
Information Processing Letters 115 (2015) 643–647

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Longest common substrings with k mismatches

Tomas Flouri a, Emanuele Giaquinta b,∗, Kassian Kobert a, Esko Ukkonen c

a Heidelberg Institute for Theoretical Studies, Germany
b Department of Computer Science, Aalto University, Finland
c Department of Computer Science, University of Helsinki, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2014
Received in revised form 16 March 2015
Accepted 16 March 2015
Available online 20 March 2015
Communicated by Ł. Kowalik

Keywords:
Combinatorial problems
String algorithms
Hamming distance
Longest common substring

The longest common substring with k-mismatches problem is to find, given two strings
S1 and S2, a longest substring A1 of S1 and A2 of S2 such that the Hamming distance
between A1 and A2 is ≤ k. We introduce a practical O (nm) time and O (1) space solution
for this problem, where n and m are the lengths of S1 and S2, respectively. This algorithm
can also be used to compute the matching statistics with k-mismatches of S1 and S2 in
O (nm) time and O (m) space. Moreover, we also present a theoretical solution for the k = 1
case which runs in O (n log m) time, assuming m ≤ n, and uses O (m) space, improving over
the existing O (nm) time and O (m) space bound of Babenko and Starikovskaya [1].

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In this paper we study the longest common substring
(or factor) with k-mismatches problem (k-LCF for short1)
which consists in finding the longest common substring
of two strings S1 and S2, while allowing for at most k
mismatches, i.e., the Hamming distance between the two
substrings is ≤ k. This problem is a generalization of the
Longest Common Substring problem [2–4] and is similar to
the threshold all-against-all problem defined by Gusfield [2]
and to the local alignment problem of biological sequence
analysis. In the threshold all-against-all problem the goal
is to find all the pairs of substrings of S1 and S2 such
that the corresponding edit distance is less than a given
number d. The difference in the k-LCF problem is that the
distance used is the Hamming distance rather than the
edit distance, and that we are interested in the pairs of
substrings of maximal length only. In the local alignment

* Corresponding author.
E-mail address: emanuele.giaquinta@aalto.fi (E. Giaquinta).

1 We use the k-LCF abbreviation as LCS usually refers to the Longest
Common Subsequence problem.
http://dx.doi.org/10.1016/j.ipl.2015.03.006
0020-0190/© 2015 The Authors. Published by Elsevier B.V. This is an open acces
(http://creativecommons.org/licenses/by/4.0/).
problem, which can be solved in O (|S1| · |S2|) time using
the Smith–Waterman algorithm [5], the goal is to compute
a pair of substrings of S1 and S2 such that the correspond-
ing similarity, according to a suitable scoring function, is
maximum over all the pairs of substrings. In particular, if
the scoring function is such that the score of a match is 1,
the score of a mismatch is 0 and gaps are not allowed, a
solution of the local alignment problem is comparable to
one of the k-LCF problem, with the difference that there is
no bound on the number of mismatches.

Babenko and Starikovskaya [1] studied the case of 1
mismatch only and presented an algorithm for the 1-LCF
problem which runs in O (|S1| · |S2|) time. A closely related
problem is the one of computing the matching statistics
with k mismatches. The matching statistics, introduced by
Chang and Lawler [6] for the approximate string match-
ing problem, is an array ms of |S2| integers such that ms[i]
is the length of the longest substring of S2 that starts at
position i and matches exactly some substring of S1, for
i = 0, . . . , |S2| − 1. A natural generalization is obtained by
allowing the matching to be approximate, with respect to
the Hamming distance. Recently, Leimeister and Morgen-
stern [7] presented a greedy heuristic for the computation
of the matching statistics with k mismatches, which runs
s article under the CC BY license

https://core.ac.uk/display/84365859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ipl.2015.03.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://creativecommons.org/licenses/by/4.0/
mailto:emanuele.giaquinta@aalto.fi
http://dx.doi.org/10.1016/j.ipl.2015.03.006
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.03.006&domain=pdf

644 T. Flouri et al. / Information Processing Letters 115 (2015) 643–647
in O (|S1| · k · z) time, where z is the maximum number
of occurrences in S2 of a string of maximal length which
occurs in both S1 and S2.

In this paper we present two novel contributions. Our
first result is an efficient algorithm for the k-LCF problem
which runs in time O (|S1| · |S2|) and only requires a con-
stant amount of space. This algorithm can also be used to
compute the matching statistics with k mismatches with
no overhead in the time complexity, i.e., in O (|S1| · |S2|)
time, and using O (|S2|) space. Our second result is an al-
gorithm for the 1-LCF problem, i.e., for the k = 1 case. We
show how to solve this instance in a more time efficient
manner by using results from Crochemore et al. [8] for
finding the longest generalized repeat(s) with one block of
k adjacent don’t care symbols. Assuming |S2| ≤ |S1|, our
algorithm takes time O (|S1| log |S2|), improving over the
previous bound of O (|S1| · |S2|).

2. Basic definitions

Let � be a finite alphabet of symbols and let �∗ be
the set of strings over �. Given a string S ∈ �∗ , we de-
note by |S| the length of S and by S[i] the i-th symbol
of S , for 0 ≤ i < |S|. Given two strings S and S ′ , S ′ is
a substring of S if there are indices 0 ≤ i ≤ j < |S| such
that S ′ = S[i]...S[j]. If i = 0 (j = |S| − 1) then S ′ is a
prefix (suffix) of S . We denote by S[i.. j] the substring
of S starting at position i and ending at position j. For
i > j we obtain the empty string ε. Finally, we denote by
Sr = S[|S| − 1]S[|S| − 2] . . . S[0] the reverse of the string S .

The suffix tree T (S) of a string S is a rooted directed
tree with |S ′| leaves and edge labels over (� ∪ {$})∗ \ {ε},
where $ /∈ � and S ′ = S$. Each internal node has at least
two children and is such that the edge labels of the chil-
dren have different first symbols. For each leaf i, the con-
catenation of the edge labels on the path from the root to
leaf i is equal to S ′[i..|S ′| −1]. Assuming a constant size al-
phabet, the suffix tree can be built in O (|S|) time [2]. For
any node u in T (S), depth(u) denotes the length of the
string labeling the path from the root to u. For any pair
of nodes u, v in T (S), LCA(u, v) denotes the lowest com-
mon ancestor of u and v , i.e., the deepest node in T (S)

that is ancestor of both u and v . The suffix tree can be
preprocessed in O (|S|) time so as to answer LCA queries
in constant time [9]. We denote by B(S) the binary suf-
fix tree obtained by replacing each node u in T (S) with
out-degree at least 2 with a binary tree with d − 1 inter-
nal nodes (whose depth values are equal to depth(u)) and
d − 2 internal edges, where the d leaves are the d children
of u. The binary suffix tree can be built in O (|S|) time [8].
The generalized suffix tree T (S1, S2) of two strings S1
and S2 is the suffix tree built over S ′ = S1$1 S2$2, where
$1, $2 /∈ �, such that the leaves are numbered with a pair
(s-index) and for each leaf (j, l) the concatenation of the
edge labels on the path from the root to the leaf is equal
to S j[l..|S j| − 1]$ j . The index of a leaf (j, l) is the starting
position of S j[l..|S j | − 1]$ j in S1$1 S2$2. We use the nota-
tion B(S1, S2) to denote the binary generalized suffix tree
of S1 and S2.
3. The longest common substring with k mismatches
problem

Let S1 and S2 be two strings with n = |S1|, m = |S2|.
W.l.o.g. we assume that n ≥ m. Given an integer k, let
φ(i, j) be the length of the longest substring of S1 and
S2 ending at position i and j, respectively, such that the
two substrings have Hamming distance at most k. For-
mally, φ(i, j) is equal to the largest integer l ≤ min(i, j) +1
such that

|{0 ≤ h ≤ l − 1 | S1[i − h] �= S2[j − h]}| ≤ k ,

for 0 ≤ i < n, 0 ≤ j < m. The longest common substring with
k-mismatches problem consists in, given two strings S1 and
S2 and an integer k, finding the length of the longest sub-
strings of S1 and S2 with Hamming distance at most k, i.e.,
maxi, j φ(i, j).

4. A practical algorithm for arbitrary k

In this section we present a practical algorithm for the
k-LCF problem. By definition, φ(i, j) is also the length of
the longest suffixes of S1[0..i] and S2[0.. j] with Ham-
ming distance at most k. Our algorithm computes all the
values φ(i, j) based on this alternative formulation. The
idea is to iterate over the φ matrix diagonal-wise and
compute, for a fixed (i, j) ∈ {(0, 0), (0, 1), . . . , (0, m − 1)} ∪
{(1, 0), (2, 0), . . . , (n − 1, 0)}, the values φ(i + p, j + p), for
0 ≤ p < min(n − i, m − j), i.e., the diagonal starting at (i, j),
in O (m) time. Let Q be an (empty) queue data structure
and s = 0, for a given pair (i, j). The algorithm iterates over
p maintaining the invariant that p − s is the length of the
longest common suffix of S1[i..i + p − 1] and S2[j.. j +
p − 1] up to k-mismatches, i.e., p − s = φ(i + p − 1,

j + p − 1), and that Q contains exactly the positions in
S1 of the mismatches between S1[i + s..i + p − 1] and
S2[j + s.. j + p −1] with the order of elements in the queue
matching their natural order.

At the beginning the invariant holds since Q is empty,
p −s = 0 and S1[i + s..i + p − 1] = S2[j + s.. j + p − 1] = ε.
Suppose that the invariant holds up to position p. If
S1[i + p] = S2[j + p] then the invariant trivially holds also
for p + 1 with s′ = s and Q ′ = Q . Otherwise, we have
a mismatch between S1[i + p] and S2[j + p]. If |Q | < k,
then the invariant also holds for p + 1 with s′ = s and
Q ′ equal to Q after an enqueue(Q , p) operation. In-
stead, if |Q | = k, the pair of suffixes S1[i + r..i + p] and
S2[j + r.. j + p], for r = s, . . . , min Q , match with k + 1
mismatches and r = min Q + 1 is the minimum position
for which the corresponding suffixes match with k mis-
matches. Hence, in this case the invariant also holds for
p + 1 with s′ = min Q + 1 and Q ′ equal to Q after a de-

queue operation followed by an enqueue(Q , p) operation.
The algorithm maintains the largest length found up to

the current iteration and the starting positions of the cor-
responding substrings in S1 and S2, such that the position
in S1 is minimal, in three integers �, r1, and r2. Each time
p − s > � it updates their values accordingly. The code of
the algorithm is shown in Fig. 1. The time complexity of
one iteration of the algorithm is O (1) if the queue oper-
ations take constant time, which yields O (m) time for a

T. Flouri et al. / Information Processing Letters 115 (2015) 643–647 645
k-lcf(S1, S2,k)

1. n ← |S1|
2. m ← |S2|
3. � ← 0, r1 ← 0, r2 ← 0
4. for d ← −m + 1 to n − 1 do
5. i ← max(−d,0) + d
6. j ← max(−d,0)

7. Q ← ∅
8. s ← 0, p ← 0
9. while p ≤ min(n − i,m − j) − 1 do

10. if S1[i + p] �= S2[j + p] then
11. if |Q | = k then
12. s ← min Q + 1
13. dequeue(Q)

14. enqueue(Q , p)

15. p ← p + 1
16. if p − s > � then
17. � ← p − s
18. r1 ← i + s
19. r2 ← j + s

Fig. 1. The algorithm to compute the longest common substring up to
k-mismatches of two strings.

fixed i and O (nm) time in total. The space complexity is
O (k), as the queue contains at most k elements at any it-
eration.

For scanning one diagonal of φ, the algorithm needs
time that is proportional to the length of the diagonal. This
can be improved such that the time requirement becomes
proportional to the number of mismatches along the di-
agonal, by using the well-known technique that performs
LCA queries on the generalized suffix tree of S1 and S2 to
find, in constant time, how far the next mismatch is from
the current one [10]. This gives an algorithm for the k-LCF
problem that runs in time proportional to the number of
pairs (i, j) such that S1[i] �= S2[j].

Constant-space variant the algorithm can also be modified
to use O (1) space at the price of a constant factor in the
running time. We replace the queue with one integer q,
encoding the number of mismatches (number of elements
in the queue). The dequeue and enqueue operations then
become q ← q − 1 and q ← q + 1, respectively. The update
of s requires the computation of min Q + 1, which, by def-
inition, is equal to the smallest position s′ > s such that
S1[i + s′ − 1] �= S2[j + s′ − 1]. To this end, we simply scan
S1 and S2 from position i + s and j + s, respectively, until
we find a mismatch. As each symbol of S1 and S2 is looked
up at most twice, the time complexity does not change. In
practice, using an explicit queue is preferable, as it allows
one to avoid rescanning the already scanned parts of the
strings.

Matching statistics with k mismatches finally, we describe
how to compute the matching statistics with k mismatches
of S2 with respect to S1. The matching statistics with k
mismatches of S2 w.r.t. S1 is an array msk of m inte-
gers such that msk[i] is the length of the longest prefix of
S2[i..m − 1] that matches a substring of S1 with at most k
mismatches, for i = 0, . . . , m − 1. Using the algorithm de-
scribed above, the array msk can be computed in O (nm)

time and O (m) space as follows: first, we initialize each
slot of msk to 0; then, we run our algorithm on Sr

1 and Sr
2,

i.e., on the reverse of the strings S1 and S2, and for each
computed cell φ(i, j) we set msk[m −1 − j] = max(msk[m −
1 − j], φ(i, j)). At the end of the procedure we thus have
msk[m − 1 − j] = maxi φ(i, j), for 0 ≤ j < m. The correct-
ness of this procedure follows by observing that i) a suffix
of Sr[0..i] is the reverse of a prefix of S[|S| −1 − i..|S| −1],
for any string S and 0 ≤ i < |S|, and ii) φ(i, j) is the length
of the longest suffixes of Sr

1[0..i] and Sr
2[0.. j] with Ham-

ming distance at most k. Hence, maxi φ(i, j) is the length
of the longest prefix of S2[m − 1 − j..m − 1] that matches
a substring of S1 with at most k mismatches.

Note that the φ matrix for S1 and S2 immediately gives
a dual matching statistics, where msk[i] is defined as the
length of the longest suffix of S2[0..i] that matches a sub-
string of S1 with a most k mismatches. In practical appli-
cations this alternative matching statistics could be equally
good.

5. Longest common substring with 1 mismatch

In this section we describe an algorithm that solves the
1-LCF problem. We first introduce some necessary tech-
nical definitions. Given a string S , a pair of substrings
((p1, q1), (p2, q2)) of S is a repeated pair if S[p1..q1] =
S[p2..q2]. A repeated pair ((p1, q1), (p2, q2)) is left-maxi-
mal (right-maximal) if S[p1 − 1] �= S[p2 − 1] (S[q1 + 1] �=
S[q2 + 1]). Given a string S , a repeat is a substring of S
that corresponds to a repeated pair. A repeat w of S is
left-maximal (right-maximal) if there exists a left-maximal
(right-maximal) repeated pair ((p1, q1), (p2, q2)) such that
S[p1..q1] = S[p2..q2] = w . Let ∗ be the don’t care symbol,
i.e., a symbol that matches any symbol of �. A k-repeat of
S is a string of the form u ∗k v that matches more than
one substring of S , where u, v ∈ �∗ and k > 0. A longest
k-repeat is a k-repeat of maximum length. A necessary
condition for a k-repeat u ∗k v to be longest is that, for
each pair ((p1, q1), (p2, q2)) of substrings matching the re-
peat, ((p1, p1 +|u| −1), (p2, p2 +|u| −1)) is a left-maximal
repeated pair and ((p1 + |u| + k, q1), (p2 + |u| + k, q2)) is a
right-maximal repeated pair.

The idea is to reduce the 1-LCF problem to the one of
computing the longest 1-repeats of S̄ = S1$1 S2$2 that oc-
cur in both S1 and S2, where $1, $2 are two symbols not
in �. Let � = maxi, j φ(i, j) for k = 1, and let i′, j′ be such
that φ(i′, j′) = �. Consider the strings A1 = S1[i′ − � + 1..i′]
and A2 = S2[j′ − � + 1.. j′]. It is not hard to see that the
string A1[0..p − 1] ∗ A1[p + 1..� − 1] is a longest 1-repeat
of S̄ that occurs in both S1 and S2, where either A1 = A2
and 0 ≤ p ≤ � − 1 or A1 �= A2 and p is the position corre-
sponding to the single mismatch between A1 and A2.

To this end, we use a modified version of the algo-
rithm all-longest-k-repeats by Crochemore et al. to find
the longest k-repeats of a string [8]. The idea is to run this
algorithm on the string S̄ with k = 1. With this input, the
original algorithm reports all the longest 1-repeats of S̄ .
To solve our problem we need to add the constraint that
the 1-repeats must occur in both S1 and S2. As the longest
such repeats can be shorter than the unconstrained longest
1-repeats of S̄ , the all-longest-k-repeats algorithm must
be modified accordingly.

The all-longest-k-repeats algorithm is structured in
the following steps:

646 T. Flouri et al. / Information Processing Letters 115 (2015) 643–647
1. build the suffix tree T (S) of S and compute the or-
dering no of the leaves induced by a depth-first visit;
build the binary suffix tree B(Sr) of Sr and associate
to each leaf u with index i a list Au equal to {no(ī)}, if
i ≥ k, and to ∅ otherwise, where ī = |S| − i + k; γ ← 0

2. for u ∈ B(Sr) in depth-first order with children u1 and
u2 do
(a) find-longest(Au1 , Au2 , depth(u) + k, γ)

(b) Au ← merge(Au1 , Au2)

where merge(L1, L2) merges two lists L1, L2, and find-

longest is defined as follows:

find-longest(L1, L2, l, γ)

1. (i1, i2) ← (1,2)

2. if |L1| > |L2| then (i1, i2) ← (2,1)

3. for p ∈ Li1 in ascending order do
4. q ← max{ j ∈ Li2 | j ≤ p}, r ← min{ j ∈ Li2 | j > p}
5. v pq = LCA(no−1(p), no−1(q)),

v pr = LCA(no−1(p), no−1(r))
6. γ ← max(γ , l + max(depth(v pq),depth(v pr)))

where the LCA queries are performed on T (S). At the
end of the algorithm the value of γ is the length of
the longest k-repeat(s) of S . If the lists L1, L2 are imple-
mented using AVL-trees, the time complexity of the merge

and find-longest procedures is O (m log(n/m)) [11], where
m = min(|L1|, |L2|), n = max(|L1|, |L2|), and the algorithm
can be proved to run in O (|S| log |S|) time. The main prop-
erty on which the algorithm is based is the following
lemma:

Lemma 1. Let u, v, w be leaves in the suffix tree of S with cor-
responding depth-first ordering of leaves no. If no(u) < no(v) <
no(w) or no(w) < no(v) < no(u) then depth(LCA(u, v)) ≥
depth(LCA(u, w)).

Let L(u) be the list containing the integer ī for each
leaf with index i in the subtree of node u of B(Sr). The
idea is to iterate over all the left-maximal repeats of S us-
ing B(Sr) and for each pair (p1, p2) of indexes in L(u) of
such a repeat u compute the right-maximal repeat start-
ing at position p1 and p2 using an LCA query on T (S).
It turns out, by the above lemma, that, for a given in-
dex p ∈ L(u), it is enough to check the pairs (p, q) and
(p, r) where q and r are the indexes of the closest leaves
to leaf p in T (S), with respect to the ordering no, such
that q, r ∈ L(u).

Our modification consists in the following: we replace
T (S) with the generalized suffix tree of S1 and S2 and
B(Sr) with the binary generalized suffix tree of Sr

1 and Sr
2.

Let L j(u) be a list containing the integer ī, for each leaf
with s-index (j, l) and index i in the subtree of node u of
B(Sr

1, S
r
2), provided that l ≥ k, for j = 1, 2. The condition

l ≥ k ensures that the occurrence of u in S j ending at po-
sition |S j | − 1 − l can be extended by k don’t care symbols
to the right, as otherwise there can be no k-repeat with
left part equal to the reverse of u label matching a prefix
of S j[|S j | − 1 − l − depth(u) + 1..|S j | − 1]. Our goal is to it-
erate over pairs in L1(u) × L2(u) only by computing, for a
given index p ∈ L1(u), the indexes q and r of the closest
leaves to leaf p in T (S1, S2), with respect to the order-
ing no, such that q, r ∈ L2(u), and vice versa if p ∈ L2(u).
To accomplish this, it is enough to associate to each leaf
u of B(Sr

1, S
r
2) with s-index (j, l) and index i two lists,

A1
u and A2

u : if l < k the lists are empty; otherwise, if j = 1

then A1
u = {no(ī)} and A2

u = ∅, and vice versa if j = 2. Then,
we change the operations in the second step of the algo-
rithm as follows:

(a) find-longest(A1
u1

, A2
u2

, depth(u) + k, γ)

(b) find-longest(A2
u1

, A1
u2

, depth(u) + k, γ)

(c) A1
u ← merge(A1

u1
, A1

u2
)

(d) A2
u ← merge(A2

u1
, A2

u2
)

In this way we iterate only over pairs ((p1, q1), (p2, q2)) of
S̄ matching a 1-repeat and such that 0 ≤ p1, q1 ≤ |S1| − 1
and |S1| + 1 ≤ p2, q2 ≤ |S1| + |S2|, or vice versa. At the end
of the algorithm the value of γ is the length of the longest
k-repeat(s) of S̄ that occur in both S1 and S2.

We now prove that the time complexity of steps a, b, c,
and d is O (m log(n/m)), where m = min(|Au1 |, |Au2 |), n =
max(|Au1 |, |Au2 |), i.e., there is only a constant overhead
compared to the original algorithm. Suppose w.l.o.g. that
m = |Au1 |, n = |Au2 | and let mi = |Ai

u1
| and n j = |A j

u2 |, for
1 ≤ i, j ≤ 2. Note that m ≥ m1 +m2 and n ≥ n1 +n2. Step a,
b, c, or d takes i) O (mi log(n j/mi)) = O (mi log(n/mi))

time, if mi ≤ n j ; ii) O (n j log(mi/n j)) = O (n j log(n/n j))

time otherwise, where n j ≤ mi . We show that a log(n/a) ≤
m log(n/m) for any 1 ≤ a ≤ m. This inequality can be writ-
ten as f (m)− f (a)

m−a ≤ log n where f (x) = x log x. We have
f ′(x) = log x and, by the mean value theorem, there
exists c ∈ (a, m) such that f (m)− f (a)

m−a = log c ≤ log m ≤
log n.

The total time complexity of our algorithm for the
1-LCF problem is thus O ((n + m) log(n + m)). Assuming
m ≤ n, we can reduce it to O (n log m) by partitioning S1
into overlapping substrings of length 2m such that the
overlap between two consecutive substrings is of length
m, and running the algorithm on each substring and S2.
Formally, we run the algorithm on S1[m · i.. min(m · i +
2m, n) −1] and S2 and obtain a value γi , for 0 ≤ i < �n/m�.
Then, � = maxi γi . The time complexity of this algorithm is
O ((n/m)m log m) = O (n log m).

Acknowledgements

We thank the anonymous reviewers for helpful com-
ments.

References

[1] M.A. Babenko, T.A. Starikovskaya, Computing the longest common
substring with one mismatch, Probl. Inf. Transm. 47 (1) (2011)
28–33.

[2] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Computer
Science and Computational Biology, Cambridge University Press,
1997.

[3] T.A. Starikovskaya, H.W. Vildhøj, Time-space trade-offs for the longest
common substring problem, in: CPM, 2013, pp. 223–234.

http://refhub.elsevier.com/S0020-0190(15)00045-9/bib426162656E6B6F3131s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib426162656E6B6F3131s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib426162656E6B6F3131s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4775736669656C6431393937s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4775736669656C6431393937s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4775736669656C6431393937s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib53746172696B6F76736B617961563133s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib53746172696B6F76736B617961563133s1

T. Flouri et al. / Information Processing Letters 115 (2015) 643–647 647
[4] T. Kociumaka, T.A. Starikovskaya, H.W. Vildhøj, Sublinear space al-
gorithms for the longest common substring problem, in: ESA, 2014,
pp. 605–617.

[5] T.F. Smith, M.S. Waterman, Identification of common molecular sub-
sequences, J. Mol. Biol. 147 (1) (1981) 195–197.

[6] W.I. Chang, E.L. Lawler, Sublinear approximate string matching and
biological applications, Algorithmica 12 (4/5) (1994) 327–344.

[7] C.-A. Leimeister, B. Morgenstern, kmacs: the k-mismatch average
common substring approach to alignment-free sequence comparison,
Bioinformatics 30 (14) (2014) 2000–2008.
[8] M. Crochemore, C.S. Iliopoulos, M. Mohamed, M.-F. Sagot, Longest re-
peats with a block of k don’t cares, Theor. Comput. Sci. 362 (1–3)
(2006) 248–254.

[9] M.A. Bender, M. Farach-Colton, The LCA problem revisited, in: LATIN,
2000, pp. 88–94.

[10] G.M. Landau, U. Vishkin, Introducing efficient parallelism into ap-
proximate string matching and a new serial algorithm, in: STOC,
1986, pp. 220–230.

[11] M.R. Brown, R.E. Tarjan, A fast merging algorithm, J. ACM 26 (2)
(1979) 211–226.

http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4B6F6369756D616B6153563134s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4B6F6369756D616B6153563134s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4B6F6369756D616B6153563134s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib536D697468573831s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib536D697468573831s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4368616E674C3934s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4368616E674C3934s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4C65696D6569737465724D3134s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4C65696D6569737465724D3134s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4C65696D6569737465724D3134s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib43726F6368656D6F7265494D533036s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib43726F6368656D6F7265494D533036s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib43726F6368656D6F7265494D533036s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib42656E646572463030s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib42656E646572463030s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4C616E646175563836s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4C616E646175563836s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib4C616E646175563836s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib42726F776E543739s1
http://refhub.elsevier.com/S0020-0190(15)00045-9/bib42726F776E543739s1

	Longest common substrings with k mismatches
	1 Introduction
	2 Basic deﬁnitions
	3 The longest common substring with k mismatches problem
	4 A practical algorithm for arbitrary k
	5 Longest common substring with 1 mismatch
	Acknowledgements
	References

