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ABSTRACT

Therapeutic success achieved for chronic myeloid leukemia (CML), a disease driven
by the BCR-ABL1 fusion gene and targeted by specific inhibitors of the ABL1 kinase,
has encouraged the cancer field to seek analogous effective targeted therapies.
Disappointingly, direct translation of cancer-specific genomic information into
effective personalized-therapeutic strategies for acute leukemias and other more
complex malignancies has proved difficult. Thus, with only a few exceptions for
successful targeted therapies, current therapies for acute leukemia remain similar
for all patients.

This study aims to utilize novel tools for the detailed characterization of genomic,
transcriptomic, and functional aberrations in acute leukemia to gain an
understanding of disease pathology and guide individualized therapies. The main
methods used were ex vivo drug sensitivity and resistance testing (DSRT), whole
exome sequencing, and transcriptome (RNA) sequencing, all of which were
facilitated by extensive biobanking.

In study I, we developed a cancer pharmacopeia-wide DRST platform performed ex
vivo on primary leukemic cells for the rapid identification of effective patient-specific
drugs. We quantified leukemia-selective responses to a comprehensive library of
clinical and investigational drugs in 28 acute myeloid leukemia (AML) patient
samples and five healthy control samples. Exome and transcriptome sequencing of
serial samples from individual patients were used for the molecular characterization
and to understand the mechanisms of acquired resistance. Although AML samples
exhibited unique DSRT profiles, responses could be clustered into five distinctive
groups. AML-selective responses were seen for several approved agents such as
dasatinib (33% of patient samples), temsirolimus (29%), trametinib (21%), and
sunitinib (21%). Individualized treatment of refractory patients with DSRT-guided
therapy resulted in responses in three of six patients (one complete remission with
incomplete blood recovery, two morphological leukemia-free states).

In study II, we studied molecular drivers for relapsed T-cell acute lymphoblastic
leukemia (T-ALL) and found three different mutations in the SH2 domain of STAT5B.
DSRT was performed on primary blasts from the index patient to assess drug
sensitivity. Functional studies with transiently transfected HeLa cells demonstrated
that the N642H mutation induced the constitutive phosphorylation of STAT5B and
led to an enhanced transcriptional activity. STAT5B mutated primary blasts showed
elevated BCL-XL expression and were sensitive to the BCL-2/BCL-XL inhibitor
navitoclax. No sensitivity to the inhibitors of the upstream targets of the IL7r-JAK-
STAT pathway was observed. Targeted sequencing of 67 additional T-ALL samples
revealed activating STAT5B mutations in 6 of 68 patients.



In study III, we aimed to identify robust biomarkers for sensitivity to novel apoptosis
modulators. We first evaluated the ex vivo BCL-2 inhibitor sensitivity of fresh
leukemic cells from 28 newly diagnosed and 45 relapsed/refractory AML patient
samples. We then systematically assessed whether these responses correlated with
specific mutations or gene-expression signatures determined by exome and RNA
sequencing. AML samples exhibited variable responses to BCL-2 inhibition: 32% of
samples were resistant, whereas highly leukemia-selective responses were observed
in 15% of the AML samples. BCL-2 inhibitor sensitivity was associated with
mutations in IDH1/IDH2 and WTI1, as well as with aberrations in chromatin
modifiers. Importantly, the overexpression of a specific set of HOX genes predicted
highly selective responses to BCL-2 inhibition.

In study IV, we developed a national hematological biobank to allow researchers to
access high-quality samples with accompanying clinical annotation data, thus also
enabling the research community in general to deepen its understanding of the
pathophysiology of hematological malignancies and advance diagnostics and
treatment. The biobank samples are board-informed and consent-compliant as per
the Finnish Biobank Act, and samples from three collection time-points—diagnosis,
potential remission, and relapse—are available. For this study, we also evaluated the
quality of stored samples and demonstrated that extracted DNA and RNA remain
usable for high-quality, demanding down-stream experiments.

Taken together, we evaluated and developed novel techniques for individualizing
therapy for acute leukemia patients. First, we demonstrated that combining data
from different platforms enables the repurposing of targeted therapies for both
individual AML patients as well as for distinct disease subgroups. These data also
allow to study of each individual disease and possible mechanisms of sensitivity and
resistance in a comprehensive manner. Second, we used these methods to study the
prevalence of STAT5B mutations in T-ALL. We validated that these mutations were
recurrent events and demonstrated mutations to be activating. We presented a
hypothesis of possible vulnerability of STAT5B mutated blasts for BCL-XL inhibition.
Third, we showed that extensive data from various platforms enable the isolation
and discovery of biomarkers to inform individualized therapy. We found that a
specific HOX gene-expression pattern serves as a robust biomarker for venetoclax
sensitivity ex vivo. Our results identified a BCL2 inhibitor-sensitive AML subgroup
for validation in upcoming clinical trials. Finally, we developed a nation-wide
biobank containing high-quality sample material accompanied with annotated
clinical data enabling research for individualizing therapy for acute leukemia.



INTRODUCTION

Detailed knowledge of the molecular pathobiology behind hematological
malignancies has revolutionized cancer research and resulted in new, effective,
targeted therapies in few hematological disorders. This progress is best illustrated in
chronic myeloid leukemia (CML), a disease defined by the fusion of the BCR and
ABL1 genes through a translocation of chromosomes 9 and 22 (the Philadelphia
chromosome). Treatment with drugs that inhibit BCR-ABL1 proved that
understanding the mutations driving the cancer can lead to effective targeted
nontoxic therapies.!-3

Encouraged by these results, the general cancer field hoped to witness similar
advances in treatment of other malignancies. Unfortunately, nearly all other
hematologic malignancies unraveled to be significantly more complex than CML,
with various driving genetic lesions interacting together to form complicated
puzzles of networks. While we are beginning to understand the detailed biology and
drivers of individual cancers, major obstacles have prevented the implementation of
such advances through current therapies. For example, the therapy for most acute
myeloid leukemia (AML) patients has remained relatively unchanged for four
decades, despite intensive trial activity exploring new agents and an impressive
number of approved anti-cancer drugs in general. This lack of progress is due to
both inter-patient and intra-tumor heterogeneity. That is, AML is not an overarching
disease, but a cluster of innumerous, dynamically evolving disease entities. Thus,
paradoxically, the dynamic complexity of individual cancer remains the major
hindrance to individualizing therapies.

The aim of this study was to utilize novel tools for the detailed characterization of
genomic, transcriptomic, and functional aberrations in leukemia to gain a deeper
understanding of its pathogenesis and guide individualized therapies. The main
methods used were ex vivo drug sensitivity and resistance testing (DSRT), whole
exome sequencing, and transcriptome (RNA) sequencing, all of which were aided by
extensive biobanking.



LITERATURE REVIEW
1. ACUTE MYELOID LEUKEMIA (AML)

1.1. Background

Acute myeloid leukemia (AML) is a hematological malignancy characterized by
infiltration of the bone marrow by clonal, proliferative, abnormally or poorly
differentiated cells of the hematopoietic system.#> In addition to hindering the
normal functions of hematopoiesis, these cells can escape to the blood and may have
the ability to infiltrate other tissues such as the lungs, central nervous system, lymph
nodes or the spleen.®

The current World Health Organization (WHO) classification recognizes disease
entities by focusing on significant cytogenetic and molecular genetic events
characterized by specific drivers of disease progression.” According to the minimum
WHO criteria, 20% of myeloid lineage blasts must be detected either in bone marrow
(BM) or blood to meet the criteria for AML diagnosis.” The incidence of AML has
increased, whereby AML now represents the most common diagnosed leukemia
among adults, with nearly 20,000 new cases diagnosed annually in the US (2015)8
and 224 in Finland (2014, Finnish Cancer Registry)®. The leading reasons for this
increase are the ageing of the population together with increased incidence of
therapy related AML following therapy of another cancer (e.g. breast cancer and non
Hodgkin lymphomas).>10.11

1.2. Molecular and clonal heterogeneity of AML

The cytogenetic heterogeneity of AML has been recognized for more than 30 years.>
Recurrent chromosomal structural variations are well recognized both as diagnostic
and prognostic markers, suggesting that acquired genetic abnormalities have an
essential role in AML pathogenesis.1213 However, as nearly 50% of AML cases have a
normal karyotype, and our understanding of molecular heterogeneity has lagged
behind that of CML, AML treatment protocols have remained largely unchanged for
more than 30 years.14

The understanding of molecular heterogeneity originated in the recognition of
recurrent hotspot mutations using targeted sequencing in FLT3, NPM1, KIT, CEBPA,
and TET2.15-17 Nevertheless, the massive parallel sequencing truly enabled us to gain
understanding of AML’s enormous molecular heterogeneity. This era began in 2008,
when the Washington University group sequenced the first whole AML genome,
which was, in fact, the first cancer genome sequenced.18
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1.2.1 The origin of leukemia

Welch and co-workers demostrated that normal self-renewing human hematopoietic
stem/progenitor cells (HSPCs) accumulate random somatic variants as a function of
age. The number of variants is lowest in cord-blood samples, and they increase as
the donor ages. For example, at the age of 40, a single HSPC has gained, on average,
from four to seven somatic variants, whereas cord-blood samples have none or only
onel®. These pre-excising (or “background” mutations) are generally considered to
be irrelevant for AML pathogenesis and are probably benign. Yet, they are
consequently present in all AML cells, further reflecting the stability of the AML
genome.!?

Subsequently, several other investigators, including Majeti and Shlush and their
groups, unraveled the nature of leukemia-initiating events in AML pathogenesis.
These researchers demonstrated that highly purified HSPCs contain recurrent early
mutations, typically in epigenetic regulators (e.g., DNMT3A, TETZ, IDH 1/2) at high
variant allele frequency (VAF) (Figure 1).20-22 [mportantly, these cell populations
lacked the concurrent late mutations present in AML blasts and were also detected
in mature blood cell fractions in AML patients.20 Early DNMT3A mutated HSPCs
demonstrated a multilineage repopulation advantage over non-mutated HSPCs.20
Researchers assumed that these early pre-leukemic cells resist chemotherapy and
can expand during remission.>2022 The effect of persistence of pre-leukemic clones
in AML prognosis remains controversial, although a few reports have shown that
DNMT3A clone persistence does not adversely affect outcomes.?324 Thus, the
existence and possible survival of the pre-leukemic clones does not currently entail
clinical consequences.

Leukemia-originating cells are thought to arise from healthy hematopoietic stem and
progenitor cells. Gene-expression studies on healthy human hematopoiesis
demonstrate that HOX gene expression is largely restricted to hematopoietic stem
and progenitor cells2526 and, in AML, HOX expression appears to be regulated. In fact,
the similarity between normal and leukemic expression patterns suggests that most
HOX expression in AML reflects a normal stem cell state that is “captured in the
transformed cells.”27

The occurrence of early mutations does not inevitably lead to the development of
leukemia. Several recent studies showed that somatic mutations in epigenetic
modifiers can also be detected in healthy individuals’ blood samples.?829 This
phenomenon, termed the clonal hematopoiesis of indeterminate significance (CHIP),
increases as individuals age and is detected in approximately 10% of individuals aged
70 to 79.28 Furthermore, CHIP is associated with an increased risk of hematologic
cancer and cardiovascular mortality, although that risk is relatively low. Currently,
these findings have not yet affected on treatment or diagnostics. 52830
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Expansion of pre-leukemic clone o Expansion of leukemic clone
>

\ 4

CHIP/ Leukemic Post-onset, “proliferative”
pre-leukemic mutations drivers

----- > —_
DNMT3A Previous mutations + Previous mutations +
TET2 Translocations FLT3-ITD
IDH1/2 NPM1 FLT3-TKD
SF3BI CEPBA* PTPN11
RUNX1* RAS

KIT

Figure 1. Clonal evolution leading to AML.

CHIP/pre-leukemic phase: Mutations in genes that are commonly involved in epigenetic regulation
(e.g., DNMT3A, ASXL1, IDH2 and TETZ2) are present in pre-leukemic hematopoietic stem cells. These
ancestral, pre-leukemic stem cells are capable of multilineage differentiation and hematopoiesis.19-21.31

Leukemic phase: Upon diagnosis, pre-leukemic cells will have gained additional aberrations, and
AML is characterized by clonal heterogeneity with the presence of both a founding clone and at least
one subclone.19 31,32

“Later” leukemic phase: Post-onset drivers are not required for AML but, when present, may have a
significant effect in AML pathogenesis and phenotype. These mutations typically affect signaling
pathways (e.g. MEK-ERK, AKT-mTOR) .22 31

*If not in the germ-line.

1.2.2. The genomic landscape and complexity of AML

To decode the genomic heterogeneity of AML, in 2013 The Cancer Genome Atlas
(TCGA) Research Network analyzed 200 clinically annotated adult cases of de novo
AML, by means of either whole-genome sequencing (50 cases) or whole-exome
sequencing (150 cases), along with DNA methylation, and RNA and microRNA
sequencing.3? Compared to most solid tumors, AML turned out to have significantly
fewer mutations. On average, the AML genome had 13 nonsynonymous somatic
mutations; importantly, most of these were passenger mutations and, on average,
only five mutations occurred in genes that are recurrently mutated in AML. A total of
23 genes were significantly (with a prevalence higher than expected) mutated, while
additional 237 were mutated in 2 or more samples.33 The genes that were significantly
mutated were further functionally divided into nine categories (Table 1).
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Functional srou Prevalence Function Examples/prevalence in
group in TCGA data TCGA data (if available)
. . - 0,
Transcriptional deregulation and 1551(51'2)73‘;;;1‘;11' 1’?‘2’;?3(?6/2/1)
A . o . X o ;
Transcription factor fusions 18% 1r?1pa1red. hgmatoponetlc t(8:21);RUNX1-RUNXITI
differentiation o
(4%)
. _— CEBPA (6%)
0y
Myeloid transcription factors 22% See above RUNX1 (10%)
Transcriptional deregulation and 3
Tumor suppressor genes 16% impaired degradation through TP53 (8%)
MDM2 and PTEN
DNMT3A, TET2 and IDH1/2 o,
DNA-methylation-related 449% mutations, (through the 2- DN%?gﬂgf)@
genes ° hydroxyglutarate) leading to the HD1/2 (2000/)
deregulation of DNA methylation 0
ASXL1 and EZH2: deregulation of
chromatin modification (e.g.,
methylation of histones on lysine ASXL1 (3%)
residues K79, K27, and K119, EZH2 (2%)
. . o respectively). TET2 (9%)
Chromatin-modifying genes A KMT2A-MLLTS3 fusion: impair KMT2A-MLLT3 (9%)
function of other
methyltransferases such as DOT1-
like histone H3K79
methyltransferase.
s shage bt e 0 o)
i i i 0, Bt 0,
Activated signaling 59% RAS_RAF, JAK-STAT, and PI3K- NRA%I;R&SO/(;Z %)
AKT) 0
Aberrant cytoplasmic localization of
Nucleophosmin 27% NPM1 and NPM1-interacting NPM1 (27%)
proteins
Spliceosome-complex genes 14% Deregulated RNA processing ‘;ﬁ;gi
Impair precise chromosome STAG2
Cohesin-complex genes 13% segregation and transcriptional
. RAD21
regulation

Table 1. The nine functional categories of commonly mutated genes in AML.

Modified from Dohner, Weisdorf and Bloomfield: Acute myeloid leukemia. N Engl ] Med 2015> and
The Cancer Genome Atlas Research Network: Genomic and epigenomic landscapes of adult de novo
acute myeloid leukemia. N Engl ] Med 2013.33

Note: The current gene symbol for MLL, KMT2A (lysine [K]-specific methyltransferase 2A) has been
applied.

To understand how this genetic diversity defines the pathophysiology of AML and its
possible clinical implications, a recent study evaluated somatic-driver mutations
retrospectively among more than 1500 AML patients.3! Using the patterns of co-
mutation, the cohort was divided into 11 classes, each with distinct diagnostic
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features and clinical outcomes. In addition, researchers identified further
information on the cooperation of key mutations exemplified by the interaction of
three common mutations: NPM1, DNMT3A, and FLT3 internal-tandem duplication
(ITD). This combined genotype was the most frequent three-gene co-occurrence,
identified in 6% of subjects. The adverse effect of FLT3-ITD was most clinically
relevant in patients with concomitant NPM1 and DNMT3A mutations. When present
with either NPM1 or DNMT3A—or with neither of these other genes—the survival
effect of FLT3-ITD was less evident.3! These findings illustrate the complexity of
gene-to-gene interactions affecting both disease biology and prognosis, and they
underscore the necessity of further studies to establish novel, specific prognostic
classifications. In addition, the RNA sequencing data from TCGA’s study illustrated
the co-operation of specific mutations. Despite the substantial molecular
heterogeneity described above, an unsupervised cluster analysis of mRNA
sequencing data clustered samples to only seven groups. To some extent, differences
among the groups also correlated with different outcomes.33

1.3. Risk classification of AML

Recently, the European LeukemiaNet (ELN) updated the risk classification of AML
(Table 2).1434 Disease risk is assessed based on the leukemic blast karyotype and six
specific molecular markers. Previously, only three of these (NPM1, FLT3-ITD, and
biallelic CEBPA) were used in clinical practice to classify the disease risk. The newly
added markers (TP53, ASXL1, and RUNX1) are all associated with worse outcomes.34
The new classification also takes into account the allelic burden of FLT3-ITD.
Although the prognostic significance of DNMT3A remains controversial, it is likely
dependent on the co-existence of other mutations, and this is still excluded.31 34-36
IDH2 R172 mutations may present a favorable outcome3!, but additional studies are
needed before including this in risk classification.
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Risk Category | Genetic Abnormality

t(8;21)(q22;q22); RUNX1-RUNXIT1

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
Mutated NPM1 without FLT3-ITD or with FLT3-ITD (VAF <0.5)
Biallelic mutated CEBPA

Mutated NPM1 and FLT3-ITD (VAF 20.5)

Wild-type NPM1 without FLT3-ITD or with FLT3-ITD (VAF <0.5)
Intermediate (without adverse risk genetic lesions)
t(9;11)(p22;q23); MLLT3-KMT2A

Cytogenetic abnormalities not classified as favorable or adverse
t(9;22)(q34.1;q11.2); BCR-ABL1

inv(3)(q21q26.2) or t(3;3)(q21;926.2); GATA2-MECOM (EVI1)
t(6;9)(p23;q34); DEK-NUP214

t(v;11)(v;q23); KMT2A rearranged

-5 or del(5q); -7; abn (17p)

Complex karyotype*, monosomal karyotype**

Wild type NPM1 and FLT3-ITD (VAF 20.5)

Mutated RUX1 (if not associated with favorable risk subtype)
Mutated ASXL1 (if not associated with favorable risk subtype)
Mutated TP53

Favorable

Adverse

Table 2. Current stratification of molecular genetic and cytogenetic alterations in AML.

Modified from ELN recommendations (Déhner et al. Diagnosis and management of AML in adults:
2017 ELN recommendations from an international expert panel34).

*Complex karyotype is defined as three or more chromosomal aberrations in the absence of one of
the designated recurring translocations or inversions, i.e, t(8;21), inv(16) or t(16;16), t(9;11),
t(v;11)(v;q23.3), t(6;9), inv(3) or t(3;3); AML with BCR-ABL.

** Defined by the presence of one single monosomy (excluding loss of X or Y) in association with at
least one additional monosomy or structural chromosome abnormality (excluding core-binding factor
AML)

Abbreviations: abn: abnormal; del: deletion; inv: inversion

2. AML THERAPY - TOWARDS TARGETED THERAPY

2.1. Current AML therapy

As pointed out by Prasad and Gale, “Leukemias were among the first cancers cured
by hematologists, but we have reached a plateau in AML.”37 Although the AML
prognosis has improved over the recent decades, currently only 35% to 40% of adult
patients 60 years of age or younger and 5% to 15% of patients older than 60 are
cured.> Therapeutic results for AML remain particularly dismal for older patients
unfit for intensive therapies and for relapsed or refractory patients. Very few of
these patients survive beyond two years.3® Chemotherapy, which has remained
largely unchanged over four decades,3® is stagnantly based on a combination of
cytarabine and anthracycline (most commonly idarubicin or daunorubicin). Among
fit patients, the standard combination is 7+3, with a seven-day continuous infusion
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of cytarabine at a 100-200 mg/m2 dose per day on days one through seven and
daunorubicin at 60-90 mg/m2 per day or idarubicin 8-12 mg/m2 per day for three
days.38 The optimal combination therapy with cytarabine has been explored in
several trials*® 41 comparing daunorubicin to idarubicin, but all have failed to
demonstrate the superiority of either. Standard strategies after achieving remission
include conventional intermediate to high-dose cytarabine-based chemotherapy as
well as hematopoietic stem cell transplantation (HSCT).>38 Patients with
comparatively low risk of relapse should not receive HSCT in first remission,
whereas HSCT offers survival benefit for patients with intermediate or high risk.538
The improvement in AML survival (apart from acute promyelocytic leukemia (APL))
can be primarily attributed to the development of supportive care (e.g., new
antibiotic and antimycotic drugs, fractionated and safer blood products, anti-
emetics, etc.), facilitating survival by mitigating periods of severe pancytopenia
caused by high-dose cytotoxic therapy.3942

By contrast, almost no advances have been made for patients unfit for standard
intensive treatment, specifically patients with co-morbidities or elderly patients.38 A
recent randomized phase III trial evaluated treatment options for newly diagnosed
elderly AML patients (>65 years). Hypomethylating agent azacitidine was compared
to conventional care regimens (intensive chemotherapy, low-dose cytarabine
(LDAC), or supportive care only) in 488 patients.#3 Patients were randomized to
receive either a preselected (conventional) therapy or azacitidine. Median overall
survival (OS) increased to 10.4 months with azacitidine, whereas OS reached 6.5
months under conventional care; however, the difference was not statistically
significant. Notably, patients preselected to receive intensive chemotherapy and
randomized to receive azacitidine therapy had OS similar to patients receiving
conventional chemotherapy (13.3 and 12.2 months, respectively).43 Interestingly, a
recent study demonstrated responses to a hypomethylating agent decitabine to be
more prevalent among patients with unfavorable-risk cytogenetic profiles, including
TP53 mutation.**

Because treatment outcomes among older AML patients remain dismal, additional

research is necessary. Hypometylating agents may offer a feasible basis for studies
with patients ineligible for conventional chemotherapy.
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2.2. The effect of therapy to clonal composition

Several studies have shown that at diagnosis, AML is characterized by clonal
heterogeneity, with the occurrence of a founding clone and at least one subclone
derived from the founding clone.323345 At least two major clonal evolution patterns
may lead to relapse after initial chemotherapy: (1) the founding clone in the primary
AML gains additional mutations, or (2) a subclone that survived the initial therapy
gains new mutations and expands to a relapse major clone (Figure 2).32 Additionally,
the leukemic clones may arise directly from an ancestral clone; in such cases,
additional new mutations may result in a genetically dissimilar leukemic relapse.2! At
the time of relapse, AML genomes also typically acquire transversions, probably
caused by cytotoxic chemotherapy in analogous to treatment-related AML.32

RELAPSE

THERAPY

LEUKEMIA

CHIP/
PRE-LEUKEMIC CLONES

Figure 2. The effect of therapy to the clonal composition of AML.

The clonal hematopoiesis or other pre-leukemic clone is an ancestor clone for potentially following
AML. This state is frequently monoclonal (represented by the brown group). At diagnosis, the disease
is typically polyclonal, including at least the founding clone and one subclone, but several subclones
(represented by the colored groups) also can be detected. The relapse can be caused either by (1) the
re-occurrence of the initial clone, (2) the founding clone with additional mutations, (3) the expansion
of a sub-clone with possible additional mutations, or (4) by a clone arising from an ancestral clone
with later divergent mutations.

Adapted with permission from Macmillan Publishers Ltd: Oncotarget, Jan et. Majeti. Clonal evolution
of acute leukemia genomes,*¢ copyright 2013.



Furthermore, novel highly sensitive ultra-deep amplicon resequencing methods
demostrated that the leukemic subclones may be present at the diagnosis with a
very small allele frequency, and thus remain non-detectable for exome sequencing.4”
Some of these subclones may expand during therapy or relapse, thus providing a
resistance mechanism for both targeted and conventional chemotherapy.+”

2.3. The rocky road of targeted therapies in AML - lessons learned from FLT3
inhibitors

A powerful illustration of targeted therapy in leukemia and, moreover, cancer
treatment in general, is the use of BCR-ABL1 inhibiting tyrosine kinase inhibitors
(TKIs) in CML.13 Correspondingly, the inhibition of FIP1L1-PDGFRa-induced
myeloproliferative diseases and inhibition of the Bruton tyrosine kinase (BTK), as
well as the phosphatidylinositol 3-kinases (PI3K) in chronic lymphocytic leukemia
(CLL), have all shown paradigm-shifting clinical efficacy.48-51

In AML, FLT3 is frequently mutated: 17% to 34% of AML patients have FLT3 internal
tandem duplication (ITD), and approximately 7% have activating mutations in the
tyrosine kinase domain (TKD).335152 FLT3-ITD mutations are associated with poor
prognosis.>2 At the beginning of the millennium, cancer research witnessed the
successful emergence of targeted therapies led by imatinib in CML3 and trastuzumab
in HER2-positive breast cancer.53 Thus, FLT3 inhibition provided great hope for
paving the way for targeted AML therapies. This potential was attractively illustrated
by an article title in Cancer Cell in 2002: “Finding the next Gleevec: FLT3 targeted
kinase inhibitor therapy for acute myeloid leukemia.”>* Like several other targeted
therapies, FLT3 inhibition presented roadblocks, as illustrated by subsequent titles:
“FLT3 as a therapeutic target in AML: still challenging after all these years.”>> (2010)
and “FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia.”5¢
(2013). More recently, FLT3 inhibitor’s ability to fulfill expectations has been
questioned: “Will FLT3 inhibitors fulfill their promise in acute myeloid leukemia?”57
(2014).

Fortunately, the several clinical trials that failed facilitated further research by
producing comprehensive data on kinase inhibition in AML and, thus far, several
mechanisms of resistance have been identified. Because FLT3 inhibitors act through
the competitive inhibition of ATP-binding sites in the FLT3 receptor kinase
domain,>® mutations occurring in the ATP-binding site or activation loop (kinase
domain mutations: D835V /Y/F/H, D839G and Y842C/H; FLT3 gatekeeper mutation:
F691L/1) appear to disturb the binding of FLT3 inhibitor leading to mutation-site-
dependent resistance to the individual FLT3 inhibitors.515859 Secondly, resistance to
FLT3 inhibition can be mediated through non-mutational mechanisms. The up-
regulation of pro-survival pathways such as MEK/ERK, PI3K/AKT, and STAT5/PIM
can circumvent the cell dependence of FLT3 signaling, thus leading to loss of
sensitivity.515%60 Correspondingly, the up-regulation of both the FLT3 receptor and
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the FLT3 ligand can cause resistance515° and interestingly, in FLT3 mutated AML
patients the conventional chemotherapy appears to induce the overexpression of the
FLT3 ligand.6! Furthermore, in cell lines and primary patient samples with FLT3
mutation, the microenvironment and stroma may mediate resistance through
CXCL12/CXCR4 signaling which can be circumvented by the inhibition of CXCR4.62
Also, in primary FLT3 mutated blasts the activation of anti-apoptotic proteins (BCL2,
MCL1) may enhance resistance.®® Thirdly, although initially supposed, FLT3
inhibitors do not actually cause direct apoptosis of FLT3 mutated blasts. Instead,
FLT3 inhibition leads to terminal myeloid differentiation of FLT3 mutated primary
blasts, which can be accompanied by a similar differentiation syndrome observed in
patients with APL.6* Correspondingly, culturing FLT3 mutated primary blasts with
FLT3 inhibitor quizartinib leads to induced differentiation and cell-cycle arrest
instead of apoptosis.t4

The effectiveness of FLT3 inhibition itself can be questioned. Previous generations of
FLT3 inhibitors (lestaurtinib, sorafenib, midostaurin, and quizartinib) target only
the inactive conformational state of FLT3, while the next-generation FLT3 inhibitors,
including crenolanib, instead target both the inactive and active conformational
states, perhaps leading to better results.>! Moreover, to achieve durable remission or
a cure, therapies must eradicate the early preleukemic clones present at diagnosis
and which persist throughout therapy, ultimately giving rise to relapse (Figure 1).45
As FLT3 mutations are late events, targeting only these mutations may lead to
insufficient long-term response.

Lastly, ATP-binding cassette (ABC) proteins ABCB1 (P-glycoprotein) and ABCG2
(breast cancer resistance protein) mediate the drug-efflux of several conventional
chemotherapeutic agents and tyrosine kinase inhibitors.> Yet, the influence of the
drug-efflux on most FLT3 inhibitors remains inadequately understood. Quite
intriguingly, midostaurin, sorafenib, and quizartinib have all inhibited ABC proteins
in cell lines®® 67 and primary FLT3 mutated primary blasts®8, whereas crenolatinib is
only a substrate with no ability to inhibit the transport function.?

Despite intensive research, these agents have thus far failed to demonstrate a
survival benefit. Thus, recent results from the international randomized prospective
multi-center phase III trial (RATIFY) were eagerly awaited. Intriguingly, that study
demonstrated that adding the FLT3 inhibitor midostaurin to standard chemotherapy
(i.e. cytarabine and anthracycline) together with one year of maintenance,
significantly improved OS in younger patients (aged 18 to 60) with FLT3 mutated
AML (either TKD or ITD, regardless of allele burden).”° Still, it is unclear whether
these results are due to FLT3 inhibition alone. FLT3 inhibitors midostaurin and
sorafenib inhibit also multiple other kinases as well. Therefore, results from a recent
phase II trial (SORAML) with a very similar set-up among non-selected patients 60
years or younger (both FLT3-mutated and wild-type [WT]), are of particular interest.
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Notably, this study demonstrated that sorafenib increased event-free survival in
combination with standard chemotherapy,’! leaving the question on the importance
of FLT3 inhibition unanswered.

2.4. Upcoming targeted therapies

While the idea of inhibiting activated signaling has been inspiring, it remains
unlikely that the inhibition of a single pathway will result in durable responses in a
heterogeneous disease with multiple other abnormalities potentially capable of
driving disease progression.”? Furthermore, multiple clones or subclones might
depend on entirely different oncogenic pathways.”? Thus, agents targeting earlier
events in leukemogenesis might be associated with better outcomes in AML.

The IDH1 and IDHZ mutations have been identified in up to 20% of patients with
normal karyotype AML. These mutations lead to the production of oncometabolite
2-hydroxyglutarate (2-HG), which interrupts epigenetic functioning, promotes
hypermethylation, and may be sufficient independently to cause AML.7374 In phase |
trials, the inhibition of IDH1 by AG120 or IDH2 by AG221, demonstrated reduced
2-HG production translating to complete response (CR) rates of 15% and 16%,
respectively.”> These responses occurred progressively over continuous therapy and
were associated with the terminal differentiation of leukemic blasts.”>

Polo-like kinase 1 (PLK1) is a cell-cycle kinase that plays a central role in the regulation of
centrosome maturation, spindle formation, and cytokinesis during mitosis.”®¢ PLK1 is
inhibited by volasertib, a small-molecule kinase inhibitor. In vivo, this inhibition leads to
cell-cycle arrest in prometaphase due to impaired spindle formation, ultimately causing
apoptosis.” In the phase II trial, unfit elderly patients were randomized to receive either
LDAC or LDAC in combination with volasertib. The two-drug combination led to a higher
remission rate (CR or complete remission with incomplete blood recovery [CRi]) and also
to improved median OS (8 months versus 5.2 months).”8 The Phase IIl trial
(NCT01721876) is estimated to be completed by 2017 (https://clinicaltrials.gov).”®

SGI-110 (guadesitabine) is a second-generation hypomethylating compound, in which
deoxyguanosine is incorporated into decitabine to reduce its degradation by cytidine
deaminase, thus increasing the in vivo exposure of decitabine.”>80 In the phase II trial,
guadecitabine was administered at either 60 or 90 mg/m? per day subcutaneously for
5 days in 28-day cycles in newly diagnosed elderly (= 65 years) AML patients who were
not eligible for standard chemotherapy. CR was observed in 19 of 51 (37%) patients
and CRi occurred in 10 of 51 (20%) treated patients.8! A phase III trial in patients
applying similar inclusion criteria is now fully recruited, and the study should be
completed in December 2017 (https://clinicaltrials.gov).82

Antibody therapy for several hematological malignancies, including AML, is
experiencing a renaissance.> Strategies using the anti-CD33 monoclonal antibody
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drug conjugate gemtuzumab ozogamicin (GO) combined with chemotherapy have
demonstrated a significant survival benefit for patients without adverse cytogenetic
characteristics, thus validating CD33 as an important target in AML.83-86 Because GO
has been withdrawn from the US market due to liver toxicity, several other
compounds are being developed.’5 Vadastuximab talirine (SGN-33A) carries a potent
DNA-crosslinking toxin, pyrrolobenzodiazepine dimer. Since this toxin is not a
substrate for a drug-efflux pump, it is hypothesized to carry lower toxicity.8” In the
phase 1 trial for older treatment-naive patients with CD33-positive AML,
vadastuximab talirine monotherapy resulted in CR or CRi in 15 of 26 (58%)
patients.®8 In a similar patient cohort, a combination of vadastuximab talirine with
hypomethylating agent was well tolerated and resulted in CR or CRi among 35 of 49
(73%) patients.?° Currently, this conjugate is being explored both as a single agent
and in combination therapies in phase II and III trials.”5

Another novel approach targets leukemia-specific antigens using bi-specific
antibodies. This method has been widely explored in lymphoid disease with
promising results.?® The bi-specific antibody has two motifs. First, in the case of
AML, the other recognizes the tumor-specific antigen CD33. The second recognizes
the T-cell receptor CD3. This connection leads to T-cell activation and recruitment of
the host immune system to recognize and eliminate leukemia blasts through cell-
mediated cytotoxicity.”! Phase I trials utilizing bi-specific antibody AMG-330 in AML
are currently ongoing.”>

Finally, several novel strategies aim to target other common antigens expressed on
leukemic stem cells, such as CD123, the alpha subunit in the interleukin-3 receptor.
CD123 is currently being studied as a target for chimeric antigen receptor T-cell
engineered cellular therapy.’? Furthermore, other approaches to active the host
immune system are also being studied. For example, the PD-1 antibody nivolumab is
being explored in AML in phase II trials, both as a single agent or in combination
therapies.??

3. BCL-2 INHIBITORS AS A NOVEL TARGETED THERAPY

3.1. Rationale for targeting the BCL-2 protein family in cancer

Apoptosis failure is a hallmark of the development of several cancers and as well as a
frequent cause of refractoriness in cytotoxic therapies.?* In general, two major
signaling pathways can activate apoptosis: (1) the extrinsic, or death receptor
pathway; and (2) the intrinsic or mitochondrial pathway. The extracellular binding
of death ligands from the tumor necrosis factor family (e.g., Fas, CD95) activates the
extrinsic pathway leading to the activation of caspases and, ultimately, to
apoptosis.?> Correspondingly, the dynamic balance of BCL-2 family proteins is the
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key regulator of the intrinsic pathway. BCL-2 proteins can be divided into three
important subfamilies: (1) BCL-2, BCL-XL, and MCL-1 are anti-apoptotic proteins;
(2) BH3-only proteins (BIM, BID, BAD, and PUMA) function as initiator proteins; and
(3) BAK and BAX are pro-apoptotic cell death mediators. Anti-apoptotic proteins
promote survival by blocking BH3-selective initiators and their pro-apoptotic
effectors (BAX and BAK), thus preventing them from triggering mitochondrial outer
membrane permeabilization, release of cytochrome c, and apoptosis (Figure 3).96.97
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Figure 3. Mode of action of BCL-2 inhibitors.

(a) In a normal healthy cell the balance between pro-apoptotic and anti-apoptotic proteins maintains
anti-apoptotic equilibrium. (b) BCL-2 inhibitors (e.g., navitoclax and venetoclax), as BH-3-mimetics,
dislodge pro-apoptotic proteins (i.e, BAK and BAX) from their binding to BCL2 to initiate apoptosis.
(c) Once activated, BAX and BAK trigger permeabilization of the outer mitochondrial membrane.
Permeabilization leads to release of factors such as cytochrome c, leading to activation of caspases
and mitochondrial damage, ultimately leading to apopotosis.®> Abbreviation: MOMP: mitochondrial
outer membrane permeabilization

Adapted from Cancer Discovery, 2016, Volume 6/Issue 10, 1106-1117, Konopleva et al.: Efficacy and
biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute
myelogenous leukemia,?8 with permission from AACR.

Low levels of reactive oxygen species have been shown to be a metabolic feature of
leukemic stem cells (LSCs), and such cells aberrantly overexpress BCL-2. Thus, high
levels of BCL-2 are considered a possible defining LSC characteristic and, intriguingly,
BCL-2 inhibition selectively induced apoptosis in the LSC.9? Similarly, BCL-2 inhibition
induces cell death in progenitor cells of patients with high-risk myelodysplastic
syndromes (MDS) or secondary AML.190 By contrast, however, in normal healthy
hematopoiesis, stem cell survival depends primarily on MCL-1, and it has been
hypothesized that BCL-2 inhibition response might be rather selective for AML cells.
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Small-molecule BCL-2 homology domain 3 (BH-3) mimetic drugs bind to the
common BH-3 domains of anti-apoptotic proteins and liberate the pro-apoptotic
proteins to initiate apoptosis (Figure 3).101.102 Earlier investigational BH-3 mimetic
compounds were found to bind efficiently to multiple anti-apoptotic proteins,
including BCL-2, BCL-XL, and MCL-1 (Figure 4a). In clinical trials on lymphatic
malignancies, inhibition of BCL-XL by navitoclax (ABT-263) resulted in severe, dose-
dependent thrombocytopenia, which ultimately relegated the progression of
navitoclax to clinical use.193 This sparked development of second-generation BH3
mimetic agent venetoclax (ABT-199), a structurally redesigned navitoclax
compound. Venetoclax, despite a five-fold greater binding affinity for BCL-2, has a
>800-fold lower affinity for BCL-XL and, thus, minimal effects on thrombopoiesis
(Figure 4b).102

a) b)
Venetoclax
(ABT-199) Target binding K; Navitoclax Venetoclax
Navitoclax
(ABT-263) BCL-2 <1nM <1nM
BCL-XL <1nM =50nM
MCL-1 MCL-1 >500 nM >400 nM

Figure 4. Selectivity of BCL-2 family inhibitors.

(a) Navitoclax inhibits BCL-2 and BCL-XL, as well as BCL-w. Venetoclax selectively inhibits BCL-2.
Neither agent inhibits MCL-1. (b) Target binding profiles of BH-3 mimetic compounds. Lower K;
values represent tighter binding to the target.

Adapted from: M.A. Anderson, D. Huang, and A. Roberts. Targeting BCL2 for the treatment of
lymphoid malignancies. Seminars in Hematology, 2014.94

3.2. Clinical trials of BCL-2 inhibitors in lymphoid malignancies

The BCL-2 protein is commonly expressed in hematologic malignancies and has
been shown to be involved in tumor survival and chemoresistance.1°4 Thus far, the
specific orally bioavailable BCL-2 inhibitor venetoclax has been primarily explored
in lymphoid diseases. Single-agent therapy proved highly efficacious and tolerable in
the phase I trial in chronic lymphocytic leukemia (CLL)15 and led rapidly to a phase
II trial. This trial recruited patients who relapsed or presented with refractory CLL
as well as treatment-naive patients with 17p deletion. The therapy was well-
tolerated with an overall response rate of 79% (85/107 patients).10¢ Based on these
results, venetoclax was recently granted accelerated FDA approval for patients with
CLL who lack part of chromosome 17 and are refractory to standard treatment.107
Furthermore, venetoclax is currently being explored in combination with other
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targeted therapies such as anti-CD20 monoclonal antibodies (e.g., rituximab,
ofatumumab, and obinutuzumab).198 Phase I and II clinical trials are also being
conducted in several other lymphoid malignancies (e.g., diffuse large B-cell
lymphoma, follicular lymphoma, multiple myeloma and mantle cell lymphoma) for
patients with relapsed and/or refractory disease.198 Despite its downgrade due to
thrombocytopenia mediated by BCL-XL inhibition, navitoclax is also being explored
as treatment for non-Hodgkin’s lymphomas in both phase I and Il trials. Additionally,
navitoclax is being investigated in T-cell lymphomas (e.g., cutaneous and peripheral
T-cell lymphomas).108

3.3. BCL-2 inhibitors in myeloid malignancies

In AML, several studies demonstrate the expression and protein levels of anti-
apoptotic proteins BCL-2, BCL-XL, and MCL-1 to be variable. To some extent, this
reflects the prognosis.109-111 BCL-2 inhibitors have been explored in AML cell lines
and primary patient cells, and the protein levels of BCL-2, BCL-XL, and MCL-1 have
been correlated with venetoclax sensitivity.112 A study by Pan et al. found that
venetoclax carries a single-agent cytotoxic activity in 6 of 12 AML cell lines and 20 of
25 patient samples with diploid cytogenetics and mutations in FLT3, NRAS, and
NPM1 genes.112 By contrast, AML patient samples with complex cytogenetics, t(8;21),
and JAK2 mutations were largely insensitive. Resistance to a BH-3 mimetic was
observed following the activation of escape routes: amplified BCL-XL expression,
together with low expression of BCL-2, led to a dimished of venetoclax sensitivity.112
Investigators postulated that the BCL-2 protein level and short-term exposure of
AML cells to venetoclax predicted the BCL-2 inhibitor response. Moreover, the
response could be predicted by BH-3 profiling, a method that functionally assesses
the capacity of the BH-3 peptides to induce mitochondrial depolarization and,
ultimately, apoptosis.112113 Mutations in IDHI or IDH2 have been shown to induce
venetoclax sensitivity by the (R)-enantiomer of 2-hydroxyglutarate ([R]-2-HG)
mediated inhibition of cytochrome c oxidase (COX) activity in the mitochondrial
electron transport chain.'* COX inhibition promotes a lower mitochondrial
threshold, thus sensitizing blasts to venetoclax.

Recently, Konopleva and co-workers reported their results from a phase II trial
exploring venetoclax monotherapy in patients unfit for standard chemotherapy with
relapsed and/or refractory AML. In total, 26 of 32 patients underwent at least four
weeks of therapy. Venetoclax monotherapy resulted CR or CRi in 6 patients.?8
Although this comprises only 19% of treated patients, such results have not been
previously observed using any other oral monotherapy for AML.115 Because these
monotherapy results appear promising, combinations are also being explored. Initial
combinational studies are ongoing, both combining venetoclax with low-dose
cytarabine (NCT02287233) and azacytidine (NCT02203773).116117 Preclinical
studies of RNA-interference sensitizer screens demonstrate that the inhibition of
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anti-apoptotic BCL-2 family proteins enhances the antileukemic activity of
azacytidine.118 This hypothesis is further supported by results from other ongoing
trials. For instance, in the azacytidine trial, the overall response rate (CR or CRi) is
24 of 34 (71%) patients, and the median time to CR or CRi was 29.5 days.11¢ Because
the toxicity profile appears acceptable, these results are considered highly
encouraging.115

3.4. Proof of concept - secondary mutations mediating venetoclax resistance

Mutations in the BH-3 domain are infrequent events. Previously, 353 patients with
untreated lymphomas were screened for BH-3 mutations, and only one carried a
mutation in the BH-3 domain.1%120 [Interestingly, BCL-2 expressing murine
lymphoma cells that are continuously exposed to venetoclax may develop resistance.
In resistant cells, two missense mutations (F101C and F101L) within the BH-3
domain have been identified. Both mutations impair the binding of venetoclax to the
BH-3 domain, thus hindering apoptosis.11? This infrequent prevalence in treatment-
naive patients strongly indicates that mutations in the BH-3 domain may result from
prolonged venetoclax exposure. Similarly, in a resistant human lymphoma cell line, a
missense mutation in the transmembrane domain of pro-apoptotic BAX (G179E) has
correspondingly been described.!’® This mutation prevented BAX anchoring to
mitochondria, consequently hindering venetoclax-induced apoptosis.

4. T-CELL ACUTE LYMPHOBLASTIC LEUKEMIA (T-ALL)

4.1. Background

T-cell acute lymphoblastic leukemia (T-ALL) is a rare aggressive leukemia that can
present with leukemic and/or lymphomatous manifestations.!?! T-ALL represents
approximately 20% of adult cases of ALL.121 T-ALL arises in the thymus from an
immature thymocyte that has accumulated, stepwise, both genetic and epigenetic
aberrations.!?22 These aberrations lead to the accumulation of clonal, immature
hematopoietic cells in bone marrow, blood and tissues, particularly mediastinal
lymph nodes.121 The WHO continues to classify T-ALL and T-cell lymphoblastic
lymphoma (T-LL) together, despite differences in clinical presentation. T-LL
frequently occurs as a bulky mediastinal mass and is distinguished from T-ALL by a
rather arbitrary cut-off: the presence of <20% BM blasts.121

Most patients with T-ALL (and T-LL) are treated with protocols adapted from
pediatric care relying on complex multiagent chemotherapy and frequent intrathecal
chemotherapy. HSCT consolidation is used for selected patients with high-risk
features, including those with persistent minimal residual disease.'?3 Patients
achieving negative minimal residual disease (MRD) status have good prognosis. In
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the German Multicenter Trials for Adult ALL (GMALL) study, the molecular response
appeared only variable with multivariate analysis indicating a significant prognostic
impact. As such, patients with a negative MRD had a significantly better OS (80%
versus 42%).124

4.2.The T-ALL genomic landscape

As mentioned above, T-ALL results from a multistep transformation process. During
progression from a healthy thymocyte to a leukemic blast, the cell accumulates
mutations, leading to disrupted cell cycle, differentiation, survival, and growth.125
NOTCH1 activation stands as a hallmark in T-ALL pathogenesis. Activating
mutations and mutations involving negative regulatory domains controlling
NOTCH1 signaling are observed in up to 60% of T-ALL patients.125-127

In addition, the genetic landscape of T-ALLs includes translocations in the T-cell
receptor gene, leading to the aberrant expression of transcription factors (e.g., TAL1,
LMO1/2, LMOZ2, and TLX1). Similarly, mutations in IL7r, JAK1, and JAK3 activate the
IL7R/JAK-STAT pathway, whereas loss of the PTEN tumor suppressor gene drives
aberrant PI3K-AKT signaling. In addition, the loss of transcription factors (e.g., WT1,
RUNX1, and ETV6), cell-cycle inhibitors (e.g., CDKN2A and CDKN1B), and epigenetic
tumor suppressors (e.g., EZH2, SUZ12 and PHF6), together with chromosomal
rearrangements and consequential fusion proteins (e.g, NUP214-ABL1, CALM-AF10,
and MLL1-ENL) contribute to leukemogenesis of T-ALL.121 125,128,129

Based on the immunophenotypic maturation status, the disease can be characterized
as early cortical, late cortical, or mature T-ALL. These subgroups can also be
distinguished by oncogenic events and gene expression signatures.12> Likewise, early
T-cell precursor ALL (ETP-ALL) has a distinct phenotype, but interestingly is
characterized by a mutation spectrum similar to that of myeloid tumors. These
aberrations disrupt hematopoietic development, histone-modifying genes, and
activating mutations in genes regulating cytokine receptors and RAS signaling.
Furthermore, the global transcriptional profile of ETP-ALL resembles that observed
in normal and myeloid leukemia hematopoietic stem cells.130

4.3. The IL7r-JAK-STATS5 pathway in T-ALL

IL-7 signaling induces phosphorylation and activation of both JAK1 and JAK3, which
subsequently activate the STAT5 transcriptional regulator to drive increased cell
proliferation and survival.13! Approximately 9% of childhood T-ALL patients display
activating mutations in /L-7r,132 while activating mutations in JAKI and JAK3 have
been reported in approximately 10% of T-ALLs.133.134 [n non-leukemic naive T cells,
the stimulation of the JAK-STATS5 or PI3K pathway results in expression of several
anti-apoptotic factors, including BCL-2 and MCL-1, while pro-apoptotic BCL-2 family
members are inhibited.13°
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STATS plays a key role in many hematologic cancers, but constitutive activation
typically remains a secondary event to up-stream mutations.13¢ STAT5B mutations
and their functional significance were originally unraveled in large granular
lymphocytic (LGL) leukemial3” and, subsequently in several other hematological T-
cell malignancies. These include T-cell acute lymphoblastic leukemia, hepatosplenic
gamma-delta T-cell lymphomas, enteropathy-associated T-cell lymphoma, and T-cell
prolymphocytic leukemia.138-141 The mutations located in the Src homology 2 (SH2)
domain of STAT5B promotes constitutive phosphorylation of the mutant protein,
which is believed to stabilize the parallel conformation of STAT5 dimers, thus
increasing transcriptional activity and activation of downstream target genes.142

5. INDIVIDUALIZED THERAPY

5.1. Methods for individualized therapy
5.1.1. In vitro drug testing

The ability to predict anticancer therapy responses in the laboratory prior to clinical
treatment—analogous to the success of antibiotic sensitivity testing in
microbiological diseases—has long been the goal of leukemia and cancer research in
general.143 After initial successes in cancer medicine in the 1940s, the scope of
cancer treatment, in general, was adjusting doses and finding suitable combinations
and timing to allow most patients to tolerate and benefit from therapy.!44 From the
late 1970s, enthusiasm for ex vivo drug sensitivity testing resulted in hundreds of
publications seeking correlation between in vitro drug sensitivity and clinical
outcomes (reviewed inl45>-148 and exemplified in149-151). Although these studies
produced varied results, three major limitations hampered the translation of in vitro
drug testing results into the clinical settings. First, testing often remained limited to
a quite small number of compounds, typically those implemented as therapy
regardless of results. Second, while a correlation with resistance or sensitivity could
be established in some cases, these studies failed to introduce new therapy options
in a systematic manner. Third, the response assessment for most conventional
chemotherapeutics relied on in vitro proliferation. Thus, results from mostly non-
proliferative primary patient samples remained difficult to both interpret and
translate into clinical care.

5.1.2. Next-generation sequencing

Next-generation sequencing (NGS), or high-throughput sequencing, stands as a
catch-all term used to describe several modern sequencing technologies that enable
several downstream applications, such as genome sequencing, transcriptional
profiling (RNA-sequencing), and the high-throughput survey of DNA-protein
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interactions (ChIP-Seq) and of the epigenome.152-154 NGS allows the sequencing of
millions of nucleotides in parallel, yielding extensively more throughput. Thus, the
demand for fragment-cloning methods needed for Sanger sequencing is minimized.
The samples are sequenced with high coverage, known as deep sequencing, enabling
even a small number of cells to be sequenced at a very high resolution.'>> Due to
their lower costs, these methods have now driven our understanding of many
diseases, including cancer.153.156

Several next-generation genome-sequencing techniques exist. Targeted sequencing
involves the analysis of selected parts of the genome, and appears suitable for
sequencing known disease genes. It may also be used for targeted gene panels as
well as for the validation of mutations. In exome sequencing (referred to
occasionally as whole exome sequencing), the protein-coding part of the genome
(i.e., the exome), constituting 1% to 2% of the human genome, is sequenced. This
application enabled the discovery of novel disease genes as well as evolutionary
patterns in cancer. Whole-genome sequencing refers to the analysis of the entire
genome, including non-coding and regulatory DNA.152,155,157-159

5.1.3 Biomarkers

The National Cancer Institute (NCI) defines a biomarker as “a biological molecule
found in blood, other body fluids, or tissues that is a sign of a normal or
abnormal process, or of a condition or disease.”¢® In cancer, biomarkers are
frequently used to evaluate the disease prognosis, to predict the therapeutic
response, and to monitor the relapse or progression of disease. 161,162

According to Teutcsh and coworkers, the discovery and development of a
biomarker from initial finding to everyday practice can be divided into three
separate phases: assessing the analytic validity, the clinical validity, and the
clinical utility of a potential biomarker.163 First, a cohort of samples is analyzed
to identify or test a specific potential new biomarker. Subsequent analysis with
an independent sample cohort may validate the original findings and may
facilitate a detailed evaluation of possible confounding factors. Finally, the
capability of aiding clinical decision-making together with improving treatment
outcomes will validate the value of the potential biomarker.161163 Currently,
phase [ trials increasingly use biomarker-driven patient selection, thus
attempting to validate a biomarker for a specific therapy and improve treatment
outcomes.’6¢ In AML, biomarkers were initially used to assess the risk
classification and MRD detection. As discussed previously, several existing phase
I, I, and II trials are exploring the effect of biomarker-guided targeted therapies.
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5.1.4 Biobanking

Although translational research is undergoing a renaissance, the gap between
laboratory research and clinical care (“the valley of death”) remains wide.165 To
shorten the time for translation of basic research, a well-organized system of
patient-derived material, i.e, a biobank, may serve as an essential instrument.
Biobanks can be classified by purpose into population-based biobanks and disease-
oriented biobanks.166 Typically, the healthy population, or an unselected population
with chronic illnesses, forms the foundation for population-based biobanks.166
Disease-oriented biobanks are typically integrated within healthcare
organizations.'®” Whereas population-based biobanks customarily collect blood or
DNA together with data on lifestyle, family history and environmental exposure,
disease-oriented biobanks typically store more extensive sample collections (e.g.,

tumor tissue, cells, blood, and other body fluids) with a variable range of clinical
data.166

The broad and robust collection of patient-derived primary material paired with
relevant clinical data may accelerate translational research by providing an available
resource of high-quality patient samples, thus complementing research performed
on cell lines and animals.168 As recommended by ELN in the 2017 AML guidelines,
informed consent should allow for a range of laboratory studies along with analysis
of germline DNA.34 Pretreatment leukemic marrow, processed to DNA, RNA, and
viable cells, as well as plasma samples, a methanol/acetic acid-fixed cell pellet, and
frozen cell pellets and blood should be stored within a biobank. According to the
ELN recommendations, sampling should include specimens from various time points
during and after treatment (CR, remission, and relapse), as well as samples for MDR
monitoring.34

5.2. Attempts to individualize therapy

The Latin phrase divide et impera—divide and rule—refers to politics or war, where
breaking up large and complex opponents into smaller units renders them more
manageable and, thus, surmountable. As highlighted by Cortes and Kantarjian, this
strategy might also apply to the treatment of AML.1%° Broadening our knowledge
base regarding the disease allows us to identify multiple distinct entities rather than
a single overarching disease.1®® Given our current understanding of genomics, we
can accurately estimate which aberrations are most harmful, which can putatively be
targeted, and what is the biology of an individual patient’s disease.l%® Regrettably,
putting these diverse data to use in everyday practice remains challenging and
elusive. Each patient's tumor typically features several driver mutations forming
numerous possible combinations, where only few driver genes represent
straightforward therapeutic targets.170.171
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Currently, the major dilemma in treating fit AML patients centers around whether
they should receive allogeneic stem-cell transplantation or chemotherapy alone.172
Current guidelines are based on risk grouping characterized by single mutations.34
Recent studies developed a knowledge bank, an approach that utilizes information
on matched comprehensive genomic and clinical data from more than 1500 AML
patients to support clinical decision-making. Presently, this approach is limited to
evaluating the effect of one therapy option; in the future, however, it may provide
the foundation for more comprehensive decision-making.171

The German-Austrian AML Study Group (AMLSG) has made one of the first attempts
to comprehensively integrate genomic data into treatment decision-making. AMLSG
has launched investigator-initiated trials where therapy is based on the molecular
subtyping of the disease. AML patients are assessed for aberrations within 48 hours
of diagnosis. Patients are then stratified into placebo-controlled trial groups based
on driver mutations (CBF-positive patients to the dasatinib-trial, FLT3-positive to
the trial with midostaurin or the crenolanib trial, NPM1-positive to trials with
GO/ATRA, and high-risk patients to the volasertib trial). All patients receive
conventional chemotherapy combined with these agents. Although this study offers
a platform for identifying targeted therapies for a given subgroup, the study is not
designed to estimate the strength of using more precise disease characterization to
improve survival.173

Quite recently, the Leukemia & Lymphoma Society (LLS) launched its Beat AML
master trial (Beat AML 2.0) in which patients 60 years and older with newly
diagnosed AML are eligible for participitaion.174#175 Each patient will undergo
genomic screening at diagnosis, with results available in seven days. Based on the
results, patients are assigned to personalized therapy based on one of several sub-
studies, each with arm-specific endpoints. Despite varying endpoints, all therapies
have the common goal of improving patient outcomes.174175> The trial differs from
previous AMLSG-initiated trials in four major ways. First, all patients receive active
therapy (without placebo). Second, conventional chemotherapy is reserved only for
those patients shown to benefit from it. Third, the trial protocol includes algorithms
to implement targeted therapies for common situations with several targetable
mutations. Finally, this umbrella trial design will be assessed for its overall survival
benefit. The Beat AML 2.0 trial will explore an expanded set of drugs and novel
combinations.174

During the last decade, NGS methods have extended our understanding of AML
pathophysiology, ultimately also leading to the expansion of our anti-leukemic
armory. Continuous work towards unraveling novel tools to enable therapeutic
individualization together with innovatively designed trials will gradually improve
our competence in subdividing patients’ diseases into well-defined—and thus
defeatable—subgroups.
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AIMS OF THE STUDY

The overall aim of this study was to utilize novel techniques (e.g., exome and
transcriptome sequencing, ex vivo drug sensitivity, and resistance testing) to
individualize therapy for patients with acute leukemia. In addition, these platforms
for were used for predictive biomarker discovery.

The specific aims were:

* To evaluate whether an ex vivo drug testing platform can be used for
functional classification of AML and as a predictor for in vivo therapy
responses. (I)

* To determine the prevalence of STAT3 and STAT5 mutations in T-cell acute
lymphoblastic leukemia and to evaluate potential sensitivity for targeted
therapies. (1)

* To evaluate biomarkers for BCL-2 inhibitor sensitivity in AML. (III)

* To develop a hematology-based national biobank to inventory samples for
future research. (IV)
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MATERIAL AND METHODS
1. STUDY SPECIMENS

1.1.Study patients and consents (I-1II)

We collected bone marrow (BM) aspirates or peripheral blood (PB) samples
(leukemic cells) and skin biopsies (non-malignant cells for germline genomic
information) from patients after they signed informed consent forms (permit
numbers 239/13/03/00/2010 and 303/13/03/01/2011, Helsinki University
Hospital Ethics Committee) in accordance with the Declaration of Helsinki. The
consent forms included the possibility of using DSRT data to guide therapies after all
other treatment options were exhausted. In addition, we obtained BM aspirates from
healthy donors. Finally, we obtained approval to use archival samples from deceased
patients for study II from the National Supervisory Authority for Welfare and Health

Study I evaluated the drug sensitivity and molecular profiles of 28 fresh BM samples
from 18 AML and high-risk MDS patients. In addition, we analyzed 7 BM samples
from healthy individuals, which served as controls. We collected 10 samples from
newly diagnosed patients, whereas 18 samples were collected from relapsed or
refractory or both types of patients.

Study II investigated the prevalence of STAT mutations in T-ALL, by sequencing 64
adult and 4 pediatric T-ALL patients. The bone marrow samples from STAT5B
mutated index patient were evaluated for drug sensitivity and BCL-2 family gene
expression.

Study III evaluated the biomarkers for venetoclax and navitoclax sensitivity in 73
AML BM aspirates and PB samples from 57 AML patients. In addition, BM aspirates
from healthy donors (12 for navitoclax testing and 7 for venetoclax), and 3 CLL
patients were obtained. We obtained 28 samples from newly diagnosed patients,
whereas 45 samples were collected from relapsed or refractory AML patients or
both.

1.2. Sample processing (I-1II)

Mononuclear cells were isolated from fresh samples using Ficoll density gradient
(GE Healthcare, Little Chalfont, UK), washed, counted, and suspended in
Mononuclear Cell Medium (MCM) (PromoCell, Heidelberg, Germany) supplemented
with 0.5 pg/ml gentamicin. Possible excess cells were stored in liquid nitrogen in
fetal bovine serum (FBS) and 10% dimethylsulfoxide (DMSO) for future use.

For study I, a sample from patient 393 with secondary AML after MDS with 20%
myeloblasts, was enriched for the CD34+ cell population using paramagnetic beads
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according to the manufacturer's instructions (Miltenyi Biotech, Bergisch Gladbach,
Germany). For study II, CD3+ cells were enriched from the PB mononuclear cell
(MNC) fraction of a healthy author using the Easy Sep Human CD3 Positive Selection
Kit (StemCell Technologies, Vancouver, Canada) following the manufacturer’s
protocol.

2. ASSESSMENT OF DRUG SENSITIVITY

2.1. Drug sensitivity and resistance testing (DSRT) (I-11I)

The oncology compound collection covers the active substances from the majority of
FDA/EMA approved anti-cancer drugs as well as a wide range of emerging
investigational and pre-clinical compounds. These compounds were obtained from
the National Cancer Institute Drug Testing Program (NCI DTP) and commercial
chemical vendors. Initially, in 2011 the collection consisted of 187 compounds; the
latest library (version FO4B) contains 525 compounds. (Figure 1)

b)

I Approved (n=156)
I Investigational (n=279)
I Probe (n=90)

[ Chemothreapy (n=74)

I Kinase inhibitor (n=262)

& Differentiating/ epigenetic modifier (n=61)
I Apoptotic modulator (n=22)

B Immunomodulatory (n=14)

[ Rapalogs (n=5)

Il HSP inhibitor (n=9)

I Kinesin inhibitor (n=3)

Il Metabolic modifier (n=17)

Bl Hormone therapy (n=22)

Il Nonsteroidal anti-inflammatory drug (n=2)
[ Other (n=34)

Total=525 Total=525

Figure 1. Composition of the current drug sensitivity and resistance testing (DSRT) library.
Partitioned according to the mode of action (a) and the clinical phase (b).

We performed ex vivo DSRT on freshly isolated primary patient MNCs as well as
MNCs derived from healthy donors using a 72-h culture on multiwell plates. The
compounds were dissolved in 100% DMSO and dispensed on tissue culture treated
384-well plates using an acoustic liquid handling device Echo 550 (Labcyte Inc.,
Sunnyvale, CA, USA). The compounds were plated in five different concentrations in
10-fold dilutions covering a 10,000-fold concentration range (e.g. 1-10,000 nM). The
pre-drugged plates were stored in pressurized StoragePods (Roylan Developments
Ltd., Fetchmam, UK) under inert nitrogen gas until needed. The compounds were
dissolved using 5 pl of MCM. Then, 20 pl of a single cell suspension (10,000 cells)
from either primary patient or control cells was transferred to each well using a
MultiDrop Combi (Thermo Scientific Inc., Waltham, MA, USA) peristaltic dispenser.
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The plates were incubated in a humidified environment at 37°C and 5% CO; and
after 72 h cell viability was measured using the CellTiter-Glo luminescent assay
(Promega, Madison, WI, USA) according to the manufacturer’s instructions with a
Molecular Devices Paradigm plate reader. Data were normalized to the negative
control (wells preprinted with DMSO only) and positive control wells (wells
containing a final concentration of 100 uM benzethonium chloride, which effectively
kills all cells).

2.2. Analysis of DSRT data (I-1II)

We used Dotmatics Studies software (Dotmatics Ltd., Herts, UK) to calculate
normalized survival for each data point and to generate the dose response curves.
The dose response curves were fitted based on a four parameter logistic fit function
defined by the top (a) and bottom asymptote (d), the slope (b) and the inflection
point (EC50) (c). The non-linear curve fitting equation is given by: y = d+ ((a-
d)/(1+102(<9). In the curve fitting, the top asymptote of the curve was fixed to 100%
viability, while the bottom asymptote was allowed to float between 0 and 75%. Thus,
the drugs causing less than 25% inhibition were considered inactive.

In order to quantitatively profile individual patient samples, we developed the drug
sensitivity score (DSS) as a single measure.l7¢ The curve fitting parameters were
used to calculate the area under the dose response curve (AUC) relative to the total
area between 10% threshold and 100% inhibition (TA). Furthermore, to favor on-
target responses over toxic off-target responses, the integrated response was
divided by a logarithm of the top asymptote (a). The DSS was calculated as follows:
DSS= (100 x AUC)/(TA x log a). We scored for differential activity of the drugs in
blast cells in comparison to control cells (MNC fraction from healthy BM) using the
selective DSS (sDSS) (Figure 2).

100+ . . .
Max Figure 2. Curve fitting and selective drug
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2.3. Prediction of kinase addictions (I)

The selective sDSS of kinase inhibitors were further used to predict sample-specific
kinase addictions. We compared sample-specific sDSS responses with target profiles
for 35 kinase inhibitors overlapping between our compound panel and the panel
biochemically profiled against more than 400 kinases by Davies et al.1’8 For each
kinase target, we calculated a kinase inhibition sensitivity score by averaging the
sDSS values among those compounds that selectively targeted the kinase. These
putative selective kinases were compared to gene expression to exclude non-
expressed targets and the remaining kinases defined a putative “kinaddictome” for
each patient sample. For displaying purposes, the resulting kinases were depicted in
a kinase inhibitor target similarity network.17°

3. NEXT-GENERATION SEQUENCING (NGS)

3.1. Exome sequencing and somatic mutation analysis (I-III)

Genomic DNA was isolated using the DNeasy Blood & Tissue kit (Qiagen, Hilden,
vGermany). Exome capture was performed using the Nimblegen SeqCap EZ v2
(Roche NimbleGen, Madison, WI, USA), Agilent SureSelect v5 Exome or Agilent
SureSelect XT Clinical Research Exome (Agilent, Santa Clara, CA, USA) capture Kkits
and the HiSeq 1500 or 2500 instruments (Illumina, San Diego, CA, USA). Exome
sequence reads were processed and aligned to the GRCh37 human reference-
genome primary assembly as previously described.18 Somatic-mutation calling was
done for the exome-capture target regions and the flanking 500 bps. High confidence
somatic mutations were called for each tumor sample using the VarScan2 somatic
algorithm18! with the following parameters: strand-filter 1, min-coverage-normal 8,
min-coverage-tumor 6, somatic-p-value 1, normal-purity 1, and min-var-freq 0.05.
Mutations were annotated with SnpEff 4.0 (ref.l82) using the Ensembl v68
annotation database. To filter out misclassified germline variants, common
population variants included in dbSNP database version 130 (National Center for
Biotechnology Information, Bethesda, MD, USA) were removed. The remaining
mutations were visually validated using the Integrative Genomics Viewer (Broad
Institute, Cambridge, MA, USA).

In study I in order to evaluate the frequencies of mutations identified in samples not
meeting the criteria for high-confidence mutations, we retrieved the variant
frequencies and read counts for each mutation from a set of unfiltered variant calls
generated by VarScan2 using the following parameters: strand-filter 0, min-
coverage-normal 8, min-coverage-tumor 1, somatic-p-value 1, normal-purity 1, min-
var-freq 0. In addition, we used variant allele frequencies from the control-leukemia
pairs to identify regions of heterozygosity loss.
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3.2. Transcriptome sequencing and data analysis (I-1II)

We used the total RNA isolated from patient MNCs was used for the depletion of
ribosomal RNA (Ribo-Zero™ rRNA Removal Kit, Epicentre, Madison, WI, USA) and
reverse transcribed to double-stranded cDNA (Ribo-Zero rRNA Removal Kit,
Epicentre, Madison, WI, USA; or in study II: NEBNext® mRNA Library Prep Master
Mix Set 1, New England BioLabs, Ipswich, MA, USA). RNA-seq libraries were
prepared by Illumina-compatible Nextera Technology (Epicentre, Madison, WI, USA)
and sequenced on the Illumina HiSeq 1500 or 2500 instruments. Sequenced reads
were filtered and aligned to the GRCh37 human reference-genome using TopHat.

In study II, we reconstructed the STAT5B haplotype of the index patient’s relapse
sample regarding mutations N642H, T648S, and 1704L extracting from Tophat
alignment pairs (38 in total), properly aligned and overlapping with the affected
exons. The pairs supporting each of the possible haplotypes were counted manually
using the Integrated Genomics Viewer (Broad Institute). In total, we had 23 pairs
supporting the triple mutation (N642H, T648S, 1704L); 15 pairs supporting the
triple WT, and no pairs supporting other combinations.

In study III, mapped reads were counted for each genomic feature (gene) with the
FeatureCount read-summarization program from the Subread package (WEHI,
Melbourne, Australia).183 The Trimmed Mean of M-values (TMM) method from the
edgeR package was applied to normalize raw read count and to find out differential
gene expression signatures between sensitive and resistant samples from 53,893
(Ensembl 67) genes184,

3.3. Amplicon sequencing (I and II)

We prepared samples according to an in-house targeted polymerase chain reaction
(PCR) amplification protocol. Each amplicon was generated using locus specific PCR
primers carrying [llumina compatible adapter sequences (primer sequences are
presented in the supplementary material in original studies I and II). All
oligonucleotides were synthesized using Sigma-Aldrich (St. Louis, MO, USA). The
PCR reaction was performed in an extracted sample DNA, with Phusion High-Fidelity
PCR Master Mix (Thermo Scientific Inc.,, Waltham, MA, USA), locus specific primers,
and adapter primer carrying Illumina grafting P7 sequence, or P5 sequence (the
sequences are presented in supplementary material of the original publications).
Following PCR amplification, samples were purified using Performa® V3 96-Well
Short Plate (EdgeBio, Gaithersburg, MD, USA) and QuickStep™2 SOPE™ Resin
(EdgeBio, Gaithersburg, MD, USA) or with Agencourt® AMPure® XP beads (Beckman
Coulter Inc., Beverly, MA, USA) and then pooled together without exact
quantification. Purified sample pools were analyzed on Agilent 2100 Bioanalyzer
(Agilent Technologies Inc., Santa Clara, CA, USA) to quantify the amplification
performance and yield. Sequencing of PCR amplicons was performed using the
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[llumina MiSeq instrument with MiSeq Control Software v2.2.29 or later versions
(Ilumina, Inc., San Diego, CA, USA). Samples were sequenced as 101 paired-end
reads and one 7pb (study I) or 151 or 251 bp and two 8 bp index reads (study II).
Data obtained from sequencing were processed using an in-house amplicon pipeline.
STAT5B mutations were validated from the index patient with capillary sequencing.

4. RQ-PCR (II AND III)

Total RNA was prepared from BM or PB MNCs using the miRNeasy Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. cDNA was prepared
from total RNA using SuperScript Il reverse transcriptase and random primers (Life
Technologies, Carlsbad, CA, USA), including RiboLock RNase inhibitor (Thermo
Scientific, Waltham, MA, USA). The reference genes were chosen based on a uniform
expression in all samples. For study Il POLR1B and GUSB were identified as the best
reference candidates, whereas for study IIl GAPDH and PGK1 were chosen based on
uniform expression in all samples. For study II qPCR was performed for four target
transcripts: BCL2, BCL-XL, BCL-XS, and MCL-1. The primer sequences are listed in the
supplementary material of study II.

For study I RQ-PCR was performed for B2M, BCL-2, BCL-XL, MCL-1, BIK, BAX, BAK1,
BID, BCL2L12, BCL2L11 (BIM), BCL2A1, BBC3 (PUMA), and BAD as well as for HOXA1-
A7, HOXA9, HOXA10-A13, HOXB1-B9, and HOXB13 mRNAs. The primer sequences are
listed in the supplementary material of study III. BCL-XL and BCL-XS represent
alternative transcripts of the BCL2L1 gene, such that the primers were transcript-
specific. Other targets were not specific for transcript variants. qPCR reactions were
performed using iQ SYBR Green Supermix (Bio Rad, Hercules, CA, USA), while the
specificities of the amplification products were verified using a melting curve
analysis. Gene expression was quantified using the Pfaffl method based on the
calculated primer efficiencies and other genes, while the DDCq method was applied
to the analysis of homeobox (HOX) genes.185

5. FUNCTIONAL STUDIES

5.1 STAT5B mutagenesis (II)

An expression plasmid pCMV6-XL6 containing the wild-type (WT) coding sequence
of STAT5B (OriGene, Rockville, MD, USA) was modified to include the N642H, T648S
and [704L mutations. After generating the single mutated constructs the double
(N642H+T648S, N642H+1704L, T648S+1704L) and triple (N642H+T648S+1704L)
mutated constructs were prepared. The mutant constructs were created using the
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GENEART Site-Directed Mutagenesis System (Life Technologies, Carlsbad, CA, USA)
according to the manufacturer’s protocol. The primer sequences used for the
mutagenesis are listed in the supplemental table 3 in study II. The entire STAT5B
cDNA sequence with mutations was confirmed using capillary sequencing (the
primer sequences are presented in the supplemental material).

5.2. Cell culture, transfection and Western blot analysis (II)

HeLa cells were cultured in high glucose Dulbecco's Modified Eagle Medium (DMEM)
(Life Technologies, Carlsbad, CA, USA) containing 10% FBS, 2 mM L-glutamine, 100
U/ml penicillin, and 100 p g/ml streptomycin. Transfection was carried out using
STAT5B expression plasmids mixed with luciferase reporter plasmid pGL4.52
(Luc2P/STAT5RE/Hygro, Promega, Madison, WI, USA) using the Fugene HD
transfection reagent (Promega) with a Fugene HD:DNA ratio of 3.5:1. A master mix
was prepared for each mutant construct + luciferase plasmid and appropriate
amounts were added to each well.

One day after transfection, the HeLa cells were lysed in a RIPA buffer. Lysates were
then sonicated and after the addition of a Laemmli buffer, protein was loaded to
10% SDS-PAGE gels. The detection of phopho-STAT5 and total STAT5 was
completed using two separate gels run in parallel with the same protein lysates. The
proteins were transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA),
after which the membranes were blocked with a 5% bovine serum albumin (BSA).
Primary antibodies for STAT5 were obtained from Cell Signaling Technology (Cell
Signaling Technology, Danvers, MA, US): STATS5 (rabbit polyclonal antibody, cat.
9363) and phospho-STAT5 (Tyr694/699, rabbit mAb, cat. 9359). Anti- « -tubulin
was obtained from Sigma Aldrich (T9026 mouse mAb). Membranes were incubated
with diluted primary antibodies and, then, with diluted secondary infrared
antibodies: goat anti-rabbit IRDye 800 CW and donkey anti-mouse IRDye 800 CW
(LI-COR Biosciences, Lincoln, NE, USA). The proteins were visualized using the
Odyssey imaging system (LI-COR Biosciences) and version 3.0 of the application
software was used to quantify band intensity levels.

5.3. STAT5B reporter assay (II)

After 24 h incubation at 37 °C, transfected HeLa cells were lysed and luciferase
activity was assessed using the One-Glo luciferase detection reagent (Promega,
Madison, WI, USA). The assay was repeated three times and the mean fold change in
transcriptional activity induced by the different mutant constructs compared to the
activity of the WT STATS5B construct was calculated (reported as standard
deviations [SDs]).

38



6. PROTEIN ANALYSIS

6.1. Proteomic analysis (I and II)

The phosphoproteomic analysis in study I for AML patient samples was performed
using Proteome Profiler antibody arrays (R&D Systems) according to the
manufacturer’s instructions. Lysates containing 300 pg of protein were applied to
the arrays and fluorescently labeled streptavidin (IRDye 800 CW streptavidin, LI-
COR) and an Odyssey imaging system (LI-COR) were used for detection.

6.2. Protein structure analysis

The human STAT5B dimer homolog was produced as described previously.137 The
visualization of the protein structure was produced using the Swiss PDB viewer.186

5.STATISTICAL ANALYSIS (I-11I)

Statistical analyses were performed using the Prism software versions 5 and 6
(GraphPad Software, San Diego, CA, USA). The datasets were subjected to normality
testing using the Shapiro-Wilk normality test. Differences between responses
modeled by a Gaussian (normal) distribution were analyzed using ¢ tests. In all other
cases, we used the Mann-Whitney U test or the Wilcoxon matched-pairs signed-rank
test. Correspondingly, statistical dependence between two variables was assessed
using the Pearson’s correlation or Spearman's rank correlation coefficient. All tests
were two-tailed and we considered P < 0.05 as statistically significant. The clustering
of drug sensitivity profiles across patient and control samples was performed using
unsupervised hierarchical complete-linkage clustering using Spearman and
Euclidean distance measures for the drug and sample profiles, respectively.
Euclidean distance measures were also used to cluster samples according to gene
expressions.
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RESULTS

1. INDIVIDUALIZED SYSTEMS MEDICINE (ISM) FOR TAILORING THERAPY IN
AML

1.1. ISM platform

In study I, we developed an individualized systems medicine (ISM) platform, which
combines the genomic profiling data with the drug sensitivity profile. Thus, ISM can
be utilized (1) to rapidly identify personalized treatment options for patients with
relapsed or refractory AML, (2) to gain an understanding of factors driving drug
resistance (and sensitivity), (3) to gain an understanding of the disease biology in a
specific patient, and (4) to offer the possibility of repurposing approved agents, also
in a boarder context. (Figure 1)
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Figure 1. The individualized systems medicine (ISM) platform.

Currently, the platform involves DSRT against a comprehensive library of 525 anticancer compounds
(both approved and experimental (pre-clinical and phase I-III trials)), next-generation genomic
profiling (exome and transcriptome sequencing), and the integration of these to clinical follow-up
data. This data may be used to improve understanding of the mechanisms of sensitivity, resistance,
and individual disease biology, and introduce novel therapeutic options. Turn-around times for DSRT:
3 days; for genomic profiling: exome sequencing: 10-12 days; transcriptomic profiling: 28 days.
Abbreviations: sDSS, selective drug sensitivity score.
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The DRST methods are discussed in detail in the methods section. In brief, in study I
DSRT was performed on fresh BM MNCs using a panel of all FDA- or EMA-approved
small molecule compounds and conventional cytotoxic anticancer drugs, as well as
investigational compounds (n = 202) in five concentrations over a 10,000-fold
concentration range (e.g., 1-10,000 nM). A leukemia-specific drug sensitivity score
(sDSS) derived from dose response AUC calculations was used as the efficacy
variable by comparing leukemia cell results with those from normal BM cells. DSRT
was performed on 28 samples, obtained from 18 patients with AML. In total, 18
samples were collected from relapsed patients whereas 10 were obtained upon
initial diagnosis.

1.2. DSRT identifying subgroup-specific responses

DSRT identified a subset of AML samples exhibiting a selective response to targeted
therapy agents. This response pattern differed from conventional chemotherapeutic
agents, where the average sensitivity profiles were highly similar to those observed
in healthy BM, thus reflecting the limited therapeutic window for these agents
(Figure 2a). Importantly, DSRT identified several signal transduction inhibitors as
potential AML-selective compounds. The primary patient samples exhibited
leukemia-selective responses (sDSS > 5) for several TKIs, including the multi-kinase
inhibitors dasatinib, sunitinib, and sorafenib. Moreover, leukemia-selective
responses to more specific pathway inhibitors such as ruxolitinib (JAK1/2 inhibitor),
trametinib (MAP-ERK kinase (MEK) inhibitor)) and quitzartinib (FLT3 inhibitor)
were observed. Samples also demonstrated a sensitivity to rapalogs (temsirolimus)
and the dual inhibitors PI3K/mTOR such as dactolisib and AKT-inhibitor MK-2206
(Figure 2b).
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Figure 2. Responses in healthy donors and primary AML samples.

(a) Compared with healthy donors, targeted therapies caused selective responses in a subset of AML
patient samples. (b) The percentage of primary AML samples exhibiting leukemia-selective responses
to targeted agents. Color key for panel a: red, leukemia samples; blue, healthy controls.
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Unsupervised hierarchical clustering analysis was used to visualize the various
DSRT response patterns. Although the genomic profile for each sample is individual,
the clustering divided the responses into five functional groups (groups I-V; Figure
3). Overall, 19 of 28 (68%) samples were sensitive to TKIs.

Specifically, group I displayed a selective response to navitoclax and appeared non-
responsiveness to a majority of the other tested compounds. Group Il showed a very
limited response to receptor TKIs, but were quite sensitive to immunosuppressive
drugs such as corticosteroids as well as JAK and MEK inhibitors. Groups III, IV, and V
were all selectively sensitive to a broad range of TKIs, indicating a pathway
dependence for tyrosine kinase signaling. Group III was further characterized by a
similar sensitivity to inhibitors HSP90, HDAC, and PI3K/mTOR. Group IV exhibited
leukemia-selective responses to MEK and PI3K/mTOR inhibitors, whereas group V
showed selective responses to several receptor TKIs targeting ABL, the vascular
endothelial growth factor receptor (VEGFR), the platelet-derived growth factor
receptor (PDGFR), FLT3, and KIT proto-oncogene receptor tyrosine kinase (KIT). We
also observed topoisomerase II sensitivity in this group.
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Figure 3. The clustering of DRST responses aligns AML patients into five distinct groups.

The recurrent AML mutations and gene fusions, disease stages, and adverse karyotype status of the
patient samples are also presented. Abbreviations: D, diagnosis; D*, secondary AML diagnosis; R,
relapsed and/or refractory. Color key: For drug sensitivity: red, sensitive; blue, resistant. For
mutations: green, mutation detected; grey, data not available.
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All samples in group V had FLT3 mutation. As expected, several FLT3 inhibitors, such
as sunitinib and quizartinib, exhibited the highest leukemia-selective responses.
Notably, also those TKIs not inhibiting FLT3, such as dasatinib, showed highly
selective responses in group V implying FLT3 driven AML to depend on other
tyrosine kinase signals as well. Mutations in RAS genes correlated significantly with
leukemia-selective responses to MEK inhibitors.

1.3. Clinical implementation of ISM data

We considered DSRT results clinically implementable among patients with no
treatment options available if (1) we observed a distinct leukemia-selective
response pattern and (2) drugs with the most leukemic-selective responses were
clinically available (as compassionate or on/off-label use) within a sufficient
timeframe. Three of seven such patients responded to DSRT-guided therapy based
on the ELN response criteria (Table 1). Patient 600 (dasatinib-sunitinib-
temsirolimus) had CRi response, whereas patients 718 (sorafenib-clofarabine) and
800 (dasatinib-clofarabine-vinblastine) reached a morphological leukemia-free
state. Additional three patients had responses not meeting ELN criteria. Patient 252
had an eight-week progression-free state during dasatinib monotherapy (BM blasts
65-40-70%). Patient 560 showed a rapid clearance of PB blasts after five days of
treatment with dasatinib and sunitinib, after which gastrointestinal toxicity led to
therapy cessation. When receiving ruxolitinib-dexamethasone therapy, patient 1145
showed an improvement in PB counts leading from a constant need for transfusions
to normal blood counts.

In study I, two patient cases, 600 and 784, were examined in detail. Patient 784, a
37-year-old woman, was diagnosed with high-risk AML with the MLL-ELL fusion
gene (t(11;19)(q23;p13.1)) and FLT3-ITD. Since the patient was chemotherapy
resistant, we explored further treatment options using the ISM platform. Initial DSRT
revealed leukemia-selective responses to several compounds, including TKIs such as
dasatinib, and to rapalogs, and MEK inhibitors. The patient achieved a transient
response with dasatinib-sunitinib-temsirolimus therapy; BM blasts decreased from
70 to 35%, but then the disease progressed rapidly. The repeated DSRT indicated a
loss of sensitivity to both dasatinib and sunitinib, although the sensitivity to ATP-
competitive mechanistic target of rapamycin (mTOR) inhibitors remained.
Furthermore, the resistant sample gained new vulnerabilities, such as sensitivity to
BMS-754807 (insulin-like growth factor-I receptor (IGF-IR) / Trk inhibitor), to
several immunomodulatory and differentiating agents, as well to crizotinib (TKI)
and tipifarnib (farnesyl-transferase inhibitor). Comparing the putative driver
kinases in these two samples revealed a conversion in the kinase dependence along
with gaining an addiction to ALK and Trk family receptor tyrosine kinases and a loss
of an addiction to SRC family kinases, PI3K, and mitogen-activated protein kinase
(MAPK). Importantly, the dasatinib-sunitinib-temsirolimus resistant sample showed
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more than a 1000-fold enrichment of two fusion transcripts, ETV6-NTRK3 and
STRN-ALK, suggesting that resistance might have resulted from the selection of a
resistant clone. The ETV6-NTRK3 results in the TEL-TrkC fusion protein which,
interestingly, appears to lead to IGF-IR activity and to the hyperactivation of
mTORC1.187-189

Patient DSRT Therapy . Treatment . Time to Treatment
. . Disease Additional X
/sample guided duration state response information progression related
therapy (days) (ELN) (weeks) toxicity
Relapsed, Resistant Bone marrow
252 Dasatinib 59 resistant disease blasts: 8 No
disease 65-40-75%

Dasatinib- Relapsed, Resistant Induction with

560_1 A 34 S . plerixafor- 4 No
temsirolimus remission disease
MAC
Blood blasts:
Dasatinib- Not 34-0% Neutropenic
560.2 sunitinib 5 Relapsed evaluable Monocytes: /A fever, diarrhea
7-49%
Dasatinib- Relapsed, DEair;l)ea
600 sunitinib- 44 resistant CRi 6 gral,
- : neutropenic
temsirolimus disease
fever (gr 2)
Sorafenib- Relgpsed, Morpholggic . Dostio Bone marrow
718 . 63 resistant leukemia- Hypoplasia hypoplasia
clofarabine - follow-up
disease free state (gr4)
. Bone marrow .
Dasz_it_m.lb— Resistant Resistant blasts: Ngutropenlc
784_1 sunitinib- 13 R | Not evaluable infection
- disease disease 70-35-85%
temsirolimus (gr2)
Cytarabine-
784 2 etoposide- 30 Resistant Resistant Bone marrow Bridged to Neutropenic
- sunitinib- disease disease blasts 85-30% HSCT infection (gr3)
vinblastine
. . . Infection
Clofara‘b¥ne— Resistant Morphol(.)glc . Hypoplasia, (gr 4), death
800 dasatinib- 6 . leukemia- Hypoplasia no > .
. . disease . in aplasia
vinblastine free state progression
(gr5)
e Relapsed, . .
1145 Ruxolitinib- 6 A Re‘smtant 'Hematologlc 6 No
dexametason disease disease improvement

Table 1. Responses in patients treated with DSRT-guided therapies.

Patient 600 was a 54-year-old man at the time of diagnosis with cytogenetically
normal, FLT3-ITD-positive AML M5. Upon diagnosis, a high PB blast cell count and
signs of extramedullary leukemia (splenomegalia and gum hyperplasia) were
observed. Induction therapy with cytarabine, idarubicin, and thioguanine was
initiated and BM hypoplasia was achieved. A treatment delay due to an infection-
related multi-organ failure resulted in leukemia relapse. Three re-induction
regimens (cytarabine-idarubicine-thioguanine, clofarabine-cytarabine-etoposide,
and plerixafor-clofarabine-idarubicin-lenalidomide) were administered without a
response. Figure 4a provides a summary of the response to the targeted therapy. In
DSRT, the blasts showed a selective sensitivity to the mTOR inhibitor temsirolimus
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(sDSS 8,6) multikinase inhibitors dasatinib (sDSS 12,8), and sunitinib (sDSS 16,5)
(Figure 4b). After initiating this combination, the BM blast cell count rapidly
decreased and the PB neutrophil count normalized, although the platelet count
remained low (CRi). At 30 days from response, relapse occurred. Repeat DSRT
showed a loss of sensitivity reflecting a solid correlation between ex vivo and in vivo
sensitivity and resistance (Figure 4b and 4c).

Transcriptome (RNA) sequencing revealed a NUP98-NSD1 fusion. The NUP98-NSD1
fusion gene represents a recurrent aberration in pediatric AML, occurring in 17% of
cytogenically normal AML patients and strongly associated with FLT3-ITD
mutations. In adult AML, the fusion is detected in 2% to 3% of patients.1%0 The
transforming property of NUP98-NSD1 involves a block in cellular differentiation
and enforced leukemic progenitor self-renewal through the persistent
overexpression of distinct HOX genes. The NUP98-NSD1 fusion was also detected in
the diagnostic sample and all later follow-up samples, verifying that this fusion
represented the initiating event in the disease. Exome sequencing showed a diverse
clonal architecture highlighted by FLT3-ITD and WTI mutations. After induction
chemotherapy, the predominant FLT3-ITD subclone was no longer detectable, while
subsequent therapies, including combining dasatinib, sunitinib, and temsirolimus
combination, induced a redistribution of the subclones containing WT1 mutations
and a second FLT3-ITD. (Figure 4d)
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Figure 4. Clinical implementation of DSRT results and clonal evolution in a treatment-
refractory AML patient. (a) The effect of DSRT-guided therapy (dasatinib-sunitinib-temsirolimus)
on the BM blast count and PB neutrophil count. The combination therapy resulted in a rapid decrease
in blasts and a normalization of neutrophils (CRi). (b) The blasts showed a selective sensitivity to the
mTOR inhibitor temsirolimus and multikinase inhibitors dasatinib and sunitinib. At the time of
relapse, repeated DSRT showed a loss of sensitivity. (c) The DSRT for all tested agents show a general
loss of sensitivity in the post-treatment sample. d) Clonal evolution of AML from diagnosis to the last
relapse in a patient. Abbreviations: Das, dasatinib; Sun, sunitinib: Tem, temsirolimus; Pre, pre-
treatment; Post, post-treatment.
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2. NOVEL ACTIVATING STAT5B MUTATIONS AS DRIVERS OF T-ALL

2.1 The functional effects of different STAT5B mutations

In study I, we performed exome sequencing on the blast cells of an 18-year-old
woman, who previously received chemotherapy and HSCT for T-ALL and then
relapsed 40 months after HSCT. At the time of relapse, exome sequencing identified
three different STAT5B mutations in the blast cells. These included the N642H and
T648S located in the SH2 domain, with the third mutation 1704L located in the
transactivation domain (Figure 5). Capillary sequencing further also validated these
mutations. Other mutations detected in exome sequencing were NOTCH1, KRAS,
MED12, SUZ12, and KDM6A.

- Coiled-coil DNA binding SH2 Transactivation

Figure 5. Representation of STAT5B protein domains and the localization of the identified
mutations. The mutations N642H, T648S and Y665F are located in the SH2 domain, while the
mutation [704L is located in the transactivation domain.

We first evaluated the functional effects of all three different STAT5B mutations
detected in the index patient. To evaluate the effect of these mutations on STAT5B
phosphorylation, we used STATS5B expression plasmids containing WT, single,
double or triple mutations to transfect HeLa cells. Western blot analysis showed the
mutation in N642H to induce strong constitutive phosphorylation of STATS5B,
whereas the 1704L mutation carried a smaller effect on phosphorylation (Figure
6a). By co-transfecting HeLa cells with luciferase transporter plasmids, we
compared the effect of different mutations on the transcriptional activity. Compared
with WT STAT5B, the N642H and 1704L mutants led to a 26- and 17-fold increased
transcriptional activity, respectively, while the mutation in T648S had no effect. The
construct with both the N642H and 1704L mutations led to a slightly enhanced
transcriptional activity compared with the activity induced by either mutation alone,
whereas a construct containing all three STAT5B mutations (i.e.,, N642H, T648S, and
1704L) led to a 38-fold increase in transcriptional activity (Figure 6b).
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Figure 6. The functional effect of detected STAT5B mutations.

(@) STATSB expression plasmids containing single, double, or triple mutations were used for the
transfection of HeLa cells. One day after transfection, we performed a Western blot analysis. Parallel
gels with identical loading were run from the same protein lysates to quantify the phosphorylated
STATS5 (pSTATS; Tyr699) and total STATS levels. Alpha-tubulin was used as an internal control. (b)
The transcriptional activity of selected STAT5B mutations and co-mutations. HeLa cells were co-
transfected with luciferase transporter plasmids and mutation constructs. The graph shows the X-fold
change and SDs relative to WT from three repeated experiments. Abbreviations: EV, empty vector;
WT, wild type.

2.2. Ex vivo drug sensitivity of STAT5B mutated blast cells

DSRT showed that the blasts exhibited sensitivity to the pan-BCL-2 navitoclax (ECsgo
82nM). The blasts did not display sensitivity (ECso >1uM) to PI3K inhibitors
(idelalisib and XL147), RAC-alpha serine/threonine-protein kinase (AKT1)
inhibitors (MK-2220), or rapalogs (temsirolimus and everolimus). The blasts were
also non-responsive to dual inhibitors of PI3K and MTOR (PF-04691502 and
dactolisib) as well as to the JAK inhibitors (ruxolitinib and tofacitinib) (Figure 7). In
addition to the navitoclax sensitivity, the blasts also responded to corticosteroids
and MEK inhibitors. The sensitivity to MEK inhibitors likely results from the NRAS
mutation observed in the relapsed sample.
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Figure 7. The ex vivo drug sensitivity of index patient blast cells. The ensitivity of inhibitors
targeting the PI3K-AKT-MTOR pathway (a) and JAK-STAT pathway, including navitoclax (b).
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To evaluate the expression of different anti-apoptotic BCL-2 family members (e.g.
BCL-2, BCL-XL, and MCL-1) in the index patient, we performed RQ-PCR on the blast
cells. RNA extracted from the blast cells of two T-ALL patients with no STAT5B
mutation and a CD3-positive lymphocyte fraction from a healthy donor PB served as
controls. STAT5B-mutated blasts showed a similar expression on BCL-2 and MCL-1,
whereas, interestingly, BCL-XL expression in the STAT5B-mutated blasts were 12-
and 4-fold in the diagnostic and relapse samples, respectively.

2.3. Prevalence of STAT5B mutations in T-ALL

Finally, to evaluate the prevalence of STAT mutations in T-ALL, we sequenced the
SH2 dimerization and the transactivation domains of STAT5B (exons 14-19), exon
21 of STAT3, and also exon 17 of STAT5A, which encode the SH2 dimerization
domains. The initial sample cohort included 17 patients from the Helsinki University
Hospital. Since we found no STAT3 or STAT5 mutations in this cohort, we collected a
larger validation cohort of 64 adult and 4 pediatric T-ALL patients. Sequencing
revealed STAT5B mutations in five additional patients, all of which occurred in the
SH2 domain (Table 2). One patient carried Y665F mutation, whereas four patients
shared the same N642H mutation as the index patient. No mutations in STAT3 or
STAT5A were found.

Sex Immunologic Age Mutation Variant allele
subtype frequency

Male Cortical T 39 N642H 0.92
Male Cortical T 44 N642H 0.40
Male Mature T 45 Y665F 0.19
Male Mature T 59 N642H 0.47
N642H 0.46
Female Pre-T 18 1704L 0.48
T648S 0.49
Male Pre-T 24 N642H 0.6

Table 2. STAT5B mutations detected in 6/68 patients. All patients, except one, had mutation in
locus 642. Most mutations were likely heterogeneous. One patient with high (0.92) variant allele
frequency had likely lost the wild type copy of the gene (i.e. loss-of-heterozygosity).
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3. FACTORS PREDICTING SENSITIVITY TO BCL-2 INHIBITION IN AML

3.1. Correlation and grouping of responses to BCL-2 inhibition

In study III, we explored the potential biomarkers for BCL2-inhibitor sensitivity in
AML. We first evaluated the venetoclax and navitoclax sensitivity in AML, CLL and in
MNC fraction of healthy BM. MNC of healthy donors all showed a low
responsiveness, whereas AML samples, by contrast, showed heterogeneous
responses to BCL-2 inhibition (DSS values presented in Figure 8). All CLL samples
tested exhibited a high sensitivity to BCL-2 inhibition: for venetoclax sDSS values
were 31.0, 30.4 and 32.1; and for navitoclax respectively: 23.8, 21.0 and 29.1. The
BCL-2-selective venetoclax had a slightly weaker effect in healthy control MNCs
compared with the dual BCL-2/BCL-XL inhibitor navitoclax (median DSS 7.3 versus
10.2; paired t-test P = 0.03).
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Figure 8. Responses of venetoclax and navitoclax in AML and healthy control BM MNC
fractions. Both venetoclax (a) and navitoclax (b) exhibit AML-selective responses. Mean, SD and
results of unpaired t-test are shown.

The responses for navitoclax and venetoclax were highly correlated (Pearson’s r
0.88, P < 0.0001; Figure 9a). The diagnostic samples showed a slightly higher
sensitivity to venetoclax, while the refractory samples exhibited a lower sensitivity
to venetoclax compared to the dual-inhibitor navitoclax. These differences were
minor, and thus unlikely to carry biological relevance. Importantly, in addition to the
diagnostic samples, we observed an intermediate or high sensitivity in samples from
relapsed or refractory samples (diagnostic: 13/19, 68%; relapsed or refractory:
19/28, 67%; Figure 9b).
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Figure 9: Correlation of navitoclax and ventoclax responses (a) and venetoclax response in
different disease states (b).

To determine whether specific biomarkers correlate with molecular profiling
analyses, we divided the venetoclax responses into three groups. First, the resistant
group included samples exhibiting lower or comparable responses to those
observed in healthy donors. This group was defined by the upper confidence level
(95%) of the median DSS for venetoclax among healthy controls (sDSS < 5.8) and
included 15 of 47 (32%) of all venetoclax tested AML patients. Second, the highly
sensitive subgroup was defined by a BCL-2 inhibitor response similar to that
observed among samples from CLL patients. This group included 7 of 47 (15%) of
AML patients. Finally, the intermediate group included 25 of 47 (53%) of AML
patients exhibiting a sensitivity in between the highly sensitive and resistant groups
(translating to sDSS values 5.8-25.5). (Figure 10)
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Figure 10. Venetoclax responses. (a) The responses were divided into three groups: resistant,
intermediate, and high (“CLL-like”) sensitivity. (b) Dose response curves in the highly sensitive and
resistant samples. Abbreviations: intermed, intermediate sensitivity.
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3.2. Gene expression studies

RNA-sequencing data from four venetoclax resistant and three highly sensitive
samples were compared to identify possible biomarkers for sensitivity. Normalized
read counts were used to produce differential gene expression between these
groups. The analysis showed 322 differentially expressed genes between the
sensitive and resistant groups with a false discovery rate of <0.05. Next, 41
overexpressed genes in the sensitive group were further analyzed for their biological
function. Interestingly, we found that several HOX genes were overexpressed in
sensitive samples. We next clustered all 16 samples with the available RNA
sequencing data according to the expression of HOX genes. Importantly, we detected
a general HOXA and HOXB overexpression profile in the sensitive samples and a low
expression in the resistant samples (Figure 11). Samples exhibiting an intermediate
sensitivity primarily clustered between these two groups. We validated these results
using RQ-QPR by comparing the mRNA expression of resistant samples to the
expression observed in highly sensitive samples. Venetoclax sensitivity correlated
significantly with seven HOX genes (HOXA2, HOXA3, HOXA5, HOXA6, HOXA7, HOXA9
and HOXB2).

@ Highly sensitive
Intermediate
@ Resistant

Figure 11. Expression of HOXA and HOXB family genes in 16 AML patient samples (4 resistant, 9
intermediate, and 3 highly sensitive samples) derived from RNA sequencing data. Samples were
clustered using Euclidean distance measures of mean-centered log2 of the reads per kilobase of
transcript per million mapped reads (RPKM) values. Color key for gene expression: red,
overexpressed; blue, underexpressed.

We also explored the correlation of BCL-2 family gene mRNA expression and
venetoclax sensitivity. We observed no correlation between the venetoclax response
and the expression of anti-apoptotic BCL-2 or MCL1 genes. Although we observed a
positive correlation between BCL-XL expression and resistance, we also detected
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unexpected correlations (e.g., an inverse correlation for two pro-apoptotic mRNAs,
BIM and PUMA). Thus, since several BCL-2 family members are modified during or
after transcription and translation, it is likely that the mRNA level of BCL-2 family
genes insufficiently reflects the status of the anti-apoptotic balance and are not
potential biomarkers. Interestingly, we observed a high mRNA expression for BZM in
venetoclax-resistant samples and a significant inverse correlation with sensitivity.
B2M represents a well-established biomarker in lymphatic malignancies, but the

precise effect of B2ZM to BCL-2 resistance still requires further investigation.

3.3. Exome sequencing studies

Next, we investigated data from 48 exome sequenced AML samples. As previously
reported!4, all six samples with IDH1 or IDH2 mutations exhibited a sensitivity to
BCL-2 inhibitors. Importantly, we found that all samples with mutations in histone-
modifying genes (three samples with NUP98-NSD1 translocation, three samples with
MLL fusions and one sample with ASXL1 mutation) displayed a sensitivity to BCL-2
inhibitors.

We also observed responses to the BCL-2 inhibition in samples with a monosomal
karyotype. Indeed, four of six samples with a loss of function for TP53 or 17p
deletion showed sensitivity to BCL-2 inhibition. One patient (samples 3443_3 and
3443_6) with an observed heterozygous 17p deletion was resistant to BCL-2
inhibition. Subsequently, while we observed a trend towards a higher venetoclax
sensitivity in samples with noncomplex karyotypes, the difference did not achieve
statistical significance (median sDSS for complex karyotype samples 8.9; for
noncomplex karyotype, 13.7. P = 0.23).

4. ESTABLISHMENT OF A NATIONAL BIOBANK

4.1. Background and methods

In study IV, we developed a national biobank allowing researchers to access high-
quality samples, thus enabling the research community in general to develop
treatment, diagnostics, and an understanding of the pathophysiology of
hematological malignancies. The establishment of the Finnish Hematology Registry
and Biobank (FHRB) represents a collaborative effort among three agencies, the
Finnish Association of Hematology (FAH), the Finnish Red Cross Blood Service
(FRCBS), and the Institute for Molecular Medicine Finland (FIMM). FHRB, a nation-
wide disease-oriented and population-based biobank, was originally launched as a
research project in November 2011 and received authorization as a licensed biobank
in 2014.
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Samples are collected based on broad informed consent as outlined by the Finnish
Biobank Act. Samples were collected at three time points: diagnosis, potential
remission, and relapse. Sample types include BM (diagnosis and relapse: 30 mL,
remission 10 mL), blood (40 ml), and skin punch biopsy (diameter 4 mm) in order to
obtain information on the germline genome. In addition, comprehensive clinical data
is collected through a clinical web-based registry. All samples are shipped to FRCBS
where they are coded, processed, aliquoted, and frozen. Sample collection occurs at
all university hospitals (n = 5) as well as several central hospitals (n = 6). All
participating hospitals are contractual partners of FHRB (Figure 12).
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Figure 12. Organization of FHRB. Samples and data are collected nationally by participating
hospitals. Sample processing, storage, and delivery are centralized at FRCBS and FIMM. The stars on
the map represent the hospitals currently collecting samples and corresponding clinical data.

4.2. Sample collection, quality and access principles

As of February 2017, FHRB contained 68,000 sample aliquots collected from 1,270
patients diagnosed with a hematological disease. Most of the samples (70%) were
collected at the time of diagnosis. Figure 14 presents the proportion of diagnoses
and the accumulation of samples. All processes in FHRB are based on standard
operating procedures. Detailed directions describe how samples are collected,
transported, processed, and stored. The quality of the frozen samples is evaluated on
aregular basis. Figure 15 provides the results of the quality control assessments.
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FHRB accepts sample requests from both academic and industrial research groups
worldwide. Requests are reviewed by an independent panel of experts, which
evaluates the feasibility and scientific significance of the proposed study.
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Figure 14. FHRB samples (as of February 2017). (a) The proportion of diagnoses in FHRB. (b) The
accumulation of samples.

Based on the recommendation of the Scientific Advisory Board, the Steering Group
makes the final decision on sample requests. Coded specimens, together with the
corresponding annotated clinical data, are then provided to research groups. Results
from the research projects are returned to the biobank to enhance future projects.
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Figure 15. Quality control of vitally frozen biobanked AML samples. (a) Viability of vitally frozen
cells after thawing. (b) DNA and RNA yield from thawed cells. (c¢) RNA integrity number (RIN) values
of RNA extracted from thawed cells. (d) The viability of biobanked, thawed BM MNC in a culture at
day 3 and day 5 in conditioning media (Riikka Karjalainen et al. submitted). (e) The viability of
thawed BM MNC. The viability is measured biannually from sampling. (f) RIN values measured from
the same samples. In panels a, b, and c, the mean and SD are shown.
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DISCUSSION

The modern era of chemotherapy to treat acute leukemia was initially started with
the folic acid antagonist aminopterin in late 1940s by Sidney Farber.1°1 Because
monotherapy failed to produce long-lasting remissions, the road to current therapy
protocols—and to a potential cure—was paved by NCI-driven combination trials in
the 1960s, led by Frei and Freireich.192 Although the therapy has remained nearly
unchanged since that era, the absence of progress has not resulted from a lack of
effort. Decades later, our understanding of AML pathophysiology has significantly
improved but, as yet, it has not translated to successful therapies in most AML
patients. In part, this is due to our inability to characterize individual disease in the
requisite detail and, consequently, the evolutionary potential of each individual
cancer remains unidentified.193

In this study, we integrated genomic and molecular profiling data with systematic
drug-testing results from a comprehensive library of anti-cancer agents in patients
with acute leukemia. We showed that the individualized systems medicine (ISM)
platform can produce comprehensive patient-to-patient data to facilitate
understanding of an individual patient’s disease biology and, in select cases,
translate this information into successful guided therapies. We have demonstrated
that the platform can be utilized as a tool to repurpose anti-cancer agents. In
addition, comprehensive data facilitate the discovery of novel biomarkers and
efficiently characterize new genomic subsets of acute leukemia with specific
vulnerabilities to targeted therapies.

1. INDIVIDUALIZED SYSTEMS MEDICINE (ISM) PLATFORM

Despite abiding efforts, the ex vivo assessment of drug sensitivity to predict
anticancer effects in patients remains a distant goal.14* As such, our studies have
several advantages over previous efforts. First, we concentrated on targeted therapy
agents, whereas several previous studies focused on conventional
chemotherapeutics.145151  The  response  assessment of  conventional
chemotherapeutics partly depends on in vitro proliferation and, thus, results from
non-proliferative primary patient samples are both difficult to interpret and difficult
to translate into clinical patient care. Second, we focused on leukemias, in which
representative tumor samples are easily accessed—even for repeated sampling.
Third, we developed a method to assess leukemia-specific responses, making it
possible to identify compounds with less toxicity to healthy hematopoiesis. Finally,
we also utilized genomic and transcriptomic data to evaluate the biology of
individual disease and to complement the weaknesses of functional testing alone.

In study I, we found that several approved anticancer agents such as dasatinib,
sunitinib, temsirolimus and ruxolitinib to exhibit leukemia selective responses in
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AML patient samples.194 We also identified several investigational compound classes
such as inhibitors of MEK, JAK, BCL-2/BCL-XL and PI3K/AKT/mTOR pathways to
demonstrate a leukemia-selective effect. Thus, the ISM platform can identify
promising compounds, both investigational and approved, for further evaluation in
clinical AML trials. We also demonstrated that the platform-produced data are useful
for guiding therapies for relapsed and resistant AML patients. We observed an
overall response rate of 33% (3/9), which is a favorable result in this patient
population. Since all responses appeared short-lived, we could study distinct
resistance mechanisms by combining data from different platforms. For those cases
studied in detail, the resistance was mediated either by clonal shift (as exemplified
in patient 784), or through the loss of pathway dependence with no acquired
mutations (as exemplified in patient 600).

Despite the genomic heterogeneity of AML, an unsupervised hierarchical clustering
analysis divided patient-specific drug responses into five categories. This finding is
of particular interest, since other large genomic studies have shown AML to divide
into limited number of subgroups. For example, in The Cancer Genome Atlas (TCGA)
study, the 200 de novo AML patients clustered into seven separate groups according
to the gene expression profile. This grouping also partially reflected the prognosis.33
Interestingly, a recent study showed that patterns of co-mutation divide AML
patients into 11 classes, each with distinct diagnostic features and clinical
outcomes.3! Thus, this drug response-driven grouping may identify specific
leukemia subsets sensitive to specific targeted therapies.

Parallel to our work, a systematic approach using ex vivo drug sensitivity testing at
Oregon University was published in 2013.195 This study also illustrated the potential
of ex vivo screening to identify functionally important kinase targets. The group
assessed the sensitivity of 151 primary leukemia patient samples using a panel of 66
small-molecule kinase inhibitors. Comparable to our results, the leukemia samples
exhibited a heterogeneous variety of drug sensitivities: overall, 70% of the samples
exhibited a sensitivity to one or more of the kinase inhibitors tested. Investigators
developed an algorithm to predict kinase pathway dependence, and as a proof-of-
concept, they used this algorithm to tailor therapy for a relapsed, refractory patient
with a rare FLT3 mutation. The therapy utilizing both sorafenib and sunitinib led to
a three-month treatment response.l®> Later, Tyner adopted the term “functional
genomics”1% to refer to a similar approach in which a patient’s cancer cell sample
was both sequenced and tested using high-throughput drug sensitivity screening. In
addition to individualized treatment decisions, such a platform allows data
collection from a large number of patient samples, ultimately yielding sufficient data
to create algorithms to produce informed recommendations for treatment choices
based only on sequencing results. Such data are currently being collected in the Beat
AML 1.0 project.174196
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In a broader context, these platforms provide tools to unravel specific vulnerabilities
for certain disease subsets, potentially offering novel or repurposed therapies for
patients. This potential was demonstrated in our study on BCR-ABL-driven diseases
with T315I point mutations. These mutations lead to the impaired binding of TKIs to
the ABL1 kinase domain and, thus, broad-range TKI resistance. Interestingly, we
found patients with T315I-mutated BCR-ABL1 to exhibit leukemia-selective
responses to VEGFR inhibitor axitinib, thus presenting a novel treatment option for
these patients.1?” Similarly, Tyner and colleagues applied integrated data from
patients with atypical CML to unlock the pathogenesis and drug sensitivity of this
disease. Oncogenic mutations within two distinct regions of CSF3R appear to activate
downstream kinase signaling either through Src family-TNK2 or Janus family
kinases (JAKs), which could be selectively targeted using dasatinib and ruxolitinib,
respectively.198

These approaches share several limitations. In ex vivo high-throughput drug
screening, antibodies, or other biological therapies cannot be routinely explored,
since these compounds require a sufficient amount of other cell populations
(including lymphocytes) to demonstrate their efficacy. Furthermore, the effect of BM
and stoma-cell adhesion signaling remains inadequately captured. Co-culturing
primary blasts with stroma cells or with media isolated from stromal cell cultures
may mimic the protective effect of stroma,'°® but additional studies to correlate ex
vivo and clinical responses are still needed. Additionally, existing platforms remain
suboptimal for exploring the sensitivity of slow-acting and differentiating
compounds such as hypomethylating agents (i.e., azacytidine and decitabine). We
may be able to evaluate their effect with a longer incubation using readouts also
capable of capturing in vitro differentiation. A drug-screening assay using the iQue
PLUS high-throughput flow cytometry instrument (Intellicyt, Albuquerque, NM,
USA) may allow for a more comprehensive understanding of the drug effects
(including differentiation) on AML blasts.2%0 This approach might also allow the use
of unselected patient-derived material to evaluate biological compound efficacy.
Finally, while the complexity of individual disease can be understood, a complete
understanding of the evolutionary power leading to the selection of different clones
or a switch in the pathway dependence remains an elusive goal. Currently, amplicon-
based methods enable retrospective reconstruction of the clonal architecture from
diagnosis to relapse.#” As the sequencing turn-around time shortens, in future these
applications might also be applied to real-time monitoring. Rather opportunely, the
platform carries as yet unexplored capabilities. Interestingly, several multi-kinase
inhibitors (such as midostaurin and sorafenib) providing clinical benefits in
combination with conventional chemotherapy’07! also inhibit ABC proteins.67.68
Thus, the effect of mutations or polymorphisms modifying ABC protein functioning
as well as the potential effect of ABC protein inhibitors on drug sensitivity should be
explored in a more comprehensive manner.
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2. DISSECTING DISEASES TO SUBENTITIES - STAT5B MUTATIONS IN T-ALL

In study II, we found STAT5B N642H mutation to be a recurrent event in T-ALL, with
a prevalence of 9% in an adult-biased population.’3® In addition, our work showed
that in T-ALL, STAT5B mutations are activating, leading to the enhanced
phosphorylation of STAT5B and to increased target-gene expression. Previous work
on transgenic mouse models showed that the overexpression of STAT5A or STAT5B
leads to thymic T-cell lymphoma.201 Similarly, in T-LGL, the STAT5B N642H mutation
had been associated with a very unusual aggressive and fatal phenotype.13” Thus, we
hypothesized that STATB mutations probably represent a novel activation
mechanism to the IL7R-JAK-STAT pathway and may also alter the disease
phenotype. Subsequently, other groups verified our findings that the N642H
mutation represents a recurrent event in T-ALL. In pediatric patients, STAT5B
N642H mutations have been detected in 6.3% of diagnostic and in 9% of relapsed
cases.141 Pediatric patients with the STAT5B mutation also appear to have a higher
risk of relapse.l4! In another cohort including both pediatric and adult patients,
STAT5B N642H mutation was detected in 6.5% of patients. An additional 2 of 31
patients had STAT5B mutations located at a different position (i.e, S434L and
Y665F).202 Furthermore, a subsequent study detected aberrations in the JAK-STAT
pathway to associate with a higher risk of relapse, as well as inferior overall and
event-free survival.203 Contrary to these studies, Ma et al. failed to demonstrate that
STATS5B represents a recurrent event. They found a N642H mutation only in 1 of 28
pediatric patients, and found it missing completely from a cohort of 65 adult T-ALL
patients.204 Taken together, we and others demonstrated STAT5B mutation to be
recurrent event in T-ALL; importantly, later work found that STAT5B N642 mutation
carries prognostic significance, thus strengthening the hypothesis of its biological
significance.

Curiously, our index T-ALL patient had three different somatic STAT5B mutations, all
located in the same allele. Mutation T648S alone had no effect on transcriptional
activity, while N642H led to strong constitutive phosphorylation. This suggests that
this SH2 domain mutation stabilizes the phosphorylated dimer, whereas the
transactivation domain mutation 1704L possibly enhances the transcriptional
activity. Although the finding of three co-occurring STA5B mutations is fascinating,
subsequent work has failed to demonstrate similar patient cases with several
mutations. Importantly, we observed high BCL-XL expression in our index patient,
while observing the expression of other BCL-2 family genes at levels similar to those
among controls. Together with the data on navitoclax sensitivity, this finding
suggests that in STAT5B-mutated cells inhibiting BCL-XL can trigger apoptosis.
Correspondingly, several preclinical cell line studies demonstrated that STAT5B
induces BCL-XL expression by directly binding to the promoter of the BCL-XL
gene.205-207 On the contrary, however, Bandapalli and coworkers showed that the
N642H mutation led to elevated BCL-2 expression, accompanied by strong
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overexpression of both PIM and SOCS2.141 In their study, they did not explore the
expression of BCL-XL. Subsequent studies showed T-ALL cell lines and primary
patient samples to be dependent on the BCL-2 family in a maturation state-related
manner. As such, immature T-ALL samples, including ETP-ALL, depend on BCL-2
expression, whereas more mature T-ALL samples depend on BCL-XL expression and
may, thus, be exploited by navitoclax.208209 Future studies are needed to establish
the effect of IL7R-JAK-STAT activation and STAT5B mutation on BCL-2 family
dependence and vulnerabilities.

3. DETECTION OF BIOMARKERS - BCL2 INHIBITOR SENSITIVITY AND HOX
GENES IN AML

In study III, we evaluated possible biomarkers for BCL-2 sensitivity in AML.210 Qur
most important observation included the detection of the broad-spectrum
overexpression of both HOXA and HOXB genes in venetoclax-sensitive samples and a
low or absent HOX gene expression in resistant samples. In healthy human
hematopoiesis, HOX gene expression is largely restricted to hematopoietic stem cells
and progenitor cells.2526 As in AML, HOX expression appears to be highly regulated
and, intriguingly, recent work suggests that the similarity between normal and
leukemic expression patterns indicates that most HOX expression in AML reflects a
normal stem cell state captured in transformed cells.?” Interestingly, previous work
has demonstrated that hematopoietic stem cells depend on MCL-2, whereas
leukemic stem cells depend on BCL-2.99 Correspondingly, this was illustrated in a
preclinical study where the apoptosis of progenitor cells of patients with high-risk
MDS or secondary AML was triggered by BCL-2-only inhibition.?21? Thus, we can
argue that previous findings on stem or progenitor sensitivity, taken alongside our
findings on HOX gene expression, may characterize a stem/progenitor cell-like
subgroup of AML sensitive to targeted BCL-2 inhibition using venetoclax. Thus far,
no other studies exploring gene expression as a biomarker for venetoclax sensitivity
have been published. These results require validation in upcoming clinical trials.

Our study shows that several mutations associate with a leukemia-selective
response to BCL-2 inhibition. IDH1/2 mutated and 6 of 7 WTI mutated samples
exhibited a leukemia-selective response to BCL-2 inhibition. IDH1/2 and WT1
mutations appear to share similar biological effects: WT1 mutant patients have
decreased 5-hydroxymethylcytosine levels, which is consistent with the reduced
TET2 function observed in TETZ2/IDH1/IDH2 mutant AML.212 However, because
IDH1/2 mutations induce venetoclax sensitivity by a 2-HG mediated mechanism, it is
likely that WTI-mutated AML presents different mechanism of sensitivity than
IDH1/IDH2-mutated AML. In addition, samples with MLL fusions or NUP98-NSD1
translocations exhibited a leukemia-selective response to BCL-2 inhibition.
Previously, MLL fusion harboring AML cell lines, as well as ALL xenograft models,
demonstrated venetoclax sensitivity, suggesting that MLL fusions have a common

59



role in BCL-2 mediated anti-apoptotic effects.213214 The proliferation and
immortalization of HOXA9-driven leukemia specifically depend on BCL-2
expression.215 Intriguingly, both MLL fusion and NUP98-NSD1 translocation have a
similar biological effect; both fusions prompt the up-regulation of specific HOXA
genes. In the case of NUP98-NSD1, this upregulation also accompanies the
overexpression of distinct HOXB genes and MEIS1.190216 TP53 mutations are
enriched in secondary AML and are typically associated with chemoresistance.21?
Leukemia-selective responses were observed in 4 of 6 TP53 mutated or deleted
samples, which was expected, based on recent CLL studies showing responses in
17p-deleted patients.1%5 Because TP53 mutated AML patients presently lack
treatment options, BCL-2 inhibitors should be considered for clinical trials in this
patient group. Concordantly, we also observed responses across all cytogenetic
groups, including among complex and monosomal karyotypes.

In addition, we found that venetoclax sensitivity correlated highly with navitoclax
responses observing similar response profiles for both agents across all points in the
disease phase (i.e., diagnosis, relapse, and refractory). In a phase II trial, responses
were observed in 19% of relapsed/refractory AML patients.”® Although patients
responding in this trial received venetoclax therapy for a median 117 days, very
limited data exist on the mechanisms leading to the loss of sensitivity. Several
studies, primarily preclinical, demonstrated that high initial BCL-XL or MCL-1
protein levels both predict and generate acquired venetoclax resistance.’8112218
Rather, aberrations of BH3-domain causing venetoclax resistance appered
infrequently.11? Thus, the overexpression of anti-apoptotic proteins not targeted by
venetoclax remains the most likely resistance mechanism, although its regularity
remains unknown. Interestingly, recent preclinical studies on CLL show that the
multikinase inhibitor sunitinib can overcome venetoclax resistance by
downregulating the expression of BCL-XL and MCL-1.21° Perhaps surprisingly, in ALL
xenografts, effective anti-leukemic activity requires the concurrent inhibition of both
BCL-2 and BCL-XL. Venetoclax alone appears capable of delaying disease
progression, although the dual inhibition of BCL-2 and BCL-XL is necessary for an
appropriate response. Similar to AML, BCL-XL expression predicted a poor response
to venetoclax.213 Additional studies are needed to explore venetoclax resistance
mechanisms in AML and whether they can be circumvented through the dual or
sequential inhibition of BCL-2 and BCL-XL.

Future work should attempt to unravel the mechanistic explanation for the link
between HOX gene expression and venetoclax sensitivity. In ALL, the fusion gene
MLL/AF4, which is produced through translocation t(4;11), appears to directly
control the activation of the BCL-2 expression via DOT1L-mediated H3K79
methylation. This results in a high BCL-2 expression and sensitivity to BCL2-only
inhibition using venetoclax.220 Importantly, H3K79 methylation induces a
concomitant elevated HOX gene expression.216 As discussed above, we did not detect

60



a correlation between BCL-2 gene expression and venetoclax sensitivity. However,
because BCL-2 expression coincides with HOX gene expression, further functional
experiments should attempt to clarify the role of this interaction in AML.

4. ESTABLISHING RESOURCES FOR FUTURE RESEARCH

Although new therapy options carry the potential to improve treatment outcomes,
identifying factors that predict responses and allowing for the use of targeted
therapies only among patients expected to benefit remains challenging.5 In order to
achieve this, we must accumulate adequate high-quality patient sample collections
together with comprehensive annotated clinical data that enables an understanding
of factors that advance resistance or sensitivity. Samples and data are also needed to
improve our understanding of the molecular mechanisms leading to disease
progression and to identify potential new vulnerabilities.??1.222 [n study IV by
developing biobank-collected samples with accompanying clinically annotated data,
we demonstrated that a nationwide collection is feasible and, importantly, capable of
producing high-quality sample material for ongoing and further research.

5. FUTURE PERSPECTIVES

Most clinical trials still focus on monotherapy or, in the add-on setting, where novel
agents are combined with existing chemotherapy. In most cases, this leads to
increased toxicity and diminishes the potential benefits of the agent
investigated.223224 Moreover, targeting post-onset driver mutations (e.g., FLT3-ITD
and RAS) has produced disappointing short-lived responses, perhaps because of
their inability to target disease-initiating mutations.?2> Success may lie in identifying
ways to combine modern therapies in a more effective manner. Similar to Frei and
Freireich, perhaps we need to return to the lessons learned from tuberculosis
treatment. With an adequate understanding of AML pathophysiology and our
current anti-leukemic arsenal, we may finally design increasingly successful
combination therapies. To achieve efficiency, these combinations will hit several
independent targets. Such targets include the leukemia-initiating aberrations and
activated signaling (if any), combined with therapies independent of these events,
such as immunological therapies, agents targeting leukemic stem cells, and
conventional chemotherapeutic agents among responsive patients. We need to
monitor pathway dependence in real-time and modify therapy accordingly, as well
as further our understanding of pre-leukemic clones. This may include
distinguishing a subgroup of patients with high-risk characteristics benefitting from
pre-emptive therapy using novel agents. In addition, we must examine the effect of
these agents in a maintenance therapy setting. To meet this challenge, we must also
obtain comprehensive high-quality sample datasets with extensive clinical
information from very distinct disease subsets.
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CONCLUSIONS

In this study, we developed and evaluated novel techniques for individualizing
therapy for acute leukemia patients. Our primary findings are as follows:

1.

3.

4,

The ISM platform appears feasible for repurposing therapies for both
individual AML patients and distinct disease subgroups. As such, the ISM
platform allows us to study each disease and possible sensitivity and
resistance mechanisms in a comprehensive manner.

These methods were used to uncover the prevalence of STAT5B mutations
in T-ALL. We determined that these mutations represent recurrent events
and demonstrated their activating characteristics. We presented a
hypothesis regarding the possible vulnerability of STAT5B-mutated blasts
for BCL-XL inhibition.

An extensive dataset from different platforms enables the detection of
biomarkers for individualizing therapy. We identified a specific HOX gene
expression pattern serving as a robust biomarker for venetoclax
sensitivity ex vivo. Our results may identify BCL-2 inhibitor-sensitive AML
subgroups for validation in upcoming clinical trials.

We developed a nationwide biobank for the collection of high-quality
sample material accompanied by clinically annotated data to facilitate
further research.
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