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The recent increase in the number of microbial time series

studies offers new insights into the stability and dynamics of

microbial communities, from the world’s oceans to human

microbiota. Dedicated time series analysis tools allow taking

full advantage of these data. Such tools can reveal periodic

patterns, help to build predictive models or, on the contrary,

quantify irregularities that make community behavior

unpredictable. Microbial communities can change abruptly in

response to small perturbations, linked to changing conditions

or the presence of multiple stable states. With sufficient

samples or time points, such alternative states can be

detected. In addition, temporal variation of microbial

interactions can be captured with time-varying networks. Here,

we apply these techniques on multiple longitudinal datasets to

illustrate their potential for microbiome research.
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Insights from microbial time series data
Recent improvements in high-throughput sequencing

have led to a rise in longitudinal studies that record

the temporal variation of microbial communities in a wide

range of environments. These time series studies can

offer unique ecological insights on community stability

and response to perturbations that cannot be gained

otherwise. Here, we provide an overview of these insights

and discuss a range of methods (summarized in Table 1)

for the analysis of longitudinal sequencing datasets.

In a recent meta-analysis of longitudinal studies, roughly

half of the communities had time-decay curves with

negative slopes, that is their community dissimilarities

increased with time [1]. In addition, the temporal vari-

ability of microbial community diversity was found to be

comparable across studies within the same environment

but varied across them, being lowest in soil and brewery

wastewater and highest in the human palm and the infant

gut [1].

Temporal variation is not restricted to global diversity —

long-term studies conducted for marine microbiota

[2,3�,4] revealed, among other insights, strongly seasonal

dynamics of individual community members. Some mi-

crobial communities go through a series of predictable

states after colonization (primary succession), which

occurs for instance during the formation of dental plaque,

where oxygen-tolerant early colonizers prepare the

ground for later oxygen-sensitive colonizers [5], and in

soil and leaf surface communities (reviewed in [6]). In

some cases, such as infant gut microbiota colonization [7],

communities vary considerably in the initial stages of

succession, but stabilize at similar states.

While large-scale studies such as the Human Microbiome

and MetaHIT projects explored the phylogenetic and

functional composition of the healthy human microbiota

and its inter-individual variation [8,9], studies that inves-

tigate its temporal variation are still rare and either

include many time points of a few subjects or a few time

points of many subjects; thus large-scale (both in length

and cohort size) longitudinal studies are needed. In one of

the human microbial time series with the largest number

of time points available to date, Caporaso et al. found

considerable variability within body sites and only a small
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Table 1

Summary of time series analysis techniques used in microbiome profiling studies. The table briefly explains each technique and the interpretation of its result, with references to

specific implementations and microbial community studies applying these techniques. We do not mention the treatment of sequencing depth differences, which is relevant for all time

series data generated with sequencing.

Name Summary Example implementation Interpretation/goal Pre-processing Remarks Reference

Time-decay Log-linear model fitted to

sample dissimilarities

versus time between

observations.

R package vegan, function

vegdist (for sample-wise

dissimilarities)

Rate of community change

(‘turnover’).

Filtering of rare OTUs is

recommended.

Sensitive to the time scale. [1]

Detrending Common techniques

include regression/

differencing to remove

linear trends

R package pracma,

function detrend and

package stats, function diff

Removal of trends that may

hide underlying dynamics.

None. Trends may be cyclic (see

Auto-correlation) or non-

linear.

[19��] (removal of

autocorrelation)

Augmented-

Dickey

Fuller test

Stationarity of a time series

is tested by fitting an

autoregressive model.

R package tseries, function

adf.test

Test whether microbial

community has reached a

stable state.

Filtering of rare OTUs is

recommended.

Taxonomic resolution

matters; strain-level

dynamics may differ

strongly from genus-level

dynamics.

[19��]

Cross-

correlation

Correlation between two

time series computed as a

function of the lag of one

with respect to the other

one.

R package stats, function

ccf

Delayed response of a

taxon to another taxon or

environmental parameter.

Equidistant time points.

Filtering of rare OTUs is

recommended.

Lagged correlation does

not establish causality.

Time scale matters. Cross-

correlations at larger lags

are less reliable due to

reduced overlap.

[19��]

Local

similarity

analysis

(LSA)

Dynamic programming

determines the lags

between two time series

that optimize their dot

product [37].

eLSA: http://meta.usc.

edu/softs/lsa/

[62,63]

fastLSA: http://hallam.

microbiology.ubc.ca/

fastLSA/install/index.html

[64]

(Delayed) response of a

taxon to another taxon or

environmental parameter.

Equidistant time points.

Filtering of rare OTUs is

recommended.

Lagged association does

not establish causality. The

result of the analysis is

affected by the time scale.

[3�,38�,39]

Time-varying

network

inference

Various techniques, for

example static network

inference applied to time

segments or time-varying

dynamic Bayesian network

(DBN) inference

A number of microbial

association network

inference methods is

available [29,30,62,64,65]

Time evolution of

association networks and

stability of individual

associations.

Filtering of rare OTUs is

recommended. Time

series of sufficient length

needed to detect

associations in segments.

Association does not

establish causality.

[66] (fishery data)

Auto-

correlation

(Auto-

correlogram)

The correlation of the time

series to itself is plotted for

all possible lags.

R package stats, function

acf

Presence of periodical

patterns, for example

seasonality.

Equidistant time points. Auto-correlations at larger

lags are less reliable due to

reduced overlap.

[2,3�]

Hurst

exponent

Power law fitted to the

lengths of time series

segments versus the

ranges of their cumulative

deviations from the mean,

rescaled by the standard

deviation.

R package pracma,

function hurstexp

Presence of persistent

trends (Hurst exponent

close to one) versus

frequent fluctuations (Hurst

exponent close to zero). A

Hurst exponent of 1/2

indicates random walk.

Equidistant time points. The Hurst exponent is

sensitive to the sampling

frequency and length of the

time series.

[14��]
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number of persistent core microbial taxa in two healthy

subjects [10]. In contrast, Faith et al. reported a high

persistence on strain level for deeply sequenced gut

samples [11]. Despite daily variations, subject-specific

differences in gut microbiota, discovered in the late

90s [12], are preserved over decades [13].

Hekstra and Leibler [14��] suggest that species interac-

tions can be inferred either from biological replicates at a

single time point or from a single system monitored over

several time points. Since controlled replicates are not

easily available for microbiome profiling studies, these

results imply that combining information across multiple

time series can improve the inference of interactions from

observations. Moreover, replicates are crucial to distin-

guish stochastic fluctuations from underlying statistical

laws governing ecosystem dynamics.

Microbial communities tend to evolve towards a stable

composition. A change in the community state can be

triggered by changes in external conditions (e.g. diet),

by a direct modification of the microbial community

(e.g. by antibiotic or probiotic treatment) [15], or by a

transient perturbation that pushes the system into an

alternative stable state (Figure 1). In the latter case,

alternative stable states are not fully determined by

environmental factors, but emerge from the complex

non-linear interactions among community members.

Such systems are referred to as bistable or multi-stable.

Thus, perturbation  studies help to probe community

dynamics and resilience. A lake ecosystem undergoing a

massive alteration was shown to recover its initial state

after a few days, demonstrating resilience [16]. In con-

trast, less complete recovery has been reported for the

gut microbiota after antibiotic treatment [17,18], patho-

gen invasion [19��] or small bowel transplantation [20],

hinting at the existence of alternative stable states.

Similar observations have been made for environmental

changes such as substrate overload in a biogas reactor

[21] or dietary interventions [22,23]. However,

responses to perturbations can vary substantially be-

tween individuals [23]. Thus, incomplete recovery

may reflect stochastic effects rather than alternative

stable states. For instance, stochastic processes domi-

nate groundwater communities after perturbation by

nutrient injection, which the authors attribute to re-

duced competition and priority effects [24]. Priority

effects, that is the exclusion of latecomers by strains

already present, have been observed in many other

ecosystems (e.g. in rock pool communities [25]) and

may contribute to the variability observed in the early

stages of the human gut community development.

These complex interactions between microorganisms

among themselves and with their environment are key

contributors to microbial dynamics and increasingly ex-

plored with network inference techniques.
www.sciencedirect.com
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Figure 1

Conditions Conditions

Alternative state 2 Alternative state 2

Alternative state 1(a) (b)

C
om

m
un

ity
 s

ta
te

Environmental change

Adding/removing
community species

Transient
change in the
environment

Alternative state 1

Current Opinion in Microbiology

A change in environmental conditions (dashed vertical line) can affect a microbial community (pie chart) such that its composition shifts into an

alternative state (a). An ecosystem can also exhibit two (or more) stable states under the same conditions (b). A switch of the steady state

composition can be induced either by a change in the composition (removal of species via antibiotics or introduction of new species) or by a

transient change of the environmental conditions that pushes the system beyond the tipping points (small brown circles). In both cases, a small

change in external conditions in the vicinity of a tipping point can trigger an abrupt community shift. Such a state switch may be preceded by

early warning signs [55��].
Network reconstruction from microbial time
series
A number of methods are available to construct taxon co-

occurrence networks from cross-sectional data (reviewed

in [26]), ranging from correlation combined with permu-

tation tests [27] and similarity assessment with the hyper-

geometric distribution [28] to approaches dealing with

compositionality [29,30], indirect edges [31] and multiple

factors influencing taxon abundances (multiple regression

[29,32]).

These static network inference techniques can be applied

to construct dynamic models. For instance, community

dynamics is often mathematically described with the

generalized Lotka–Volterra equations, which models

the change in abundances as a function of taxon-specific

growth rates and pair-wise interaction strengths. These

parameters can be determined from time series data by

(sparse) multiple regression ([33–36], also see [26]).

However, time series provide additional information ig-

nored by such methods, namely the ordering and depen-

dencies between the time points. These properties are

exploited by dynamic approaches.

Dynamic network inference
Cross-correlation quantifies the similarity between

shifted time series, as for instance in David et al., where

cross-correlations were calculated with varying lags from

de-trended, clustered time series in order to detect
www.sciencedirect.com 
associations between taxon abundances and host metadata

[19��]. Interpolation, that is fitting a function to observed

values to fill ‘gaps’ in a time series, allows selecting equi-

distant time points and lags smaller than the sampling

interval, but can introduce bias, for instance when linear

interpolation is applied to non-linear dynamics.

Local similarity analysis (LSA) employs dynamic pro-

gramming to identify the lags between two time series

that maximize their similarity score [37] and can therefore

also detect associations between shifted time series. For

instance, LSA was applied to predict interactions be-

tween bacteriophages and their hosts and between protist

grazers and their prey from the San Pedro Ocean time

series [38�,39].

Dynamic Bayesian network (DBN) techniques model the

state of each variable as a function of the parent variables

in the preceding time point. Thus, DBNs can detect

dynamic dependencies, including cyclic ones, in time

series [40]. Compared to standard Bayesian networks,

their dynamic counterparts provide a more powerful

modeling framework, albeit with increased computational

cost, limited scalability [41], and difficulties in identifying

the correct models when many alternative networks ex-

plain the data equally well.

Another group of dynamic network inference techniques

is based on cross-prediction, which quantifies how well

the future of one time series can be predicted from
Current Opinion in Microbiology 2015, 25:56–66
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another time series within the same system. These meth-

ods include Granger causality [42] and Sugihara’s novel

convergent cross mapping [43].

Time-varying networks
All techniques mentioned above infer a single network of

species interactions from the entire time series. However,

species interactions and hence the network structure may

change over time. Time-varying network inference tech-

niques aim at inferring such evolving network structures.

One option is to build static networks for different,

potentially overlapping, segments of a time series. A

time-varying network constructed in this way from data

reported in [19��] shows that in the human gut microbiota,

taxon associations are not equally stable and vary in their

strength over time (Figure 2, Supplementary Movie 1).

Non-stationary [44] and time-varying [45] DBNs can also

be used to infer temporal changes in network structure

[45]. An additional advantage of the time-varying DBNs

is that they can also estimate the optimal number of time

windows.

Lessons from microbial time series analysis
Time series analysis is used to detect regularities such as

trends and periodicity, but also the opposite: irregularities

that challenge prediction and abrupt state shifts poten-

tially preceded by early warning signs.

Trends, periodicity and predictability

Microbial abundance may increase or decrease monoton-

ically by natural growth or in response to environmental

variables such as temperature. The persistence of such

trends can be quantified with the Hurst exponent, which

indicates trend-following (H > 0.5), random-walk

(H � 0.5), or highly fluctuating (H < 0.5) patterns [46].

Autocorrelograms visualize auto-correlations in time-se-

ries across all possible time lags and can highlight repeti-

tive patterns and seasonality, as for instance in marine

microbial communities [2,3] (see also Figure 3).

Linear trends and seasonality may mask other underlying

signals, however, and are hence often removed by

‘detrending’ techniques. The Augmented Dickey Fuller

test, which tests for the absence of such trends, was

recently applied to quantify gut microbiota stability

[19��].

Predictability analysis compares the ability of different

models to predict future behavior of a time series based

on earlier observations. Benincà and co-workers demon-

strated, for instance, that a non-linear model significantly

outperformed the best-fitting linear model in predicting

temporal dynamics of phytoplankton communities [47��].
Rapid decrease in predictability with increasing predic-

tion time hints at chaotic systems that are sensitive to

small changes in initial conditions and perturbations, and
Current Opinion in Microbiology 2015, 25:56–66 
hence not predictable in the long term. Positive (maxi-

mum) Lyapunov exponents for selected taxa from the

Western English Channel time series [3] in Figure 3 hint

at chaos underneath seasonal variation. This is in line with

Dakos et al., who suggested that chaotic community

dynamics is coupled with periodic forcing by the seasons

[48]. However, distinguishing chaos from stochastic vari-

ation is challenging, and Lyapunov estimation is more

robust when derived from explicit dynamical models

rather than noisy observations; Benincà et al. calculated

Lyapunov exponents both from the observational data

and a model fitted to these data to test for chaotic

dynamics.

Alternative stable states and early warning signs

Arumugam and colleagues suggested that the human gut

microbiota preferentially assembles into three configura-

tions of community composition known as enterotypes

[49]. Since enterotypes have been linked to dietary habits

[22,50], they might represent alternative states driven by

external factors (Figure 1a) rather than multi-stability

(Figure 1b). Though the exact nature of enterotypes is

being debated [51], members of the enterotype drivers

such as Prevotella and Bacteroides, as well as many other

gut taxa, have been suggested to present independently

varying, bistable ‘tipping elements’ of the gut microbiota,

where the bistability is reflected by bimodal distributions

with peaks at low and at high abundances ([52], Supple-

mentary Figure 3), coupled with reduced stability at the

intermediate abundance range. We also detected a bis-

table genus in the vaginal microbiota [53��], whose states

of low and high abundance are visible across time in a

single subject as well as across subjects (Figure 4). While

sample clustering based on community similarity is fre-

quently applied to discover alternative states in microbial

communities (e.g. [49,53��,54]), sample-wise clustering is

not sufficient for establishing multi-stability, as the clus-

ters could be associated with unknown environmental

factors.

Even a small perturbation may trigger an abrupt shift to a

new stable state in a system that is close to a bifurcation or

‘tipping’ point (Figure 1). The theory of early warning

signs claims that such abrupt state switches can be pre-

dicted from the time series directly. For instance, the

increasing recovery time from small perturbations, as the

system reaches the tipping point, can be quantified [55��].
Such early warning signs have been reported for instance

in lake ecosystems [56].

Discussion
The measurement technique, spatial and temporal fre-

quency of the sampling as well as the availability of

replicates can all strongly affect the results of a time

series analysis. Whereas frequent sampling is crucial to

capture the full richness of community dynamics [57�],
the ideal sampling frequency depends on the system
www.sciencedirect.com
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Figure 2
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Time-varying association network between gut microbiota members (data from [19��], individual A) shows considerable variation in the community

network over time. (a) The clustered network summarizes 31 time-window-specific networks, constructed with CoNet [29]. Edges represent global

associations between organisms as well as those specific to certain time-periods. For instance, there are edges specific to home periods (in red)

and edges present in both travel and home periods (in green; stable edges). The boxed subnetworks show the first neighbors of the fiber and

calorie intake metadata nodes (available for home periods). Prevotella and Ruminococcus OTUs are inversely correlated with calorie and fiber

intake, respectively, whereas Bifidobacterium and Coprococcus OTUs (OTU-190464 is a Lachnospiraceae member of unknown genus) are

correlated with fiber intake, as reported in [19��]. Supplementary Figure 1 summarizes positive and negative class-level relationships, respectively.

(b) All edges occurring in both home and travel periods are stable. Overall, 65% of interactions can be categorized as stable across time, with

28% and 7% of associations being intermediate and unstable, respectively. Remarkably, one third of the unstable edges occurs in only one

window, namely in the home-coming period. (c) Phylum-level node composition changes slightly between stability categories, with Proteobacteria

engaging more in time-independent, stable interactions, while Firmicutes having more intermediate and unstable associations over time. (d) Stable

edges contribute a higher percentage to co-presences than to mutual exclusions or to mixed interactions (where edges change their interaction

type across windows). Stability-stratified edge percentages, phyla and interaction types were computed prior to network clustering.
characteristics, rate of change, and the study hypotheses.

In ocean microbiomes driven by seasonal patterns, typical

sampling intervals range from weeks to months [48],

whereas, for instance, in vaginal microbiomes more regu-

lar sampling frequencies counted in days have been used

[53��]. Different sampling frequencies can be used to

quantify different, complementary properties of a system
www.sciencedirect.com 
and can even change the associations inferred from the

time series data, as demonstrated for SAR11 members,

which were highly correlated on a daily, but not on a

monthly scale [58]. While seasonality typically charac-

terizes the strongest signal at broader sampling intervals

in marine communities, denser sampling can reveal cha-

otic fluctuations [48].
Current Opinion in Microbiology 2015, 25:56–66
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Figure 3
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Standardized abundance profiles from the Western English Channel microbiota time series [3�] spanning six years (upper panel, light and gray

bars representing summer and winter). As reported in Gilbert et al., the seasonality of specific taxa is visible in their abundance profiles and

autocorrelograms (lower panel), which present the correlation of the time series with itself for different lags. The stronger the seasonal pattern, the

more closely the autocorrelogram approaches a periodic function. Rickettsiales are an interesting exception: their dynamics is a combination of

seasonal fluctuation and a three-year periodicity (three-year peak in the autocorrelogram). Insets in the autocorrelograms quantify the extent and

regularity of the fluctuations with the Hurst (H) and the (maximal) Lyapunov exponent (L), estimated from interpolated and standardized time

series. Hurst and Lyapunov exponent point out Rickettsiales as the most persistent and irregular and Alphaproteobacteria as the least persistent

and most regular taxon.
In general, increased sampling frequencies can provide

increased resolution on the system dynamics, but there

are limits due to costs and, in host microbiota studies,

ethical issues. Besides sampling frequency, the regularity

of sampling is an important factor for many analysis

techniques, such as autocorrelation. Interpolation can

provide estimates for specific time points when regular

sampling intervals are not available, but can also be

misleading if it relies on inaccurate modeling assump-

tions.

Although many standard approaches for longitudinal

analysis require long time series with short and regular

sampling intervals, the currently available metagenomic

time series tend to be short (few time points), gapped

(missing time points), sparse (zero-rich) and noisy, neces-

sitating preprocessing steps such as filtering, standardiz-

ing, interpolation and detrending to make time points

equidistant and comparable. Small sample sizes and low

signal-to-noise ratios combined with heavy multiple test-

ing from simultaneous profiling of up to thousands of

taxonomic units poses challenges for statistical analyses.
Current Opinion in Microbiology 2015, 25:56–66 
These problems with microbiome time series are partic-

ularly challenging in human studies, where recruitment

and regular sampling of study participants under specific

interventions and over long periods of time can be diffi-

cult and expensive. Another challenge to the analysis of

microbial time series is the interplay of population and

environmental dynamics, especially in air, river and ocean

currents [58]. For instance, the importance of hydrological

parameters and upstream events was recently demon-

strated for river communities [59]. In general, dynamic

environments increase sample heterogeneity, which can

only be addressed by combining longitudinal with cross-

sectional sampling.

While simulations with varying time series lengths and

noise levels may help to determine the required number

of time points for particular analysis tasks, the analyses

could also benefit from improved statistical techniques to

integrate information across multiple time series [60]. A

recent study demonstrated how pooling data from short

time series across many individuals helps to quantify state

stability in large cohorts [52]. Moreover, distinguishing
www.sciencedirect.com
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Figure 4
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PCA visualization (a) summarizing the vaginal microbial community compositions encountered in a cohort of 32 healthy women (data from [53��]).

The visualization shows the trajectory (black line) of an individual (subject 10) through community composition space. The community types

identified by Gajer et al. are indicated by red (I), black (II), green (III), purple (IVA) and blue (IVB); the gray background shade indicates the density

of data points (in samples of the entire cohort). The trajectory highlights an abrupt shift from community type III to the community type IVA in

subject 10. The heatmap (b) visualizes the abundance of the most abundant vaginal OTUs in individual 10 across time (horizontal axis). Blue and

red indicate low and high abundance, respectively, with respect to mean abundance of the indicated OTU across all samples. The Atopobium

abundance variation across time is highlighted by a black frame and seen to switch from low to high abundance in the 8th week, after the onset

of menses. (c) Time series of Atopobium abundances for subject 10 across the sampling period (upper panel). The abundance histogram (middle

panel) indicates two distinct states of low (blue) and high (red) abundance, confirmed by a high bimodality coefficient of 0.95 (implemented in the

microbiome R package). The illustration of Atopobium abundances (lower panel; black dots) in all 32 subjects (horizontal lines) further indicates

that low and high abundance states are divided by an unstable state, or a tipping point beyond which the system shifts to an alternative stable

state (dashed line). This indicates instability at the intermediate abundance range.
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between complex system dynamics such as chaos and

stochastic variation, or ‘noise’, can be challenging [61],

but can be to some extent addressed by systematic model

comparisons [47��,61].

Whereas tests of community stability [19��] and early

warning signs help to understand community dynamics,

abrupt state shifts may also occur in response to unpre-

dictable external perturbations. Uncontrolled environ-

mental factors (confounding factors) can also hamper

dynamic network inference, when a relationship is in-

ferred between two taxa that respond to changing envi-

ronmental factors, but do not interact. Thus, time series

alone are not sufficient to distinguish correlation from

causality.

The investigation of the impact of network structure on

state transitions is still in its infancy [55��]. An interesting

future line of research is to explore whether time-varying

networks have ‘early warning’ properties that can predict

such transitions.

Despite the challenges, time series analysis techniques

already provide a rich set of tools to gain insights into

temporal patterns, help to understand system dynamics

and responses to perturbation, and to construct predictive

models. We hope that this review will help to apply these

powerful techniques in microbiology and metagenomics,

where longitudinal time series and associated modeling

challenges are now being encountered at an accelerating

pace.

Acknowledgements
We would like to thank Lawrence A. David and Jack A. Gilbert for sending
us their data sets, as well as Gipsi Lima-Mendez, Flora Vincent and Nicolas
Henry for helpful discussions. In addition, we thank our reviewers for their
insightful comments.

K. Faust and J. Raes are supported by the Research Foundation Flanders
(FWO), the Flemish agency for Innovation by Science and Technology
(IWT), the EU-FP7 grant METACARDIS HEALTH-F4-2012-305312, by
KU Leuven and the Rega Institute. L. Lahti and W. de Vos benefit from
grants of the Academy of Finland (256950 and 141140, respectively), the
European Research Council (ERC250172) and the Alfred Kordelin
foundation.

Appendix A. Supplementary data
Supplementary data associated with this article can be

found, in the online version, at http://dx.doi.org/10.1016/j.

mib.2015.04.004.

References and recommended reading
Papers of particular interest, published recently, have been highlighted
as:

� of special interest
�� of outstanding interest

1. Shade A, Gregory Caporaso J, Handelsman J, Knight R, Fierer N: A
meta-analysis of changes in bacterial and archaeal
communities with time. ISME J 2013, 7:1493-1506.
Current Opinion in Microbiology 2015, 25:56–66 
2. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV,
Naee S: Annually reoccurring bacterial communities are
predictable from ocean conditions. Proc Natl Acad Sci U S A
2006, 103:13104-13109.

3.
�

Gilbert JA, Steele JA, Caporaso JG, Steinbrueck L, Reeder J,
Temperton B, Huse S, McHardy AC, Knight R, Joint I et al.:
Defining seasonal marine microbial community dynamics.
ISME J 2012, 6:298-308.

This study demonstrates plankton seasonality in one of the longest
marine time series available, consisting of monthly samples spanning
six years. It also provides an example to what extent a rare taxon can
dominate the community in a bloom.

4. Giovannoni SJ, Vergin KL: Seasonality in ocean microbial
communities. Science 2012, 335:671-676.

5. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS
Jr: RJP: Communication among oral bacteria. Microbiol Mol
Biol Rev 2002, 66:486-505.

6. Fierer N, Nemergut D, Knight R, Craine JM: Changes through
time: integrating microorganisms into the study of
succession. Res Microbiol 2010, 161:635-642.

7. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO:
Development of the human infant intestinal microbiota. PLoS
Biol 2007, 5:1556-1573.

8. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH,
Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS et al.:
Structure, function and diversity of the healthy human
microbiome. Nature 2012, 486:207-214.

9. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C,
Nielsen T, Pons N, Levenez F, Yamada T et al.: A human gut
microbial gene catalogue established by metagenomic
sequencing. Nature 2009, 464:59-65.

10. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A,
Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N et al.: Moving
pictures of the human microbiome. Genome Biol 2011, 12:R50.

11. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H,
Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL et al.:
The long-term stability of the human gut microbiota. Science
2013, 341:1237439.

12. Zoetendal EG, Akkermans ADL, de Vos WM: Temperature
gradient gel electrophoresis analysis of 16S rRNA from human
fecal samples reveals stable and host-specific communities of
active bacteria. Appl Environ Microbiol 1998, 64:3854-3859.
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