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a b s t r a c t

There is an increasing need for environmental management advice that is wide-scoped, covering various
interlinked policies, and realistic about the uncertainties related to the possible management actions. To
achieve this, efficient decision support integrates the results of pre-existing models. Many environmental
models are deterministic, but the uncertainty of their outcomes needs to be estimated when they are
utilized for decision support. We review various methods that have been or could be applied to evaluate
the uncertainty related to deterministic models' outputs. We cover expert judgement, model emulation,
sensitivity analysis, temporal and spatial variability in the model outputs, the use of multiple models, and
statistical approaches, and evaluate when these methods are appropriate and what must be taken into
account when utilizing them. The best way to evaluate the uncertainty depends on the definitions of the
source models and the amount and quality of information available to the modeller.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Environmental problems like climate change, overfishing,
erosion, and reduction of biodiversity, are typical textbook exam-
ples of “wicked problems” (Rittel and Webber, 1973; Churchman,
1967). They are difficult to define, unique, their results are not
true/false but rather better/worse, and the possible discrepancy
regarding the problem or its parts can have several plausible ex-
planations. Nevertheless, many environmental problems are
proving their urgency, and despite the difficulty, we must aim to
find solutions to these problems.

The research community has embraced the challenge and re-
searchers around the world are working to shed light on the
complex interactions of the environmental systems. Modelling in
its various forms is an increasingly popular method to approach
these problems (e.g. Hilborn andMangel, 1997; Jackson et al., 2000;
EPA, 2008; Aguilera et al., 2011; Laniak et al., 2013). The common
way to build a quantitative environmental model is to describe the
lo@ymparisto.fi (L. Uusitalo),
ri.helle@helsinki.fi (I. Helle),

Ltd. This is an open access article u
relationships between model variables using mathematical equa-
tions with deterministic values (Jackson et al., 2000). These values
are found either in literature, by fitting equations to data, or, if no
such information is available, through iterative search in which the
model outputs are compared to observed system behaviour
(Jackson et al., 2000). Modelling can clarify our understanding of
the humanenature interactions, point out where the largest gaps in
our knowledge lies, and distinguish between competing
hypotheses.

In natural resource management, understanding the average
processes is often not sufficient, however, and decision-makers are
increasingly interested to understand the uncertainties of the
models (O'Hagan, 2012). Several divergent, imperfectly known
processes (physical, biological and social), will affect the events,
and it is impossible to predict with certainty what the result of each
management decision will be (Dietz, 2003; Reichert and Borsuk,
2005). In all non-trivial cases, in the heart of the management
problem there is a trade-off between maximizing the human
benefit while minimizing the harm caused to the nature and
avoiding disastrous outcomes such as extinctions, stock collapses,
loss of ecosystem services, etc. (Burgman, 2005; Fenton and Neil,
2012).

In environmental decision-making, potential risks may include
irreversible damage such as destruction of habitats or even
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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extinction of unique populations or species, or other ecologically
severe and economically expensive consequences. The aim of
probabilistic modelling and decision analysis is to explicitly spell
out these risks. By evaluating the nature and extent of the un-
certainties in the system, the model can provide decision-makers
with a realistic picture of the possible outcomes (Burgman, 2005;
Power and McCarty, 2006). Formal decision analysis can be help-
ful in structuring the problems, integrating knowledge, and visu-
alizing the results (Kiker et al., 2005). They ease the work of
decision-makers by helping them make consistent and justifiable
choices. In recent decades, decision support and analysis tools have
increasingly been applied to management of natural resources (e.g.
Varis, 1997; Marcot et al., 2001; Borsuk et al., 2004; Dorner et al.,
2007; McIntosh et al., 2011).

The probabilistic, integrative decision support models can
derive their data from three types of sources: first-hand data,
expert knowledge, or pre-existing (probabilistic or deterministic)
models. Of these approaches, using field-observation data is in
many cases straightforward, and expert elicitation has been
covered by excellent reviews, e.g. by O'Hagan (2012) and Martin
et al. (2012). Probabilistic modelling, i.e. modelling approaches
that incorporate uncertainty into the model calculations at all
stages of the modelling, are increasing in popularity (e.g. Aguilera
et al., 2011; Mantyniemi et al., 2013). Yet, a large part of existing
ecological models does not incorporate uncertainty directly, and
the uncertainty related to their output must be evaluated sepa-
rately. While literature exists proposing methodology to do this
(e.g. Bates et al., 2003; Gronewold and Borsuk, 2009; Baroni and
Tarantola, 2014; Gal et al., 2014), we are not aware of an overview
reviewing the various methods that exist (however see Bennett
et al. (2013) for a review of methods to evaluate the performance
of environmental models).

Therefore, this paper reviews methods to evaluate the uncer-
tainty that is associated with the results of deterministic models.
The aim is to give an overview of methodology that has been or
could be applied for this purpose, and give sufficient references so
that worked examples of these methods can be found in the liter-
ature. In chapter 2, we explore the definition of uncertainty, in
chapter 3, justify why uncertainty has to be accounted for in de-
cision support modelling, and in chapter 4, review various ways to
do this. Chapter 5 draws short conclusions.
2. What is uncertainty?

From the management point of view, uncertainty is, quite sim-
ply, the lack of exact knowledge, regardless of what is the cause of
this deficiency (Refsgaard et al., 2007). Each decision or set of
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decisions has associated gains or losses which are usually depen-
dent on several random factors and thus highly uncertain (Fenton
and Neil, 2012). Typically, uncertainty is present on every step of
the environmental management analysis, from the randomness in
the environmental response to the society's definition of risk, op-
portunity, and whose gains or losses should be considered in
decision-making. Burgman (2005) states that “in most circum-
stances, the best use of models is to interrogate options, resulting in
choices that are robust to a range of assumptions and un-
certainties”. Decision analysis should aim to provide the decision
maker with as realistic picture of the current knowledge and its
deficiencies as possible, by utilising all the relevant information
available. Uncertainty is often expressed in the form of probability
distribution that indicates how likely each of the possible outcomes
is (Fig. 1).

Divergent, overlapping uncertainty classifications can be found
in literature, the typology varying remarkably depending on the
context and scope (see e.g. Regan et al., 2002; Walker et al., 2003;
Refsgaard et al., 2007; Skinner et al., 2014). It is common to divide
uncertainty into two or three categories according to their basic
nature: aleatory uncertainty, i.e. inherent randomness and natural
variability; epistemic uncertainty, resulting from imperfect
knowledge, and linguistic uncertainty, arising from language issues.
The first is typically seen as irreducible, whereas the two latter can
be quantified and reduced.

Uncertainty stems from various sources. Following the classifi-
cation of Regan et al. (2002), uncertainty (excluding linguistic un-
certainty) can be divided into 6 classes:

- Inherent randomness. However well we know the process and
the initial (starting) conditions, we cannot be more certain of
what the outcome will be. This randomness-type of uncertainty
can be thought as being inherent to nature. Randomness can
often be quantified very well, and is easy to deal with in prob-
abilistic models.

- Measurement error. Measurement error causes uncertainty
about the value of the measured quantity. The measurement
error can be estimated by statistical methods, if several samples
are taken. If the extent of the measurement error can be esti-
mated, it can be relatively easily dealt with in probabilistic
models.

- Systematic error in the measurements results from a bias in the
sampling, and is more difficult to quantify, or even notice. If
systematic error goes unnoticed, it may have cumulative effects
in the models that are built on the data.

- Natural variation. The natural systems change in time and place,
and so do the parameters of interest. Therefore, despite
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measurements, there is always uncertainty about natural con-
ditions. This kind of uncertainty can be quantified, but it re-
quires some careful consideration; we need to estimate the
possible range and relative probabilities of the unknown
quantities.

- Model uncertainty.Models are always abstractions of the natural
system. Some less important variables and interactions are left
out, and the shapes of the functions are always abstractions of
the real processes. Sciencemay also have insufficient knowledge
about the relevant processes, the shapes of the functions and
their parameter values. Uncertainty of the model parameters
can be accounted for in probabilistic models much the sameway
as natural variation, with careful consideration of the range of
possible values and their probabilities; while uncertainty about
the model's structure, i.e. uncertainty about the cause-and-
effect relationships, is often very difficult to quantify.

- Subjective judgement based uncertainty occurs due to interpre-
tation of data, especially when the data are scarce or error prone.

When constructing an environmental decision analysis model,
many types of uncertainty are typically present, and it is often
impossible to distinguish, let alone separate, the various types of
uncertainty from each other conclusively. Being aware of the
various sources of uncertainty may, however, help the modeller
make justified decisions about how to account for this uncertainty.

3. Accounting for uncertainty in decision support models

Decision support models are built to help the decision-maker
evaluate the consequences of various management alternatives
(Borsuk et al., 2004; Fenton and Neil, 2012; Holzkamper et al.,
2012). In order to be most useful, the decision support model
should also include information about the uncertainties related to
each of the decision options, as the certainty of the desired outcome
may be a central criterion on the selection of the management
policy. In addition, an otherwise attractive management scheme
may also include an increased probability of an extremely unde-
sired outcome (such as the collapse of a habitat-building species),
and the decision maker may prefer to choose another decision
option that reduces this risk even if the expected benefits would
decrease as well. Estimates of the probabilities of possible out-
comes are required to evaluate these trade-offs.

The policy and management options that are of interest to the
decision-maker are often influenced by environmental factors
which cover a wide range of processes and dynamic interactions in
various temporal and geographical scales, such as short and long
term ecosystem state, a general geographical overview and certain
hot spots, etc., which are rarely covered by one, coordinated
research project (Borsuk et al., 2004; Barton et al., 2012). Separate
models describing the different parts of the system, and operating
on different temporal and geographical scales, often exist. These
models' outputs can be combined in the decision support model so
that it serves as a meta-model that draws together the predictions
of the various dynamic models and summarizes their combined
message (Borsuk et al., 2004; Jolma et al., 2011; 2014).

When utilizing outputs of the existing models, the decision
support modeller may face a difficult problem, however. The
existing models are often deterministic, giving just a single output
value for each variable (possibly repeated over several time steps
and spatial units), without any indication of the amount of uncer-
tainty or expected variation around this value. The modeller/ana-
lyst then needs to come upwith an uncertainty estimate to go along
with each of the model predictions. This task is of crucial impor-
tance, since it has a large impact on how the decision support
model will behave, and therefore has potential for changing the
management recommendations that are drawn from the model.
This problem is, to some extent, analogous to uncertainty analysis
or sensitivity analysis of a single modelling framework: all sources
of uncertainty need to be identified and characterized using all
available information, including measurements, expert opinion,
and boundary considerations (Baroni and Tarantola, 2014).

There is, however, an additional challenge when utilizing the
results of one model as an input in another one. It is crucial to
understand whether the definitions of the variables in the two
models actually are compatible or not. If the model gives an esti-
mate of Chlorophyll a concentration, what do we actually get? Is it
the value in a specific point in time and space, or is it an estimate of
the average Chlorophyll a concentration? If so, average of what
exactly: over a time period in a single point in space, over a defined
area but a single point in time, or an average over both time and
space? These questions can be critical in correctly defining the
probability distributions, or the uncertainties, in the probabilistic
model. The variability present in the outcomes of the deterministic
model may vary widely depending on the exact quantity being
modelled, and how the probability distributions are defined based
on that output should vary accordingly. Therefore, examining the
models' definitions should be the first step in these exercises in
order to avoid answering the wrong question, as suggested also by
Bennett et al. (2013) for model performance evaluations.

There is no clear-cut answer how to estimate uncertainties in
any cases more complex than a well-known random process such
as coin toss. Below, we present some approaches that have been or
could be employed in order to estimate the uncertainty related to
the outcomes of deterministic models. For awider-scope reviews of
uncertainty in environmental modelling in general, see e.g.
Refsgaard et al. (2007), Matott et al. (2009), and Tebaldi and Knutti
(2007). As with model performance evaluation (Bennett et al.,
2013), the most fitting choice is always case-dependent, depend-
ing on the available models as well as the decision problem at hand.

4. Approaches

4.1. Expert assessment

Expert assessment is an established methodology for obtaining
estimates of relationships that cannot be or are too expensive or
impractical to be observed directly, such as hypothetical scenarios
(e.g. Krueger et al., 2012 and references therein). It can also be used
to obtain estimates of the variance around model parameters
(O'Hagan, 2012) and model-predicted values, although estimating
variance or variability is a challenging task, especially if there are
several conditioning environmental factors that need to be taken
into account simultaneously (O'Hagan et al., 2006).

Expert assessment is used for example in the general framework
for uncertainty and global sensitivity analysis proposed by Baroni
and Tarantola (2014) in an informal manner in conjunction with
data; they state that “In particular, the uncertainty of each source
should be characterized using all available information: measure-
ments, estimations, physical bounds considerations and expert
opinion”, and define the uncertainties of the model components by
evaluating field-collected data. If such data is available, it may be
used to help the experts evaluate also the uncertainties related to
the model outputs; however, if the modelling results are based on
scenarios that have not yet taken place, the experts need to be
careful on how much they rely on current data in evaluating these
yet-unseen conditions.

When using expert knowledge to estimate the uncertainty
around model-predicted values, the following aspects need to be
considered (see also O'Hagan, 2012): Which experts to choose? The
modellers who have made the original deterministic model, or
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other scientists, who are familiar with the domain, but not neces-
sarily with the model? Knowledge of the workings of the deter-
ministic source model is not necessary for the estimation task; the
relevant thing is to understand the dynamics of the system and
factors that may affect it. On the other hand, it is important that the
expert understands the definitions of the variables and the general
description of the system as represented in the models; otherwise,
they may evaluate a different quantity from that intended to be
represented in the decision support model. To guarantee this, the
decision modeller and the domain expert need to take enough time
for the task and discuss the assumptions and restrictions of the
decision support model. Several experts can be used, and each of
them can evaluate the uncertainties related to their area of exper-
tise. Then again, if several experts separately estimate the uncer-
tainty of the same variable, a technique for combining these
estimates need to be decided. Several techniques for interviewing
the experts and combining expert estimates have been proposed;
we refer the reader to, for example, Morgan and Henrion (1990),
O'Hagan et al. (2006), and O'Hagan (2012). It is also possible to
include the various views of the experts as a set of distributions
(Rinderknecht et al., 2012) or as an auxiliary variable (Uusitalo et al.,
2005; Lehikoinen et al., 2012), which enables the analysis of the
relevance of the difference in expert opinions from the decision
analytic point of view.

Expert judgement as the source of uncertainty estimates can
easily be criticized as subjective. However, lacking data to estimate
the variances by, the experts who have devoted their careers to
study these questions might be better sources of information than
any hasty quantitative models made for this purpose. Various
methods exist to help and support the experts in the evaluation
task. However, the facilitator also has to be careful tomake sure that
the experts in fact evaluate the desired quantity, not something
related but distinct (O'Hagan et al., 2006). The experts' task may be
eased by investigating areas, species, or cases that are deemed
sufficiently similar, and uponwhich data exists. For example, values
from adjacent but separate watersheds, forests, or sea areas may be
useful here. The range of values that have been observed in distinct
but ecologically relevant cases informs about the plausible range of
values this variable can get, and therefore may also indicate how
large uncertainty is associated to the prediction of the deterministic
model.

An example of this situation fromour own experience is the case
of salmon (Salmo salar) density in their juvenile areas in rivers
(Uusitalo et al., 2005). Although in this research the expert
knowledge were used to estimate the whole probability distribu-
tions, and no modelling results were available to set the averages,
the question is essentially the same. In Baltic Sea rivers, the esti-
mates of maximum salmon smolt densities have been in the range
of 0.3e1.5 individuals/100 m2, whereas in Atlantic Canada, 3 in-
dividuals/100 m2 is considered as an average. The much higher
densities in Canadian rivers, which are climatologically and
geographically roughly equivalent, cast some doubt to the Baltic
estimates; it is possible that the maximum density in the Baltic
could be much higher, as well. This would suggest a high variance,
indicating high uncertainty about the true value of the maximum
density.

4.2. Model sensitivity analysis

The probable range of values of the model output can also be
examined by analysing how the output value would behave if some
other, fixed variable values were changed within their reasonable
range or assigned a probability distribution. The most compre-
hensive option is to conduct an uncertainty analysis (UA) on the
model output. UA is a method that is used to quantify the
uncertainty in model outputs induced by uncertainty in inputs
(O'Hagan, 2006). The simplest way to conduct a UA is to apply
Monte Carlo (MC)methods inwhich configurations of model inputs
are drawn randomly from their distribution, and the resulting set of
model outputs can be seen as a random sample of the distribution
of the output of interest (Kennedy and O'Hagan, 2001). This,
however, requires usually a large number of model runs.

Another option is to apply sensitivity analysis (SA), which is a
commonway to explore anymodel. The goal of SA is to characterize
howmodel outputs respond to changes in input, with an emphasis
on finding the input parameters to which outputs are the most
sensitive (Saltelli et al., 2000; Kennedy and O'Hagan, 2001). This
can be achieved by using various approaches ranging from simple
one-factor-at-a-time methods to more comprehensive approaches,
usually based on MC methods (e.g. Saltelli et al., 2005; Cariboni
et al., 2007; Yang, 2011).

The basic idea of the SA is to alter model input values (e.g. Chu-
Agor et al., 2011) and/or parameters (e.g. Tomassini et al., 2007) of
the model and study the subsequent changes in model output. If
the output value changes only little, the output is robust to
changes in parameter values within the model. In that case, it
seems probable that the uncertainty about the value is relatively
small. If, on the other hand, the value of the variable under interest
changes markedly when we change some parameters in the model
within their reasonable range, this indicates that there is large
uncertainty about the variable's value. This is because it is unre-
alistic to assume that the values used in the model would be
exactly those that take place in the nature, and if small differences
in these values cause large differences in the outcome, the
outcome is bound to be rather uncertain. However, as with UA,
making a reasonably thorough sensitivity analysis through the
process of altering the parameter and initial values may require a
large number of model runs (Saltelli et al., 2010; Baroni and
Tarantola, 2014). Furthermore, it is advisable to examine the
different parameter values not one by one, but also combinations
of them, as parameter combinations may include non-linear in-
teractions, performing a global rather than local sensitivity anal-
ysis (Baroni and Tarantola, 2014). However, the number of the
combinations increases exponentially as the number of these pa-
rameters and their possible values increase, and if the model takes
a long time to run, this may render the process infeasible.

In order to minimize the number of model runs, some tech-
niques can be used. The number of required model runs can, to
some extent, be reduced by making a preliminary sensitivity
analysis, and based on its result focussing on the variables that have
a stronger effect on the response variable and using a sparser grid of
values for the less influential variables. E.g. (Morris, 1991) pre-
sented awell-known screening method that ranks the input factors
in order of importance. This method has been later revised and its
sampling strategy improved (Campolongo et al., 2007).

These approaches, however, account only for the uncertainty in
the model's input values and parameters (such as the slope and
intercept of a linear function), not in the model's structure (i.e.
existence and functional form of dependencies between variables,
etc.) (e.g. O'Hagan, 2012). The structural uncertainty can be evalu-
ated by comparing model results and real observations; however,
there may not be enough data for this to be conclusive, and
therefore expert assessment is seen as a key method for evaluating
structural uncertainty (O'Hagan, 2012).

Model sensitivity analysis can be combined with expert
assessment: the final variance estimates would be crafted by ex-
perts, aided by the results of the sensitivity analysis. This approach
would combine the advantages of expert and model sensitivity
assessments, namely, the quantitative rigour of the model, and the
insight about the potentially relevant factors outside the model.
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4.3. Model emulation

As mentioned above, conducting proper sensitivity or uncer-
tainty analysis for complex simulation models requires usually a
high number of model runs, which, however, can be unfeasible to
conduct due to the limited time and/or other resources. In recent
years, a growing number of studies have tackled the problem by
using model emulation. Generally speaking, an emulator is a
low-order approximation of the more complex model (Castelletti
et al., 2012). O'Hagan (2006) defines an emulator to be a statis-
tical approximation of the original simulation model. If this
approximation is precise enough, the emulator can be used as a
substitute for the original model, and e.g. sensitivity and uncer-
tainty analyses can be based on the emulator instead of the more
complex simulation model (O'Hagan, 2006). Although the results
obtained with the emulator differ from the results that would
have been obtained with the original model, the emulator as a
statistical approximation offers a probability distribution for the
possible outcome values of the model and thus quantifies the
uncertainty related to emulator itself (O'Hagan, 2006; O'Hagan,
2012).

A common approach when building an emulator is to apply
Gaussian processes (GP) (O'Hagan, 2006; O'Hagan, 2012), although
other options are available as well (Villa-Vialaneix et al., 2012). GPs
are statistical processes that define a probability distribution for a
set of functions. More precisely, a GP is a distribution for a function,
where each function value has a normal distribution, and a set of
function values has a multivariate normal distribution (O'Hagan,
2012). Thus GPs have the same, mathematically convenient prop-
erties that the normal distribution. When building an emulator, a
GP prior is assigned to describe the original model, after which the
Bayes theorem is applied to update the prior with a set of model
runs. The resulting posterior distribution is the emulator (Kennedy
et al., 2006).

In the context of environmental modelling, emulators based on
GPs have been used especially for sensitivity analyses of complex
models covering e.g. global atmospheric aerosol dynamics (Lee
et al., 2011), denitrification and decomposition processes (Qin
et al., 2013), multiple physical processes in soil/vegetation/atmo-
sphere continuum (Petropoulos et al., 2009), and the response of
bird populations to landscape change (Parry et al., 2013). Kennedy
et al. (2008) produced uncertainty maps over carbon flux estimates
for England and Wales based on a complex deterministic model.
They applied emulators in sensitivity analysis in order to find the
most important variables affecting the model output, after which
the uncertainty of the model outputs was quantified. As there was
no field measurement data available, the approach covered only
uncertainties stemming from input parameters, ignoring e.g. the
uncertainty related to the model structure. A comprehensive
analysis taking into account uncertainty related to the input vari-
ables as well as the model inadequacy has been presented by
Kennedy and O'Hagan (Kennedy and O'Hagan, 2001) in the context
of probabilistic model calibration.

Sometimes it may not be feasible to conduct a complete prob-
abilistic analysis for the model (i.e. eliciting prior distributions for
parameters and updating them with the training set). Vanhatalo
et al. (2013) studied the effectiveness of different nutrient loading
reduction scenarios on water quality in the Gulf of Finland. They
estimated the uncertainty related to the outputs of a deterministic
ecosystem model by treating the parameters of the deterministic
model as known and fixed, and assessing the uncertainty arising
from model inadequacy, residual variation, and observation error.
The approach applied GPs, which were updated with spatiotem-
poral monitoring data to produce uncertainty estimates for the
original model.
4.4. Temporal or spatial variability in the deterministic models

It is usual that the source models describing the system give
results on a finer temporal or spatial scale than that used in the
decision support model. The models describing the processes are
developed on a fine spatial and temporal grid, while the manage-
ment approach often concentrate on larger areas (lakes, river ba-
sins, gulfs, protected areas, cities, etc.) and longer-time (seasonal,
yearly) averages. It is common to use observation averages as
proxies for the unknown mean (Cha and Stow, 2014) and this
approach has been expanded and applied to model-predicted
spatial and/or temporal variability as an estimate of the possible
variance, and therefore as a proxy for the uncertainty (Lehikoinen
et al., 2014). The benefit of this approach is the relative straight-
forwardness e the results needed for the estimation can often be
obtained directly, without any extra effort on running several it-
erations of the deterministic process model. The procedure of using
the model-derived values (the frequency distribution of the
modelling results) as the probability distribution is also easy to
understand even for those not familiar with probabilistic
modelling.

However, before applying this approach, the modeller needs to
consider carefully whether the spatiotemporal variance, i.e. the
natural variance in time and space, actually is a good proxy for the
uncertainty of the interest variable; it might equallywell turn out to
be an under- or over-estimate of the uncertainty, depending on the
definition of the variable in the probabilistic model. Wemay end up
with an underestimate of the uncertainty (i.e. the real uncertainty
is larger than our model indicates), if the variable in the decision
support model describes the value at a single point in time and
space, i.e. the value of a single observationwemight see if we went
out to get a sample. This is because the uncertainty related to each
of these model-generated spatio-temporal observations should be
included in the estimate as well (see also discussion in Cha and
Stow, 2014). On the other hand, if the variable in our probabilistic
model represents the average value over space and time, this
approach is likely to overestimate the uncertaintye the Law of
Large Numbers kicks in, and the uncertainty about the mean may
be rather narrow even if the variance of the observations were
large.

Lehikoinen et al. (2014) used the results of a deterministic
ecosystem model to predict the likely ecosystem status classes
within four large water areas on the Finnish coast of the Gulf of
Finland, Eastern Baltic Sea in year 2015, given certain nutrient
abatement scenarios on the catchment area. A deterministic
ecosystem model provided point estimates of water quality vari-
ables for each cell in a 5 � 5 km grid (Kiirikki et al., 2001, 2006).
Each cell-specific value within a larger area was treated as one
possible observation under the defined nutrient load conditions,
and the probability distributions for the large areas were formed
based on these values.

4.5. Multiple models

The system and model uncertainties can, to some extent, be
addressed by using multiple models developed to describe the
same domain. Simplifications, assumptions about dependencies
between the variables, and various parameterizations are always
made whenever a model is constructed. If these choices are made
independently for each model, there is a possibility to use these
separate models in structural uncertainty assessment (e.g. Tebaldi
and Knutti, 2007; Bormann et al., 2009; Kronvang et al., 2009;
Exbrayat et al., 2010).

If different models end up with very different estimates for the
same scenario and similar parameterization, it may be a safe
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assumption that the structural uncertainty related to the estimate
is large. However, it is again crucial to make sure that the variables
presented in the model are equal or reasonably comparable. If the
models give very similar results, it can be concluded that the un-
certainty is small; however, caution is advised in making this
conclusion. The model parameters have been fitted to predict the
observed data well, so depending on which kinds of scenarios are
tested, it may only be natural that the model predictions are rela-
tively similar. This also might be due to the improper description of
some key processes in the model, and due to lack of such param-
eterizations, the model is insensitive for the manipulation of some
parameters which it includes.

While qualitative analysis of modelling results can give us an
idea of the extent of uncertainty related to them, various ways have
been proposed in the literature to combine several models. The
term ensemble modelling is used both for running a single model
multiple times with different sets of initial values (single model
ensemble), and for using multiple models (multiple model
ensemble). Ensemblemodelling has mainly been used in twoways:
to produce one “best” predictive model (e.g. Kronvang et al., 2009;
Grenouillet et al., 2011; Trolle et al., 2014), and to evaluate the
predictive uncertainty (e.g. Georgakakos et al., 2004; Gal et al.,
2014).

The models can also be weighed according to their likelihood,
which is evaluated using observed data (Hilborn andMangel,1997).
Bayesian model averaging (Hoeting et al., 1999) can be used to
combine and weigh several Bayesian models using their posterior
probability as the weighting factor. An extension of this approach,
applicable to deterministic models has been proposed (Raftery
et al., 2005; McLean Sloughter et al., 2013). However, as in these
methods the weighing is based on models' performance over a
training period, applying themmay require a substantial amount of
model runs.

The weighting of models can also be based on expert opinion.
Lehikoinen et al. (2012) evaluated the environmental risk caused by
oil shipping. In their work, the uncertainty arising from multiple
alternative models that predictied the emergence of hull breach in
the case of a tanker collision was considered. The model-specific
zero-leak probability estimates, the sources of which varied from
statistical models to sophisticated dynamic impact models, were
weighed based on an expert opinion, taking into account e.g. the
specifications of the models and their suitability to the study area.

4.6. Data-based approaches

In some cases, e.g. within the meteorological and hydrological
domains, enough data are available about the modelled phenom-
enon that a statistical assessment of the uncertainty related to the
model outputs can be performed (Van Steenbergen et al., 2012). It is
also possible to utilize data from cases that are not similar, but
where some commonality can be assumed, such as across species
or geographical areas. This approach has been used for estimating
the parameter values, i.e. the probability distributions (e.g. Borsuk
et al., 2001; Pulkkinen et al., 2011), but can similarly be used to
evaluate the expected uncertainty around the model-predicted
expected value. Model performance testing methods such as
cross-validation and bootstrapping can also be considered to
explore the variability in the model predictions and hence the
model's robustness to variability in the data (see e.g. Bennett et al.,
2013).

The data-based approach requires that the data utilized can be
assumed to be representative of the modelled variable and situa-
tion. Therefore, this approach must be used with care with models
that simulate the consequences of yet-unseen management op-
tions, climate scenarios, etc.
5. Conclusions

Decision support models can prove very valuable in the man-
agement of complex environmental problems, as they may effec-
tively summarize and bring together various, distinct consequences
related to alternative management measures. As the decisions
should be made based on prevailing knowledge but also acknowl-
edging the gaps in it, transparent representation of uncertainty is
recommendable on each level of these models. Those decision
support models that include the uncertainties related to the man-
agement options may be of considerable added value for the de-
cision maker. Here, the decision support modeller has to be very
careful, however, to account for the uncertainties as honestly as
possible. Including part of the uncertainties while ignoring others
may lead to results that are not only incorrect but also severely
misleading for the decision maker, and therefore lead to unin-
tended and undesirable management decisions. Therefore, it needs
to be considered carefully whether the new model is actually an
improvement to how the decisions have been made previously. If
incomplete or biased decision support model replaces the use of
common sense and caution exercised earlier, the result might
actually be for worse rather than for the better. Therefore, when
moving from deterministic to uncertainty-specific environmental
decision support models, it is important to evaluate the extent of
uncertainties in a way that is justified and transparent, and to
consider carefully the assumptions behind both the decision-
support model and the models that are used to provide inputs to
it, to make sure that the variables in the models are compatible. In
this paper, we have provided guidelines as to what these ap-
proaches could be, and what needs to be taken into account when
applying them.

Every model is just “a stylized representation or a generalized
description used in analysing or explaining something” (Hilborn
and Mangel, 1997). Thus, how much effort and resources should
be put on translating a deterministic model to probabilistic form is
clearly a case specific question. A cost-effective solution might be
some kind of tiered approach, segregating the analysis in tiers
where the level of model complexity or resolution is gradually
increased (Smith et al., 2007; Hobday et al., 2011; Tighe et al., 2013).
It could also mean starting with only light prior assumptions about
the qualitative causalities in the model. With the simpler model
version(s) the decision modeller could then analyse, e.g. by con-
ducting a value of information analysis (Clemen andWinkler,1985),
what elements in themodel actually are those affecting the ranking
order of the analysed decisions most. That result could be used for
directing the resources during the rest of the project.
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