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The new version of EPA's positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation
(EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements
(DISP), and bootstrap enhanced by displacement (BS-DISP). Thesemethods capture the uncertainty of PMF anal-
yses due to randomerrors and rotational ambiguity. To demonstrate the utility of the EEmethods, results are pre-
sented for three data sets: (1) speciated PM2.5 data from a chemical speciation network (CSN) site in Sacramento,
California (2003–2009); (2) trace metal, ammonia, and other species in water quality samples taken at an inline
storage system (ISS) in Milwaukee, Wisconsin (2006); and (3) an organic aerosol data set from high-resolution
aerosol mass spectrometer (HR-AMS) measurements in Las Vegas, Nevada (January 2008). We present an inter-
pretation of EE diagnostics for these data sets, results from sensitivity tests of EE diagnostics using additional and
fewer factors, and recommendations for reporting PMF results. BS-DISP and BS are found useful in understanding
the uncertainty of factor profiles; they also suggest if the data are over-fitted by specifying toomany factors. DISP
diagnosticswere consistently robust, indicating its use for understanding rotational uncertainty and as a first step
in assessing a solution's viability. The uncertainty of each factor's identifying species is shown to be a useful gauge
for evaluating multiple solutions, e.g., with a different number of factors.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Multivariate receptor modeling tools are widely used for examining
patterns in environmental data. Positive matrix factorization (PMF) is
one such model and data analysis tool that decomposes a matrix of
speciated sample data into two matrices—factor contributions and fac-
tor profiles—in order to understand the factors or sources impacting
the speciated sample data (Poirot et al., 2001; Paatero et al., 2003,
2014; Reff et al., 2007; Ulbrich et al., 2009; Zhang et al., 2011; Hopke,
ss article under the CC BY-NC-ND lic
2008; Kim and Hopke, 2007; McCarthy et al., 2013; Brown et al.,
2012). The two most common PMF programs are PMF2 and ME-2, in
addition to EPA PMF, a freely available graphical user interface (GUI)
developed by the U.S. Environmental Protection Agency (EPA) that
uses the ME-2 program. The detailed methods of these programs have
been documented elsewhere (Paatero, 1997; Paatero and Tapper,
1994), and are summarized below.

A speciated data set can be viewed as a data matrix X of dimensions
n by m, in which n samples and m chemical species were measured.
Rows and columns of X and of related matrices are indexed by i and j,
respectively. The goal of multivariate receptor modeling, for example
with PMF, is to identify the number of factors p, the species profile f of
each factor, and the amount of mass g contributed by each factor to
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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each individual sample that solves the chemical mass balance between
measured species concentrations and factor profiles (Eq. (1)):

xi j ¼
Xp

k¼1

gik f k j þ ei j ¼ ci j þ ei j ð1Þ

where eij is the residual for each sample/species and cij is the modeled
solution of xij. Entire matrices are denoted by capital bold-face letters.
Columns of the factor contribution matrix G may be denoted by gk,
and similarly rows of factor profile matrix F denoted by fk.

In PMF, factor elements are constrained so that no sample can have a
significantly negative contribution. PMF allows each data value to be in-
dividually weighted. This feature allows analysts to adjust the influence
of each data point, depending on the confidence in the measurement.
The PMF solution minimizes the object function Q (Eq. (2)) via a conju-
gate gradient algorithm, based upon the estimated data uncertainties
(or adjusted data uncertainties) uij.

Q ¼
Xn

i¼1

Xm
j¼1

Xi j−
Xp

k¼1

gikfkj

Ui j

2
64

3
75
2

ð2Þ

In some scientific disciplines, data rows are normalized (e.g., to
sum = 1) before the data matrix is analyzed by PMF models. In such a
scaled matrix the errors of data values are not uncorrelated. However,
such normalization does not require any special attention before fitting
the data with PMF: For any row i, the fitted values gik take care of any
error in normalization (i.e., of the correlated part of the error) on row
i, so that fitting the values fkj only deals with the original uncorrelated
errors.

ME-2 is the underlying program used to solve the PMF problem in
EPA PMF (Norris et al., 2014), the GUI that feeds the data and user spec-
ifications to ME-2. ME-2 then performs the iterations via the conjugate
gradient algorithmuntil convergence to aminimumQ value is obtained.
The minimum Qmay be global or local; users can attempt to determine
whetherQ values are global or local by using different starting points for
the iterative process and comparing the minimum Q values reached.
Output from ME-2 is then fed back through EPA PMF and formatted
for users to use and visualize. The latest version of EPA PMF, version
5.0, includes a revised signal/noise (S/N) calculation and new error esti-
mation (EE)methods. S/N details are in the EPA PMF Fundamentals and
User Guide (Norris et al., 2014), while details of EEmethods are summa-
rized here and presented fully in Paatero et al. (2014). In conjunction
with the newEPA PMF version, thismanuscript demonstrates the utility
of the multiple EE methods over multiple case studies (speciated fine
particulate matter [PM2.5] data from Sacramento; water quality data
from Milwaukee; and high-time-resolution aerosol mass spectrometer
[HR-AMS] data from Las Vegas) and provides recommendations for
reporting PMF results. These case study examples using different ambi-
ent data sets are presented to complement the theory behind new EE
methods in EPA PMF and ME-2, and synthetic data analyses presented
in a companion paper (Paatero et al., 2014). Together, they show the
use of multiple EE methods.

2. Methods

2.1. Error estimation in EPA PMF and ME-2

As described in detail in Paatero et al. (2014) variability in the PMF
solution has traditionally been assessed via bootstrapping (BS), where
multiple PMF solutions are generated by using a series of data sets
that are resampled versions of the original data set. EPA PMF performs
BS by randomly selecting non-overlapping blocks of consecutive sam-
ples (block size is suggested by the software or by the user) and creating
a new input data file of the selected samples, with the same dimensions
(i.e., number of samples and number of species) as the original data set.
PMF is then run on the new resampled data set, and each BS factor is
mapped to a base run factor by comparing factors' contributions (Gma-
trix) for those samples included in the resampled data set. The BS factor
is assigned to the base factor with which the BS factor has the highest
uncentered correlation, above a user-specified threshold. If no base fac-
tors have a correlation above the threshold for a givenBS factor, that fac-
tor is considered “unmapped.” If more than one BS factor from the same
run is correlated with the same base factor, they will all be mapped to
that base factor. This process is repeated for as many BS runs as the
user specifies. In this manner, an understanding of the uncertainty of
the apportionment of each species in each factor is found.

EPA PMF and ME-2 now have two additional EE methods: displace-
ment (DISP) analysis and bootstrapping with displacement (BS-DISP).
The three methods are complementary and can be used to understand
the uncertainty of a PMF solution:

1. BS intervals include effects from random errors and partially include
effects of rotational ambiguity. If the user misspecifies data uncer-
tainties, thismodeling error usually hasminimal impact in BS results.

2. DISP intervals include effects of random errors and rotational ambi-
guity. If the user specifies too-small data uncertainties, then this
modeling error results in DISP intervals that are too short. Specifying
too-large data uncertainties, e.g., when a species ismadeweak inten-
tionally, results in DISP intervals that are too long.

3. BS-DISP intervals include effects of random errors and rotational am-
biguity. If the user misspecifies data uncertainty, BS-DISP results are
more robust than for DISP since the DISP phase of BS-DISP does not
displace as strongly as DISP by itself.

With DISP, each fitted element in F in the base PMF solution is
“displaced” from its fitted value far enough so that Q increases by a
predetermined amount called dQmax. Each such extended displacement
is interpreted as the upper or lower interval estimate of the perturbed
variable, thus yielding an uncertainty estimate for each species in each
factor profile. The uncertainty estimate consists of both data uncer-
tainties (data noise) and rotational ambiguity. Depending on the data
set in question, one or the other may be more significant. In EPA PMF,
only “strong” species are actively displaced in DISP. Since “weak” vari-
ables have their uncertainty increased by a factor of 3 and DISP intervals
are directly related to species uncertainties, these result in large error
estimates for weak species. Hence, only “strong” species are displaced
in DISP.

BS-DISP was developed to combine BS's strength of robustness to
data errors and DISP's strength of capturing rotational uncertainty. BS-
DISP is a combination of BS and DISPmethods in which each resampled
data set is decomposed into profile and contribution matrices and then
fitted elements in F are displaced. The collection of all results from the
process of resampling, decomposing, and displacing is then summarized
to derive uncertainty estimates. Intuitively, this process may be viewed
as follows: each BS resample results in one solution that is randomly
located within the rotationally accessible space. Then, the DISP analysis
determines an approximation for the rotationally accessible space around
that solution. Taken together, all the approximations of rotationally acces-
sible spaces for randomly located solutions represent both the random
uncertainty and the rotational uncertainty for the modeled solution to
the complete data set.

2.2. EE results and diagnostics in EPA PMF

With three EE methods, there is copious output generated by ME-2
and EPA PMF for evaluating PMF solutions. In the results presented
here, all diagnostics and data are readily available in the output of EPA
PMF. For DISP, the focus is on the number of swaps at the lowest
dQmax level and the percent change in Q (%dQ), where swaps occur if
factors change so much that they exchange identities, indicating a
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“not-well-defined (NWD) solution” (Paatero et al., 2014). In addition,
the minimum andmaximum values for each species that were reached
during displacement for the lowest dQmax level are used as the DISP un-
certainty range for each factor profile. In DISP, only “strong” species are
used, since DISP is very sensitive to higher data uncertainties, e.g., those
that occur when a user makes a species “weak” in EPA PMF, where data
uncertainty is tripled. With BS, the fraction of BS runs mapped to the
base solution by factor is assessed to understand the reproducibility of
the base solution. The 5th and 95th percentiles are used as the BS uncer-
tainty range for each factor profile. All species are used in BS, since the
input data are being resampled. BS-DISP diagnostics include the overall
fraction of BS-DISP runs that met all BS-DISP criteria, including factor
swaps, decrease inQ, and lack of mapping via BS. Ideally, the identifying
species for each factor, e.g., silicon and calcium for a soil factor, should be
activated in DISP and BS-DISP. For DISP and BS-DISP, results for actively
displaced species are considered to be the most reliable; other species,
left passive in DISP or BS-DISP, may have error intervals that are smaller
than if they were actively displaced.

Since species concentrations can often span multiple orders of mag-
nitude, it can be difficult to compare EE results among solutions or spe-
cies using concentration units. As presented by Paatero et al. (2014), the
interval ratio can be used to compare results among species and is de-
fined as the length of the given species' EE interval divided by the inter-
val midpoint. With this method, themaximum interval ratio is 2, and is
indicative of more uncertain results. For DISP, endpoints of the uncer-
tainty interval for a specific F factor element are theminimumandmax-
imum values for that factor element observed in all displacements and
are output by ME-2 in the DISPres file, with one file for each dQmax.
For BS, the endpoints of the uncertainty interval for a factor element
are the 5th and 95th percentile values for that factor element from all
BS resamples, calculated by EPA PMF using the PMF_ab_boot.dat file
output fromME-2. For BS-DISP, each BS resample is displaced andmin-
imum and maximum values are calculated for each factor element as
described for DISP. EPA PMF then calculates the 5th percentile of the
minimums and 95th percentile of the maximums, which are used as
the lower and upper bounds for BS-DISP EE; the minimums and maxi-
mums for each BS-DISP iteration are output by ME-2 in the BSDISPres
file, with one file for each dQmax value. In the examples presented
here, the interval ratios of the identifying species for each factor are
Table 1
Summary of EPA PMF settings for all three data sets.

Parameter Sacramento M

Data type; averaging timeframe PM2.5 CSN; 24-hr W
N species 19 9–
N samples 642 53
N factors 5 to 7 3
Treatment of missing data No missing data included N
Treatment of data below detection
limit (BDL)

Data used as reported, no modification or
censoring of BDL data

D
ce

Treatment of concentrations equal to
or less than zero

Data used as reported, no modification or
censoring of data b 0

D
ce

Lower limit for normalized factor
contributions gik

−0.2 −

Robust mode Yes Ye
Constraints None N
Seed value Random Ra
N bootstraps in BS 400 40
r2 for BS 0.8 0.
BS block size 3 1
DISP dQmax 4, 8, 16, 32 4,
DISP active species All (no species were made weak) Al
N bootstraps; r2 for BS in BS-DISP 50; 0.8 50
BS-DISP active species K+, SO4, NO3, Si, Na+a, Clb, Cu N
BS-DISP dQmax 0.5, 1, 2, 4 0.
Computer run timesc for DISP, BS-DISP 1 h, 3 h b1

a Only used in 7-factor solution.
b Only used in 6- and 7-factor solutions.
c Windows 7 64-bit, 3.1 GHz processor, 4 GB RAM.
compared among species and runs. If the interval ratios of the identify-
ing species of a given factor are large, the identification of that factor is
more uncertain than factors whose identifying species' interval ratios
are lower.
2.3. Example data sets: Sacramento PM2.5, Milwaukee water, and Las Vegas
HR-AMS data

Table 1 summarizes the settings used for EPA PMF analysis for all
three data sets presented here; details for each data set follow the
table. Summary statistics of input parameters for each data set are pro-
vided in Supplemental Information. Multiple runs with different num-
bers of factors were run for each data set; PMF and EE diagnostics for
each run are provided by data set, including figures showing how factor
profiles and EE intervals changed with increasing number of factors.
Qexpected was calculated for each scenario, equal to (number of non-
weak data values in X) − (numbers of elements in G and F, taken to-
gether). For example, for five factors, 642 samples, and 19 strong spe-
cies, this equals (642 ∗ 19) − ((5 ∗ 642) + (5 ∗ 19)), or 8893. For six
factors, Qexpected would be 8232, and for seven factors it would be
7571. Weak data values were excluded due to their minor influence
on Qexpected. Q/Qexpected was calculated by species, as the sum of the
squared scaled residuals (i.e., Qtrue) divided by (overall Qexpected divided
by number of non-weak species); the denominator is simply the overall
Qexpected divided equally across species.

For the Sacramento data set, 24-hour speciated PM2.5 data for theDel
Paso Manor monitoring site in Sacramento, California, operated as part
of the chemical speciation network (CSN), were downloaded from
EPA's Air Quality System (AQS) database, for July 2003 through Febru-
ary 2009. Concentrations and uncertainties were used as reported, to
provide an example of using commonly available data; no censoring
of data below detection was done, nor were samples with missing
data included. Supplemental Table 1 provides summary statistics of
input data. Nine aberrant samples, when Fourth of July or New Year's
Day fireworks occurred, were excluded, leaving 642 samples for PMF
analysis. The 19 species with S/N greater than 1 were included, includ-
ing PM2.5 mass. For simplicity in this example, no species were made
weak. Between five and seven factors were run.
ilwaukee Las Vegas

ater quality; grab samples HR-AMS; 20-min
10 120

1405
3 to 5

o missing data included No missing data included
ata used as reported, no modification or
nsoring of BDL data

Data used as reported, no modification or
censoring of BDL data

ata used as reported, no modification or
nsoring of data b 0

Data used as reported, no modification or
censoring of data b 0

0.2 −0.2

s Yes
one None
ndom Random
0 400
8 0.8

4
8, 16, 32 4, 8, 16, 32
l non-weak All non-weak
; 0.8 50; 0.8
H3, TSS, Cr m/z 43, 44, 57, 60
5, 1, 2, 4 0.5, 1, 2, 4
h, b1 h 9 h, 16 h



Fig. 1. Factor profiles (fraction of each species by factor) using Sacramento PM2.5 data, for
five, six and seven factors.
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For the Milwaukee data set, water samples of combined sewer out-
flows (wastewater plus stormwater), taken froman inline storage system
(ISS) in Milwaukee and described in detail in Soonthornnonda and
Christensen (2008) and Bzdusek et al. (2006), were explored; additional
information is available at http://v3.mmsd.com/wastewatertreatment/
deep-tunnel. Samples were collected from multiple sites on one day and
were analyzed for trace metals (Cd, Cr, Cu, Pb, Ni, Zn) via EPA method
6010 (Inductively Coupled Plasma-Atomic Emission Spectrometry), and
for biological oxygen demand (BOD), total suspended solids (TSS), total
phosphorus (TP), and ammonia (NH3) via standard methods (American
Public Health Association methods 5210B, 2540D, and EPA methods
365.1 and 350.1). Supplemental Table 2 provides summary statistics of
input data. Ten species across 53 samples were used, with three factors,
as described by Soonthornnonda and Christensen (2008). Since Cd values
were one of two values across all samples, indicating that the concentra-
tions were near or below the detection limit, Cd was made weak in one
run and excluded in another. Active species in BS-DISP were NH3, Cr,
and TSS.

For the Las Vegas data set, HR-AMS measurements were made out-
doors next to a classroom and play yard at Fyfe Elementary School,
18 m from the US 95 freeway soundwall in Las Vegas, Nevada, during
January 2008. Analysis of these data, including development and assess-
ment of a PMF solution, are described in Brown et al. (2012). The HR-
AMSmeasures non-refractory PM1, includingdetailed spectra of organic
aerosol (OA),which can then be decomposed by PMF (Allan et al., 2003;
Jayne et al., 2000; Jimenez et al., 2003; DeCarlo et al., 2006; Ulbrich et al.,
2009; Zhang et al., 2011; Lanz et al., 2010). Unlike traditional OA analy-
sis, where aerosol is collected on filters over the course of many hours
and later analyzed for individual molecules by gas chromatography–
mass spectroscopy (GC–MS) or other techniques, the HR-AMS provides
a high-time-resolution quantification of OA via mass spectra. The OA is
characterized by a detailedmass spectrum of individual mass-to-charge
ratiosm/z; a time series of these mass spectra can then be decomposed
via PMF to understand the OA composition (Ng et al., 2010; Ulbrich
et al., 2009; Jimenez et al., 2009). Factors range in both volatility and de-
gree of oxidation (Donahue et al., 2012; Jimenez et al., 2009; Kroll et al.,
2011): low-volatility oxygenated organic aerosol (LV-OOA), semi-
volatile oxygenated organic aerosol (SV-OOA), hydrocarbon-like organ-
ic aerosol (HOA), and biomass burning organic aerosol (BBOA). LV-OOA
is highly oxygenated and is commonly found in all ambient OA; it
typically has a high amount of m/z 44 (COO+ fragment). HOA is
generated by primary emissions, has low oxygen content, and is
typically composed of saturated fragments such as m/z 43 (C3H7

+

fragment) and 55 (C4H7
+ fragment). In between HOA and LV-OOA

in terms of oxidation is SV-OOA, which is composed of a mixture
of the fragments in LV-OOA and HOA. BBOA is also somewhere be-
tween HOA and LV-OOA, depending on the combustion conditions
(e.g., residential biomass burning versus wildfires) and aging of the
OA, but is associated with m/z 60 (C2H4O2

+ fragment), which is de-
rived from and is proportional to the biomass burning tracer mole-
cule levoglucosan (Alfarra et al., 2007; Canagaratna et al., 2007; Lee
et al., 2010).

In Brown et al. (2012), results using two-minute averaged data were
presented. To reduce ME-2 run time and EPA PMF processing time, 20-
minute averaged data were used in this analysis. A 75% completeness
requirement was used for each 20-minute average, resulting in 1405
samples used in EPA PMF. Fragments with S/N less than 5 were made
weak, meaning their uncertainties were increased by a factor of three;
of the total 113 fragments (m/z up to 140), 12 were downweighted by
this scheme. Supplemental Table 3 provides summary statistics of
input data. Results were essentially identical between the two-minute
in Brown et al. (2012) and the 20-minute data set used here, with the
correlations (r2) between the factor profiles and factor contributions
of the two data sets ranging between 0.98 and 0.999. EE results for the
four-factor solution presented in Brown et al. (2012), as well as for
three and five factors, are discussed here. No censoring of data below
detection or substitution of missing data was done. Active species for
BS-DISP werem/z 43, 44, 55, and 60.

3. Results and discussion

3.1. Sacramento PM2.5 data

Five to seven factors were usedwith the Sacramento data; profiles are
shown in Fig. 1 and results are summarized in Table 2 and Supplemental
Table 4. Profiles identified for thefive-factor solution included: (1)nitrate;
(2) chlorine with sodium; (3) sulfate; (4) biomass burning/potassium
(K); and (5) soil (Si, Ca, Fe). Moving to six factors, copper, chromium,
and nickel moved out of the burning and soil factors to a new copper/
metals factor. At seven factors, sodium ion separated from the chlorine
factor into its own factor. PM2.5 mass, ammonium, elemental carbon
(EC), organic carbon (OC), K, Si, sulfate and nitrate were well predicted
(i.e., r2 observed/predicted greater than 0.8) with five to seven factors.
At six factors, iron was better predicted (0.80 with six factors versus
0.71with five factors), and at seven factors, aluminum, calcium, and sodi-
um ionwerewell predicted. Inmoving fromfive to six factors, therewas a
decrease inQ/Qexpected from5.5 to 4.93, and a smaller decreasewhenmov-
ing from six to seven factors (4.93 to 4.63). When changes in Q become
small with increasing factors, it can indicate that there may be too many
factors being fit, suggesting here that six factors may be the optimal
solution.

With five factors, all factors but Cl were mapped in 100% of BS runs
(Cl was mapped 86% of runs), there were no swaps with DISP, and
100% of the BS-DISP runs were successful. Results were generally stable
at six factors as well, with all factors mapped in BS in 100% of runs ex-
cept for the copper/metals factor (mapped on 88% of runs). No swaps
occurred with DISP, and all BS-DISP runs were successful. At seven fac-
tors, the solution was less stable. The new sodium factor was mapped
with BS in 72% of the runs and copper/metals in 78% of the runs, while
other factors were mapped in 100% of runs. There were no swaps in

http://v3.mmsd.com/wastewatertreatment/deep-tunnel
http://v3.mmsd.com/wastewatertreatment/deep-tunnel


Table 2
Summary of PMF and EE diagnostics by run for Sacramento PM2.5 data.

Diagnostic 5 factors 6 factors 7 factors

Qexpected 8893 8232 7571
Qtrue 65,793 52,241 45,651
Qrobust 48,929 40,604 35,572
Qrobust/Qexpected 5.5 4.93 4.63
Species with
Q/Qexpected N 6

PM2.5, Ca, Cr,
Cu, Ni, Si, Zn

PM2.5, Ca, Cr,
Cu, Ni, Zn

PM2.5, Cr, Cu,
Ni, Zn

DISP %dQ b0.1% b0.1% b0.1%
DISP swaps 0 0 0
Factors with BS
mapping b 100%

Cl factor 86% Cu factor 94% Na factor 72%,
Cu factor 80%

BS-DISP % cases with
swaps

0 0 28%
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DISP, but 28% of BS-DISP runs were rejected due to factor swaps. Thus,
while additional species had better observed/predicted diagnostics
with seven factors, these additional factors appeared less stable than
the factors found in the five- and six-factor solutions.

As seen in Supplemental Table 4 and Fig. 2, DISP error estimate inter-
vals, expressed as interval ratios to be comparable across species of
differingmagnitudes, are quite low for key species, indicating little rota-
tional ambiguity in the solutions. Ratios are generally highest for the
model with seven factors, indicating modestly higher uncertainty for
these key species with seven factors. For BS, interval ratios are generally
consistent for a given factor for all three model runs, with the exception
of the copper/metals factor at seven factors. Here, the BS interval of cop-
per is relatively large, spanning an order of magnitude (0.00012 to
0.0065 μg between the 5th and 95th BS percentiles), resulting in a
very high EE for copper in this factor, which suggests a poorly defined
factor. The BS mapping indicates some instability in the chlorine factor
at five factors, the copper/metals factor at both six and seven factors,
and modest instability of the sodium-only factor with seven factors.
The instability of the chlorine, copper/metals, and sodium factors are
further seen with BS-DISP, where the interval ratios for the key species
are high for factorswith lowBSmapping (chlorine atfive factors, copper
at six factors, and both sodium and copper at seven factors). In these
three cases, BS-DISP interval ratios approach or are equal to two, since
the BS-DISP 5th percentile for these species/factor combinations is at
or near zero. The combination of poor BS mapping of two of seven fac-
tors, the very high EE intervals from both BS and BS-DISP for both cop-
per and sodium factors, and the small change in Q/Qexpected going from
six to seven modeled factors indicate that the seven-factor solution is
not stable and likely should not be used.

3.2. Milwaukee water results

As further described by Soonthornnonda and Christensen (2008),
three factors were determined: (1) stormwater was characterized by
Fig. 2. Interval ratios of identifying species by EEmethod andnumber of factors (5, 6, 7) for
Sacramento PM2.5 data.
high amounts of TSS and Pb; (2) sanitary sewage was characterized by
high BOD, TP, and ammonia; and (3) high-metals-content stormwater,
likely from sewer sediment erosion, was characterized by high concen-
trations of metals such as Cr. Table 3, Supplemental Table 5 and Figs. 3
and 4 summarize the results. With three factors and Cd included as
weak, all species were relatively well predicted, with Q/Qexpected values
all less than 2 except for BOD. BS results showed 100% mapping for
two factors and 86% mapping for the trace metals factor; DISP had no
swaps and 98% of BS-DISP cases were successful. Upon removing Cd,
other species were not any better predicted, Q/Qexpected was similar,
and BS mapping was poorer compared to the run with Cd included
(BS mapping 72% for metals factor). In both scenarios, the poorer BS
mapping of the metals factors is likely due to its more intermittent sig-
nal across the samples, relative to the other two more consistent
sources. In addition, the small overall size of the matrix (10 species, 53
samples) is likely at the extreme lower end of a viable size for PMF appli-
cations, whichmay lead to some instability. Despite these limitations, the
factors when including Cd are stable and as reported by Soonthornnonda
and Christensen (2008), also compare very well with chemical mass bal-
ance (CMB) results, further solidifying their interpretability.

3.3. Las Vegas HR-AMS results

As described by Brown et al. (2012), four factors were determined:
LV-OOA, HOA, SV-OOA and BBOA. On average, HOA made up 28% of
the organic matter (OM), had an abundance ofm/z 43, and peaked dur-
ing the morning and evening commute periods coincident with peak
traffic volume. LV-OOA, indicated by an abundance of m/z 44, was
highest in the afternoon and accounted for 25% of the OM. BBOA oc-
curred in the evening hours, was predominantly from the residential
area to the north, and on average constituted 10% of the OM. SV-OOA
accounted for the remaining 37% of the OM, and had an abundance of
m/z 57 and 55. The HOA and LV-OOA factors were nearly identical to
those found in other studies; correlations of the profiles with Pittsburgh
factor profiles (Ulbrich et al., 2009) were 0.99. The HOA factor profile is
very similar to pure diesel exhaust (Mohr et al., 2009). The BBOA factor
had typical tracer fragments ofm/z 60 and 73, which are produced dur-
ing AMS analysis of levoglucosan and related anhydrosugars produced
during biomass combustion (Lanz et al., 2008; Lee et al., 2010). The
SV-OOA factor profile was similar to that of aged diesel exhaust (Sage
et al., 2008).

Factor profiles are shown in Fig. 5 and EE diagnostics are summa-
rized in Table 4, Supplemental Table 6, and in Fig. 6. For the four-
factor base solution, BS resamples reproduced 100% of the base factors.
Therewere no factor swapswith DISP and, as also seen in the other data
set examples, only an extremely low change in Q (less than 0.1%) was
observed. However, in BS-DISP, 46% of the runs had swaps. BS-DISP in-
terval ratioswere also the largest amongEEmethods. TheBS-DISP inter-
val ratio was highest for SV-OOA across all EE methods. These results
suggest that the SV-OOA factor is more uncertain than the other factors.

With three factors, only HOA, LV-OOA and BBOA were identified,
100% of the BS resamples identified these 3 factors, 100% of the BS-
DISP runs were accepted, and no swaps occurred with DISP. EE interval
ratios are generally lower with three factors thanwith four factors, with
the exception of DISP interval ratios that were higher when using three
instead of four factors. Thismay indicate that using three factors distorts
the solution so that the three factors also accommodate parts of the
omitted fourth factor SV-OOA. When four factors are used, DISP inter-
vals are smaller and BS results similar, suggesting at least four factors
are needed, despite the modest BS-DISP results.

With five factors, an additional “night OA” factor is found that occurs
on most evenings coincident with BBOA and SV-OOA. However, this
night OA factor is only found with 80% of the BS resamples, while the
other factors aremapped in 100% of the runs.With BS-DISP and five fac-
tors, 44% of the runswere accepted and there were no swapswith DISP.
These results indicate that the five-factor solution, and in particular the



Table 3
Summary of PMF and EE diagnostics by run for Milwaukee water quality data.

Diagnostic 2 factors 3 factors, with Cd weak 3 factors, excluding Cd

Qexpected 353 291 291
Qtrue 1014 652 635
Qrobust 1004 647 630
Qrobust/Qexpected 2.86 2.25 2.17
Species with Q/Qexpected N 2 Biological oxygen demand, total

suspended solids, Cr, Pb
Biological oxygen demand,
total suspended solids

Biological oxygen demand, total
suspended solids

DISP %dQ b0.1% b0.1% b0.1%
DISP swaps 0 0 0
BS mapping 100% Metals factor 88% Metals factor 74%, stormwater

factor 92%
BS-DISP % cases with swaps 0% 8% 8%
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night OA factor, is much less certain than the four-factor solution. The
modest BS-DISP results with four factors suggest that there is some
factor interdependence and rotational ambiguity, confirmed by the
oblique, slanting edges seen in the G-space plots (Paatero et al., 2002,
2005). In these results, the oblique edges in the G-space plots could
not be straightened out by applying customary rotational techniques,
e.g., by applying Fpeak or by pulling points along the edges. Thus, they
indicate a “modeling error” in the analysis, such as variation in true
source profiles during the monitoring campaign, or presence of data
outliers that block the rotations that would be needed for straightening
the edges.

3.4. Discussion

In all three data sets, therewere no swaps evident in DISP, indicating
that the solutions had no or few data errors and were well defined.
These results differ from the synthetic data analyses shown in Paatero
et al. (2014), which did have swaps in DISP but only when there were
too many factors. In the ambient data examples here, even when
pushed up to two or more factors above the “base” solution, swaps did
not occur with DISP. This was also the case when small data sets were
run, e.g., the Milwaukee water data. It seems likely that if more than a
few swaps occur with an ambient data set, then there are either too
many factors used or the solution is notwell defined. Thus, DISP appears
to be a good first-step screening tool for a PMF solution; if zero or only a
few swaps occur, the user is assured that they areworking toward a rea-
sonable solution, though results with BS and BS-DISP may eventually
suggest otherwise.

In the examples presented here, BS continues to be a useful EEmeth-
od even though it does not account for rotational ambiguity. When
Fig. 3. Factor profiles (fraction of each species by factor) using Milwaukee water data, for
two factors, three factors with Cd excluded, and three factors with Cd weak.
factors are not reproduced during BS resampling, it indicates potential
problems with that solution. It could be that too many factors are
being used, as is likely at seven factors in Sacramento PM2.5 or five fac-
tors in Las VegasHR-AMSdata, or that the factorswith low reproducibil-
ity occur infrequently in the data. In the case where it is clear that the
occurrence of a factor is dependent on other environmental conditions,
such as wind direction, meteorology, or source operations, it is not sur-
prising that many BS resamples do not identify that factor. BS results
thus are useful for quantifying the uncertainty of a solution, and also
for identifying factors that have a low degree of reproducibility. Such
factors with low reproducibility may still be real, but require additional
investigation and support for their inclusion.

BS-DISP combines BS's strength with data errors and DISP's strength
with rotational uncertainty. In these examples, solutions with no swaps
in DISP andmore than 95% reproducibilitywith BS had variable BS-DISP
results. For example, the four-factor solution with Las Vegas HR-AMS
had no swaps in DISP, high reproducibility with BS, and low interval ra-
tios for the identifying species in each factor. However, there were
swaps in 46% of the BS-DISP runs, indicating some uncertainty with
the solution.With positive BS and DISP results and clear interpretability
of the factors, this amount of swaps is not fatal to the analysis, but con-
firms that there is some uncertainty in the solution, particularly regard-
ing the SV-OOA factor. Since SV-OOA factors can vary widely across
studies depending on the atmospheric conditions and processing of
OA, and the factors span a much larger range of volatility compared to
HOA and LV-OOA, the modest swapping in BS-DISP appears to confirm
its larger uncertainty compared to other factors.

DISP and BS-DISP provide results for four different dQmax values; the
range of results for each key species/factor combination by dQmax value
can indicate whether uncertainties are controlled more by rotational
Fig. 4. Interval ratios of identifying species by EE method and run (two factors, three fac-
tors with Cd weak, and three factors with Cd excluded) for Milwaukee water data.



Fig. 5. Factor profiles (fraction of each species by factor) using Las Vegas AMS data, for three, four and five factors.
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uncertainty or user-specified data uncertainties. Supplemental Table 7
shows theDISP intervals for the Sacramento example for key identifying
species in each solution. The Sacramento example is particularly useful,
because the solutions have residuals far exceeding the input uncer-
tainties and thus have a relatively high Q/Qexpected, indicating that the
input uncertainties are not accurate, the factor profiles vary over time,
or both. How DISP intervals change with dQmax may help explain the
high Q/Qexpected values. With five factors, nitrate intervals are nearly in-
dependent of dQmax; thus, the input uncertainties for nitrate are well
represented by the solution, so that the DISP intervals are controlled
predominantly by rotational uncertainty, i.e., how far rotations may
proceed during DISP. In contrast, sulfate, Cl, and Si intervals increase
proportionally to the square root of dQmax, meaning that they double
as dQmax increases by a factor of 4. Thus, there is less rotational uncer-
tainty for these factors; rather, the uncertainty is due to input uncertain-
ty. At six factors, all species except Cl have intervals that do not increase
proportional to dQmax, indicating significant rotational uncertainty.
With seven factors, rotational uncertainty appears to be reduced, but
at the expense of much larger uncertainty intervals. These variations
in results by dQmax further support the earlier interpretation that
seven factors are likely too many, and that there are some trade-offs
in uncertainty between the five- and six-factor solutions.
Table 4
Summary of PMF and EE diagnostics by run for Las Vegas HR-AMS data.

Diagnostic 3 factors 4 factors 5 factors

Qexpected 137,351 135,833 134,315
Qtrue 920,029 607,201 402,907
Qrobust 454,015 340,269 264,455
Qrobust/Qexpected 3.31 2.51 1.97
Species with
Q/Qexpected N 8

m/z 27, 41, 43, 44, 54, 55, 56,
57, 60, 69, 80, 71, 73, 86, 95

m/z 31, 43, 55,
57, 60, 70, 73, 86

m/z 41, 43, 55,
70, 86

DISP %dQ b0.1% b0.1% b0.1%
DISP swaps 0 0 0
BS mapping 100% 100% 5th factor 80%
BS-DISP % cases
with swaps

0% with swaps 46% with swaps 56% with swaps
4. PMF reporting recommendations

PMF analyses involve many details about the development of the
data, decisions of what data to include/exclude, determination of a solu-
tion, and evaluation of robustness of that solution; reporting of PMF so-
lutions and analyses vary widely. In many cases, limitations on word
count and other restrictions mean that authors do not include impor-
tant details of their modeling efforts in published articles. As more
journals publish online and allow appendices or supplementalmaterial,
more analysis details can be shared. Having a consistent base of what is
reported will help all PMF users evaluate, compare, understand, and re-
produce PMF analyses. Below, we provide a sample list of recommended
items to reportwhenpresenting a PMFanalysis. This is complementary to
the AMS-specific strategy recently assembled in Crippa et al. (2013).

4.1. Q values

Report the Qrobust and Qtrue values of the analysis that was deemed
most useful, and note how Q or Q/Qexpected changed under different sce-
narios, e.g., with a different number of factors or with different species
Fig. 6. Interval ratios of identifying species by EEmethod andnumber of factors (3, 4, 5) for
Las Vegas data.
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included/excluded. Discussion of the obtained Q value is moot if uncer-
tainties of the input data have been fine-tuned in order to produce
meaningful scaled residuals. In contrast, observing changes in Q under
different scenarios is often very helpful when selecting between differ-
ent modeling alternatives, such as different numbers of factors. When
changes in Q become small with increasing factors, it can be indicative
that there may be too many factors being fit.

Qexpected should also be calculated, but only the “good” or non-weak
variables should be taken into account. The expected value of Q is ap-
proximately = (number of non-weak data values in X) − (numbers
of elements in G and F, taken together). A downweightedweak variable
has only a small, rarely significant contribution to Qexpected, and for sim-
plicity is excluded here. If theQ value of the chosenmodel differs signif-
icantly fromwhat is expected (e.g., by a factor of ten ormore), thenDISP
error analysis becomes invalid and BS-DISP is likely questionable.

Lastly, it can be useful to report if an individual column or row of X
had a Q/Qexpected ratio that was much higher than that of other columns
or rows. This indicates that the column or row was not well fitted and
contributes significantly more than expected to Q.

4.2. Estimated or adjusted uncertainties of input data

Uncertainties drive not only a base solution but also the BS, and in
particular, the DISP and BS-DISP results. Their development and use in
the PMF analysis needs to be clearly documented. This also includes
documenting if extra modeling uncertainty (an adjustable parameter
within PMF) was applied in the analysis.

4.3. Lower limit for G (contributions)

In EPA PMF, the lower limit of the normalized contributions is set to
−0.2, since allowing a small negative value helps PMF accept true rota-
tions even in the presence of a large number of zero values in some G
factors.

4.4. Use of robust mode

In EPA PMF, the robust mode is always used, which automatically
downweights the influence of observations that have a scaled residual
greater than 4. Nevertheless, use of robust mode should always be doc-
umented in publications.

4.5. Treatment of missing values

If missing data were included in the PMF analysis, they need to be
treated appropriately so they do not influence the solution. Often, the
median concentration of a given species is used, with an uncertainty
of four times the median. The scaled residuals for these points should
be inspected to ensure that they are clearly less than one. If missing
data are given a standard deviation of four times the median, then the
scaled residuals for these points may occasionally violate this require-
ment. In such cases, the analysis should be repeated so that uncer-
tainties of missing values are increased sufficiently. Multiple statistical
methods exist for replacingmissing data with statistically viable values.
We do not recommend these methods for PMF analyses. They are nec-
essary for any statistical procedures that cannot accommodate missing
data. With PMF analyses, inputting a sufficiently large uncertainty
makes the data truly “missing”, a process that cannot be improved by
using data substitutions. PMF can even be used to obtain substitution
values to be used in other statistical procedures: run PMF so that the
values in question (missing and/or BDL values) have sufficiently large
uncertainty values associated to them. Use the fitted values (fitted by
PMF to missing/BDL positions) as substitution values, and then use
them as replacements to whatever values were originally present in
the missing/BDL positions of the matrix.
4.6. Treatment of data below detection

In many published PMF studies, below detection level (BDL) data
values have been censored, i.e., substituted by replacement values,
such as 0.5*detection limit, even if the original measured values have
been available. It appears that this practice has no proven advantages
when species with low S/N are downweighted. On the other hand, it
may be demonstrated that the substitution practice prevents uncertain-
ty estimation, introduces hard-to-estimate bias, and occasionally gives
rise to ghost factors. In general, it is a modeling error if BDL values are
replaced by a fraction of the detection limit. If such a replacement has
been done, then EE of PMF results should not be attempted because
none of the available EE methods is able to estimate the bias error
incurred in results by censoring BDL values. If EE is nevertheless
attempted in the presence of such censoring, then a clear warning
about questionable validity of quoted error estimates must be included
in thepaper. Insteadof substitutionmethods, PMFmodelingusingME-2
directly can be optimized by applying a specific errormodel code to cen-
sored data values (Paatero, 2000). In this way the known information,
e.g., that a measurement is somewhere between zero and the detection
limit, can be conveyed to ME-2 without any substitutions that would
likely bias the results.

4.7. Treatment of data equal to or below zero

Data equal to or less than zero can be included in the PMFmodel and,
if these values are genuinemeasured values, should not be censored by
truncation to zero or transformed to positive values. If such censored
values must be used because the original measured values have been
discarded, then a warning must be included in the documentation.
EPA PMF allows negative concentration values to be used, though
input uncertainties must still be positive.

4.8. Treatment of “total mass”

In the Sacramento example, uncertainties for total PM2.5 mass were
used as reported, rather than being further downweighted (e.g., Reff
et al. (2007); Kim et al. (2005)). PM2.5 mass should be downweighted
if there are likely significantmeasurement artifacts, e.g., gaseous species
adsorbing onto filters, or if there are sources that may emit PM2.5 mass
but none of themeasured species, inwhich case a factor containing only
mass could be determined. In these cases, the inclusion of “full strength”
total mass does not help in interpretation of solutions, and could lead to
erroneous results.

4.9. Use of constraints

EPA PMF and ME-2 allow users to constrain or “pull” elements in
their solution. One common reason for pulling is the attempt to align
an oblique “edge” in G-space plots. However, an oblique edge may
sometimes be justified because factors in atmospheric or environmental
data are rarely truly independent. Thus pulling contributions based on
G-space plots must be clearly justifiable, and should be justified and re-
ported in detail if done. If source profiles or contributions are known for
some factors or samples, and constraints are used to model these, then
this information and the reason (e.g., the industrial plantwas shut down
and should have a contribution of zero) should be noted.

4.10. BS

Report the number of resamples analyzed and the size of percentiles
of the obtained distribution of results chosen for error limits, e.g., in EPA
PMF these are the 5th and 95th percentiles. Also report the percentage
of BS factors assigned to each base case factor and the number of BS fac-
tors not assigned to any base case factor, and the interval ratios of each
factor's identifying species.
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4.11. DISP

Report species not displaced, such as those downweighted (in EPA
PMF, all strong species are used in DISP), the decrease in Q, the number
of factor swaps, and the interval ratios of each factors' identifying spe-
cies. If factor swaps occur for the smallest dQmax, it indicates that there
is significant rotational ambiguity and that the solution is not sufficient-
ly robust to be used. If the decrease inQ is greater than 1%, it is likely the
case that no DISP results should be published unless DISP analysis is re-
done after finding the true global minimum of Q.

4.12. BS-DISP

As with BS and DISP, report the number of BS resamples analyzed,
the size of percentiles chosen for error limits (in EPA PMF, these are
the 5th and 95th), the species actively displaced, the decrease in Q,
and the number of factor swaps. For each factor's identifying species,
note the extent of the EE interval.

5. Conclusions

These examples using different ambient data sets are presented to
complement the theory behind new EE methods in EPA PMF and ME-
2, as well as synthetic data analyses presented in a companion paper
(Paatero et al., 2014). Together, they show the use of multiple EE
methods. With these ambient data sets, DISP typically had tight inter-
vals and no factor swaps; it appears that DISP is a good screening tool
for solutions, as solutions that have swaps likely have significant rota-
tional ambiguity and should probably not be used. BS results do not typ-
ically capture rotational ambiguity, but can help identify factors that are
not very reproducible, though low reproducibility may be due to other
influences such as wind direction and source activity, rather than a
poor solution. BS-DISP may yield factor swaps even if BS and DISP diag-
nostics are positive, and can be used to identify which factors are more
certain than others. One drawback of BS-DISP is its computation time. A
large run (e.g., thousands of samples and a hundred species) may take
tens of hours on a modern PC. Future work may need to focus on opti-
mization of the algorithms in ME-2 to help significantly decrease the
run time.

Based on the results here and in Paatero et al. (2014) the different
roles of DISP on one hand, and BS and BS-DISP on the other hand, may
tentatively be described as follows: DISP analyzes the given data set
“as is,” not speculating about the reproducibility of the results in future
similar measurements. Hence, uncertainty intervals given by DISP are
rather short. The BS-based methods are based on resampling. Hence,
they also estimate variability that follows if a few key samples are omit-
ted from the data set. Such estimation may be relevant in predicting
what might happen with the following year's data. A few key samples
might not occur at all, or they might not occur on days when sampling
is performed. BS takes into account this kind of uncertainty, which is
not considered by pure DISP. Thus, uncertainty estimates based on BS
may be much larger for such data sets, where a few matrix rows have
special importance regarding rotations or regarding sources that are
only observed in a small fraction of all samples.

For all EE methods, the interval ratio of each factor's identifying
species can provide an understanding of the relative certainty of each
factor's identity. However, each data set is unique, so results will vary.
Itmust be emphasized that, in some cases, a satisfactory analysis cannot
be performedwith any number of factors. The following contrived exam-
ple illustrates this situation. With four factors, the result is rotationally
unique and all three EE methods indicate small uncertainties. However,
with four factors, the fit is not satisfactory as indicated, e.g., by poor
total mass reconstruction and by poor factor interpretability. With five
factors, fit is good but rotational uncertainty is very large and/or there
are frequent factor swaps between factors four and five. What should
the scientist do in this situation? It would be wrong to only report either
the four-factor or thefive-factor resultswhile ignoring the presence of the
alternative solution. The information in thedata set confirms that four fac-
tors are not enough. However, the information is not sufficient for quan-
titative determination of five factors. If additional information cannot be
inserted for obtaining rotational uniqueness, then the two sets of incon-
clusive results (using four andfive factors, respectively), aswell as the im-
pact that subtracting or adding a factor has on the profiles, contributions,
and EE results, should be reported.

The conclusions presented in this work are based on our experience
with a limited number of synthetic and real data sets. It was not our
intention to “prove” the validity or usefulness of these methods. The
statistical properties of real data are so unknown and varied that a gen-
eral assessment of the validity can only be reached through a long pro-
cess. Successful and failed analyses of different data should be carefully
reported in literature. Thus, the present conclusions should not be
regarded as thefinal truth about EE of bilinearmodels. Instead, these re-
sults are the first steps toward full understanding of these complicated
questions. It is essential that follow-up studies be performed with an
open mind, so that general validity of our conclusions is not taken for
granted in all possible situations. Lastly, we provide a recommended
“best practices” list of information for users to report in their publica-
tions, which is critical as more users employ the new EEmethods avail-
able in ME-2 and EPA PMF.

Disclaimer

The United States Environmental Protection Agency through its
Office of Research and Development funded and collaborated in the re-
search described here under contract EP-D-09-097 to Sonoma Technol-
ogy, Inc. It has been subjected to Agency review and approved for
publication.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2015.01.022.
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