funds target rate to a risk

appetite shock. Contrary to the previous four impulse response functions, which are in

line with the findings of Adrian et al. (2010), higher risk appetite is not followed by a

monetary tightening. Instead the response is negative and insignificant along the whole

horizon.

To sum up, changes in either financial intermediaries’ risk appetite or macro risk pre-

mium are found to affect economic activity measured by quarterly GDP growth. There

is also evidence of a positive and significant reaction of financial intermediaries’ risk ap-

petite to lax monetary policy during the sample period. Macro risk premiums appear to

be driven by financial intermediaries’ balance sheet adjustment as measured by the risk

appetite factor.

These observations are in line with the predictions of the underlying theory on the

risk-taking channel and confirm the results of the previous empirical study. Specifically,

the balance sheet adjustment by financial intermediaries and fluctuations in the price of

risk have both contributed to economic fluctuations during the sample period, and there

is evidence of a link between the two and monetary policy.

2.5 Conclusions

This paper analyzed empirically the macroeconomic effects of the risk-taking channel of

monetary policy by reconsidering the SVAR study of Adrian et al. (2010). We applied the

method due to Lanne and Lütkepohl (2010) and exploited statistical properties of the data

to identify the model and structural shocks without imposing any restrictions. Although

the Lanne and Lütkepohl (2010) method only guarantees a statistical identification in that

it delivers orthogonalized shocks without attaching economic labels to them, we were able

to find a recursive ordering not rejected by the data and to label the shocks accordingly.

The resulting impulse responses were very similar to those reported by Adrian et al.
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(2010) and, judging by the confidence bands, provided empirical evidence in support of

the risk-taking channel. Specifically, we confirmed that monetary policy can affect the

balance-sheet management of financial itermediaries, the determination of risk premiums,

and eventually the level of real activity in the US.

We computed the 68% confidence bounds from bootstrap estimates of a more complex

empirical model based on nonnormality of the errors. Although the downside of the

complexity was that it made estimation computationally intensive, our empirical model

had two advantages. First, because the nonnormality of errors was a feature encountered

in the data, estimation was based on a more realistic assumption. Second, the bootstrap

method should improve the precision of the confidence intervals in a small sample like the

one analyzed here.

Our impulse response analysis provided evidence in favor of a positive and significant

reaction of financial intermediaries’ risk appetite to lax monetary policy during the sample

period. Also risk premiums in the economy appeared to be significantly driven by financial

intermediaries’ balance sheet adjustment as measured by the risk appetite factor. These

observations are in line with the predictions of the underlying theory on the risk-taking

channel and confirm the results of the benchmark empirical study.
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Appendix: Additional Results

Figure 2.4: Impulse responses based on the SVAR model with mixed normal errors and

restricted B with 68% bootstrap confidence bands. The columns contain responses of all

variables to shocks in inflation, federal funds rate and macro risk premium.
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Figure 2.5: Impulse responses based on the SVAR model with mixed normal errors and

restricted B with 68% bootstrap confidence bands. The columns contain responses of all

variables to shocks in financial intermediary risk appetite and gdp growth.
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Table 2.6: Estimation results with variable ordering (14) and unrestricted W
Elements of each vector

1 2 3 4 5
intercept 7.31 (1.71) -0.05 (0.24) 1.24 (0.21) 0.31 (0.07) -0.06 (0.05)
A[1,·] 0.11 (0.11) 0.02 (0.01) -0.00 (0.01) -0.01 (0.01) 0.01 (0.00)
A[2,·] 0.39 (0.31) 0.96 (0.04) -0.03 (0.04) 0.05 (0.01) 0.05 (0.01)
A[3,·] 0.05 (0.13) 0.01 (0.02) 0.95 (0.02) -0.01 (0.01) -0.03 (0.00)
A[4,·] -2.45 (0.97) -0.03 (0.13) -0.64 (0.12) 0.74 (0.04) -0.00 (0.03)
A[5,·] 3.31 (1.27) -0.28 (0.16) -0.16 (0.15) -0.19 (0.05) 0.69 (0.04)
W[1,·] 2.13 (0.20) -0.68 (0.39) 0.09 (0.31) -0.21 (0.30) 0.29 (0.27)
W[2,·] 0.01 (0.05) 0.01 (0.03) -0.09 (0.04) -0.04 (0.05) 0.22 (0.02)
W[3,·] 0.12 (0.04) 0.03 (0.06) 0.40 (0.17) -0.35 (0.18) 0.16 (0.02)
W[4,·] -0.07 (0.01) 0.08 (0.02) 0.03 (0.08) 0.17 (0.02) 0.00 (0.01)
W[5,·] -0.01 (0.01) -0.12 (0.01) 0.03 (0.03) 0.04 (0.03) -0.00 (0.01)

Notes: A[i,·] and W[i,·] indicate the ith row of matrices A and W, respectively.

The variable ordering (14) is yt = (�gdpt,πt, FFRt,MRPt, F It) .Standard errors in
parenthesis.

Table 2.7: Estimation results with variable ordering (14) and W restricted to lower tri-

angular
Elements of each vector

1 2 3 4 5
intercept 7.26 (1.94) -0.06 (0.17) 1.36 (0.18) 0.39 (0.08) -0.13 (0.11)
A[1,·] 0.16 (0.12) 0.02 (0.01) -0.02 (0.01) -0.01 (0.01) 0.01 (0.01)
A[2,·] -0.32 (0.31) 1.03 (0.03) 0.01 (0.03) 0.03 (0.01) 0.04 (0.02)
A[3,·] -0.03 (0.14) -0.02 (0.01) 0.91 (0.01) -0.01 (0.01) -0.02 (0.01)
A[4,·] -2.37 (1.06) -0.08 (0.08) -0.67 (0.09) 0.70 (0.04) 0.02 (0.06)
A[5,·] 3.41 (1.37) -0.40 (0.12) -0.32 (0.12) -0.21 (0.05) 0.66 (0.08)
W[1,·] 2.18 (0.17) · · · ·
W[2,·] 0.04 (0.02) 0.28 (0.02) · · ·
W[3,·] 0.13 (0.02) 0.13 (0.03) 0.55 (0.04) · ·
W[4,·] -0.08 (0.01) -0.02 (0.01) -0.05 (0.02) 0.16 (0.01) ·
W[5,·] 0.03 (0.01) -0.03 (0.01) -0.02 (0.01) 0.01 (0.01) 0.11 (0.01)

Notes: A[i,·] and W[i,·] indicate the ith row of matrices A and W, respectively.

The variable ordering (14) is yt = (�gdpt,πt, FFRt,MRPt, F It) . Standard errors in
parenthesis.
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Table 2.8: Estimation results with variable ordering (15) and unrestricted W
Elements of each vector

1 2 3 4 5
intercept -0.1 (0.23) 1.4 (0.30) 0.29 (0.14) -0.09 (0.06) 6.87 (1.58)
A[1,·] 0.99 (0.04) 0.07 (0.05) 0.05 (0.02) 0.04 (0.01) 0.06 (0.29)
A[2,·] -0.01 (0.02) 0.91 (0.02) -0.01 (0.01) -0.02 (0.01) -0.01 (0.13)
A[3,·] -0.01 (0.13) -0.78 (0.17) 0.74 (0.08) 0.01 (0.03) -2.51 (0.87)
A[4,·] -0.22 (0.18) -0.21 (0.21) -0.12 (0.1) 0.59 (0.05) 3.26 (1.14)
A[5,·] 0.03 (0.02) -0.01 (0.02) -0.01 (0.01) 0.01 (0.01) -0.04 (0.1)
W[1,·] 0.18 (0.03) -0.01 (0.08) 0.05 (0.07) -0.11 (0.05) 0.12 (0.05)
W[2,·] 0.16 (0.03) 0.51 (0.24) 0.06 (0.24) 0.47 (0.31) 0.04 (0.08)
W[3,·] 0.01 (0.02) -0.13 (0.06) 0.04 (0.10) -0.06 (0.9) -0.19 (0.03)
W[4,·] -0.01 (0.01) -0.11 (0.07) -0.02 (0.05) 0.12 (0.07) 0.04 (0.02)
W[5,·] -0.13 (0.18) 0.33 (1.4) 2.23 (0.8) 0.98 (0.82) 1.7 (0.61)

Notes: A[i,·] and W[i,·] indicate the ith row of matrices A and W, respectively.

The variable ordering (15) is yt = (πt, FFRt,MRPt, F It,�gdpt) . Standard errors in
parenthesis.

Table 2.9: Estimation results with variable ordering (15) and W restricted to lower tri-

angular
Elements of each vector

1 2 3 4 5
intercept -0.10 (0.25 ) 1.20 (0.32) 0.31 (0.14) -0.1 (0.07) 7.22 (1.65)
A[1,·] 0.95 (0.04 ) 0.06 (0.06) 0.04 (0.02 ) 0.04 (0.01) -0.12 (0.32)
A[2,·] 0.01 (0.02 ) 0.93 (0.02) -0.01 (0.01 ) -0.02 (0.01) 0.03 (0.13)
A[3,·] 0.02 (0.14 ) -0.71 (0.18) 0.73 (0.08 ) 0.01 (0.04) -2.55 (0.90)
A[4,·] -0.32 (0.19 ) -0.2 (0.23) -0.1 (0.1 ) 0.62 (0.05) 2.98 (1.18)
A[5,·] 0.03 (0.02 ) 0.01 (0.02 ) -0.01 (0.01) 0.00 (0.00) -0.05 (0.10)
W[1,·] 0.24 (0.04) · · · ·
W[2,·] 0.15 (0.04 ) 0.74 (0.09 ) · · ·
W[3,·] -0.02 (0.01 ) -0.11 (0.03 ) 0.21 (0.3 ) · ·
W[4,·] -0.01 (0.01) -0.01 (0.02) -0.02 (0.01 ) 0.18 (0.02 ) ·
W[5,·] 0.23 (0.17) 0.82 (0.4) -1.26 (0.28) 0.70 (0.36) 2.44 (0.33)

Notes: A[i,·] and W[i,·] indicate the ith row of matrices A and W, respectively.

The variable ordering (15) is yt = (πt, FFRt,MRPt, F It,�gdpt) . Standard errors in
parenthesis.
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Table 2.10: Estimation results with variable ordering (14) and unrestrictedW. Robustness

analysis
Elements of each vector

1 2 3 4 5
intercept 3.43 (0.74) -0.1 (0.1) 0.1 (0.13) -0.22 (0.06) -0.04 (0.03)
A[1,·] 0.13 (0.10) 0.02 (0.01) 0.044 (0.02) 0.01 (0.01) 0.01 (0.00)
A[2,·] -0.58 (0.29) 0.98 (0.04) -0.02 (0.05) 0.03 (0.02) 0.03 (0.01)
A[3,·] 0.18 (0.12) 0.01 (0.02) 0.95 (0.02) 0.01 (0.01) -0.02 (0.01)
A[4,·] -1.56 (0.49) -0.05 (0.06) -0.35 (0.09) 0.89 (0.04) -0.04 (0.02)
A[5,·] 2.65 (1.53) -0.20 (0.20) -0.02 (0.25) -0.02 (0.12) 0.68 (0.05)
W[1,·] 2.02 (0.32) 0.14 (1.05) 0.78 (0.38) -0.52 (0.49) -0.71 (0.42)
W[2,·] 0.16 (0.07) 0.001 (0.1) -0.08 (0.04) -0.05 (0.05) 0.2 (0.04)
W[3,·] 0.13 (0.06) 0.55 (0.13) 0.3 (0.14) -0.06 (1.03) 0.1 (0.04)
W[4,·] -0.03 (0.03) 0.09 (0.45) -0.30 (0.08) 0.25 (0.18) -0.02 (0.02)
W[5,·] 0.02 (0.01) -0.06 (0.21) 0.08 (0.04) 0.11 (0.12) -0.01 (0.01)

Notes: A[i,·] and W[i,·] indicate the ith row of matrices A and W, respectively.

The variable ordering (14) is yt = (�gdpt,πt, FFRt,MRPt, F It) . Standard errors in
parenthesis.

Table 2.11: Estimation results with variable ordering (14) and W restricted to lower

triangular. Robustness analysis
Elements of each vector

1 2 3 4 5
intercept 3.42 (0.76) -0.08 (0.1) 0.01 (0.22) -0.13 (0.08) -0.1 (0.07)
A[1,·] 0.12 (0.12) -0.13 (0.08) -0.1 (0.07) 0.12 (0.12) 0.005 (0.01)
A[2,·] -0.56 (0.31) 0.97 (0.04) -0.01 (0.08) 0.01 (0.03) 0.05 (0.02)
A[3,·] 0.16 (0.13) -0.01 (0.02) 0.96 (0.03) 0.01 (0.02) -0.02 (0.01)
A[4,·] -1.52 (0.52) -0.05 (0.06) -0.36 (0.11) 0.93 (0.13) -0.06 (0.03)
A[5,·] 2.66 (1.59) -0.43 (0.28) -0.04 (0.30) -0.03 (0.14) 0.63 (0.09)
W[1,·] 2.32 (0.42) · · · ·
W[2,·] 0.02 (0.03) 0.32 (0.03) · · ·
W[3,·] 0.10 (0.05) 0.10 (0.06) 0.65 (0.11) · ·
W[4,·] -0.05 (0.03) -0.02 (0.03) -0.06 (0.07) 0.42 (0.06) ·
W[5,·] 0.02 (0.01) -0.03 (0.02) -0.03 (0.03) 0.01 (0.02 ) 0.099 (0.05)

Notes: A[i,·] and W[i,·] indicate the ith row of matrices A and W, respectively.

The variable ordering (14) is yt = (�gdpt,πt, FFRt,MRPt, F It) . Standard errors in
parenthesis.
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Table 2.12: Estimation results with variable ordering (15) and unrestrictedW. Robustness

check
Elements of each vector

1 2 3 4 5
intercept -0.09 (0.10) 0.01 (0.15) -0.22 (0.06) -0.04 (0.03) 3.43 (0.74)
A[1,·] 0.98 (0.04) -0.02 (0.05) 0.03 (0.02) 0.03 (0.01) -0.58 (0.295)
A[2,·] 0.01 (0.02) 0.95 (0.02) 0.01 (0.01) -0.02 (0.00) 0.18 (0.12)
A[3,·] -0.05 (0.06) -0.35 (0.09) 0.89 (0.04) -0.04 (0.02) -1.56 (0.49)
A[4,·] -0.20 (0.21) -0.02 (0.26) -0.02 (0.13) 0.67 (0.05) 2.65 (1.54)
A[5,·] 0.02 (0.01) 0.04 (0.02) 0.01 (0.01) 0.00 (0.00) 0.13 (0.10)
W[1,·] 0.2 (0.04) -0.00 (0.53) -0.05 (0.05) -0.08 (0.04) 0.16 (0.07)
W[2,·] 0.09 (0.04) 0.55 (0.57) -0.06 (5.6) 0.3 (0.15) 0.13 (0.08)
W[3,·] -0.02 (0.02) 0.09 (2.44) 0.25 (0.89) -0.30 (0.08) -0.03 (0.03)
W[4,·] -0.01 (0.01) -0.06 (1.11) 0.11 (0.62) 0.07 (0.04) 0.02 (0.01)
W[5,·] -0.71 (0.42) 0.14 (5.43) -0.52 (1.43) 0.78 (0.38) 2.02 (0.32)

Notes: A[i,·] and W[i,·] indicate the ith row of matrices A and W, respectively.

The variable ordering (15) is yt = (πt, FFRt,MRPt, F It,�gdpt) . Standard errors in
parenthesis.

Table 2.13: Estimation results with variable ordering (15) and W restricted to lower

triangular. Robustness analysis
Elements of each vector

1 2 3 4 5
intercept -0.06 (0.10) 0.07 (0.13) -0.15 (0.07) -0.06 (0.03) 3.48 (0.73)
A[1,·] 0.96 (0.04) -0.02 (0.05) 0.01 (0.03) 0.04 (0.01) -0.62 (0.29)
A[2,·] 0.01 (0.02) 0.96 (0.02) 0.01 (0.01) -0.02 (0.00) 0.20 (0.12)
A[3,·] -0.06 (0.06) -0.36 (0.08) 0.93 (0.06) -0.05 (0.02) -1.59 (0.51)
A[4,·] -0.29 (0.20) -0.09 (0.23) -0.06 (0.12) 0.70 (0.05) 2.68 (1.54)
A[5,·] 0.02 (0.01) 0.05 (0.02) 0.01 (0.01) 0.00 (0.00) 0.11 (0.11)
W[1,·] 0.26 (0.03) · · · ·
W[2,·] 0.12 (0.03) 0.66 (0.07) · · ·
W[3,·] -0.02 (0.02) -0.06 (0.05) 0.40 (0.04) · ·
W[4,·] -0.01 (0.01) -0.03 (0.02) 0.00 (0.02) 0.15 (0.02) ·
W[5,·] 0.25 (0.21) 0.71 (0.31) -0.81 (0.31) 0.53 (0.29) 2.02 (0.25)

Notes: A[i,·] and W[i,·] indicate the ith row of matrices A and W, respectively.

The variable ordering (15) is yt = (πt, FFRt,MRPt, F It,�gdpt) .
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Chapter 3

Fiscal Multipliers in a Structural
VEC Model with Mixed Normal
Errors

Abstract1

This paper estimates the effects of fiscal policy shocks on GDP in the United States with

a vector error correction (VEC) model in which shocks are identified by exploiting the

non-normal distribution of the model residuals. Unlike previous research, the model used

here takes into account cointegation between the variables, and applies a data driven

method to identify fiscal policy shocks. The approach also allows statistical testing of

previous identification strategies, which may help discriminate between them and hence

also explain differences between various fiscal multiplier estimates. Our results show that a

deficit financed government spending shock has a weak negative effect on output, whereas

a tax increase to finance government spending has a positive impact on GDP.

1This chapter is based on an article published in the Journal of Macroeconomics (Puonti, 2016)
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3.1 Introduction

After the recent financial crisis many central banks have had to come to terms with the

limits of conventional monetary policy. Because of the zero lower bound on one hand and

the prolongation of the economic downturn on the other, policymakers and economists

alike have again turned their attention to fiscal policy. Common monetary policy, which

is not necessarily optimal from the point of view of any one member country, emphasizes

the role of fiscal policy in the euro area.

Compared to monetary policy, fiscal policy has been viewed as a less agile policy in-

strument mainly because of implementation lags, but also because of its multi-faceted

nature. Fiscal policy consists of the allocation of government expenditure between dif-

ferent categories of consumption and investment as well as decisions about its finance

with a particular tax-debt mix. These political decisions are taken at different levels of

government administration (e.g. federal, state, provincial, or municipal). Unlike mone-

tary policy, the stance of which can be summarized by an interest rate announced by the

central bank, fiscal policy regime cannot be described by a single variable.

Nonetheless, there has been an upsurge of academic research in the macroeconomic

effects of government expenditure and tax changes in recent years. Broadly speaking,

the key question of interest is whether government spending can stimulate the economy,

and what the size (and sign!) of this fiscal or government spending multiplier is. Ramey

(2011a) provides a review of both theoretical and empirical research on the government

spending multiplier. Theoretically defined multipliers provide a wide range of values

depending on the type of model used, the assumptions about the behavior of monetary

policy, the type and persistence of government spending, and how it is financed (Ramey

2011a). Consequently, the size of the multiplier is first and foremost an empirical issue.

Given the variety of theoretical and empirical results, many researchers have recently

asked whether the multiplier depends on the state of the economy, i.e. whether government

fiscal stimulus is more effective when it is used to supplement scant private demand in

an economic downturn than in an upturn (Auerbach & Gorodnichenko 2012, Caggiano

et al. 2015). Interestingly, Caggiano et al. (2015) show that this is indeed the case with

deep recessions and extreme economic peaks in the US, while no statistically significant

differences between normal times, i.e. normal economic downturns and upturns are found.

Owyang et al. (2013), and Ramey and Zubairy (2014) also find no evidence of larger
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fiscal multipliers during downturns. This means that research based on linear models

is informative about the effectiveness of the fiscal policy instrument in normal times.

Given the relative rarity of events like the recent Great Recession,2 knowledge about the

effectiveness of fiscal stimulus during an ordinary business cycle is admittedly valuable.

This paper thus focuses on linear models.3

Vector autoregressive (VAR) models seem to have become the main econometric tool

for determining the macroeconomic effects of both monetary and fiscal policy (Ramey

2011a, Caldara & Kamps 2008). Both strands of the empirical literature need to tackle

the inherent shock identification problem. Fiscal policy research has relied on four iden-

tification strategies: 1) the recursive approach of Sims (1980) applied to fiscal policy by

e.g. Auerbach and Gorodnichenko (2012), 2) the frequently applied structural VAR pro-

posed by Blancard and Perotti (2002), 3) the sign restrictions developed by Uhlig (2005)

and applied by Mountford and Uhlig (2009) and 4) the narrative approach introduced by

Ramey and Shapiro (1998), which exploits unexpected increases in military spending.

Studies using different VAR model specifications and identification schemes have come

to diverging conclusions about the size and sometimes even the sign of the multiplier.

Unlike with monetary policy, the fifth available strategy,statistical identification methods,

has not yet been applied to the study of fiscal policy. Statistical methods that yield

additional data based information may be helpful in shock identification, and/or possibly

help choose the most suitable among the proposed identification strategies.

This paper thus applies the statistical method introduced by Lanne and Lütkepohl

(2010), in which the non-normality of the errors is exploited to identify the structural

shocks. More precisely, the errors are assumed to follow a mixture of two normal dis-

tributions. The identification strategy of Lanne and Lütkepohl (2010) allows not only

identification of the statistical model without any identifying restrictions, but also statis-

tically testing of whether any of the previously used identification strategies are compatible

2In the 32-year period studied by Caggiano et al. (2015), they identified two deep recessions in the

U.S., whereas according to the NBER Recession Indicator the total number of recessions amounted to

five.
3The inclusion of the Great Recession in the small sample considered may lead to a distorted picture

of the effects of government spending shocks in normal times. However, excluding the financial crisis

from the sample would significantly reduce the sample size, leading to less accurate estimates and poorer

identification. Moreover, from the point of view of nonlinearities, the Great Recession is not a unique

event since another such recession was identified by Caggiano et al. (2015) in the sample.
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with the properties of the data. If statistical identification of shocks (see Section 3.3) is

obtained following Lanne and Lütkepohl (2010), then the restrictions on the contempora-

neous relationships between the variables imposed in the previous identification schemes

can be statistically tested. This may also be helpful in labeling the statistically identi-

fied shocks, which is always based on outside information (Lanne et al. 2015, Lütkepohl

& Netšunajev 2014). Although additional information is needed to interpret the shocks

identified, being able to test their compatibility with the data is an advantage over tradi-

tional approaches. Obtaining results that are not dependent on the identification strategy

chosen may be seen as a robustness check of previous empirical research.

Unlike any of the previous studies using VARs − linear and non-linear − the vector

error correction (VEC) model used in this paper also takes into account the cointegration

properties of the variables. The usual practice in the literature is to include the log lev-

els of variables such as GDP, government spending and taxes (Ramey & Zubairy 2014),

even though they are likely to contain a unit root. Phillips (1998) demonstrates that im-

pulse responses are not consistently estimated in structural VARs (SVARs) with variables

in levels in the case of unit roots, whereas the VEC specification significantly improves

them even for short horizons when the cointegration relations are either known or consis-

tently estimated. Phillips (1998) points out that differing treatments of nonstationarity

in models such as unrestricted VAR, Bayesian VAR with unit root priors and reduced

rank regression has substantial effects on policy analysis. An additional advantage of the

VEC specification is that the cointegration relations provide identification restrictions and

allow us to distinguish shocks that have either permanent or transitory effects.

As it has not yet been done for fiscal VARs, this paper 1) expands the set of identifi-

cation strategies with increasingly popular statistical methods and 2) takes into consid-

eration the cointegration properties of the time series. Both extensions − dealing with

the nonstationarity of the data, and combining statistical and theoretical information

for identification − are expected to increase the accuracy of the results (Phillips 1998,

Herwartz & Lütkepohl 2014).

Quarterly data for the United States are used. The data cover the period 1981Q3 to

2012Q4 and were previously used by Caggiano et al. (2015), as well as Auerbach and

Gorodnichenko (2012). Similarly to Caggiano et al. (2015), fiscal policy anticipation

effects, or foresight are addressed by including the fiscal news variable proposed by Gam-
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betti (2012). A drawback of using this variable is the relatively short sample. While we

recognize that this is one limitation of the analysis, there are advantages in following this

approach (see Section 3.3.1).

The analysis highlights differences between the different VAR specifications used to

analyze the effects of fiscal policy. The impulse responses based on the VEC model with

mixed normal errors are quite different from those typically obtained from SVAR models,

as the latter mostly coincide with theoretical models in the Keynesian tradition. Our

results show that a government spending shock has a weak but negative effect on GDP,

while the response of taxes is not statistically different from zero even if no restrictions

are imposed on taxes. As government revenue does not change, this can be interpreted as

a fiscal policy shock financed by a deficit as in Mountford and Uhlig (2009). Also quite

surprisingly, a government revenue shock triggers a positive response in both government

expenditure and GDP. In line with the interpretation of the spending shock, this can be

interpreted as a tax increase to finance government spending, which has a positive impact

on GDP. The fiscal multiplier for the horizons h = 1, 4, 8, 12, 20 after the initial shock

ranges from -1.27 to -1.61 and achieves its maximum at h = 1.

The rest of the paper is organized as follows. Technical details of the empirical method

are given in Section 3.2. Section 3.3 covers the empirical analysis and Section 3.4 concludes

the paper.

3.2 Vector Error Correction (VEC) Model with Non-normal

Error Distribution

Unlike what is typically done in the existing fiscal policy literature, this paper specifies

a vector error correction model (VECM) and estimates it to take into account the coin-

tegration properties of the variables. If some or all of the variables are I(1) and some

of the variables are cointegrated, there are advantages in using the VEC representation

of the process instead of the vector autoregressive (VAR) representation. Utilizing the

cointegration properties of the variables provides identification restrictions, allowing us to

distinguish between permanent and transitory shocks.

A reduced form VEC(p) model with a cointegration rank r < K (deterministic terms

omitted for simplicity) is
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Δyt = αβ�yt−1+Γ1Δyt−1+ · · ·+Γp−1Δyt−p+1+ut

where yt is a K×1 vector of a time series, α is a K×r matrix of loading coefficients, β is
a K×r cointegration matrix, Γj is a K×K short run coefficient matrix for j = 1, ..., p−1,
and ut ∼ (0,Σu) is a white noise error vector. The process has the vector moving average
(VMA) representation

yt= ΞΣ
t
i=1ui+Ξ

∗
jΣ

∞
j=0ut−j+y

∗
0

where the Ξ∗j are absolutely summable and y
∗
0 contains the initial values (see e.g. Lütke-

pohl 2007, Chapter 9).

The long-run effects of the shocks are therefore captured by the common trends term

ΞΣti=1ui (3.28)

and the matrix

Ξ = β⊥
�
α�⊥
�
IK − Σp−1i=1Γi

�
β⊥
�−1

α�⊥

has a rank of K − r. The symbols α⊥ and β⊥ denote the orthogonal complements of α
and β respectively. Substituting the relation ut = Bεt in the common trends term (3.28)

gives ΞBΣt1=1εt. The term ΞB contains the long-run effects of the structural shocks and

has a rank K − r. At most r of the shocks can have transitory effects only, and they are
associated with zero columns in the long run matrix ΞB.

To obtain additional information for identification, Lanne and Lütkepohl (2010) as-

sume that theK-dimensional error term ut is a mixture of two serially independent normal

random vectors

ut =

�
e1t∼ N(0,Σ1) with probability γ
e2t∼ N(0,Σ2) with probability 1− γ (3.29)

where N(0,Σ) denotes a multivariate normal distribution with a mean of 0 and a covari-

ance matrix Σ. In the model Σ1 and Σ2 are K×K covariance matrices that are assumed

to be distinct, γ is the mixture probability,and 0 < γ < 1, a parameter of the model.

Since the term γ is only identified if Σ1 �= Σ2, this is assumed to hold. If some parts of
Σ1 and Σ2 are identical then some components of ut may be normally distributed. In
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any case there only needs to be one non-normal component in ut. The distribution of the

reduced form error term now becomes

ut∼ (0,γΣ1+(1− γ)Σ2)

The distributional assumption for ut allows us to define a locally unique B matrix in

the following way. As shown in Appendix A by Lanne and Lütkepohl (2010), a diagonal

matrix Ψ = diag(ψ1,..., ψk), ψi > 0 (i = 1, ..., K) and a K×K matrixW exist such that

Σ1 =WW� and Σ2 =WΨW� andW is locally unique for some ordering of ψi’s except

for a change in the sign of a column, as long as all ψi’s are distinct. Now we can rewrite

the covariance matrix of the reduced form error vector ut as

Σu = γWW� + (1− γ)WΨW� =W(γIk + (1− γ)Ψ)W� (3.30)

Given that the structural shocks εt ∼ (0, IK) are related to the reduced form errors as

ut= Bεt

and

E(utu
�
t) = Σu = BΣεB

� = BB� (3.31)

it follows that a locally unique B matrix is given by

B =W(γIn + (1− γ)Ψ)1/2 (3.32)

This is sufficient for identification.

This choice of B also means that the orthogonality of shocks is independent of regimes.

This can be seen by applying (3.31) to the covariance matrices as

B−1ΣuB−1 = Ik
B−1Σ1B−1 = (γIk + (1− γ)Ψ)−1
B−1Σ2B−1 = (γIk + (1− γ)Ψ)−1Ψ

(3.33)

As the equations in (3.33) are all diagonal matrices, the choice of B as in (3.32) yields

shocks that are orthogonal in both regimes. The model is estimated by the maximum

likelihood (ML) method.

A number of other statistical identification procedures for SVAR models have been

proposed in the literature recently, and have already been applied to monetary policy (see
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e.g. Lanne and Lütkepohl 2014). Rigobon (2003) and Lanne and Lütkepohl (2008) have

developed methods based on regimes with different covariance structures. Heteroskedas-

ticity may arise as a result of financial crises, for example. These methods further assume

that changes in the covariance occur at fixed points during the sample period. This may

be a problematic assumption if no such break points are known to exist.

In contrast, both Lanne et al. (2010) and Lütkepohl and Netšunajev (2014) model

the volatility shifts as a Markov regime switching process, in which changes in volatility

are endogenously determined.

All of these methods are based on either conditional or unconditional heteroskedas-

ticity. More recently Lanne et al. (2015) have introduced a yet more general approach

that encompasses most of the methods previously introduced. Similarly to the method

employed in this paper, identification in their approach is based on non-Gaussianity of the

error terms but more wide-ranging specifications for the error distribution are allowed.

The choice of the identification method based on mixed normality used in this paper

is largely dictated by the data. There is no known break in the sample as required

by Rigobon (20013) and Lanne and Lütkepohl (2008). On the other hand, modeling

volatility regimes as a Markov switching process as in Lanne et al. (2010) is numerically

demanding, especially if short time series are used. Finally, Lanne et al. (2015) only

discuss a stationary VAR process, the use of which is not feasible given that our data

appear cointegrated. Further evidence in support of the specific distributional assumption

is presented in Section 3.3.2. Normality is rejected by formal tests and an investigation

of the residuals speaks in favor of a mixed normal specification, which can encompass a

wide variety of distributions with the characteristics observed in the residuals. The VEC

specification is justified by statistical analysis of the data.

3.3 Empirical Analysis of the Fiscal Multiplier in the United

States

3.3.1 Data

In the analysis quarterly US data in a four variable VECM yt = (Gt,, Tt, Yt, η
g
13)

� is used,

in which Gt is log real government (federal, state, local) expenditure on consumption and

investment, Tt is log real government receipts of direct and indirect taxes net of transfers
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to businesses and individuals, and Yt is log real gross domestic product (GDP) in chained

2009 dollars. The variables are constructed using the Bureau of Economic Analysis’

NIPA Tables.4 These data have been available since 1947Q1 and were previously used by

Auerbach and Gorodnichenko (2012), Mountford and Uhlig (2009) and Caggiano et al.

(2015), among others.

Fiscal foresight creates problems with structural VAR analysis. If economic agents

adjust their behavior based on anticipated future shocks, or news shocks, while standard

VARs take into account current and past shocks only, analysis based on these may be

misleading. Leeper et al. (2013) show that foresight about changes in future variables

leads to non-invertible moving average representations. Instead of the standard (causal)

VAR representation, the process has a noncausal representation in this case.

Using data for the United States, Lanne and Saikkonen (2009) provide evidence of

noncausality in a VAR model with fiscal foresight. This finding invalidates analyses based

on conventional causal VARs, as the errors from a standard VAR cannot be used to reveal

the true fiscal shocks precisely.

Even if noncausality is detected, methods for such things as impulse response analysis

from noncausal VAR models are unfortunately not yet readily available (Lanne & Saikko-

nen 2013). As the foresight problem arises because the econometrician does not have all

the information that economic agents may have, an alternative approach is to solve the

inherent missing variable problem by adding variables to the VAR (see Lütkepohl 2014

and the references therein).

To deal with fiscal foresight, we follow Caggiano et al. (2015) who apply the expecta-

tions revisions, or news variable approach proposed by Gambetti (2012). A news variable

ηg1J is constructed from forecast revisions of the growth rate of real government expendi-

ture and added to the VAR. In other words, the VAR is augmented by information about

the anticipated fiscal spending shock, which should bring the econometrician’s informa-

tion set closer to that of economic agents. As the forecast revisions used to construct the

news variable have been collected by the Survey of Professional Forecasters (SPF) since

4Government expenditure is the sum of consumption expenditure and gross investment minus the

consumption of fixed capital. Government revenue is computed as the difference between current receipts

and government social benefits. The implicit GDP deflator is used to transform nominal series into real

terms.

47



1981Q3, the whole sample is restricted to the 1981Q3-2013Q1 period.5

As already pointed out by Caggiano et al. (2015), who are the first to use the fiscal

news variable, the relatively short sample is one limitation of the analysis. To avoid

potential small sample issues, an alternative would be to use Ramey’s military news

variable (2011b). There are two reasons why the military spending variable does not

constitute a solution in this case. According to Ramey (2011b) and Christiano (2013),

the military shock variable is a relevant instrument as long as WWII or the Korean War is

included. However, during the two wars, fiscal spending was accompanied by considerable

increases in taxes and, especially during the Korean War, the increase in spending was

permanent. Therefore, the resulting multiplier is not necessarily applicable to a situation

in which government spending is financed differently (Ramey 2011b, Christiano 2013).

Caggiano et al. (2015) also point out that rationing was in place during WWII, which

restrained public spending from increasing further.

Christiano (2013) and Caggiano et al. (2015) conclude, that all these elements are

likely to contaminate the computation of the fiscal multiplier based on Ramey’s military

spending variable. Moreover, given the limited applicability of Ramey’s variable, using

it would prevent us from drawing conclusions on the effects of government spending in

the current situation, in which fiscal stimulus packages have been financed by debt. We

choose to follow Caggiano et al. (2015) because theirs was also the most recent approach

to tackling the issue of fiscal foresight.

The cumulated fiscal news variable is constructed by adding up revisions of expecta-

tions as follows (Caggiano et al. 2015, Gambetti 2012):

ηg1J =
J�
j=1

(Etgt+j − Et−1gt+j)

where Etgt+j is the forecast of the growth rate in real federal government expenditure from

period t + j − 1 to period t + j based on the information available at time t. Therefore
Etgt+j − Et−1gt+j represents the news that becomes available to private agents between
times t− 1 and t about the growth rate of government expenditure j periods ahead. As
the SPF collects forecasts conditional on time t− 1 up to time t+3, to exploit the largest
amount of news available, J = 3 has been selected (Caggiano et al. 2015).

5The public expenditure news variable was provided by Giovanni Caggiano. All other variables were

constructed by the author.
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Caggiano et al. (2015) show that residuals typically employed in a standard trivariate

VAR are partly predictable by the components of ηg13 and cannot be interpreted as fiscal

shocks - the authors claiming that the forecast revisions included in the variable ηg13, which

they interpret as a measure of anticipated fiscal shocks, can augment the information

content of the VAR system. Therefore, by adding the cumulated fiscal news variable in

the VAR, one obtains a shock that is not predictable and can be interpreted as a fiscal

shock.

3.3.2 Model Setup

Figure 3.6: Plot of logarithmic time series 1981Q3-2012Q4. G = government expenditure,

T = government revenue, Y = GDP, news = cumulated fiscal news

The empirical analysis starts with checking the orders of integration of the four times

series, which are depicted in Figure 3.6. A trend was included in the augmented Dickey-

Fuller (ADF) unit root test for all series and autoregressive lags were chosen according

to the Akaike information criterion. The tests show that all the variables included in the

analysis are I(1), although T is only at the 5% significance level, not at the 10%.

The next step is to investigate the cointegration rank of the four dimensional VECM

for yt = (Gt,, Tt, Yt, η
g
13)

�. This requires determining the number of lagged differences in

the system first. Here we use the fact that if a VAR(p) process contains cointegrated

variables, the process has a VEC(p-1) representation. In other words the order p is

chosen so that no residual autocorrelation is left in the corresponding VAR model. For

a reduced form Gaussian VAR, AIC, HQ and BIC select VAR(6), VAR(2) and VAR(1)

models, respectively. According to the adjusted portmanteau test there is autocorrelation
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Table 3.14: Cointegration tests
Johansen Trace test
Included lags (levels) H0 Test value Critical values p-value

10% 5%
2 0 90.17 50.50 53.94 0.00

1 32.31 32.25 35.07 0.099
2 15.40 17.98 20.16 0.21
3 2.51 7.60 9.14 0.68

Saikkonen and Lütkepohl test
Included lags (levels) H0 Test value Critical values p-value

10% 5%
2 0 53.97 37.04 40.07 0.00

1 17.85 21.76 24.16 0.26
2 4.09 10.47 12.26 0.70
3 2.49 2.98 4.13 0.14

left in the VAR(1) model (p-value < 0.001), while a p-value of 0.082 for VAR(2) suggests

that a second order model is sufficient.

Table 3.14 reports the results of the Johansen Trace test with an unrestricted constant.

The cointegration rank r = 0 is rejected at all significance levels, while r = 1 clearly cannot

be rejected at the 5% level and is barely rejected at the 10 % level.6 The Saikkonen

and Lütkepohl (2000) cointegration test — also reported in Table 3.14 — provides further

support for r = 1.7

To conclude the initial analysis, diagnostic tests have been performed to assess the

suitability of the VEC(1) model with r = 1. There appears to be no remaining au-

tocorrelation (adjusted portmanteau test p-value 0.18). There is however evidence of

non-normality in the errors, as is evident from the quantile-quantile (QQ) plots of the

model residuals, plotted in Figure 3.7.

Normality is also rejected by formal normality tests, of which the Doornik and Hansen

test for joint normality yields a p-value of < 0.001, and the p-values of univariate Jarque-

Bera tests are reported in Table 3.15.

Table 3.15: Summary Statistics
Skewness Kurtosis Jarque-Bera p-value

Government Expenditure -0.6092 4.0185 12.7127 0.0017
Government Revenue -1.1325 5.8725 67.4635 0.0000
GDP -0.4198 3.6481 5.6724 0.0586
Fiscal News 0.1002 6.0327 46.5728 0.0000

6The low power of the test has meant that the rank is often selected according to the 10 % significance

level (Brüggemann &Lütkepohl 2005).
7As a robustness check, the mixture VECM was estimated with r = 2 as well and the test results are

qualitatively the same as those reported in Section 3.3.
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Figure 3.7: Residuals of VEC(1) -model with cointegration rank r=1, QQ plots

The QQ plots illustrate that most discrepancies from a normal distribution occur at

the tails. The curved pattern of the QQ plots for government expenditure, government

revenue and GDP can arise because of a left skewed data distribution compared to the

normal, while the QQ plot of the fiscal news variable shows heavy tails at both ends of

the distribution. These observations are confirmed by the figures in Table 3.15. In fact,

government expenditure, government revenue and GDP feature negative/left skewness,

whereas the fiscal news variable is positively/right skewed. Moreover, the kurtosis shows

values greater than 3 for all variables, indicating heavier tails and higher peaks than in a

normal distribution.

Heavy tails and skewness are typical features of financial time series such as asset

returns. To accommodate these characteristics, mixtures of normal distributions have

been used to analyze financial data. According to Tsay (2005), studies of stock returns

have started to use a mixed normal distribution because it can capture the skewness

and excess kurtosis of the time series. By using a mixture distribution, one can obtain

densities with higher peaks and heavier tails than in the normal distribution. Kon (1984),

for example used a mixed normal model to explain the observed significant kurtosis and

significant positive skewness in the distribution of daily rates of stock returns. Overall,

because of their flexibility, mixture models are increasingly exploited to model unknown
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distributions (McLachlan & Peel 2000).

In the present VECM setup with mixed normal errors, normal distribution is obtained

ifΣ1 = Σ2 in (3.29). Therefore the normality tests may be seen as a test ofH0 : Σ1 = Σ2 ,

the rejection of which supports the assumption that Σ1 �= Σ2 , and hence a mixed normal

error distribution (Lanne and Lütkepohl 2010).

Given these properties of the data, explicitly modeling the error distribution as a

mixed normal distribution is well grounded. The considerable advantage of the specific

distributional assumption is that it yields additional databased information, which allows

us to identify the model without restrictions. As a result, identification restrictions derived

from other sources become over-identifying and their validity can be statistically tested.8

3.3.3 Estimation Results and Structural Identification

The estimation of the mixture VEC model proceeds in two steps (Lanne and Lütkepohl

2010). As the cointegration relations are not known beforehand, they are first estimated

with the Johansen reduced rank regression, which yields β = (1,−0.447,−0.171,−0.007).9

In the second step the log-likelihood function is maximized with respect to the other

parameters, conditional on the estimated cointegation relations.10

In the ML estimation, VECM coefficients from a linear model are used as starting

values to estimate the parameters of an unrestricted VEC model with a mixed normal

distribution. The estimation results of the unrestricted model appear in the left column

of Table 3.16.11

The model has been identified if the ψ�is are distinct. As shown in Table 3.16, the

estimation results are quite precise and the ψ�is yield approximate values of 0.11, 0.26,

0.06 and 0.76, while the mixture probability γ is estimated to be 0.24.

Statistical identification delivers orthogonal shocks but their labeling has to be based

on outside information (Lanne et al. 2015, Lütkepohl & Netšunajev 2014). One option

8We follow previous literature and test normality in a first step and, conditional on rejecting it, test

standard SVAR identification schemes in a second step. This is the common procedure in the literature

employing statistical identification in SVAR models because a joint test would be nonstandard and

probably difficult to perform in practice. We thank the editor for pointing out this potential problem.
9The first step computations were performed with JMulTi.
10These computations were done with GAUSS programs using the CMLMT library. To avoid numerical

problems in estimation, the fiscal news variable is scaled to match the magnitude of the other variables.
11The rest of the parameter estimatesare reported in the Appendix.
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Table 3.16: Estimation results of the VECM with mixture distribution, restricted and

unrestricted B matrix. Standard errors in parenthesis.
yt = (Gt,, Tt, Yt, η

g
13)

�
Parameter Unrestricted B Restricted B Restricted B and ΞB
γ̂ 0.239 (0.086) 0.124 (0.025) 0.232 (0.065)
ψ̂1 0.115 (0.042) 0.164 (0.069) 0.097 (0.037)
ψ̂2 0.255 (0.110) 0.062 (0.027) 0.081 (0.030)
ψ̂3 0.061 (0.024) 0.142 (0.058) 0.189 (0.083)
ψ̂4 0.762 (0.307) 0.725 (0.000) 0.748 (0.277)
max lT (θ) 1620.56 1605.15 1618.64
LR 30.82 3.84
p-value 2.743×10−5 0.698

is to test the validity of a recursive identification scheme that has been used before.

If the previously used restrictions cannot be rejected, the recursive structure provides

a straightforward interpretation of the resulting impulse response functions. Statistical

testing of a recursive identification scheme is therefore an important part of the economic

interpretation of the results.

To this end, another VEC model is estimated in which lower triangularity is imposed

on the B matrix as in Caggiano et al. (2015)12. In estimating the restricted model,

the ML estimates of the unrestricted model are used as starting values. In both cases,

their determinants are bounded away from zero to ensure nonsingularity of the covariance

matrices. The diagonal elements of the Ψ matrix are also bounded away from zero, as

required.

The results of the key parameters are reported in the middle column of Table 3.16

together with the outcome of the likelihood ratio test13. The LR test has the asymptotic χ2

-distribution with 6 degrees of freedom given by the number of restrictions. The recursive

structure is clearly rejected (p-value < 0.001) and hence is not helpful in labelling the

shocks.

The VECM specification allows another option based on long run relations between

the variables, as shown in Lütkepohl (2007, Chapter 9). Suppose the cointegration rank

is known to be r. Then, as in Section 3.2, there are at most r transitory shocks, εrt and at

least K−r permanent shocks, εpt . Arranging them such that ε�t = (εp�t , εr�t ), it follows that
ΞB =

�
ΦK×(K−r) : 0K×r

�
where ΦK×(K−r) is an K × (K − r) matrix. In a VEC model

12In the present mixture model this is done in practice by restricting theW matrix in B =W(γIn +

(1− γ)Ψ)1/2 to be lower triangular.
13The rest of the results are reported in the Appendix.
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with r < K, all shocks can in principle be permanent shocks and ΞB may not have zero

columns even if it has reduced rank.

In Section 3.3.2., r = 1 was found for the data to hand. This translates into the

following set of long run restrictions14

ΞB =

⎡⎣ ∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0

⎤⎦ (3.34)

which can also be tested using a LR-test.15 Therefore another restricted VEC model with

mixed normal errors is estimated. The following matrix of impact effects is assumed

B =

⎡⎣ ∗ 0 0 ∗
∗ ∗ 0 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤⎦ (3.35)

in addition to the long run restriction in (3.34). In other words, the often used recursive

structure for the key variables yt = (Gt, Tt, Yt) is imposed as well. This implies that

government expenditure does not respond contemporaneously to shocks to other variables,

while government revenue does not react contemporaneously to output shocks.

Note that the restrictions imposed here (3.34 and 3.35) differ from those required

for identification in a standard VECM framework (see e.g. Lütkepohl 2007, Chapter 9).

Because the matrix ΞB has a reduced rank of K − r, each column of zeros stands for
K − r independent restrictions only. In other words the r transitory shocks represent

r(K − r) independent restrictions, i.e. 3 in the present case. As just-identification in the
standard VECM requires a total of K(K−1)

2
restrictions, additional restrictions based on

theoretical considerations are needed. To identify both transitory and permanent shocks,

it is not sufficient to impose arbitrary restrictions on B and ΞB, however. The advantage

of the VEC specification in the standard setting is that the r(K−r) restrictions are based
on the cointegration rank, which can be determined by statistical tests.

In the current framework, assuming that structural shocks are in fact identified by the

mixed normality of errors, any restrictions become over-identifying and can be statistically

tested. Testing the exclusion restrictions in (3.35) is of interest because they are commonly

14Again the asterisks denote unrestricted elements and zeros indicate the elements that are restricted

to be zero.
15The assumption that government spending, revenue and output shocks have permanent effects is in

line with the literature using the same data (see e.g. Mountford & Uhlig 2009, and the results from both

linear and nonlinear models by Auerbach & Gorodnichenko 2012).
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assumed to obtain just-identification with standard three variable VARs. Obviously, the

three restrictions in (3.35) alone are not enough to identify a four variable VAR.

The estimation results of the second restricted VEC model appear in the right column

of Table 3.16.16 The p-value of the LR test (0.698) based on the χ2(6) -distribution

indicates that restrictions (3.34) and (3.35) are well supported by the data (see the right

column of Table 3.16).

Finally, an examination of the standard errors suggests that some of the ψ�is may not

be distinct. This means that the B matrix may not be unique. The nonuniqueness of

B may imply that the actual number of degrees of freedom of the χ2 -distribution in

the LR-test is less than 6 (see Lütkepohl and Velinov 2014). Given the rejection of the

first restricted model at 6 degrees of freedom, the same test statistic leads to rejection

with fewer degrees of freedom as well. Therefore, even though the B matrix may not be

unique, by assuming mixed normality of the errors, the restrictions imposed are sufficient

to reject the recursive identification scheme. On the other hand, given the small value of

the LR test statistic related to the second restricted model, even with less than 6 degrees

of freedom there is still no strong evidence against the restrictions imposed.

3.3.4 Impulse Response Analysis

Given the previous results, and assuming that the ψi’s are distinct and the model is in

fact fully identified, we compute impulse responses based on the restricted mixture VEC

model, which imposes both contemporaneous and long-run restrictions (3.34 and 3.35)

not rejected by the data. We report the 90% Hall’s percentile confidence bands, which

are obtained from 1000 replications of bootstrap impulse responses. Following Herwartz

and Lütkepohl (2014), to ensure that only bootstrap replications around the parameter

space of the original estimation step are considered, bootstrap parameter estimates of

c,W,α and Γ1 are determined conditionally on the initially estimatedΨ and γ. Bootstrap

estimates are obtained by nonlinear optimization of the log-likelihood with ML estimates

as starting values.

The impulse responses are shown in Figure 3.8. Each column contains the responses

of all variables to one shock, the size of each shock being set to unity. In this case

the long and short run restrictions provide interpretation. As the impulse responses are

16The rest of the results are reported in the Appendix.
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Figure 3.8: Impulse response functions with 90% Hall’s percentile confidence bands of the

restricted VEC model with mixed normal errors.

computed by restricting the impact effects as in (3.35), the following contemporaneous

effects are ruled out: a government revenue shock has no contemporaneous impact on

government expenditure (Gt), and an output shock cannot have a contemporaneous effect

on government expenditure (Gt) and revenue (Tt). From the long run restriction (3.34) we

also know that the effect of the last shock − fiscal news (ηg13) − is transitory. These permit
us to uniquely label the shocks as a government spending, government revenue, output

and fiscal news shock. In other words they appear in the same order as the variables in

the vector yt = (Gt,, Tt, Yt, η
g
13)

�.

The first column of Figure 3.8 depicts impulse responses to a positive government

spending shock. Interestingly, the response of output is negative although very weak,

while the response of taxes is not statistically different from zero, even if no restrictions

on taxes are imposed. As government revenue does not change, this can be interpreted

as a fiscal policy shock financed by a deficit as in Mountford and Uhlig (2009). From a

practical point of view, this is of great interest since fiscal stimulus packages are mostly

financed by deficits.

The second column reports impulse responses to a positive government revenue shock.

The impact response of government expenditure is restricted to zero, but it becomes
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positive and significant after 6 quarters, and so follows the shape of GDP. In other words,

surprisingly, a government revenue shock is found to trigger a positive response in both

government expenditure and GDP. In line with the interpretation of the spending shock,

one could interpret government spending financed by a tax increase as having a positive

impact on GDP. In the literature a positive tax shock is typically found to have a negative

effect on output (see e.g. Ramey 2011a, Favero & Giavazzi 2012, Mountford & Uhlig 2009,

Auerbach & Gorodnichenko 2012). For example, in the linear framework of Auerbach and

Gorodnichenko (2012), output responds negatively and government spending positively

to a positive tax shock, while Mountford and Uhlig (2009) report a negative impact on

both output and spending. According to the latter authors their finding is also intuitive.

To investigate what happens to the response of government spending to a tax shock at

longer horizons, we computed impulse responses for such horizons as well. The response

of government spending does not seem to stabilize.

The third column displays impulse responses to a positive output shock. Although

the impact response of government revenue is restricted to zero here, the output shock

behaves like a business cycle shock in Mountford and Uhlig (2009) in that both output

and government revenue increase, whereas the response of government expenditure is not

countercyclical, also increasing although with a lag. The reason given by Mountford and

Uhlig (2009) also applies here, namely the government expenditure variable is defined as

consumption plus investment but does not include transfer payments, which automatically

vary counter cyclically.

Finally, the last column shows impulse responses to a positive fiscal news shock, which

Caggiano et al. (2015) interpret as an anticipated fiscal expenditure shock. The shapes

of the impulse responses are similar to Caggiano et al.’s (2015) but there are differences

in the impact effects. This is not unexpected given their identification strategy, which

imposes zero impact effects of the fiscal news shock on all variables. When the responses

to the fiscal news shock are left unrestricted in the mixture VEC model, we see that

the impact responses of government expenditure and output are negative but increasing,

while the government revenue reacts positively at first and then starts to decrease. The

response of the news shock itself is very short-lived. Of these, the responses of government

revenue and output are insignificant, however. Apparently, the breadth of the confidence

bands reflects the fact there is great uncertainty around the behavior of the cumulated
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fiscal news variable, which is constructed by adding up forecast revisions of the growth

rate of real government expenditure.

Fiscal multipliers are computed according to the usual practice in the literature (see

e.g. Auerbach & Gorodnichenko 2012, Caggiano et al. 2015, Ramey and Zubairy 2013,

Mountford & Uhlig 2009). Specifically, impact multipliers are calculated as the response

of output at a given horizon divided by the initial fiscal shock. As the log of variables is

used in estimation, we scale the impulse response functions by the sample average of the

output to government spending ratio, Y/G (taken in levels) to convert percentage changes

into dollar changes. Impact multipliers are computed for the h = 1, 4, 8, 12, 20 horizons.

The multiplier ranges from -1.27 to -1.61 and achieves its maximum at h = 1. As already

pointed out, these results rest on the assumption that the mixture VEC model is fully

identified.

A comparison with previous empirical studies reveals that the effects of fiscal policy

obtained from SVARs are typically of the opposite sign, in accordance with theoretical

models in the Keynesian tradition (e.g. Blanchard & Perotti 2002, Ramey 2011b, Favero

& Giavazzi 2012). There is however a lot of variation in the size of the multiplier, both

within and across studies (see Ramey 2011a and references therein).

Similarities also exist. Perotti (2005) finds evidence of large differences in the effects

of fiscal policy in the pre- and post-1980 periods. His results for the whole US sample

(1960Q1-2001Q4) are similar to those obtained by others using the same sample, whereas

a negative spending multiplier emerges for the post-1980 period. He concludes that there

has been a drastic reduction in the effects of government spending shocks on GDP since

1980. His results are therefore in line with the ones obtained in this paper, which also

considers the post-1980 period.

Mountford and Uhlig (2009) analyze a government spending shock financed by a deficit

by not allowing taxes to change for 4 quarters. They find that deficit spending only

stimulates the economy weakly on impact and has a negative effect on output in the

long run. Their basic government spending shock resembles the deficit spending shock

in that although no restrictions on government revenue are imposed, it does not change

significantly. Since the same result is obtained here, we interpret our government spending

shock as deficit financed.

Negative fiscal multipliers also emerge in studies using nonlinear model specifications,
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for example during periods of high public debt (Ilzetzki et al. 2013), and during expansions

in the post-1980 period (Auerbach & Gorodnichenko 2012).

3.4 Conclusions

In the fiscal policy literature using structural vector autoregressions (SVARs), fiscal policy

shocks are identified in several ways. Fiscal multipliers, i.e. estimates of the impact of

fiscal stimulus on output, are then defined either as the peak of the impulse response or

as an accumulated response. As is well known, the VAR identification strategy matters

for the impulse responses, and hence may be one reason for the differing results.

Moreover, as the usual practice in the literature is to use the log of variables, the

estimated elasticities are converted to dollar equivalents with an ex post conversion factor,

a practice that has also been criticized (Ramey & Zubairy 2014). Using log levels of

variables such as real GDP, government revenue and expenditure also introduces another

potential source of uncertainty in the analysis, namely nonstationarity. Phillips (1998)

demonstrates that impulse responses are not consistently estimated in the SVARs with

variables in levels in the case of unit roots, whereas the vector error correction (VEC)

specification significantly improves them even for short horizons. Phillips (1998) found

that differential treatment of nonstationarity in various models has substantial effects on

policy analysis.

This paper contributes to the existing fiscal policy literature in two ways. First, unlike

any of the studies using VARs — linear and non-linear — the vector error correction (VEC)

model used in this paper takes into account the cointegration properties of the variables

as well. Second, statistical properties of the data are exploited to identify the model, and

to test the validity of two popular identification strategies in the fiscal VAR literature.

As proposed by Lanne and Lütkepohl (2010), the non-normality found in the VAR

residuals is explicitly modelled, which yields additional data based information. In the

Lanne and Lütkepohl (2010) method a mixed normal error distribution is used because

of its suitability for the features often found in the residuals. Any restrictions from other

sources used for identification then become over-identifying and can be statistically tested.

The test results indicate that the commonly used recursive structure for all four vari-

ables is too restrictive from a statistical point of view. However, a long run restriction

together with a recursive structure for the key variables government expenditure (Gt)
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government revenue (Tt) and GDP (Yt) is not rejected by the data. As Caggiano et al.

(2015) point out, ordering the fiscal news variable last in a recursive model may be seen

as inconsistent with expectational effects.

In the next step, fiscal policy shocks are analyzed using a model with restrictions not

rejected by statistical tests. The resulting impulse responses are quite different from those

typically obtained from SVAR models. The latter mostly coincide with theoretical models

in the Keynesian tradition. According to our results, government spending shock has a

weak but negative effect on GDP, while the response of taxes is not statistically different

from zero even if no restrictions are imposed on taxes. As government revenue does not

change, this can be interpreted as a fiscal policy shock financed by a deficit as in Mountford

and Uhlig (2009). Also quite surprisingly, a government revenue shock triggers a positive

response in both government expenditure and GDP. In line with the interpretation of the

spending shock, this can be interpreted as a tax raise to finance government spending,

which has a positive impact on GDP. The fiscal multiplier for horizons h = 1, 4, 8, 12, 20

after the initial shock ranges from -1.27 to -1.61 and achieves its maximum at h = 1.
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Appendix: Additional Results

Table 3.17: Estimated parameters of the unrestricted VEC model with mixed normal

errors. Standard errors in parenthesis.
Elements of each vector

1 2 3 4
constant ×100 19.29 (3.27) -8.72 (9.55) 2.99 (2.10) -18.41 (91.92)

α× 100 -7.64 (1.34) 3.72 (3.91) -0.97 (0.86) 9.01 (38.58)
Γ1[1,·]× 100 5.72 (7.85) -6.54 (2.50) -20.05 (16.25) 0.10 (0.30)
Γ1[2,·]× 100 -32.92 (23.95) -5.45 (10.43) 119.38 (52.67) 0.42 (0.80)
Γ1[3,·]× 100 -4.23 (5.11) 0.93 (1.74) 19.86 (11.32) 0.01 (0.19)
Γ1[4,·]× 100 25.17 (183.80) -36.74 (74.59) 29.43 (66.47) -17.13 (6.60)
W[1,·]× 100 0.07 (0.26) -1.75 (1.61) 0.11 (0.18) -18.17 (9.45)
W[2,·]× 100 0.40 (0.20) -0.99 (0.63) -0.43 (0.11) -3.44 (6.15)
W[3,·]× 100 0.28 (0.15) 3.00 (1.13) 0.20 (0.15) -15.53 (12.05)
W[4,·]× 100 0.72 (0.11) 0.03 (0.40) 0.33 (0.10) 7.76 (2.53)

Notes: Γ[i,·] and W[i,·] indicate the ith row of matrices Γ and W, respectively. The

parameter estimates are multiplied by 100 for reporting purposes.

Table 3.18: Estimated parameters of the VEC model with mixed normal errors, B re-

stricted to lower triangular. Standard errors in parenthesis.
Elements of each vector

1 2 3 4
constant ×100 20.80 (3.02) -7.19 (8.70) 3.70 (1.89) -18.70 (93.46)

α× 100 -8.26 (1.23) 3.09 (3.55) -1.27 (0.77) 9.24 (38.14)
Γ1[1,·]× 100 6.92 (7.81) -6.59 (2.70) -18.67 (14.36) 0.12 (0.29)
Γ1[2,·]× 100 -32.32 (22.07) -7.07 (7.51) 121.20 (42.42) 0.23 (0.80)
Γ1[3,·]× 100 -4.64 (4.85) 1.46 (1.54) 20.25 (8.81) 0.06 (0.18)
Γ1[4,·]× 100 25.17 (173.78) -37.56 (66.24) 29.33 (399.88) -14.87 (8.55)
W[1,·]× 100 0.91 (0.10) · · ·
W[2,·]× 100 -0.12 (0.11) 3.23 (0.50) · ·
W[3,·]× 100 0.32 (0.10) 1.16 (0.29) 0.62 (0.07) ·
W[4,·]× 100 0.05 (0.08) 0.02 (0.23) 0.01 (0.05) 24.91 (1.42)

Notes: Γ[i,·] and W[i,·] indicate the ith row of matrices Γ and W, respectively. The

parameter estimates are multiplied by 100 for reporting purposes.
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Table 3.19: Estimated parameters of the VEC model with mixed normal errors, contem-

poraneous and long run restrictions. Standard errors in parenthesis.
Elements of each vector

1 2 3 4
constant ×100 19.35 (3.19) -1.44 (2.43) 3.58 (1.62) -1.84 (3.66)

α× 100 -7.67 (1.30) 0.72 (0.99) -1.21 (0.66) 2.38 (0.86)
Γ1[1,·]× 100 5.78 (7.80) -6.51 (2.47) -17.98 (14.87) 0.09 (0.30)
Γ1[2,·]× 100 -34.26 (23.33) -7.62 (8.68) 123.55 (44.14) 0.26 (0.80)
Γ1[3,·]× 100 -4.37 (5.07) 0.70 (1.66) 20.82 (10.24) -0.02 (0.19)
Γ1[4,·]× 100 25.64 (184.05) -41.77 (66.57) 29.54 (439.39) -17.49 (6.54)
W[1,·]× 100 0.35 (0.12) · · -23.57 (2.86)
W[2,·]× 100 0.16 (0.14) 3.22 (0.42) · 2.23 (2.99)
W[3,·]× 100 -0.30 (0.17) 1.31 (0.37) 0.49 (0.08) -3.73 (1.83)
W[4,·]× 100 0.73 (0.08) 0.04 (0.34) 0.34 (0.08) 7.30 (2.19)

Notes: Γ[i,·] and W[i,·] indicate the ith row of matrices Γ and W, respectively. The

parameter estimates are multiplied by 100 for reporting purposes.
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Chapter 4

Data-Driven Structural BVAR
Analysis of Unconventional
Monetary Policy

Abstract1

This paper applies a novel Bayesian structural vector autoregressive method to analyze

the macroeconomic effects of unconventional monetary policy in Japan, the US and the

euro area. The method exploits statistical properties of the data to uniquely identify the

model without restrictions, and enables to formally assess the plausibility of given sign

restrictions. Unlike previous research, the data-based analysis reveals differences in the

output and price effects of the Bank of Japan’s, Federal Reserve’s and European Central

Bank’s balance sheet operations.

1This chapter is based on HECER Discussion Paper No. 406 (2016).
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4.1 Introduction

Many central banks undertook unconventional monetary policy (UMP) measures in the

aftermath of the 2007-09 financial crisis to restore the normal functioning of the monetary

transmission mechanism when the policy rates reached the zero lower bound of interest

rates (ZLB), or to provide further stimulus to the economy. Each central bank adopted

measures deemed most suitable to the circumstances of its currency area (See Fawley and

Neely (2013) and Ugai (2007) for reviews). This means that country-specific results can

be thought to reflect the effectiveness of various measures (Gambacorta et al. 2014) but

also that the experience of Japan, which has the longest history of UMP at the ZLB,

cannot necessarily be generalized to other countries.

While conventional monetary policy targets low and stable inflation with a short-term

interest rate as an instrument, UMP commonly consists of massive expansion of central

banks’ balance sheets and/or aims to influence longer term interest rates. In addition

to the adoption of new monetary policy tools, utilizing standard tools more frequently,

intensely or for non-standard purposes can be classified as UMP. In this paper UMP refers

to the use of the central bank’s balance sheet as a monetary policy instrument, also called

’balance sheet policies’ by Borio and Disyatat (2010).2

Although there is some empirical evidence that unconventional measures have been

effective in influencing financial and macroeconomic variables (Cecioni et al. 2011), there

is still considerable uncertainty around the quantification of those effects (Joyce et al.

2012). The relatively limited literature analyzing the macroeconomic effects of central

banks’ balance sheet policies mostly uses structural vector autoregressions.3 In the few

2This deliberate choice thus rules out those central bank’s operations that leave the size of its balance

sheet unaffected, for example the Federal Reserve’s (Fed) maturity extension program known as ’Oper-

ation Twist’, and the central bank’s use of communication about future policy decisions. However the

choice is not necessarily restrictive. According to Cecioni et al. (2011), the communication of future

interest rates belongs to the toolkit of some central banks even in normal times so that it is not clear

whether communication can be regarded as an unconventional monetary policy measure at all.
3The biggest strand of empirical UMP literature consists of event studies based on policy announce-

ments. The limitation of the event-study literature is the narrow focus on high-frequency financial data.

Event studies assume an immediate response of the variables of interest although the exact timing and

duration of a policy intervention cannot be known (Martin et al. 2012), while macroeconomic variables

such as output and inflation generally respond with a lag. Therefore this line of research is not appro-

priate to analyze macroeconomic effects (Joyce et al. 2012) and mostly concerns UMP’s impact on the
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studies (Meinusch and Tillmann 2016, Weale and Wieladek 2016, Boeckx et al. 2016,

Gambacorta et al. 2014, Schenkelberg and Watzka 2013) focusing on the macroeconomic

effects over a sample period during which central banks actually targeted macroeconomic

conditions, no major differences between the countries arise. Specifically, an expansionary

UMP shock is found to lead to a delayed significant temporary rise in output and prices

in all countries, and the results are robust to alternative variables.

Structural vector autoregressions (SVARs) identified by sign restrictions are common

in the literature analyzing conventional or unconventional monetary policy. In the UMP

literature, sign restrictions are often combined with short-run zero restrictions in order

to reduce the set of admissible impulse responses and hence to sharpen identification. In

some cases the additional zero restrictions are also needed to disentangle the UMP-shock

from the business cycle or financial shocks (e.g. Gambacorta et al. 2014, Schenkelberg

and Watzka 2013). As the theoretical foundations of UMP are not well established, both

the signs and their restriction horizons are inevitably arbitrary. Obviously, if we are

interested in the macroeconomic effects of certain policy, it is particularly desirable to

leave the responses of macrovariables unrestricted.

To the best of our knowledge, the so-called statistical identification methods have not

yet been employed in the UMP literature.4 These methods facilitate statistical testing of

exactly identifying short-run or long-run restrictions in SVAR models (see e.g. Lanne et

al. 2017), whereas methods to assess the plausibility of sign restrictions have been either

informal or difficult to generalize (see Lanne and Luoto 2016, and the references therein).

In this paper we employ the method recently put forth by Lanne and Luoto (2016) that

exploits the statistical properties of the data to uniquely identify a SVAR model and

enables the evaluation of the plausibility of sign restrictions by their probabilities of being

compatible with the data. This is helpful in either labeling the statistically identified

shocks, which do not carry any economic meaning as such, or in concluding that the sign

restrictions imposed in the previous literature are not supported.

Apart from being able to assess the plausibility of sign restrictions, our approach has a

number of additional benefits compared to the conventional approach to sign restrictions.

financial market (Meinusch and Tillmann 2016).
4As examples of using statistical information to identify conventional monetary policy shocks, see

Bacchiocchi et al. (forthcoming), Lanne, Meitz and Saikkonen (2016), Lanne and Lütkepohl (2014),

Normandin and Phaneuf (2004).
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First, it should yield more accurate impulse response functions. This follows from the

fact that our impulse response analysis relies only on economic shocks that are found to

plausibly satisfy the given restrictions. Second, since our model is uniquely identified, the

uncertainty surrounding the impulse responses of sign and other set identified models —

the so-called model identification problem (see e.g. Fry and Pagan 2011) — disappears

and reporting the results of impulse response analysis is straightforward. Furthermore,

a genuinely uninformative prior can be used, allowing us to learn about the impulse

responses from the data.

We find statistical support for the sign restrictions used in a number of previous studies

in all three currency areas. This allows us to interpret the statistically identified shocks

and impulse responses along the lines of our reference studies (Schenkelberg and Watzka

2013, Gambacorta et al. 2014, Boeckx et al. 2016). However, our impulse responses of

these shocks differ in interesting ways from those reported in these studies.

Importantly, unlike previous research, our analysis reveals differences in the macro-

economic impact of the three central banks’ actions. Our unrestricted impulse response

functions indicate that a UMP shock did not have a statistically significant impact on the

consumer price index (CPI) in Japan, while there is weak evidence of a lagged, positive

impact on prices in the US and in the euro area, depending on the specification. Our

results also point to an immediate positive output response in the euro area, to a more

delayed and persistent impact in the US than previously found, and that the positive

output effect in Japan was unlikely due to lower long-term interest rates. The differences

in the effectiveness of the balance sheet operations can be explained by the differences in

the unconventional measures adopted by the three central banks.

The rest of the paper is organized as follows. Technical details of the econometric

method are given in Section 4.2. Section 4.3 covers the empirical analysis and Section 4.4

concludes the paper.

4.2 Methodology

Structural vector autoregressions (SVARs) are a common tool to analyze conventional

monetary policy. Lanne et al. (2017) have shown that the SVAR model can be uniquely

identified by statistical properties of the data. However, their model is only statistically,

as opposed to economically, identified, and additional information is needed to give the
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shocks an economic interpretation. This information may come in the form of short-

run on long-run restrictions that can also easily be tested in the framework of Lanne

et al. (2017), and if not rejected, used for interpretation. However, as discussed in the

Introduction, in the UMP literature, identifying restrictions are typically sign restrictions

that are not approached in a straightforward manner by classical methods, and to that

end, we employ the Bayesian procedures recently devised by Lanne and Luoto (2016). In

particular, they show how to assess the plausibility of a set of sign restrictions by their

posterior probability, and we apply their approach to check the sign restrictions used in

a number of previous empirical UMP studies.

Our empirical results are based on the following n-variate SVAR(p) model

yt= a+A1yt−1+ · · ·+Apyt−p+Bεt, (4.36)

where yt is an (n × 1) vector of time series of interest, a (n × 1) is an intercept term,
A1...,Ap are (n × n) coefficient matrices and the (n × n) impact matrix B, containing
the contemporaneous relations of the structural errors εt, is assumed nonsingular. The

(n×1) error term εt is a sequence of stationary random vectors such that each component
εit, i = 1, ..., n is independent in time with zero mean and finite positive variance. It is

also assumed that the components εit are mutually independent, and at most one of them

has a Gaussian marginal distribution.

Lanne et al. (2017) show that under the non-Gaussianity and independence assump-

tions of the structural error term εt, the matrix B is uniquely identified up to permutation

and scaling of its columns. Changing the order of the columns of B means a different

ordering of the structural shocks εit.

If the process yt satisfies the stability condition

det(In −A1z − · · ·−Apz
p) �= 0, |z| 1(z ∈ C),

then the SVAR(p) model (4.36) has a moving average representation

yt = μ+
∞�
j=0

ΨjBεt−j, (4.37)

where μ is the unconditional expectation of yt, Ψ0 is the identity matrix and Ψj, j =

1, 2, ... are obtained recursively as Ψj = Σjl=1Ψj−lAl. Interest then lies in the matrices
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ΨjB ≡ Θj, j = 0, 1, ..., the kth column of which contains the impulse responses of the

kth structural shock εit, i = 1, ..., n.5

In this paper, we are only interested in the unconventional monetary policy shock. In

other words, our goal is to find out whether there is a single shock among the n statistically

identified ones that satisfies the sign restrictions imposed in each of the previous studies

that we consider. If such a shock can indeed be found, we compare its impulse responses

to those of the original study. To that end, we employ the Bayesian procedure of Lanne

and Luoto (2016).

We start out by estimating the joint posterior distribution of the parameters of the

unrestricted SVAR model (4.36), and then compute the posterior distribution of the

reduced-form impulse response matrices Ψj, j ∈ L, where L consists of indices of the
restricted impulse responses. For instance, if the sign restrictions are imposed on the first

q + 1 impulse responses, L = {0, 1, ..., q}.6 Because any or none of the n components

of εt can satisfy the restrictions and hence be the structural shock of interest, we next

compute the conditional probability of each shock εit, i = 1, ..., n satisfying the restrictions,

conditional on none of the others satisfying them. In practice this is done using the

posterior distribution of the identified structural impulse responses Θj = ΨjB, j ∈ L. A
more detailed description of the computation of the posterior probabilities is deferred to

an appendix.

For each i ∈ {1, ..., n}, this probability can be interpreted as the posterior probability
of the restricted SVAR model where the sign restrictions are imposed on the ith column

of the Θj, j ∈ L matrices only. Among the n models, those satisfying the sign restrictions
in the (true) data-generating process (DGP) are expected to have high posterior prob-

abilities. Therefore, one can rank the SVAR models satisfying the restrictions by their

posterior probabilities, and so find a shock that is most likely the shock of interest.7 The

economic shocks with the gratest probability can be given the economic interpretation

5Although the MA-representation (4.37) does not exist for integrated VAR(p) processes, their impulse

responses are given by the same recursion. A similar decomposition exists for I(1) variables and is known

as the Beveridge-Nelson decomposition (see Lütkepohl 2006, Section 6.1).
6Because different permutations of B produce the same shocks and impulse responses, the choice of

the permutation does not matter. Just to ensure that the whole analysis is based on the same ordering

of the shocks, the permutation of the columns of B is fixed (for details, see Lanne and Luoto 2016).
7The procedure described here can be generalized to the case of multiple structural shocks, see Lanne

and Luoto (2016).
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related to the corresponding restrictions. On the other hand, if the sum of the posterior

probabilities is small, i.e. all of the models take a negligible probability, we can conclude

that the data does not lend support to the restrictions.

It is important to realize that apart from facilitating the assessment of the plausibility

of the restrictions, our non-Gaussian SVAR framework has a number of other benefits

compared to the conventional approach to sign restrictions. In the standard setting the

matrix B cannot be identified without restrictions such as sign restrictions which are pop-

ular in both conventional and unconventional monetary policy literature. The drawback

of sign-identified SVAR models is that they are only set-identified, which means that the

posterior of the structural parameters is proportional to the prior and hence an unin-

formative prior cannot be used. In fact, Baumeister and Hamilton (2015) have recently

shown that the results from sign-identified SVARs are driven by the (implicit) priors. In

contrast, under our assumptions the impulse responses are point-identified so that their

posterior distributions need not be driven by the priors. Because of point-identification an

uninformative prior can be used, and this facilitates learning about the impulse responses

from the data.

4.3 Empirical Analysis of Unconventional Monetary Policy

The Bank of Japan’s (BoJ), the Federal Reserve’s (Fed) and the European Central Bank’s

(ECB) actions mainly differ because of differences in the structures of the economies and

financial markets in particular. While the euro area and Japan are bank-centric economies,

bond markets play an important role in the United States. The respective central banks

therefore provided liquidity and support to different segments of the financial sector: the

Fed concentrated on bond purchases, the ECB on lending directly to banks, and the BoJ’s

strategy involved both.

Most UMP measures consist of an active use of the central banks’ balance sheet

(Borio and Disyatat 2010), which is therefore a natural gauge for UMP although other

measures have also been used in the literature. In line with our reference studies, the

policy instruments are the reserves for the BoJ and central bank assets for the Fed and

the ECB. The reason is that we analyze the Japanese monetary policy of the early 2000s,

when the BoJ had an explicit target for reserves, whereas the Fed’s and the ECB’s actions

focus on the asset side of the balance sheet.
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Although the major central banks’ unconventional measures were only undertaken

after the financial crisis, a few studies are based on longer samples (e.g. Lenza et al. 2010,

Peersman 2011). These also include nonlinear model specifications and policy instruments

different from those discussed above (Darracq-Paries and De Santis 2015, Baumeister and

Benati 2013, Kapetanios et al. 2012). Since UMP measures are only undertaken when

the economy faces particularly difficult times (Martin and Milas 2012), utilizing data far

beyond such a period may not be adequate to assess the effects of those measures (Boeckx

et al. 2016, Gambacorta 2014). Therefore our samples cover periods over which UMP

was in use and the central banks had macroeconomic goals. A detailed description of the

data is deferred to an appendix.

We now provide a few details concerning the practical implementation, and then

present the results of the formal assessment of previously used identification schemes

and analyze impulse response functions in each geographical area in turn.

4.3.1 The set-up

We first identify structural shocks statistically and, following Lanne and Luoto (2016)

then proceed to formally assess the validity of the sign restrictions used by Schenkelberg

and Watzka (2013) for Japan, Gambacorta et al. (2014) for the US and Boeckx et al.

(2016) for the euro area. As the data turns out to lend support to the restrictions, we

then move on to impulse response analysis of the economic shocks.

We assume that the ith independent component of the error vector εit follows a uni-

variate Student’s t distribution with λi degrees of freedom. Non-Gaussianity is required

for identification, as discussed in Section 4.2, and we provide evidence that the fat-tailed

t distribution is in fact a suitable assumption for the errors.

Point identification facilitates incorporating any prior information in Bayesian estima-

tion. However, in order to learn as much as possible about the impulse responses from the

data, we use non-informative priors. We assume an exponential prior distribution with

mean 5 and variance 25 for each degree of freedom parameter λi and a Gaussian prior for

the inverse of the error impact matrix vec(B−1) ≡ b, b ∼ N(b,Vb) where V−1
b = cbIn2

and cb = 0, which results in an uninformative (improper) prior for B−1, p(B−1) ∝ 1. For
the deterministic terms and coefficient matrices, collected in matrix A = [a,A1, ..., Ap]

�,

vec(A) ≡ a, we assume a normal prior distribution, i.e. a ∼ N(a,Va) with a= 0 and
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Va = 100002Ipn2+n. For the US and the euro area we also present results based on a

relatively more informative prior for vec(A), which corresponds to the standard Min-

nesota/Litterman prior.

4.3.2 Japan

The burst of the asset price bubble in the early 1990s in Japan led the Bank of Japan

(BoJ) to be the first central bank to adopt the zero-interest rate policy. In March 2001

the BoJ changed its main operating target from the overnight call rate to the outstanding

current account balances (CABs) held at the BoJ (Honda et al. 2013).8 In contrast to

most central banks the operating target of the BoJ was on the liability side of its balance

sheet. The BoJ set explicit targets for bank reserves, committed to maintain high reserves

levels in the future and increased the outright purchases of long-term government bonds

in order to attain the target on bank reserves (Ugai 2007, Borio and Disyatat 2010).

Figure 4.9: Plot of logarithmic (excl. long-term yield) time series 1995M3—2010M9 for

Japan.

We adopt the specification in Schenkelberg and Watzka (2013) who have analyzed the

real effects of the Japanese unconventional monetary policy at the ZLB using post-1995

data in a sign-restricted BVAR. The Japanese data, plotted in Figure 4.9, are analyzed

with a five-variable structural BVAR model with an intercept and a trend.9 Monthly data

for Japan spans from March 1995 until September 2010.10 The variables included are

8Current account balances is the technical term for the part of the monetary base that consists of the

bank reserves held at the BoJ.
9The results are qualitatively the same with linearly detrended data and no trend in the model.
10The BoJ reintroduced QE measures — money market operations to increase the monetary base — in
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the core consumer price index (CPI), the Japanese industrial production index (IP), the

bank reserves held at the Bank of Japan (RES), the 10-year yield of Japanese government

bonds (LTY) and the real effective exchange rate of Yen against other currencies (EXR).

Except for the long-term yield, all variables are expressed in logs. Given that we analyze

the same variables and sample period as Schenkelberg and Watzka (2013), we follow them

and include six lags in the VAR model.

In the present setup, the impact matrix B in (4.36) is uniquely identified under non-

Gaussianity of at least four components of the error vector. The strength of the iden-

tification can easily be checked because a t-distributed random variable converges to a

Gaussian as the number of degrees of freedom goes to infinity. Hence, small values indi-

cate (strong) identification. The posterior means of the degree-of-freedom parameters of

the univariate t distributions specified for the components of the error term lying between

2.2 and 4.6 thus provide evidence of successful identification.

To study the effects of unconventional monetary policy on output and price level, we

need to pin down the right structural shock among the statistically identified ones. For

that purpose we exploit the sign restrictions used by Schenkelberg and Watzka (2013) who

assume that an expansionary UMP shock has a positive effect on the reserves held at the

BoJ and a non-negative effect on consumer prices for 12 months.11 Given the arbitrariness

of the 12-month restriction horizon of Schenkelberg and Watzka (2013), we first compute

the posterior probability of each structural shock satisfying the restrictions on impact

only (h = 0), and then for the cases h = 0, 1 and h = 0, ..., 12. The results are reported

in the left panel of Table 4.20. The sums of the posterior probabilities for these different

cases range between 0.14 and 0.41, lending overall support to the restrictions irrespective

of the horizon although the evidence is clearly weaker when the restrictions are required

to hold for an entire year. Moreover, there is only one shock (ε3t) with a high posterior

probability when only the impact effect is restricted. It is found the likeliest candidate

for the UMP shock also when the first two impulse responses are restricted although ε1t

2013 as part of the ’Abenomics’ strategy. Since a linear model is not suitable to study a sample period

which includes a change in the monetary policy regime, the sample cannot be extended to include the

’Abenomics’ period.
11The identification scheme in Schenkelberg andWatzka (2013) contains an additional contemporaneous

zero restriction on consumer prices to disentangle the UMP-shock from demand and supply shocks. This

is not required in our setup because identification is based on statistical properties of the data.

75



seems to be almost equally likely. Only in the case h = 0, .., 12 the restrictions fail to pin

down the shock. These results altogether speak in favor of a unique labeling of the UMP

shock so that impulse responses can be analyzed. This labeling turns out to be robust to

two alternative specifications, which we consider next.

Table 4.20: Formal assessment of sign restrictions: Japan
Benchmark model Shorter sample

Shock h = 0 h = 0, 1 h = 0, .., 12 h = 0 h = 0, 1 h = 0, .., 12
ε1t 0.04 0.12 0.05 0.01 0.08 0.02
ε2t 0.02 0.04 0.01 0.03 0.12 0.05
ε3t 0.20 0.13 0.04 0.15 0.16 0.24
ε4t 0.02 0.05 0.03 0.00 0.02 0.01
ε5t 0.09 0.07 0.01 0.01 0.07 0.03

Sum 0.37 0.41 0.14 0.20 0.45 0.35

Notes: The figures in the top panel are the posterior probabilities of shock εit, i =

1, ..., 5 satisfying the sign restrictions that the reserves be positive and consumer prices

be non-negative for various time horizons, and hence being the structural shock of

interest. Benchmark model: reserves as the policy instrument. Shorter sample: sample

period 2000M3—2007M3.

Figure 4.10 depicts the median impulse responses to a unit UMP shock along with the

16% and 84% percentiles of the posterior distribution.13 The UMP shock raises reserves

approximately 3%, industrial production at most 0.15% after about two years but the

impact on the price level and long-term government yield are insignificant. The effect on

the real exchange rate is positive but barely significant.

In contrast to previous studies, these impulse response functions are obtained without

restricting the effects on any of the variables and are solely based on the data. Therefore

it is interesting to compare the results with those of Schenkelberg and Watzka (2013). It is

worth noting that their response of reserves is of the same shape and persistence as ours,

and they also find a virtually insignificant effect of the UMP shock on the real exchange

rate. On the other hand, their price response is weakly positive and temporary, while we

find it to be insignificant also during the first year, when they restricted it non-negative.

There is also a small difference in the negative impact response of industrial production,

which only we find significant, but it is temporarily positive after 20 months in both

studies. However the main difference is in the reaction of the long-term government bond
13Unlike with the impulse responses based on conventional sign restrictions, because of point identifi-

cation, we are able to set the size of the shock. Furthermore, as unique impulse response functions are

produced the conventional pointwise posterior median impulse responses and error bands can be reported.
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Figure 4.10: Impulse responses to an expansionary UMP shock: Japan 1995M3—2010M9.

Median responses (solid lines) together with 68% Bayesian credible sets (dashed lines).

yield, which Schenkelberg and Watzka (2013) report to be significantly negative for two

years, whereas we observe a significantly positive, although very weak (one basis point),

transient response of approximately six months. This finding is particularly interesting

because asset purchases, which the BoJ engaged in to attain its target on reserves, are

typically thought to work by lowering long-term rates.

As a robustness check we analyze a model with interpolated real GDP (instead of

the industrial production), which has been used as a measure of aggregate output in

Gambacorta et al. (2014) and Boeckx et al. (2016). A monthly measure of real GDP was

constructed using the Chow-Lin interpolation method with monthly industrial production

as a reference series. We observe that a similar pattern of probabilities emerges as in the

previous specification: requiring reserves and the CPI to be non-negative on impact only

uniquely identifies the UMP shock, while there are other shocks with positive probabilities

in the case h = 0, 1, and no labeling is clearly supported for twelve months (posterior

probabilities range from 0.02 to 0.05). There are also no major differences in the impulse

responses reported in Figure 4.11 compared to the benchmark case.

As another robustness check, we follow Schenkelberg and Watzka (2013) and consider
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Figure 4.11: Impulse responses to an expansionary UMP shock: Japan 1995M3—2010M9.

Real GDP as a measure of output. Median responses (solid lines) together with 68%

Bayesian credible sets (dashed lines).

a shorter sample period ranging from March 2000 to March 2007.14 The sample period

covers approximately a year before and after the BoJ targeted current account balances. In

fact, one could argue that although the BoJ’s target rate was very close to zero since 1995,

starting to target reserves marks the beginning of a different monetary policy regime. The

posterior probabilities reported in the right panel of Table 4.20 show that, interestingly,

the same shock (ε3t) is uniquely identified as the UMP shock for all restrictions horizons.

The impulse response functions, shown in Figure 4.12, are aligned with the short sam-

ple results in Schenkelberg and Watzka (2013). Their price response became insignificant

as well, their response of real exchange rate turned from insignificant to positive, and

in both studies the significant output effect occurs earlier than in the benchmark case.

Interestingly, the main difference remains: we observe an insignificant effect on the long-

term rate, while they documented an initial negative effect which then turns positive.

We therefore conclude that our results are robust to the alternative output measure but

shortening the sample period triggers sharper responses in output and real exchange rate,

14With the shorter sample lag length is set to p = 2.
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Figure 4.12: Impulse responses to an expansionary UMP shock: Japan. Shorter sam-

ple period 2000M3—2007M3. Median responses (solid lines) together with 68% Bayesian

credible sets (dashed lines).

while the effect on the long term yield can be considered negligible in both cases.

To summarize, the sign restrictions in Schenkelberg and Watzka (2013) are supported

by the data on impact and after the first month following the shock, but they are not

able to uniquely identify the UMP shock when imposed for an entire year, except for the

shorter sample period. This allows us to pin down the right structural shock among the

statistically identified ones and to conduct impulse response analysis.

Importantly, because we do not impose a positive price response, we are able to con-

clude that a UMP shock has no effect on the price level. This is in contrast to Schenkelberg

and Watzka (2013) who forced the shock to have a positive effect for twelve months. They

also documented a negative effect on the long-term government bond yield, whereas in

our case positive, although very small values (one basis point) are included in the 68%

posterior error bands. Our findings are robust to a different output measure but not en-

tirely to a shorter sample period. The results indicate that the Japanese monetary policy

with an explicit target for reserves had no effect on the core consumer price index. The

policy managed to stimulate real economic activity with a delay but there is no strong
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evidence that it operated by lowering long-term interest rates.

4.3.3 United States

In the aftermath of the 2007-09 financial crisis, when short interest rates were approaching

their effective zero lower bound, the Fed, the ECB and other major central banks started

to pursue less conventional monetary policies to restore financial and macroeconomic

stability. Initially both central banks’ actions focused on dysfunctional financial markets,

while broader macroeconomic conditions soon became the targets.

Due to the collapse of the housing price bubble and the related subprime crisis in the

US, the Fed prioritized housing credit markets within its large scale asset purchase (LSAP)

programs. In the first phase it pursued outright asset purchases of government-sponsored

enterprise (GSE) debt, mortgage-backed securities (MBS) and long-term Treasury secu-

rities. Fears of disinflation and sluggish economic recovery led the Fed to increase its

purchases of US Treasuries at several stages during the sample period. Although some of

the operations were sterilized, i.e. left the monetary base unaffected, most of them were

unsterilized (for details, see Fawley and Neely 2013).

The existing literature on the macroeconomic effects of the Fed’s balance sheet opera-

tions (Gambacorta et al. 2014, Meinusch and Tillmann 2016, Weale and Wieladek 2016)

uses different Bayesian VAR specifications (panel VAR, Qual VAR and SVAR, respec-

tively), but obtains the same result for the key macroeconomic variables; an expansionary

UMP shock leads to a temporary significant rise in output and prices.

The Fed’s first large scale asset purchase program (LSAP) was only expanded from

$600 billion to $1.75 trillion in March 2009 (Martin and Milas 2012), and therefore our

monthly four-variable dataset for the US, plotted in Figure 4.13, covers the period 2009M3-

2014M5. Although with a different set of variables, Weale and Wieladek (2016) were

the first to analyze this sample, which does not span beyond the UMP period and is,

hence, less susceptible to the Lucas Critique. To capture the main features of the crisis

(Gambacorta et al. 2014) the variables included in the BVAR are the log of seasonally

adjusted real GDP (GDP)15, the log of seasonally adjusted consumer price index (CPI),

the log of seasonally adjusted central bank assets (CBA) and the level of implied stock

15A monthly measure of real GDP is constructed using the Chow-Lin interpolation procedure with

industrial production and retail sales as reference series.
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market volatility (VIX) to control for the central bank’s balance sheet expansion resulting

from financial market disturbances.

Figure 4.13: Plot of logarithmic (excl. VIX) time series 2009M3—2014M5 for the US.

We specify a BVAR(2) with a constant consisting of the four variables.16 With four

variables, non-Gaussianity of at least three components of the error vector is crucial for

identification. The posterior means of the degree-of-freedom parameters of the t distribu-

tions of the error terms turned out to range from 2.8 to 4.2, lending support to fat-tailed

error distributions and, hence, successful identification.

Table 4.21: Formal assessment of sign restrictions: United States
Benchmark model Industrial production Monetary base

Shock h = 0 h = 0, 1 h = 0 h = 0, 1 h = 0 h = 0, 1
ε1t 0.00 0.00 0.00 0.00 0.01 0.03
ε2t 0.00 0.00 0.00 0.01 0.01 0.02
ε3t 0.01 0.03 0.01 0.04 0.02 0.03
ε4t 0.11 0.16 0.05 0.11 0.39 0.42

Sum 0.12 0.19 0.06 0.16 0.43 0.50

Notes: The figures in the table are the posterior probabilities of shock εit, i = 1, ...4

satisfying the sign restrictions that the central bank assets be nonnegative and the

VIX be nonpositive for various time horizons, and hence being the structural shock of

interest. The figures on the bottom line are the sums of the posterior probabilities.

Benchmark model: central bank assets as policy instrument. Industrial production:

Industrial production as a measure of aggregate output. Monetary base: monetary base

as policy instrument.

In order to find out whether any of the statistically identified shocks can be labeled as

the monetary policy shock, we proceed with a formal assessment of the sign restrictions

in Gambacorta et al. (2014) whereby an expansionary UMP shock increases central bank

16Also Weale and Wiedalek (2016) use p = 2 for this sample period.
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assets but does not increase stock market volatility on impact and one month after the

shock.18 Again in the absence of a clear justification for the restriction horizon we check

the validity of the signs on impact only (h = 0) as well as for the case h = 0, 1. The results

reported in the left panel of Table 4.21 show that there is not much difference between

the posterior probabilities in the two cases. The sums of the posterior probabilities (0.12

and 0.16) lend overall support to the restrictions. Moreover, there is in both cases only

one shock (ε4t) with a high posterior probability, with the probability of the other shocks

virtually zero, so that a UMP shock can be regarded as uniquely identified in probability.

Figure 4.14: Impulse responses to an expansionary UMP shock: US 2009M3—2014M5.

Median responses (solid lines) together with 68% Bayesian credible sets (dashed line).

The impulse responses, plotted in Figure 4.14, show that a unit UMP shock increases

the central bank assets on impact but the median peak response of 1% occurs after ap-

proximately eight months. While Gambacorta et al. (2014) forced output and prices to

respond with a lag and documented peak responses after six months, and Weale and

Wiedalek (2016) found output and prices to rise for 20—40 months after a UMP shock re-

gardless of the identification scheme, our unrestricted impulse response functions indicate

that the output response turns sigificantly positive only after ten months. We also observe

a more persistent output response, lasting up to 35 months. In contrast, the evidence for

a positive CPI response is weaker, as the 68% Bayesian credible sets just include the zero

18Gambacorta et al. (2014) and Boeckx et al. (2016) impose additional contemporaneous zero restric-

tions on output and consumer prices to reduce the number of admissible impulse responses and so to

sharpen identification. These are not required in our setup because the model is uniquely identified based

on statistical properties of the data.
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line.

Figure 4.15: Impulse responses to an expansionary UMP shock: US 2009M3—2014M5.

Informative prior. Median responses (solid lines) together with 68% Bayesian credible

sets (dashed line).

Taking into account the very small sample size, we also considered a more informative

prior distribution, corresponding to the standard Minnesota/Litterman prior. Interest-

ingly, Figure 4.15 shows that the relatively more informative prior results in a positive

price response after 30 months, with the rest of the responses unaltered. Moreover, fur-

ther tightening the prior made the positive price response to occur even earlier, but still

much later than previously found.

Figure 4.16: Impulse responses to an expansionary UMP shock: US 2009M3—2014M5.

Industrial production as a measure of output. Median responses (solid lines) together

with 68% Bayesian credible sets (dashed line).
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To check the robustness of our results, we considered industrial production as a mea-

sure of output and monetary base as the quantitative policy instrument. The middle and

right panels of Table 4.21 show that the labeling is robust both variables and the same

shock (ε4t) is uniquely identified in probability. There are, however, differences in the

impulse response functions compared to the benchmark specification. Interestingly, when

industrial production is used (Figure 4.16), the positive CPI response becomes significant

after 30 months even when a non-informative prior is used, while the rest of the responses

remain the same. Again, tightening the prior has the same effect in that the CPI response

becomes significantly positive earlier.

Figure 4.17: Impulse responses to an expansionary UMP shock: US 2009M3—2014M5.

Monetary base as a policy instrument. Uninformative prior. Median responses (solid

lines) together with 68% Bayesian credible sets (dashed line).

On the other hand, unlike documented by Gambacorta et al. (2014) and what we

found for Japan and the euro area (see Section 4.3.4), the results from the impulse re-

sponse analysis for the US are not robust to an alternative quantitative policy instrument

(monetary base). Although the posterior probabilities in Table 4.21 indicate that the sign

restrictions are supported by the data, the impulse responses of the two macrovariables

of interest are statisticallly insignificant. Furthermore, only a very tight prior triggers a

significant positive output response similar to the previous specifications, while the price

response remains insignificant (Figure 4.17). This finding is consistent with the fact that

the effectiveness of balance sheet policies does not hinge on an accompanying change in

the monetary base (Borio and Disyatat 2010), and as already noted by Gambacorta et al.

(2014), monetary base expanded less than central bank assets in the US over part of the
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sample period. It also indicates that differences between countries make panel methods

less suitable to study the country-specific impact of unconventional monetary policies.

4.3.4 Euro area

Similarly to the Fed, the ECB’s asset purchase programs aimed to improve the func-

tioning of specific markets. The covered bond purchase program (CBPP) stimulated the

issuance of covered bonds, and therefore eased funding conditions for banks (Beirne et al.

2011), whereas the objective of the Securities Markets Program (SMP) — later replaced

by Outright Monetary Transactions (OMT) — was to address the malfunctioning of the

securities markets caused by the sovereign debt crisis.19 Apart from the SMP and its

follower OMT, the majority of the ECB’s operations during the sample period consisted

of providing funding for banks. The ECB expanded both the availability and maturity of

bank loans as well as eased the conditions for receiving funding on several occasions. Its

asset purchases were modest in size and mostly sterilized, reversing their effects on the

monetary base.

Figure 4.18: Plot of logarithmic (excl. CISS) time series 2007M1—2014M12 for the euro

area.

To investigate the effectiveness of the policy measures that expand the ECB’s balance

sheet, we adopt the VAR model specification of Boeckx et al. (2016)20. The monthly ECB

data, plotted in Figure 4.18, spans from January 2007 until December 2014. Although the

ECB has continued its unconventional policies beyond this date, we follow Boeckx et al.

19See the 5.10.2010 ECB press release www.ecb.eu/press/pr/date/2010/html/pr100510.en.html
20As Boeckx et al. (2016) build on Gambacorta et al. (2014), also our study is related to theirs, with

the difference of a longer sample period and the use of the CISS variable to measure overall financial

stress in the euro area.

85



(2016) and end the sample period before the beginning of the Expanded Asset Purchase

Program (EAPP).

The vector of endogenous variables comprises the log of seasonally adjusted real GDP

(GDP), the log of seasonally adjusted consumer price index (CPI), the log of seasonally

adjusted central bank assets (CBA) and the level of the Composite Indicator of Systemic

Stress (CISS). Boeckx et al. (2016) also included in their model the main refinancing

operations (MRO) policy rate and the spread between the EONIA and the MRO-rate.

However with six variables the number of parameters to estimate increases considerably

when no restrictions are imposed, and because of the short sample period this obviously

creates problems in estimation.21

Table 4.22: Formal assessment of sign restrictions: Euro area
Benchmark model Monetary base

Shock h = 0 h = 0, 1 h = 0 h = 0, 1
ε1t 0.17 0.19 0.07 0.08
ε2t 0.25 0.28 0.34 0.38
ε3t 0.06 0.05 0.04 0.05
ε4t 0.06 0.04 0.16 0.16

Sum 0.54 0.56 0.61 0.67

Notes: The figures in the table are the posterior probabilities of shock εit, i = 1, ...4

satisfying the sign restrictions that the central bank assets be nonnegative and the

CISS be nonpositive for various time horizons, and hence being the structural shock

of interest. The figures on the bottom line are the sums of the posterior probabilities.

Benchmark model: central bank assets as policy instrument. Monetary base: monetary

base as policy instrument.

We include a constant and two lags in the VAR model.23 The posterior means of the

degree-of-freedom parameters of the t distributions specified for the components of the

error term between 2.3 and 5.6 suggest that identification based on non-Gaussianity of

the errors has once again been achieved. We therefore proceed with the formal assessment

21In fact, with six variables the method adopted in this paper yielded results that did not allow us to

make any conclusions even when using a very tight prior. Because one of the advantages of the method

is the ability to check the compatibility with the data of the restrictions imposed in the conventional

approach, we choose to stick to the 4-variable specification. Moreover, our conclusions turn out to be

similar to those obtained by Boeckx et al. (2016) and most differences can be seen to follow from (the

absense of) restrictions.
23Our results are robust to p = 3 used in Boeckx et al. (2016) although the IRFs are somewhat

smoother with p = 2.
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of the sign restrictions in Boeckx et al. (2016), who assume that a UMP shock increases

the balance sheet of the ECB but does not increase financial stress. The restrictions are

imposed on impact and in the first month after the shock.

The results reported in the left panel of Table 4.22 show that the restrictions are sup-

ported by the data and two of the shocks (ε1t and ε2t) receive a relatively high probability

(0.17 and 0.25, respectively). The results do not depend on the horizon over which the

restrictions are imposed, and we regard ε2t maximizing the posterior probability as our

UMP shock of interest.

Figure 4.19: Impulse responses to an expansionary UMP shock: Euro area 2007M1—

2014M12. Median responses (solid lines) together with 68% Bayesian credible sets (dashed

lines).

An inspection of the impulse responses in Figure 4.19 reveals that a unit UMP shock

results in an increase in the ECB assets of approximately 0.4% on impact, leads to a

significant increase in output and an (insignificant) initial decline in the CISS indicator.24

The main difference with Boeckx et al. (2016) or the country-level results in Gambacorta

et al. (2014) is the response of prices, which they found to be significantly positive

persistently, while we find no significant effect. In contrast, the size of the output effect

is similar to theirs, lasting less than a year. Given that our results are obtained without

restrictions, it is interesting to note that also the timing of the output response differs

24The normalization rule used to compute the posterior probabilities reported in Table 4.22 generates

bimodal posterior distributions for the impulse response functions, resulting in error bands that do

not properly reflect parameter uncertainty (see Waggoner and Zha 2003). For the error bands to be

informative about the reliability of the estimates, we report impulse responses computed with a different

normalization rule which, however, does not affect the posterior probabilities.
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from Gambacorta et al. (2014) and Boeckx et al. (2016). Specifically, when the impact

response is not ruled out ex ante, a positive output response is found to occur earlier than

reported in these previous studies. While Boeckx et al. (2016) found output to peak after

eight months and Gambacorta et al. (2014) after three months, according to our results

output peaks immediately.

Figure 4.20: Impulse responses to an expansionary UMP shock: Euro area 2007M1—

2014M12. Informative prior. Median responses (solid lines) together with 68% Bayesian

credible sets (dashed lines).

Taking into account the relatively small sample size and the implicit tight priors of

conventional sign-identified SVARs, we also considered a more informative prior distribu-

tion. The impulse response functions reported in Figure 4.20 show that the relatively more

informative prior results in a positive transient price response after 18 months, whereas

the rest of the responses remain unaltered.

We checked the robustness of our results with respect to the monetary base instead

of central bank assets as the monetary policy instrument. The right panel of Table 4.22

shows that the UMP shock is more sharply identified in that the posterior probability

of the likeliest shock (ε2t) is greater when monetary base is used instead of central bank

assets as the quantitative policy instrument, confirming that this shock indeed is our

UMP shock of interest. The results from the impulse response analysis (see Figure 4.21)

are robust with respect to the alternative instrument save one interesting exception: a

positive price response occurs already after one year even when a non-informative prior

is used, i.e. the analysis is solely based on the data.

The latter finding is in contrast to Boeckx et al. (2016), whose price response proved
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Figure 4.21: Impulse responses to an expansionary UMP shock: Euro area 2007M1—

2014M12. Monetary base as a policy instrument. Median responses (solid lines) together

with 68% Bayesian credible sets (dashed lines).

robust to the alternative policy instrument. Nonetheless, the authors point out an im-

portant difference between the two variables: the ECB’s asset purchases were mostly

sterilized and hence are not included in the monetary base. As a consequence the evo-

lution of the European Monetary Union’s monetary base reflects extensions of the long

term refinancing operations (LTROs) only (Fawley and Neely 2013). This can explain our

finding that central bank assets and monetary base had a different impact on the price

level and suggests that extending the maturity of the longer bank loans showed up sooner

in the euro area consumer prices than purchases of private assets or government bonds.

4.4 Conclusions

We have applied a novel Bayesian SVAR identification method due to Lanne and Luoto

(2016) to estimate the macroeconomic effects of the Bank of Japan’s, the Federal Reserve’s

and the European Central Bank’s balance sheet operations. The procedure exploits non-

Gaussianity and independence of the structural error terms to uniquely identify the shocks

as in Lanne et al. (2017). In contrast to the SVAR models identified by sign restrictions,

our model and the impulse responses are point-identified. This entails a number of advan-

tages over the conventional approach to sign restrictions. Importantly, instead of being

forced to impose the set of sign restrictions used in the previous literature, we are able to

formally assess their plausibility against the data.

According to our results, the sign restrictions used in the previous literature were
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mostly supported by the data. However, unlike previous literature, we found an expan-

sionary unconventional monetary policy shock to have different macroeconomic effects in

the three geographical areas. Not only the timing, persistence and statistical significance

of the output and price responses varied from country to country but also the robustness

of the results to alternative variables used in the literature. Although we looked at poli-

cies that expand each central bank’s balance sheet, the policy instrument encompassess

different operations for each central bank, which therefore turned out to have different

economy-wide effects.
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Appendix A: Data

The data have been retrieved from the FRED database provided by the Federal Re-

serve Bank of St Louis (https://research.stlouisfed.org/fred2/), from the Bank for Interna-

tional Settlements’ (BIS) website (www.bis.org), Bank of Japan’s statistics (BOJ) website

(http://www.boj.or.jp/en/statistics/index.htm/), CBOE (www.cboe.com) and the ECB

Statistical Data Warehouse (ECB) (http://sdw.ecb.europa.eu/).

Series employed in the empirical analysis for Japan:

• Real effective exchange rate (RNJP), BIS

• Core consumer price index (JPNCPICORMINMEI), FRED

• Industrial production (JPNPROINDMISMEI), FRED

• Average outstanding current account balances (BJ’MABS1AN113), BOJ

• 10-year government bond yield (IRLTLT01JPM156N), FRED

• Real GDP (NAEXKP01JPQ661S), FRED

Series for the USA:

• Total Federal Reseve bank’s assets (WALCL), FRED

• Consumer price index (CPALTT01USM661S), FRED

• CBOE volatitily index (VIX), CBOE

• Industrial production (INDPRO), FRED

• Retail sales (RSXFS), FRED

• Monetary base (AMBSL), FRED

Series for the euro area:

• Central bank assets for the euro area (ECBASSETS), ECB

• Composite indicator of sovereign stress (CISS.M.U2.Z0Z.4F.EC.SOV_GDPW.IDX),
ECB
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• Harmonized index of consumer prices (ICP.M.U2.Y.000000.3.INX), ECB

• Real GDP (NAEXKP01EZQ661S), FRED

Appendix B: Computation of the conditional probabilities

In this appendix I provide details about the computation of the conditional probabilities

for finding one structural shock of interest with the Lanne and Luoto (2016) method.

Suppose the shock is characterized by having non-positive and/or non-negative impact

effects on J of the variables in yt. We start out by collecting these sign restrictions in a

J × n matrix R, the elements of which equal 1, -1 or 0. We then define a set Q such that
Q = {θ0k : Rθ0k 0J×1}, where θ0k is the kth column of Θ0, i.e. of the impact matrix

B, corresponding to shock εkt. In other words, the set Q consists of all the columns of B

that satisfy the sign restrictions, and if none of the shocks satisfy them, the set is empty.

As explained in Section 4.2, because the procedure identifies B up to permutation of

its columns, any or none of the n components of εt can satisfy the restrictions and hence

be the structural shock of interest. We therefore proceed to compute the conditional

probability of satisfying the sign restrictions for each shock εkt, k = 1, ..., n,

Pr(θ0k ∈ Q, θ0,m / k ∈ Qc|y),

where y is the vector of data, obtained by stacking yt for t = 1, ..., T , Qc denotes the

complement of Q, and m ∈ {1, ..., n}. For each k ∈ {1, ..., n}, this probability can be
interpreted as the posterior probability of the restricted SVAR model, where the sign

restrictions contained in R are imposed on the kth column of B only. Given that these

are posterior probabilities of disjoint events that only occur separately, we can calculate

the overall probability of the sign restrictions being satisfied by simply summing up the

probabilities over k ∈ {1, ..., n}.
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