
State management in coreless mobile networks

Frans Ojala

Masters thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, November 24, 2016

Faculty of Science Department of Computer Science

Frans Ojala

State management in coreless mobile networks

Computer Science

Masters thesis November 24, 2016 67+11

4G/LTE, VNF, virtualisation, SDN, 5G, network architecture, distributed storage, benchmark

The number of mobile Internet users has skyrocketed and with the advent of the Internet
of things we are reaching the limits of the current telecommunications standard 4G. The
improvements and goals set for the next standard, 5G, are not trivial and research is in
progress to reach them. Improvements across all involved technology fields is needed.

In this thesis we present a novel mobile network architecture—coreless mobile networks—
and develop state management concepts, which we base on the analysis of the current 4G/LTE
architecture. The coreless mobile network focuses on the redesign of the state management
in mobile networks, more precisely, removal of state from 4G core network entities into an
eternal ubiquitous data store. The architecture follows trends in current research, particularly
network function virtualisation, software defined networking and mobile edge computing.

The new network architecture requires a data storage solution that is capable of func-
tioning as the state store in the mobile network environment. Thus, we present an overview
of promising data stores and evaluate their suitability. Further in this thesis we present the
results of benchmarking the Apache Geode data store, as an example of a state management
solution that could be leveraged in realising the coreless mobile network architecture. We
discovered that the Apache Geode data store is, depending on configuration, capable of
delivering the data model, consistency, high availability, scaling, throughput and latency that
are required in our proposed architecture.

ACM Computing Classification System (CCS):
• Information systems~Distributed storage
• Information systems~Hierarchical storage management
• Networks~Middle boxes / network appliances
• Networks~Mobile networks

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents
Abbreviations iv

List of figures v

List of tables v

1 Introduction 1

2 State of the art 3
2.1 A global research community 3
2.2 System Architecture Evolution 4

2.2.1 Overview . 4
2.2.2 The edge: eNodeB . 6
2.2.3 The core: evolved packet core 6

2.3 The Evolved Mobility Management scenario 7
2.3.1 Initial attach . 9
2.3.2 Detach . 11
2.3.3 S1 release . 12
2.3.4 Service request . 13
2.3.5 Tracking area update 14
2.3.6 Handover . 15
2.3.7 Cell reselection . 17

2.4 Summary . 17

3 Overview of important research topics 18
3.1 Software defined networking 18
3.2 Virtualised network functions 19
3.3 Cloud radio access networks 19
3.4 Mobile edge computing . 20
3.5 Massive multiple input multiple output 21
3.6 Spectrum reuse and new new bands 21
3.7 Full-duplex communication 21
3.8 Wireless charging . 21
3.9 Self organising and cognitive networks 22
3.10 Multipath Transmission Control Protocol 22
3.11 Summary . 22

4 Coreless mobile networks 23
4.1 Architecture of the network 23
4.2 A shared, distributed data store 25
4.3 High availability and consistency zoning 26
4.4 Concerning the Evolved Mobility Management scenario . . . 27
4.5 Summary . 28

ii

5 Related work in data storage solutions 29
5.1 Distributing data storage . 29
5.2 Meeting the requirements . 34

6 Evaluation of a data store: Apache Geode 35
6.1 Yahoo! cloud serving benchmark 35

6.1.1 Yahoo! cloud serving benchmark architecture overview 35
6.1.2 Benchmark implementation details 36

6.2 Workload and cluster setup 39
6.2.1 Defining the workload 39
6.2.2 Apache Geode cluster topology 41

6.3 Results . 43
6.3.1 Baseline . 44
6.3.2 Partitioned regions . 45
6.3.3 Replicated regions . 47
6.3.4 Programmatic combination: an example of high avail-

ability and consistency zoning 49
6.3.5 Summary . 52

6.4 Comparisons . 52

7 Discussion 54
7.1 Interpreting the results . 54
7.2 Scaling Apache Geode . 55
7.3 Update mechanisms: delta versus regular 56
7.4 High availability and consistency zone implementations 57
7.5 Reliability of reported latencies 58
7.6 Accuracy of used traffic model 58

8 Concluding remarks 60
8.1 Contributions . 60
8.2 Future work . 60

References 63

A LTEworkload 1

B UE.java 3

iii

Abbreviations
The following abbreviations are used throughout the document.

3GPP: 3rd Generation Partnership Project
LTE: Long Term Evolution
SAE: System Architecture Evolution
GSM: Global System for Mobile Communications
GPRS: General Packet Radio Service
RAT: Radio Access Technology
RAN: Radio Access Network
(E)-UTRAN: (Evolved) Universal Terrestrial Radio Access Network
PLMN: Public Land Mobile Network
RRC: Radio Resource Control
EPS: Evolved Packet System
EPC: Evolved Packet Core
UE: User Equipment
EMM: Evolved Mobility Management
TA: Tracking Area
TAI: Tracking Area Identifier
GUTI: Globally Unique Temporary Identifier
C-RNTI: Cell Network Temporary Identifier
S1AP UE ID: S1 Application Protocol UE Identifier
ECGI: E-UTRAN Cell Global Identifier
NAS: Non-Access Stratum
AS: Access Stratum
TEID: Tunnel Endpoint Identifier
APN: Access Point Name
E-RAB: E-UTRAN Radio Access Bearer
DRB: Data Radio Bearer
UL/DL: Upload / Download
eNB: Evolved Node B
PDN: Packet Data Network
MME: Mobility Management Entity
S/P GW: Serving / Packet Data Gateway
HSS: Home Subscriber Server
PCRF: Policy and Charging Rules Function
IMSI: International Mobile Subscriber Identifier
TAU: Tracking Area Update
D2D, M2M: Device to Device, Machine to Machine (communication)
C-RAN: Cloud Radio Access Network
MIMO: Multiple Input Multiple Output
VNF: Virtualised Network Functions
SDN: Software Defined Networking
IoT: Internet of Things
MEC: Mobile Edge Computing
AD/DA: Analogue to Digital / Digital to Analogue (converter)
IP: Internet Protocol (address)
VoIP: Voice over IP
FTP: File Transfer Protocol
QoS: Quality of Service
ARP: Allocation and Retention Policy
AMBR: Aggregate Maximum Bitrate
QCI: QoS Class Identifier
TFT: Traffic Filter Template
CAPEX / OPEX: Capital Expenditure / Operational Expenditure
YCSB: Yahoo! Cloud Serving Benchmark

iv

List of figures
1 Overview of the Evolved Packet System. 5
2 The Evolved Mobility Management scenario. 8
3 Coreless mobile network architecture at a high level. 24
4 Simplified example structure of the coreless mobile network. . 27
5 Properties of distributed data stores. 33
6 Yahoo! Cloud Serving Benchmark architecture. 36
7 Signalling message load distribution in the Evolved Packet Core. 40
8 Probabilities of a case, transition in UE context. 41
9 Overview of the client-server cluster topology. 42
10 Benchmarking cluster configuration. 43
11 Maximum throughput and latency achieved on a single ma-

chine with a simple partitioned region with no redundancy. . 44
12 Maximum aggregate throughput for a partitioned region with

redundancy. 46
13 Average latencies for a partitioned region with redundancy. . 47
14 Maximum throughput for a replicated region. 48
15 Average latencies in a replicated region. 49
16 Example of HAC-zoning with Apache Geode. 50
17 Maximum throughput in programmatic HAC-zoning. 50
18 Average latencies in experimental programmatic HAC-zoning. 51
19 Throughput per machine with two serving nodes per machine. 55

List of tables
1 Context change in EMM scenario case 1: initial attach. . . . 10
2 Context change in EMM scenario case 2: detach. 11
3 Context change in EMM scenario case 3: S1 release. 12
4 Context change in EMM scenario case 4: service request. . . 13
5 Context change in EMM scenario case 5: X2 handover. 16
6 UE context: size of fields in implementation vs. specification,

involvement in case. 38
7 Probabilities of case occurrences and update size. 41
8 Maximum theoretical count of supported UE with 5 machines,

15 serving nodes (simulated 15 eNB). 54

Appendices

A LTEworkload . 1
B UE.java . 3

v

1 Introduction
Wireless communication methods have stood the test of time. They have

evolved from the text transmitting telegraph into the all-around computing
platform in our pockets, the smartphone. Since the turn of the millennium the
number of private individuals owning and using smartphones has skyrocketed.
Presently there are about 3 billion smartphone subscriptions with the number
expected to grow upwards of 6.1 billion by 2020.1

In the advent of the Internet of Things the number of connected devices
will further increase by orders of magnitude.23 80% of traffic from smart-
phones is estimated to be data traffic to and from the Internet, increasing
from today’s 2.4 GB/month to 14 GB/month per smartphone in the USA
alone.1 IoT devices are expected to be generating traffic solely into the
Internet primarily via radio communication. With these trends in sight it is
foreseeable that the current state of wireless communication cannot support
the amount of users and traffic [21]. To ameliorate the congested 3G and 4G
mobile data networks much research is being poured into the developing of
the next generation wireless 5G communication systems [45].

The pressure on 5G is as high as are expectations. The technical require-
ments planned for 5G in contrast to 4G/LTE systems contain improvements
in several fields [41]:

• 1000 times higher data volume (per area),
• 10 - 100 times higher user data rate,
• 100 - 1000 time more connected devices,
• 10 times longer battery life (low power devices),
• 5 times reduced end-to-end latency.

Additionally in order to reach the goals and allow further development,
according to Nokia,4 the future 5G networks need to integrate multiple radio
frequency access technologies, support heterogeneous backhaul and edge
computing, virtualise core and radio access network functions, enable SDN
technology and security in the network architecture from the very beginning.

Current proposals to combat the need for capacity include, but are not
limited to, spectrum reuse and new spectra (including mm-wave) [32], multi-
tier networks [36], device-to-device (D2D) communication [23], Cloud Radio
Access Networks (C-RAN) [23] and massive Multiple Input Multiple Output
(MIMO) [54] technologies. Latency improvements are sought from C-RAN,
D2D and full-duplex communication, while network densification can be

1https://www.ericsson.com/news/1925907 (Referenced on 28.10.2016)
2http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-

the-numbers-market-estimates-and-forecasts/ (Referenced on 8.11.2016)
3http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/mobile-white-paper-c11-520862.html (Referenced on
28.10.2016)

4http://resources.alcatel-lucent.com/asset/200004 (Referenced on 28.10.2016)

1

https://www.ericsson.com/news/1925907
http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/
http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://resources.alcatel-lucent.com/asset/200004

enabled by heterogeneous and multi-tier networks. Advanced services and
applications, such as network caching and on-line gaming, can be supported
by C-RAN, virtualised network functions (VNF) and machine-to-machine
(M2M) communication. Battery life can be increased by wireless charging,
energy harvesting and protocol redesign. IoT requires that the network
support autonomous devices and applications, which can be reached with
M2M communication and self-organising and cognitive networks created by
software defined networking (SDN) [22].

A key problem on the road to 5G is the architecture that the current
mobile wireless networking solution, 4G/LTE, contains as the core principle:
the evolved packet core (EPC). The EPC is a resource constrained set of
primitive network functions that together orchestrate the connectivity of user
equipment (UE) and other devices. By analysing the roles and functions of
the current EPC architecture we realised that the functions are convoluted
and overlapping. More specifically, contrasting to SDN paradigms, the EPC
contains mixed control plane and user plane functions [40].

Just one of the effects of this mix is a congested control plane. The
signalling load of the EPC has been widely analysed and many solutions have
been proposed, ranging from intelligent Tracking Area (TA) optimisation to
protocol redesign particularly in the transition from 3G to 4G specification
[4]. These actions, however, are not sufficient in providing the leaps of
improvements sighted for the next generation of telecommunication services.
At the high level there are two methodologies to solving current problems:
the first is to move functionality to the cloud, create the C-RAN as discussed
in section 3.3; The second is to move functionality to the edge of the network,
termed Mobile Edge Computing, MEC, as discussed in section 3.4.

In this thesis we present a redesign of the 4G/LTE network architecture,
coreless mobile networks, that we believe will enable the progressive enhance-
ment on the 5G prospects mentioned earlier. The concept can be seen as an
evolution of MEC, featuring among others, a fully virtualised EPC and an
interconnecting data layer for state management. We present an analysis of
the properties required of the data store and, in particular, the evaluation of
a data storage system, the Apache Geode NoQSL data store, as an example
of a data storage system that could be leveraged in the realisation of our
proposed architecture.

This thesis is structured as follows: section 2 discusses the state of the art
in the current 4G/LTE network and section 3 presents current and emerging
technologies that enable the progression into 5G. Beginning from section
4 we present our mobile network architecture and continue to an analysis
of existing solutions in the area of data stores in section 5. We present
the evaluation of the Apache Geode system in section 6 which also details
the results gathered in benchmarking the system. Finally, we discuss some
aspects of our work in section 7 and conclude the thesis in section 8.

2

2 State of the art
We start off by briefly presenting the current state of the research com-

munity as it provides a perspective into the importance of the topic and its
emphasis in the world. After, we delve into the current 4G system and see
the functions of the telecommunications network at a high level.

2.1 A global research community
5G research is growing fast. This is indicated, for example, by the 4G

Americas - Global Organisations Forge New Frontier for 5G report on 5G
activities.5 We present a summary of come of the projects and research
avenues:

China National Key Project on 5G: This is a government funded re-
search activity, where the 2016–2017 key project includes projects
in standardisation, AD/DA chipset prototyping, power amplification,
bandwidth filtering, low frequency networks, low power & massive
connect, high frequency systems, high density networks, new multiple
access coding, and more.6

5G Forum is a Korean industry-academia coordinated program includ-
ing establishing national policy, promoting R&D, fostering ecosystem
support and enabling global collaboration.7

The association of radio industries and businesses (ARIB) in Japan
was established in 2013 with the purpose of studying various aspects of
mobile communication beyond 2020. Another significant effort in Japan
is the Fifth Generation Mobile Communications Promotion Forum
(5GMF) that conducts research and development on the subject.8

European Union Framework Project 8: (FP8) included the forming of
the 5G Public Private Partnership (5G-PPP) the aim of which is to
enable 5G collaboration in Europe. The 5G-PPP project is a large
ongoing collaboration with academia and industry co-funded projects.
White papers are being continually produced in all avenues of 5G.9

3rd Generation Partnership Project: (3GPP) continues its work to-
ward new communication systems. Their work for 5G started in
2015 with the stage 1 as the service requirements, which will become
3GPP Release 14. Other major building blocks include studying service

5http://www.4gamericas.org/files/8914/6774/6748/Global_Organizations_
Forge_New_Frontier_of_5G_Final.pdf (Referenced on 28.10.2016)

6http://www.chinaeu.eu/wp-content/uploads/2016/04/mazhigang-5G-Progress-
and-Cooperation-in-China-20160408.pdf (Referenced on 28.10.2016)

7http://www.5gforum.org (Referenced on 28.10.2016)
8http://5gmf.jp/en/ (Referenced on 28.10.2016)
9https://5g-ppp.eu/white-papers/ (Referenced on 28.10.2016)

3

http://www.4gamericas.org/files/8914/6774/6748/Global_Organizations_Forge_New_Frontier_of_5G_Final.pdf
http://www.4gamericas.org/files/8914/6774/6748/Global_Organizations_Forge_New_Frontier_of_5G_Final.pdf
http://www.chinaeu.eu/wp-content/uploads/2016/04/mazhigang-5G-Progress-and-Cooperation-in-China-20160408.pdf
http://www.chinaeu.eu/wp-content/uploads/2016/04/mazhigang-5G-Progress-and-Cooperation-in-China-20160408.pdf
http://www.5gforum.org
http://5gmf.jp/en/
https://5g-ppp.eu/white-papers/

requirements for massive IoT, critical communications, enhanced mo-
bile broadband and network operation. A major research area within
3GPP is the System Architecture (Working Group) which is scoped to
resolve the system architecture for next generation mobile networks
(including clean-slate or evolution), the support for new Radio Access
Technologies (RATs) & multiple access technologies and the scenarios
of migration.

The research landscape contains, in addition to those mentioned above, a
large body of parties including 5G Americas, Alliance for Telecommunications
Industry Solutions, GSM Association, IEEE 802.11, International Telecom-
munication Union (ITU-R), Next Generation Mobile Networks, Telecom-
munications Industry Association, Federal Communications Commission
Technical Advisory Council, and numerous telecommunications operators
and equipment vendors from around the world [39].5 They are all involved
in various aspects of research to bring the 5G to fruition.

2.2 System Architecture Evolution
Before we can introduce our proposed concept of coreless mobile networks

we must first understand the current mobile telecommunications architecture.
In this section we cover the relevant components and functions of the System
Architecture Evolution (SAE), Evolved Universal Terrestrial Radio Access
Network (E-UTRAN) and finally the Evolved Mobility Management (EMM)
scenario. This section is mostly based on [51].

2.2.1 Overview
System Architecture Evolution (SAE), also known as the Evolved Packet

System (EPS), is the next evolutionary step of the General Packet Radio Ser-
vice (GPRS) core network. Compared to the GPRS system the SAE is much
simplified, has a flat all-IP protocol stack, supports higher throughput Radio
Access Networks (RANs) and supports mobility to and from legacy systems
in addition to supporting other non-3GPP wireless access technologies such
as WiFi.

GPRS was an integrated part of the GSM network switching subsystem,
which was mainly circuit switched. Perhaps the most notable evolution to
the previous technology stack is the SAE all-IP architecture; in SAE all
protocols and interfaces are packet switched. The aim of the SAE is to enable
seamless IP connectivity to Packet Data Networks (PNDs) even when the
UE is mobile. This is achieved with bearers that the the E-UTRAN, the
access network, and the Evolved Packet Core (EPC), the core network, set
up in coordination.

Bearers are associated with Quality of Service (QoS) parameters according
to which the EPC and E-UTRAN prioritise and throttle the packet flows. As
the user may have multiple bearers active, for example one for continuous FTP

4

transfer and one for a Voice-over-IP (VoIP) session, the limited bandwidth
available must be used wisely. The set up and management of bearers and
other connectivity parameters in the network is achieved by standardised
interfaces and protocols across the network elements. This allows network
operators to choose their equipment from several vendors without the fear of
vendor lock-in [51].

The system also provides security and privacy in order to protect the
user and the network from attacks and fraudulent use. Various qualities of
service, security and distinguishing one UE from another are achieved by a
complex set of variables stored across the network elements. Together the
variables are referred to as the UE context state. Along side the context the
network operator stores data about the user itself and other static data, such
as the International Mobile Subscriber Identifier (IMSI) and base encryption
keys [13, 14, 15].

Figure 1 depicts the EPS network elements at a high level. The next
sections cover the functional entities of the EPS in more detail. After es-
tablishing an understanding of the network, section 2.3 continues with the
description of the events seen in the system.

Figure 1: The Evolved Packet System:10 User Equipment in blue, the
E-UTRAN in green and the Evolved Packet Core in orange.

10Figure adapted from https://en.wikipedia.org/wiki/System_Architecture_
Evolution, licence CC BY-SA 4.0, (Referenced on 28.10.2016)

5

https://en.wikipedia.org/wiki/System_Architecture_Evolution
https://en.wikipedia.org/wiki/System_Architecture_Evolution

2.2.2 The edge: eNodeB
The Evolved Node B (eNB), commonly also called the base station, is

the one and only network element in the E-UTRAN access network. The
E-UTRAN itself is made up of a network of interconnected eNBs which are
connected through the X2 interface. The eNB connects the UE via radio
link to the EPC, through the S1 interface. Contrasting to the previous
architecture there is no centralised controller coordinating normal user traffic
making the architecture flat. The UE and eNB communicate via Access
Stratum (AS) protocols, the details of which are out of the scope of this
thesis but are detailed in [51].

Each eNB is responsible for managing a number of cells and the con-
nectivity of the UE within the geographical area covered. Some of the core
responsibilities of the eNB include [3]:

Radio resource control (RRC) which consist of radio bearers, admission
control, radio mobility control, scheduling and dynamic allocation of
resources.

Header compression makes the use of the radio resources more efficient
by compressing packet headers which can bring significant overhead.

Security in the AS is achieved by encryption of all data sent over the radio
link.

2.2.3 The core: evolved packet core
The EPC is "responsible for the overall control of the UE and establishment

of bearers" [3]. This is achieved by the coordination of multiple entities within
the core network. Each entity has been tasked with a particular area of
management responsibilities. The main entities are the Mobility Management
Entity (MME), the Packet Data Network (PDN) Gateway (P-GW) and the
Serving Gateway (S-GW). In addition there are several other important
entities that complement the functionality to the network. The following
details the key entities of the network [51].

Mobility Management Entity: The MME is a control plane element
and no actual user traffic flows through it. It is connected to the eNB
via the S1-MME interface. The responsibilities of the EMM include the
coordination of bearer establishment, management and teardown, the
idle mobility of the UE including paging, tagging and retransmissions,
and the choosing of a Serving gateway for the UE at initial attach and
handover. Furthermore, the MME authenticates the attaching UE in
coordination with the Home Subscriber Server.

Serving Gateway: The S-GW is much like a switch in a regular IP net-
work, and its main responsibility is the forwarding of user traffic to
and from the eNB and PDN gateway(s). It also buffers incoming

6

data should the UE be in the idle state and in coordination with the
MME wakes up the UE for it to receive the data. Another important
responsibility of the S-GW is that it functions as a mobility anchor for
the UE when it changes between eNBs.

PDN Gateway: The P-GW is the gateway to the operators’ or external
IP networks, the networks with services the user may wish to access.
It is responsible for the IP address allocation for the UE for each
connection to a different PDN and subsequently handles the mapping
of the EPS bearers to and from IP addresses. Other related functions
are the filtering of packets, charging rule enforcement and quality of
service provisioning.

Home Subscriber Server: As the name suggests, the HSS stores infor-
mation relating to the subscribed users. The stored information about
the user may vary by operator, but at the high level the profile contains
QoS parameters that relate to, for example, how fast the users Inter-
net connection should be and how they are charged, available PDN
connections, and encryption master keys. Additionally the HSS tracks
which MME the UE is associated with.

Policy and Charging Rules Function: The responsibilities of the PCRF
include making decisions about the policies and controlling the charging
functions to be applied to the users data flow. The QoS decisions that
the P-GW enforces originate in the PCRF.

Access Network Discovery and Selection Function: The role of the
ANDSF is to provide the UE with information about nearby access
networks, including 3GPP and non-3GPP standardised radio links such
as WiFi.11 The information can be used to guide the UE to switch to
access networks with better reception or higher bandwidth.

2.3 The Evolved Mobility Management scenario
In this section we cover the basic Evolved Mobility Management scenario

in the 4G/LTE system and detail the seven bare-bone cases around which
the environment rotates. We describe the cases with special focus on the
UE context state as it plays a central role in our concept of coreless mobile
networks. The information in this section is mostly based on the documen-
tation by Netmanias/NMC Consulting Group.12 In particular we focus on
three questions:

• What exactly does happen in the LTE network?
11https://en.wikipedia.org/wiki/System_Architecture_Evolution (Referenced on

28.10.2016) (Referenced on 28.10.2016)
12Eleven EMM Cases in an EMM Scenario: http://www.netmanias.com/en/?m=view&

id=techdocs&no=6002 (Referenced on 28.10.2016)

7

https://en.wikipedia.org/wiki/System_Architecture_Evolution
http://www.netmanias.com/en/?m=view&id=techdocs&no=6002
http://www.netmanias.com/en/?m=view&id=techdocs&no=6002

• How is the UE connected, how does it receive data and how is ’seamless
connectivity’ achieved?

• What is the UE context state and how does it change?

The scenario is depicted in figure 2, in it each of the seven barebone
cases is indicated with and arrow from one connection state to another. The
scenario assumes that a user has brought a cell phone and a subscription
to a Public Land Mobile Network, PLMN, of a mobile network operator.
The operator has installed the user subscription information into its HSS
and PCRF components within its core network. In the descriptions of the
EMM procedures the following notation is used: the UE connection state
"EMM-deregistered, ECM-idle, RRC-idle" is referred to as the detached state;
the UE connection state "EMM-registered, ECM-idle, RRC-idle" is referred to
as the idle state; the UE connection state "EMM-registered, ECM-connected,
RRC-connected" is referred to as the active state.

Figure 2: The EMM scenario:12 1: initial attach, 2: detach, 3: S1 release, 4:
service request, 5: tracking area update, 6: handover, 7: cell reselection, 6,5:
handover with tracking are update, 7,5: cell reselection with tracking area
update.

The UE context state can be categorised in the following categories:
identifiers, location related, security, EPS bearers and QoS parameters. The

8

identifiers pertain to uniquely identifying the UE at the global, the operator
network, tracking area and cell levels. Each level has its own designated
identifiers of which some have overlapping subcomponents. The UE location
must also be tracked in order to deliver data to and from it. For this purpose
there are several identifiers, which pertain to keeping the last known position
of the UE known at the cell, tracking area and network levels. Communication
within the EPS is encrypted and integrity protected at the control plane
(NAS), and integrity protected at the user plane (AS). For this purpose
the planes contain their own security context, the NAS- and AS-security
contexts which include integrity and encryption keys and algorithms. EPS
bearers are pipes through which traffic flowing to and from the UE is routed.
Several bearers are needed in the system: at the radio interface the DRB,
at the S1 interface the S1 TEIDs and at the S5 interface the S5 TEIDs.
Together the DRB and S1 bearers are called the E-RAB. Each subscription
has an accompanying charging policy and associated quality of service, these
are contained in the last QoS categorisation. They are used in establishing
charging rules, throttles, bearers and their management in order to deliver
the quality of service the user subscribed to.

2.3.1 Initial attach
In the very beginning the user has not yet used the cell phone, henceforth

as UE, and turns its power on. The UE is initially in the detached state and
proceeds to do a cell search and synchronises with a base station. The UE
will then attempt to attach to the PLMN by the initial attach procedure.
During the initial attach several operations take place: the UE and the MME
authenticate each other, the MME sets up default bearers and signalling
connections according to the user profile stored in the HSS, the UE is assigned
an IPs to use in connecting to the PDNs, and the UE is assigned the tracking
area identifier (TAI-) list. After a successful attach procedure the UE enters
the active state and user traffic will flow to and from the registered PDNs.
Should the attach procedure fail the MME will notify the UE and it will
remain in the detached state.13

The Initial attach procedure begins with the UE sending the MME an
attach request message which includes an identifier. The identifier may be
the IMSI, International Mobile Subscriber Identity, which will be used in
the first attach to an MME that has not seen the UE before. The identifier
may also be an old GUTI, the Globally Unique Temporary Identifier, that
an MME has assigned to the UE at a previous attach. Depending on the
type of attach, whether it be an attach to a new MME or new LTE network,
or an old MME and so forth, the MME may go through all or a subset of
subsequent operations:

13http://www.netmanias.com/en/?m=view&id=techdocs&no=10441&page=2 (Refer-
enced on 28.10.2016)

9

http://www.netmanias.com/en/?m=view&id=techdocs&no=10441&page=2

UE ID acquisition: Depending on whether the UE has been attached to
the network and to which MME, the MME may request the UE to
identify itself with the IMSI should the integrity check of the attach
request message check fail.

Authentication: If the integrity check fails the MME will initiate the
EPS-AKA authentication procedure. During the procedure the HSS
generates the KASME which is sent to the MME which then performs
the rest of the authentication procedure with the UE in behalf of the
HSS.

NAS security setup: The MME and UE generate NAS security keys from
an intermediate key derived from the master LTE key by the HSS. The
master key never leaves the HSS nor the UE, but is used to derive
intermediate integrity and encryption keys.

Location update: The MME notifies the HSS that the user subscribed to
the network and sends the UE the TAI-list. The MME also downloads
the user subscription profile, which includes, among others, registered
PNDs and QoS parameters.

EPS session establishment: The MME then proceeds to set up, in coor-
dination with other network elements, the required bearers for the user
traffic. Default bearers include, but may be supplemented by others,
the S1 and S5 download and upload bearers. During bearer setup the
PCRF sets up the QoS policies into the P-GW which enforces them.

In summary, the entire context for successful and secure UE connectivity
is set up during the initial attach procedure. Table 1 summarises the UE
context before and after the procedure.

Table 1: UE context before and after initial attach. Added context in blue.
See also the section on abbreviations.

Table 1: initial attach context.
Before After

UE identi-
fiers

IMSI IMSI
GUTI
IP
C-RNTI
eNB S1AP UE ID
MME S1AP UE ID

UE loca-
tion

- ECGI
TAI
TAI-list
MME ID

Security
context

Kmaster Kmaster
NAS security
AS security

10

Table 1 continued
Before After

EPS bear-
ers

APN APN
APN in use
EPS bearer ID
DRB ID
E-RAB ID
S1 TEID (UL/DL)
S5 TEID (UL/DL)

QoS pa-
rameters

Subscriber profile
Access profile

Subscriber profile
Access profile
QCI
ARP
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)
TFT (UL)

2.3.2 Detach
The purpose of the detach procedure is to release the resources tied to the upkeep

of UE connectivity. The detach procedure may be triggered by the network or the
UE, but in either case the detach will be explicit or implicit. The key difference
between the two cases is that in an explicit operation the network or the UE triggers
the detach procedure due to, for example, a switch-off at the UE or a subscription
cancellation event at the HSS. Whereas the implicit detach always involves the UE
losing connectivity with the network because of signal loss. When the MME is no
longer able to complete a tracking area update due to connectivity loss it starts the
mobile reachable timer, the expiry of which triggers the implicit detach procedure.
The end result of any detach procedure is that the UE will enter the detached state
and all active resources are freed.14 In most cases the network will retain some
information from the last session to hasten the subsequent attach procedure. Table
2 summarises the changed UE context.

Table 2: UE context before and after detach. Removed context in red.
Table 2: detach context.

Before After
UE identi-
fiers

IMSI
GUTI
IP
C-RNTI
eNB S1AP UE ID
MME S1AP UE ID

IMSI
GUTI

UE loca-
tion

TAI
TAI-list
MME ID
ECGI

TAI (last visited)
TAI-list
MME ID

14http://www.netmanias.com/en/?m=view&id=techdocs&no=6108 (Referenced on
28.10.2016)

11

http://www.netmanias.com/en/?m=view&id=techdocs&no=6108

Table 2 continued
Before After

Security
context

Kmaster
NAS security
AS security

Kmaster
NAS security

EPS bear-
ers

APN
APN in use
EPS bearer ID
DRB ID
E-RAB ID
S1 TEID (UL/DL)
S5 TEID (UL/DL)

APN

QoS pa-
rameters

Subscriber profile
Access profile
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)
QCI
ARP
TFT (UL)

Subscriber profile
Access profile
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)

2.3.3 S1 release
The case begins as the UE is in the active state and traffic is flowing to and

from it. At some point, however, the user will stop using the UE and it will become
inactive. After some time of inactivity the UE or the MME will trigger the release
of S1 bearers and signalling connection in the S1 release procedure and the UE
enters the idle state. In summary the S1 release may be triggered by user inactivity,
RRC signalling integrity failure, UE initiated release, authentication failure or the
UE associating with a disallowed closed subscriber group cell. After the release of
S1 signalling connection and DRB the UE enters the idle state and all context is
deleted at the eNB, freeing the resources. The purpose of the procedure is to release
resources not needed in the idle state in order for the UE to conserve energy and the
EPS, particularly the eNB, to conserve energy and resources.15 Table 3 summarises
the changed UE context.

Table 3: UE context before and after S1 release. Removed context in red.
Table 3: S1 release context.

Before After
UE identi-
fiers

IMSI
GUTI
IP
C-RNTI
eNB S1AP UE ID
MME S1AP UE ID

IMSI
GUTI
IP

UE loca-
tion

TAI
TAI-list
MME ID
ECGI

TAI (last visited)
TAI-list
MME ID

15http://www.netmanias.com/en/?m=view&id=techdocs&no=6110 (Referenced on
28.10.2016)

12

http://www.netmanias.com/en/?m=view&id=techdocs&no=6110

Table 3 continued
Before After

Security
context

Kmaster
NAS security
AS security

Kmaster
NAS security

EPS bear-
ers

APN
APN in use
EPS bearer ID
DRB ID
E-RAB ID
S1 TEID (UL/DL)
S5 TEID (UL/DL)

APN
APN in use
EPS bearer ID
E-RAB ID
S1 TEID (UL)
S5 TEID (UL/DL)

QoS pa-
rameters

Subscriber profile
Access profile
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)
QCI
ARP
TFT (UL)

Subscriber profile
Access profile
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)
QCI
ARP
TFT (UL)

2.3.4 Service request
The UE has been in the idle state for a while. Now the user or a background

application generates new traffic which must be delivered to the PDN. It is also
possible that the UE receives new traffic originating in the PDN or other related
service. The UE must be transferred from the idle state into the active state in order
for it to receive the data, and so the service request procedure takes place. During
the procedure the resources released in the S1 release procedure are reserved again
and the S1 signalling connection and DRB are formed. The procedure involves three
operations, the first is the setup of the RRC connection to allocate radio resources
at the eNB, the second is an optional authentication step which is necessary if the
NAS messages are not integrity protected or the check fails, and the third and final
step is the establishment of the E-RAB which includes the S1 signalling connection
and DRB setup. Should the new traffic originate in the PDN there is an additional
step involved before any of the previously mentioned. That is, the MME must page
the UE in order to notify it of the incoming data so the UE may wake up and start
the service request procedure.16 Table 4 summarises the changed UE context.

Table 4: UE context before and after service request. Added context in blue.
Table 4: service request context.

Before After
UE identi-
fiers

IMSI
GUTI
IP

IMSI
GUTI
IP
C-RNTI
eNB S1AP UE ID
MME S1AP UE ID

16http://www.netmanias.com/en/?m=view&id=techdocs&no=6134 (Referenced on
28.10.2016)

13

http://www.netmanias.com/en/?m=view&id=techdocs&no=6134

Table 4 continued
Before After

UE loca-
tion

TAI
TAI-list
MME ID

TAI (last visited)
TAI-list
MME ID
ECGI

Security
context

Kmaster
NAS security

Kmaster
NAS security
AS security

EPS bear-
ers

APN
APN in use
EPS bearer ID
E-RAB ID
S1 TEID (UL)
S5 TEID (UL/DL)

APN
APN in use
EPS bearer ID
E-RAB ID
S1 TEID (UL/DL)
S5 TEID (UL/DL)
DRB ID

QoS pa-
rameters

Subscriber profile
Access profile
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)
QCI
ARP
TFT (UL)

Subscriber profile
Access profile
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)
QCI
ARP
TFT (UL)

2.3.5 Tracking area update
The EPS allows the UE to enter the idle state to conserve power and resources

on both sides. This has the effect, that the location of the UE can no longer be
tracked to the precision of a cell, like in the active state, because the UE, as it is
only listening, does not have an active connection with a base station and eNB.
However, even in the idle state the UE might receive traffic, such as a message, that
needs to be delivered to it. For this purpose a mechanism was built into the EPS to
allow the UE to be woken up: the paging procedure.

The paging procedure itself is quite simple: the MME sends a paging message to
each cell that the UE should be in, tracked by the TAI-list, the eNBs and finally base
stations send the message to the UE via the air interface that the UE is listening to.
This is a broadcast message and all UE within the same geographical area will be
listening to the broadcast. Should it contain the identifier of the particular UE, the
UE will wake up and continue with the service request procedure.

The problem comes when decisions need to be made of the cells that will actually
broadcast the paging message. This is the purpose of the concept of Tracking Areas,
TAs. A TA may contain multiple cell sites and multiple eNBs, essentially covering
a certain geographical area in which a UE may reside. Once the UE attaches to
the network, the MME assigns the UE a set of TAs that it may enter while in
the idle state without any additional procedures. This set is called the Tracking
Area Identifier (TAI)-list, as in the figure 2. The TAI-list defines the cells through
which the MME will send its paging messages should it have any, to the UE. It is
a non-trivial optimisation problem that has had operators and equipment vendors
alike searching for answers for a long time, how to most efficiently assign TAI-lists
and the associated TAU-timer and paging procedures to minimise core network load

14

and maximise battery life on the UE.
The procedure according to which the TAI-list of the UE, stored also at the

MME, is updated is called the Tracking Area Update, TAU-procedure. There are
two cases in which a TAU will be triggered: once the TAU-timer elapses notifying
the UE and the MME that enough time has elapsed since the last TAU, and if
the UE enters a TA that is not contained in the TAI-list assigned to it. In the
simple case the TAU involves the UE to transition from the idle state to the active
state with the exception that the DRB and S1 bearer are not set up. The only
connectivity that is needed for the TAU is the RRC and S1 signalling connection to
enable control message flow between the UE and the MME. The MME then assigns
the UE with a new TAI-list and GUTI if necessary. Finally the UE acknowledges
the update and proceeds to release the signalling connection and returns to the
idle state.17 The UE context remains largely unmodified, with the exception of the
GUTI and TAI-list if the MME decides they need to be updated.

2.3.6 Handover
A handover is a mobility management procedure that ensures seamless connec-

tivity of an active UE to the PDN when the UE moves from a cell in one TA to the
next cell in another TA. Should the UE move to a TA that is not in its TAI-list
the TAU procedure is initiated after the handover.18 There are several types of
handovers depending on which EPC entities are involved and change during the
procedure. All of the cases will not be covered here, as they are outside the scope
of this thesis, but the high level structure is explained.

Measurement configuration: The process begins when the UE associates with
a base station and eNB which specifies which measurements the UE is to
collect. This is transmitted in an RRC connection reconfiguration message
that includes the specification of the trigger event, report interval, neighbour
list to measure and so forth.

Measurement report: The UE takes measurements according to the specification.
Upon a trigger event, which may be a weak signal, the UE sends a measurement
report to the eNB. The eNB decides whether to initiate a handover.

Handover decision: The eNB, upon receipt of a measurement report, decides to
initiate a handover to a target cell included in the report.

Handover preparation: Depending on the type of handover different entities
are involved. In the case of an X2 handover, the source and target eNB
communicate directly via the connecting X2 interface and they prepare the
forwarding tunnel. In the case of an S1 handover the source eNB and the
target eNB communicate and forward traffic via an indirect tunnel via the
S-GW, the forwarding tunnel preparation is coordinated by the MME.

Handover execution: In the X2 handover the source eNB sends the UE context
to the target eNB which allocates the resources to connect to the UE. The X2
enables a direct tunnel via which incoming traffic is forwarded from the source
eNB to the target eNB onwards to the UE until the handover is complete. In
the case of an S1 handover the indirect tunnel from the source eNB to the
target eNB via the S-GW forwards the traffic thusly: the S-GW normally

17http://www.netmanias.com/en/?m=view&id=techdocs&no=6193 (Referenced on
28.10.2016)

18http://www.netmanias.com/en/?m=view&id=techdocs&no=6324 (Referenced on
28.10.2016)

15

http://www.netmanias.com/en/?m=view&id=techdocs&no=6193
http://www.netmanias.com/en/?m=view&id=techdocs&no=6324

forwards the traffic to the source eNB, which forwards it via the indirect
tunnel back to the S-GW, which further forwards the traffic to the target
eNB.

Handover completion: Finally the UE completes its connection to the target
eNB. After, the forwarding tunnels are stripped down and traffic will flow
normally again.

Tracking area update: If the UE moves to a cell which is in a TA that is not
included in its TAI-list the TAU procedure is initiated immediately after the
handover.

For further information and details the reader is encouraged to refer to the
Netmanias documentation at 19, 20 and 21. During handover there may be one or
several extra bearers set up for the forwarding tunnels, but after completion the
changes in context reflect the changed network entities. The context that changes
during the X2 handover is highlighted in table 5.

Table 5: UE context before and after X2 handover. Changed context in
green.

Table 5: handover context.
Before After

UE identi-
fiers

IMSI
GUTI
IP
C-RNTI
eNB S1AP UE ID
MME S1AP UE ID

IMSI
GUTI
IP
C-RNTI
eNB S1AP UE ID
MME S1AP UE ID

UE loca-
tion

TAI
TAI-list
MME ID
ECGI

TAI (last visited)
TAI-list
MME ID
ECGI

Security
context

Kmaster
NAS security
AS security

Kmaster
NAS security
AS security

EPS bear-
ers

APN
APN in use
EPS bearer ID
DRB ID
E-RAB ID
S1 TEID (UL/DL)
S5 TEID (UL/DL)

APN
APN in use
EPS bearer ID
DRB ID
E-RAB ID
S1 TEID (UL/DL
S5 TEID (UL/DL)

19http://www.netmanias.com/en/?m=view&id=techdocs&no=6224 (Referenced on
28.10.2016)

20http://www.netmanias.com/en/?m=view&id=techdocs&no=6257 (Referenced on
28.10.2016)

21http://www.netmanias.com/en/?m=view&id=techdocs&no=6286 (Referenced on
28.10.2016)

16

http://www.netmanias.com/en/?m=view&id=techdocs&no=6224
http://www.netmanias.com/en/?m=view&id=techdocs&no=6257
http://www.netmanias.com/en/?m=view&id=techdocs&no=6286

Table 5 continued
Before After

QoS pa-
rameters

Subscriber profile
Access profile
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)
QCI
ARP
TFT (UL)

Subscriber profile
Access profile
UE-AMBR (UL/DL)
APN-AMBR (UL/DL)
QCI
ARP
TFT (UL)

2.3.7 Cell reselection
The cell reselection is an idle-state procedure that ensures that the UE is able

to listen to paging messages and subsequently wake up from idle. In the idle state
the UE wakes up at end of each discontinuous reception cycle to measure the signal
of the serving cell. When the UE moves with the user, the signal may become
attenuated due to obstruction or distance. Once the signal drops below a certain
threshold the UE starts listening to the broadcast of system information from nearby
cells. The system information is used by the UE when it decides to change the cell
it camps on.22 In particular the UE checks the cell identifier which indicates the
TA of the cell. Should the UE decide to camp on a cell that is not in its TAI-list
the UE initiates the TAU procedure.23 With the exception of the additional TAU
procedure no context is changed.

2.4 Summary
We have discussed the EMM scenario in some detail. All in all, the management

of the state of UEs, their context, is achieved with complex procedures involving
large amounts of signalling. It is estimated that in regular conditions a UE may
generate upwards of 500 signalling messages per hour in the EPC and "always-on"
UEs will further increase the signalling load [4, 56]. While network capacity may not
be a bottleneck, research has shown that disruptions in signalling and sporadic short
bearer changes can amount to much decreased performance and throughput [50, 26].
The protocols are often interdependent, rendering their interactions complex. This
increase in complexity has been shown to be problematic, incurring penalties in
system operation [53].

Standardisation provides a path for vendors to create similar products and
compete in their efficiency, it also removes some problems with vendor lock-in at the
operator. It is, however, also a fundamental source of inelasticity in the architecture.
While we are already on a path to software based architectures, there are still
tremendous amounts of legacy hardware in use. Fixed routing and provisioning
causes major load imbalances and makes it difficult for operators to obtain and
provision resources to combat signalling storms and flash crowds [46]. It is therefore
necessary to redesign control plane protocols and redesign the standardisation to
allow for more software architectures which enable faster evolution and operator
specialisation.

22http://www.netmanias.com/en/?m=view&id=techdocs&no=6322 (Referenced on
28.10.2016)

23http://www.netmanias.com/en/?m=view&id=techdocs&no=6324 (Referenced on
28.10.2016)

17

http://www.netmanias.com/en/?m=view&id=techdocs&no=6322
http://www.netmanias.com/en/?m=view&id=techdocs&no=6324

3 Overview of important research topics
In this section we cover some of the key technologies that are proposed to enable

the 5G prospects. Currently the technology trend in almost all fields is to move
all possible components to the cloud. This is reflected also in 5G research, where
the concepts of Cloud Radio Access Networks (C-RAN) and Heterogeneous C-RAN
have received much attention. Another potentially game changing technology is
massive multiple input multiple output, which aims to increase base station antenna
count to the hundreds and UE antenna count into the tens.

3.1 Software defined networking
Since its introduction by Greenberg et al., software defined networking [19],

SDN, has attracted mounds of interest in the research community. Subsequently
the technology has advanced in leaps and bounds as is indicated also by the number
of vendors currently supporting a popular SDN interface, OpenFlow.24

Traditionally networking infrastructure and paths therein have been configured
by tedious manual labour through vendor specific APIs, typically resulting in vendor
lock-in [44]. On top of the static network configuration the IP routing mechanism
is run in a distributed fashion, whereby each router has a very limited and, by
definition, outdated view of the network. In traditional networking the routing
plane, where the actions for a packet are decided, and the actual forwarding of the
packets in the user plane are intertwined. SDN separates the control and user planes
allowing the network to be programmed with high level objectives rather than low
level primitives [24].

In essence, SDN centralises the control plane of the network so that routing
decisions are no longer made by routers themselves, but by a centralised entity
which has a global view of the network. The so-called controller is aware of all of
the network elements under its region of control by means of direct communication.
Each router is therefore configured and monitored by the controller in real-time,
so that each new flow for which a router does not have a rule dictating an action,
triggers the router to ask the controller for a rule. The controller subsequently
installs a rule to the requesting router and to all the routers that should also be
made aware of said rule, typically all in the path of the flow. A rule at the high level,
in OpenFlow for example, are of the form MATCH:ACTION, where MATCH is a
set of wildcards and specifiers that are matched to the headers of incoming packets
of a flow, and the ACTION dictates whether for instance to DROP, FORWARD
or MODIFY the packet or its headers. The routers then continue routing the flow
according to the newly installed rule [1].

SDN has been sought to enable easier management and operations to new
virtualised architectures. There have been several promising papers released on the
matter [44, 21, 35, 49]. Sama et al. propose that the OpenFlow protocol requires
extensions in the match-fields and action types to enable efficient handling of the
GTP-U TEIDs [49]. In his thesis, Mäki presents a prototype OpenFlow controller
for handling of GTP-U flows [35]. He et al. propose a new request routing protocol
and algorithm for the SDN enabled mobile core [21]. Hypervisors have originally
been developed to enable efficient virtualisation of hardware resources. Now, as per
[6], hypervisors are being brought into the SDN paradigm as enablers of network
hardware virtualisation, monitoring and management.

24https://www.opennetworking.org/sdn-resources/openflow (Referenced on
28.10.2016)

18

https://www.opennetworking.org/sdn-resources/openflow

Although promising, SDN is not without its flaws, as is pointed out by [57].
The survey concentrates on SDNs susceptibility to distributed denial of service
attacks, DDoS, which have become on of the most extensively used methods of
disrupting service availability on the public Internet. The loss of a controller due to
a DDoS attack could bring down large sections of the network, amplifying the scope
of service unavailability with contrast to traditional networks.

3.2 Virtualised network functions
Virtualisation is not a new topic in computer science. In fact, hardware virtuali-

sation has been one of the driving forces behind cloudification of services during
the past decade. Traditionally services have been run in datacentres owned by
the company hosting the service, today those services are by and large are hosted
within leased virtualised computing resources in third party operated datacentres.
Network functions, however, have been lagging behind in virtualisation. While
traditionally network functions have been implemented as hardware that needed
to be physically plugged in to the network and manually configured into place,
virtualised network functions are software that is running on generalised off-the-shelf
hardware. Previously a firewall has been a specialised hardware component installed
in a network node centre, but with VNF it can be dispensed and the software moved
to be hosted in the cloud. The flows that need to be routed into and out of the
network function can be routed with software defined routes that are nimble, elastic,
rather than hardware routes in cables [24].

Virtualised network functions have attracted research with regards to the 5G
aspects as well. Specifically of interest have been hypervisors [6], resource man-
agement [58] and information-centric networking [33]. These are all important
research questions in light of the scoped 5G improvements; the VNFs must be cost
and energy efficient, elastically scalable and versatile. As network functions are
virtualised it becomes possible create new services and to chain them in ways not
possible before. For instance, the next generation of mobile networks may employ
completely different modes of operating the control plane and it can be seamlessly
coupled with legacy protocols. By virtualising components of the current and next
generation telecommunications networks it is expected that much savings in capital
and operational expenditure can be achieved. How will VNFs cope with the demands
of 5G? It is known that specialised hardware has traditionally been faster with
higher throughput than software. Response time will become a critically important
factor to be considered in the adaptation of VFNs [2].

3.3 Cloud radio access networks
Recent developments in virtualisation have spawned new ideas in telecommuni-

cations as well as Internet services. One of the most hailed concepts in 5G research
has been the cloudification of the RAN. The Cloud Radio Access Network, C-RAN,
centralises processing of the RAN into datacentres, where resources an be efficiently
managed [28]. In essence all that is left at the edge of the mobile network are
the Remote Radio Heads, RRH, which contain the antennas used for the actual
radio link. While the datacentre provides an excellent platform for virtualisation,
including flexible resource management and on-site hardware maintenance, there
are some serious caveats in RAN centralisation [47].

Important advantages in centralisation of the RAN include, in addition to
efficient resource management at the datacentre, enabling of efficient coordination

19

of radio resource usage resulting in higher spectral efficiency including supporting
massive MIMO [36], and further virtualisation of services into a conceptualised
Radio Access Networks as a Service, RANaaS [48]. Centralisation also enables
straightforward combination of small, medium and large cell networks and non-
3GPP standardised wireless communication, heterogeneous networks, into the RAN
[34].

The most problematic aspect of the C-RAN is the fronthaul [29]. The fronthaul
concerns the transport of the digital radio signal from the Baseband Unit (BBU)
in the datacentre to the RRH which converts it to analogue and finally to the UE
via radio interface. The BBU is concerned with the signal processing of the digital
signal and has typically been located at the base station for good reason. The
resulting traffic from the RRH to the BBU is huge even compared to the backhaul,
which comprises of the link between the edge RAN and the core network. The only
technology available today to carry the fronthaul traffic is optical fibre which is
expensive to deploy. In contrast, millimetre-wave is being sought to be a possible
solution in this respect, not requiring expensive hardlines to deploy but with the
potential capacity to carry the traffic [43, 2].

3.4 Mobile edge computing
Contrasting to C-RAN, mobile edge computing, MEC, brings the computing

resources closer to the user, to the edge of the radio access network. Since the edge
of the RAN is as close to the user as possible it can provide services with high
bandwidth and low latency. Mobile edge computing has become a viable option
as a basis to build cloud platforms with the advent of low cost and high capacity
general purpose computing hardware. Deploying computing power at the edge has
the disadvantage that its maintenance is more costly than at a datacentre. However,
base stations and Evolved Node Bs (eNBs) need to be deployed and maintained in
any case [42].

Being closer to the user the mobile edge can offer more acceleration compared
to the centralised cloud. Caching of content, for instance, is seen as a major step
in reducing core network load, access latency and object fetch time [38]. The
effect of caching has been widely studied and is a common practice of content
providers, such as Youtube, Vimeo and Facebook [7].25 Compared to current
caching techniques, where content delivery networks, CDNs, are regular servers
geographically distributed and users connect to them via the Internet, caching at
the edge of the RAN brings the cache servers to within one-hop distance of users
[55].

Opening the mobile edge to third parties, allowing them to deploy applications
has potentially other advantages as well. In addition to caching and optimised
content delivery some highlighted use cases include video analytics, location services,
IoT and augmented reality.26 It has been suggested, that Over-the-Top players
and independent software vendors could foster new market value and areas should
they be allowed to deploy innovative applications on the mobile edge. Leasing the
computing power and network resources could bring new revenue streams to the
mobile network operator, alleviating their pressure on operational expenditure [42].

25https://code.facebook.com/posts/1653074404941839/under-the-hood-
broadcasting-live-video-to-millions/ (Referenced 15.11.2016)

26http://www.etsi.org/technologies-clusters/technologies/mobile-edge-
computing (Referenced on 28.10.2016)

20

https://code.facebook.com/posts/1653074404941839/under-the-hood-broadcasting-live-video-to-millions/
https://code.facebook.com/posts/1653074404941839/under-the-hood-broadcasting-live-video-to-millions/
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing

3.5 Massive multiple input multiple output
Multiple Input Multiple Output (MIMO) refers to the technique of attaching

multiple antennas to both the transmission and reception components of a radio
circuit. Current technology can make use of only a narrow band of frequencies at
each antenna, so multiplying the number of antennas naturally increases the number
of usable frequencies. Massive MIMO refers to increasing the amount of antennas
to the hundreds. Massive MIMO can thus enable benefits in spectral and energy
efficiency, noise and intra-cell interference can be more effectively mitigated and the
medium access control layer can be simplified. The need for massive MIMO may be
counteracted to some extent by full-duplex communication [54].

3.6 Spectrum reuse and new new bands
Spectrum reuse pertains more specifically to spectrum sharing. It is common

today that licensed spectrum is bought and used by one operator at a time in a
particular geographical location. At the same time the same spectrum could be
free to be used in another geographical location, but policies and technology does
not permit doing so. This wastes space on the spectrum and causes unnecessary
congestion in those spectra that can be used. Wireless network virtualisation is a
broad term that may, in addition to the aforementioned spectrum sharing, include
infrastructure virtualisation and air interface virtualisation, for instance. In essence,
just as with any virtualisation technique, it decouples hardware used to host and
the running of services, allowing leasing and new business models [32, 23].

Nevertheless, we are running out of usable spectra. New frequencies are sought
for, and specifically the millimetre (mm)-wave is seen to promise vast amounts of
new capacity. Mm-wave bands are much wider and can accommodate over 200
times more spectra in the 30-300 GHz range than the current sub 3 GHz frequencies.
The shorter wavelength allows smaller antennas, which in turn opens the path to
massive MIMO. The major disadvantage of mm-waves is their short range, requiring
deployment of pico-cell base stations with a maximum range of 100–200 metres [52].

3.7 Full-duplex communication
Traditional transceivers have been limited by the inability to transmit and

receive on the same radio frequency simultaneously. With the advancements in
antenna, digital baseband and interference cancellation technologies we have come
closer to building systems that are able to overcome this limitation. Being able
to transmit and receive in the same frequency channel at the same time would
effectively double spectral efficiency. Full-duplex communication cloud potentially
also solve problems with hidden terminals, loss of throughput and large end-to-end
delays [52, 22].

3.8 Wireless charging
Increasing the battery life of wireless devices is one of the more challenging

aspects in the range of 5G research. While computing chips and devices are becoming
more powerful they need more energy. With recent advancements in system-on-chips,
SOCs, and new processors the requirements for energy have been mitigated to some
extent. Should small IoT devices continue the trend of current smartphones’ battery
life, their era might not be too long. Harvesting energy from the ambient light, heat
and wind are popular research directions, but as their occurrence is varied they
might not be able to provide energy in a stable enough fashion. Radio frequency

21

energy harvesting has thus gained attention as the output power can be modulated
and controlled. Transferring energy via RF signals is possible across long distances
and could allow transmission of information at the same time [22].

3.9 Self organising and cognitive networks
Self organising and cognitive radio networks (SON, CR) are closely related to

spectrum efficiency gains through sharing and virtualisation of resources. Contrasting
to the C-RAN, where the optimisation of resource usage is achieved by centralised
components, cognitive radio access networks achieve it by having the base stations
actively monitoring spectra and adjusting to changes [54].

Self-organisation may be seen also as interconnected base stations cooperating to
provide sufficient radio resources to a geographical area by activating of deactivating
parts of the RAN. This will become possible particularly in areas with heterogeneous
coverage, where small-cell and macro-cell coverage overlaps. During the night time,
for example, when network usage may be significantly less than that of daytime high
peaks, the small-cell areas may be deactivated, saving energy, while the areas are
still being covered by a macro-cell base station [5]. For further reading on the topic,
the reader is encouraged to turn to the excellent book on the topic by Hämäläinen
et al.: [20].

3.10 Multipath Transmission Control Protocol
Current service acquisition model in the Internet and networks almost invariably

rely on the Transmission Control Protocol, TCP. Most all implementations use a
single path, or more precisely, a single network interface for communication. This
is somewhat of a historical remnant, as the TCP stack was developed so that the
data stream is tightly bound to the destination and source IP addresses. Today
devices are ever more capable of connecting to the Internet via multiple access
technologies, such as wired ethernet, WiFi, Bluetooth and 4G/LTE. Even as more
access technologies have been taken into use the industry has not been keen on
developing the techniques to efficiently use all of them, but most devices are limited
to using a single network interface at a time [16].

Multipath TCP (MPTCP) enables a device to use multiple network paths,
interfaces, for a connection to a service. It was standardised by IETF already in
2013. The more popular desktop operating systems implement MPTCP support
in their TCP stack: Mac OS X, Free BSD, iOS 7 and Linux. However, its spread
into use by services has been slow. For example, authors Mehani et al. studied the
adaptation of MPTCP in the Internet [37]. By scanning the Alexa Top 1M list they
found that only about 0.1% of IPs and domains were served by MPTCP capable
hosts. Deployment of MPTCP is naturally up to service providers, but mobile
network operators and operating system manufacturers need to support MPTCP in
order to advance technology and improve the quality of service of wireless networks.

3.11 Summary
Future 5G networks will likely not see as big technological leaps in single areas

as previous generations have. More so, the technology will likely consist of multiple
smaller refinements and introductions of new concepts, which together will bring
5G to fruition. That being said, the technologies that are sought for are still in
their infantile stages and more research is needed in order for them to mature and
become deployable. This is especially the case with new protocols that are subject
to standardisation.

22

4 Coreless mobile networks
The current 4G/LTE network is slow and as such it cannot be leveraged to

achieve the planned advancements in 5G [29]. As mentioned earlier in section 2, the
distribution of the control layer across several disparate entities causes a plethora of
problems. Enter the concept of coreless mobile networks. The term derives from
the idea, that, contrasting to the 4G/LTE architecture, all of the core network
functionality is virtualised and moved away from the core network to the edge of
the network. In this section we detail the concept, starting with its architecture
in section 4.1. We present design challenges and possible solutions and a novel
optimisation possibility. This is, as far as we know, the first concept of a completely
virtualised and MEC based Evolved Packet Core.

4.1 Architecture of the network
As detailed in section 2.2 the EPS consists of several components, the eNB at

the network edge providing the radio connectivity and the core network entities
providing controlling functions and connectivity to the PDNs. Let us observe the
core network entities as virtualised components, software, that can be deployed as
VNFs. We can now place all the core network entities in which ever facility we like.
Additionally, let us split the control plane and user plane functionalities in the core
network components, not much unlike in [40]. Specifically the S-GW and P-GW
contain control plane functions and forwarding functions on the user plane: the
S1-U and S5/S8 interfaces carry user plane traffic. Now the core network entities
functions are much alike controllers in an SDN environment. They program the
forwarding rules for the user plane into SDN capable switches which forward actual
user plane traffic.

In the concept of the C-RAN, the components are placed and run in datacenters.
However, as already discussed, the fronthaul becomes a tedious problem. Another
solution is to place and run the virtualised core network components at the same site
as the eNB. For example: the site has dedicated hardware for the eNB functionality
as before, and additional general purpose hardware for the core network entities
and SDN capable switches. The high level architecture is depicted in figure 3. The
SDN capable switches forward user plane traffic and are programmed by the core
network entities in the local site, smart-box.

Let us also observe that, since each site now has a dedicated set of core network
entities, each cell reselection or handover would require much control plane actions
in explicitly setting the new entities for the UE. We overcome this by logically
unifying all of the core network entities: they read and write a ubiquitous27 data set
that contains the existing UE context which a new set of entities in another site use
in building the bearers and identifiers in their process space. Thus the core network
entities, that currently hold and manage much state, are made stateless and the
context state is moved to be held in the data set. The sites can be connected by the
X2 interface, the operator backbone network, or even the public Internet provided
the connection is secure. Note that, contrasting to the 4G architecture in figure
1, our scenario in figure 3 contains multiple radio access technologies in the eNB
(in green), hosted alongside the core network entities (in orange) within the same
smart-box (in cyan).

The change in architecture has several implications. Firstly the UE has unhin-
dered access to the PDNs, as they are accessible immediately after the smart-box

27Ubiquitous to the core network entities, not to the world.

23

Figure 3: The coreless mobile architecture at a high level. The eNB site,
smart-box, in cyan.

rather than via the dedicated EPC, resulting in lower latencies and higher through-
put. Secondly, as the EPC entities are close to the UE and each other, even as close
as in the same operating system and hence memory space, signalling to the EPC
will be extremely fast since slow network connections aren’t involved. This further
increases throughput and decreases latency as changes in context data and routing
are performed on site. Thirdly, as the virtualised EPC entities in each smart-box
are now a logically unified across the entire operator network, the need to perform
explicit handover procedures diminishes significantly. This has the effect, that a
UE will never lose connectivity while it has a good signal to any cell served by
the operator in question. In essence the UE can now move seamlessly within the
operator network coverage area.

Furthermore, the proposed architecture need not be deployed in one go. The core
network entities can still support connections to legacy systems, such as a centralised
HSS, making the architecture less disruptive while still capable of supporting novel
technologies. It is also noteworthy that the architecture follows along the themes of
Mobile Edge Computing, MEC as described in section 3.4 as well as the concept of
a Shared Data Layer by Nokia.28 As mentioned, MEC has gained much interest
since it can provide computing resources and very fast, low latency connectivity to

28Alcatel-Lucent (Nokia): Creating a new data freedom with the Shared Data Layer, at
http://resources.alcatel-lucent.com/asset/200238 (Referenced on 28.10.2016)

24

http://resources.alcatel-lucent.com/asset/200238

the UE and the Internet. It is therefore foreseeable that, with the adaptation of
MEC, the hindrance of installing additional computing equipment at the eNB site
would be alleviated.

It should be evident by now that the architecture, in essence, highlights the
importance of the context data. After all, it is according to the UE context state
that all user plane data is moved between the UE and the PDNs. While the 4G
core network entities are already software and changes to them can be made with
relative ease, it is not at all clear how the context data can be made ubiquitous.
It is this question we have decided to address in this thesis. In summary, the key
concepts in the coreless mobile network architecture are as follows:

Virtualised EPC: Virtualisation of the evolved packet core entities allows flexi-
bility in their placement and enables dynamic provisioning.

Plane separation: Separating the functions of the control and user planes from
the EPC components allows the building of an SDN controller with the
functionality of the EPC control plane.

SDN switching: The aforementioned "EPC controller" decides and installs the
forwarding rules into associated SDN-capable switches.

In-situ computing: The EPC controller, SDN switch and eNB are co-located in
the eNB site, and all computing will be done locally. Contrasting to the
centralised nature of the traditional EPC, this model is entirely decentralised.
Each smart-box can be viewed as an access point into any connected PDN.

Unified components: UE context state is shared via a ubiquitous data store,
available to all smart-boxes and their associated EPC controllers which are
thus made stateless. From the perspective of the UE, while the eNB may
change, the EPC is now a single entity and does not change.

4.2 A shared, distributed data store
The recent decades’ developments in deploying and building clouds has brought

with itself a new mode of storing data. Once centralised databases with strict ACID
semantics were capable of providing the speed, throughput and easily understandable
data models. However, their limits have been reached with the advent of the cloud,
massive parallelisation and big data. Along have come distributed databases, some
of which are more capable than others in providing the necessary scalability that
is required of them. The field of distributed data stores has, in fact, come far
enough to offer solutions in the most demanding of environments [10]. It is therefore
natural to look at them as possible hosts for the context data. In this section we
identify properties that are imposed on the data storage system by the architecture
of coreless mobile networks.

Key-value data model: The UE context is comprised of identifiers, numbers and
cryptographic keys. In particular, the UE context always contains at least
one identifier which does not change during the lifetime of the subscriber: the
IMSI. Another partially static identifier is the GUTI. These can be used as
keys and the entire context as the value object. Thus the data model is most
easily described in terms of keys and values, typical of noSQL data stores.

25

Consistency: The data, that the now virtualised core network entities fetch, needs
to be consistent with the state of the UE. Specifically the data must be
consistent with the most recent update of the neighbouring smart-box in
order to achieve a seamless transition from the service of one smart-box to
the service of another.

Availability: The data needs to be highly available to the entities. Should data
not be available during a transition, it may result in unnecessary detach and
attach procedures as the context is rebuilt.

Fast: Transitions in the network happen very fast and often, even more so in the
advent of massive IoT. Therefore, the data store needs to support quasi-
realtime access and update. It is possible that in-memory data stores are able
to provide the required speeds.

Concurrent: Without saying it should be evident, that supporting multiple UE
in multiple geographical locations requires that the data store is highly
concurrent, allowing access to multiple data items at the same time.

Scalable: In order to be considered the data store should be highly scalable also to
support the number of eNB sites in current 4G networks. The key prospects
of 5G include that the network support ever more connected devices. Looking
ahead of this, operators need room for expansion as well.

Lean: Updates to the context are necessary to keep the UE connected throughout
the operator network coverage. However, this should not be achieved ’at
any cost’. If the update procedures themselves occupy most of the network
resources in the interconnect the purpose of the system is defeated. Updates
should constitute only a fraction of the available bandwidth in order for the
architecture to be meaningful.

4.3 High availability and consistency zoning
The context data that governs UE connectivity has a special property not seen

in many other applications, and it arises especially in the coreless mobile network
architecture. The UE is tightly bound to a geographic location, and can be assumed
to move at a reasonable speed.29 The UE connects to a nearby smart-box which
serves the UE and makes changes to the context data as the state changes. We
can now see that since the UE is tightly bound to a geographic location, so is the
context data. In fact, it is for a similar purpose that the concept of tracking areas
was conceived.

Binding the UE context data to a geographic location presents new possibilities
for optimisation. More specifically, it should be possible to relax consistency
and availability constraints on the data in locations far away from the UE while
still retaining the data fully consistent and highly available near the UE. It is
advantageous to any distributed system to contain as little distribution as possible,
since the larger a system the more unstable it becomes. Thus, we can form High
availability and consistency zones, henceforth as HAC-zones, that are geographical
areas near a UE within which the UE context data is hosted by a small subset of
the global servers and where the data is strongly consistent and highly available.

29For instance, we can assume it moves at a speed less than the speed of sound.

26

Outside of the HAC-zone the data will still be available, but for example, it
might not contain the very latest update. However, the data must be consistent
eventually so as to enable the operator to maintain coherent information on its
subscribers. Information, such as data usage, in the end constitutes the revenue
streams of the operator.

Enabling the new HAC-zone optimisation brings about a new requirement of the
data store. It must support the configuration, creation and management of data sets
with varying degrees of consistency and availability. It must also support restricting
the data set to any set or subset of servers that may or may not reside in the same
datacentre or geographical region. In order to enable the UE movement between
HAC-zones the system must also support mechanisms of transferring data from one
set of servers hosting one HAC-zone to another set hosting the next HAC-zone. An
abstract view of the system can now be formed, depicted in figure 4.

Figure 4: Simplified example structure for coreless mobile networks.

4.4 Concerning the Evolved Mobility Management scenario
The implications on the EMM scenario and cases described in section 2.3 are

mostly beneficial. The most notable difference is that where signalling events between
the core network entities used to traverse the operator backbone network, in the
coreless mobile network architecture they no longer do so. All signalling events are
contained within the smart-box hosting the eNB and core network entities, and only
fetches and updates to the distributed data storage will traverse the interconnect.
This presents another optimisation possibility: how the updates are propagated.
Several options exist, each with its own pro’s and con’s. A look at the different
update mechanisms is provided in section 5.2. The intricacies of deployment are far
beyond the scope of this thesis, but in summary, the changes in the EMM scenario
are as follows:

Initial attach: The UE context does not exist, only the subscription profile is
installed. The EPC controller in a smart-box fetches the profile from the data

27

store and constructs the context normally and installs forwarding rules. The
updated UE context is pushed into the data store.

Detach: The EPC controller in a smart-box has the up to date UE context as it is
currently the serving site. It completes the detach operation normally and
the updated UE context is pushed into the data store.

S1 release: The current smart-box is the serving site. The EPC controller com-
pletes the procedure normally and pushes the updated state into the data
store.

Service request: Should the current smart-box not be the last active serving site
the EPC controller will fetch the UE context from the data store HAC-zone,
and rebuild it in its process space. From here the process continues similarly
as in the last smart-box: the service request is processed by the EPC controller
within the smart-box, forwarding rules are installed and the updated context
is pushed into the data store.

Tracking area update: The relevance of TAU is questionable in the new archi-
tecture. However, if it should remain it could take the following form: if the
current smart-box is not the last serving site the UE context is fetched and
rebuilt it in the process space. The TAU procedure is completed normally
and the updated context is pushed to the data store along with an update to
the HAC-zone should it change.

Handover: Let us consider two cases:
Intra HAC: The UE moves to be served by a smart-box within the same
HAC-zone. The new smart-box fetches the context from its HAC-zone,
rebuilds it in its process space and installs the new rules within the switches.
In principle the context could be pre-built and only the rules need changing.
Inter HAC: The UE moves from the service of a smart-box in a HAC-zone
to the service of another smart-box within another HAC-zone. The new
smart-box fetches the UE context from either the global data store or contacts
the last HAC-zone to acquire the latest context. Network paths to the UE
are updated.

Cell reselection: The UE is in the discontinuous reception mode, i.e. idle state,
and has no active communication to the network. If the newly selected cell
belongs to the same TA in the UE TAI-list no action is taken. Else the normal
TAU procedure is triggered.

4.5 Summary
In this section we presented a novel architecture of coreless mobile networks at a

high level. It involves the refactoring and virtualisation of the current 4G/LTE core
network entities into a component that functions much like an SDN controller. The
state of the UE context is moved from the network entities into a data set that is
available at each EPC controller. While stateless themselves, the controllers can act
upon the context state to provide the normal functionality of the EPC and install
forwarding rules into SDN capable switches which forward the user plane traffic.

Though described here, the EPC controller need not be based on the 4G/LTE
core network entities, but can incorporate any protocol with some refactoring. The
architecture of the coreless mobile network can therefore support any technology for
the control plane element, making it backward and forward compatible.

28

5 Related work in data storage solutions
As discussed in the introduction, the primary scope of this thesis is to discover

a data storage solution that can be employed to manage the state in the coreless
mobile network architecture, such that its requirements are met. In this section we
look at properties of some of the more prominent distributed data storage solutions
and evaluate their suitability in terms of our architecture.

5.1 Distributing data storage
When it becomes necessary to move away from the centralised database due

to an architectural decision or due to the volume of the data, it becomes necessary
to distribute the storage tier. Distribution, however, brings its own problems,
namely the problem of dealing with CAP [18]. The CAP-theorem states that
in any reasonably conceivable distributed computing system it is impossible to
simultaneously achieve Consistency of data among all participants, Availability of
data and Partition tolerance. In essence, one may choose two of the three properties
while sacrificing one. Distributed data storage solutions are therefore designed with
two of the aforementioned properties, and mitigate the effect of the third property.

For instance, a data store may have been designed to be highly available and
to tolerate network partitions. Such a database may be ideal in a scenario where
Internet users must be able to access some version of a web page. Said data store,
however available, will not be fully consistent in its contents: during a network
partition event when content is modified by user A the modification may not reach
the partitioned set of servers and so user B will receive and out of date version of
the web page. This results in an inconsistent view. Should user B proceed to modify
the same content, the two updates will conflict. Such a conflict must be resolved in
one manner or another, else the behaviour of the system is undefined.

Problems relating to distribution are well known, and there are well known
techniques in mitigating the effects in any given configuration of the CAP-choices.
Since the cloud is exceedingly often built on commodity off-the-shelf hardware at
the scale of thousands and even millions of computers, hardware failure is considered
the norm, rather than the exception. Data stores that aim to be useful in this sector
of computing will have to have solutions to the distribution problems [31].

Despite that, numerous distributed storage systems exist [9], and in fact the
number of potential data stores is far too big to be listed here,30 thus only a handful
are compared. It should be noted, that there are many more distributed storage
systems beyond the noSQL category. The scope of data stores was limited to the
chosen category as their data model most closely resembles the one desired by the
coreless mobile network architecture. The data stores were chosen to provide an
overview, a cross section rather than for completeness, of noSQL data stores and
form a perspective around the requirements of our architecture.

Apache Cassandra: Originally developed by Facebook, this Apache top-level
open source distributed data store has received a tremendous amount of
interest in the open source community.31 Cassandra was developed to be run
on hundreds of cheap commodity hardware components and to provide high
write throughput. Deploying a data store into hundreds of cheap hardware

30For a more comprehensive listing of noSQL data stores, the reader is advised to refer
to http://nosql-databases.org.

31http://cassandra.apache.org, Referenced on 1.11.2016

29

http://nosql-databases.org
http://cassandra.apache.org

means that components will be constantly failing. This has been taken as
the norm and Cassandra has been developed with it in mind. It supports
replication to achieve high availability and durability, and dynamic partitioning
of data over servers in order to scale incrementally. Write operations consist
of a write into a local disk commit log and an update to the in-memory
data structure. A read operation checks the in-memory data first, then disk
lookup by searching newest files first. Cassandra’s data model is that of a
column store: each item is a map indexed by a key, where the value is highly
structured [31].

Memcached: An open source distributed in-memory object caching data store that
has been originally intended as a web caching system to alleviate database
loads. Memcached has a very simple key-value data model and a flat names-
pace. It does not offer replication for redundancy and data hosting servers
don’t synchronise, it is a least recently used caching infrastructure. Mem-
cached takes unused memory in a system as its cache, and by pooling multiple
servers’ unused memories it can scale extremely well and have very low laten-
cies. Clients accessing the cache query the appropriate server addressed by
the hash of a key.32

Voldemort: In use at LinkedIn, for instance, this open source data store is a
distributed hash table employing a simple key-value data model. It supports
replication for redundancy, consistent hashing for partitioning and tunable
consistency in either strict quorum or eventual consistency models. Persistence
is achieved through a database connection to, for example MySQL. Data can
be serialised by multiple mechanisms, including JSON, Protocol Buffers and
Java serialisation.33

Google Spanner: Developed at Google, Spanner is not an open source data store,
however, very interesting in its own right. It has been developed to support
scaling into millions of machines across multiple datacentres around the world.
Replication and consistency models can be configured by applications: which
datacentres contain the data, distance from users, inter-replica distance and
their count, and consistency requirements. An important feature is that
Spanner provides externally consistent reads throughout the data by the
means of a globally meaningful commit timestamp which is achieved by their
TrueTime API. Spanner’s data model is schematised semi-relational as a
multi-version type database value storage: each value is addressed by a key
and a timestamp from the TrueTime API. As a semi-relational data model,
the Spanner employs a SQL-like query language [10].

Infinispan: Infinispan is, once again, an open source data storage system, which is
based as a noSQL -like object store. It supports several modes of operation,
including local, invalidation, replicated and distributed cache. Multiple dis-
covery methods enable dynamic provisioning of the cluster across multiple
geographic locations. Data partitioning is supported by tunable consistent
hashing schemes and failure modes include reduced availability to keep con-
sistency. Infinispan is a fully fledged data grid solution with features to use

32https://memcached.org, Referenced on 1.11.2016
33http://www.project-voldemort.com/voldemort/, Referenced on 1.11.2016

30

https://memcached.org
http://www.project-voldemort.com/voldemort/

in many deployment scenarios.34

Apache Ignite: Another top-level project in the Apache community, Apache Ignite
is an in-memory data- and compute grid for use with large data sets. Ignite’s
data storage system is key-value based, supports partitioning and replication,
near caching, collocated processing, distributed ACID transactions, SQL-
queries, persistence, and so on. Like Infinispan, Ignite is a data grid, but
in addition a compute grid, which supports, among others, Apache Spark
RDD’s and in-memory MapReduce operations. These features make Ignite a
compelling platform for data analytics.35

HBase: Apache HBase is another open source, scalable, fault tolerant, versioned,
distributed noSQL database that has been modeled after the Google BigTable
[8]. Unlike most data stores, HBase is built on top of another Apahce project,
the HDFS,36 which essentially makes HBase disk bound. HBase is built
around strong consistency, but is massively scalable [17].37

Redis: An in-memory data store for use as a database, cache and message broker,
Redis is also open source. Redis supports strings, hashes, lists, sets and
ordered variants thereof as storable data. Where only a few noSQL stores have
support for, Redis supports range queries. It also has configurable replication,
Lua-scripting, LRU-eviction of data, and transactions. High availability and
automatic failover in Redis are achieved via its Redis Sentinel distribution
system, and it can be combined with Redis Cluster for partitioning.38

Amazon Dynamo: Developed by Amazon in 2007, this key-value store was one
of the first to spark the eventually consistent data store boom. Among
others, Dynamo uses consistent hashing as partitioning model, vector clock
versioning and quorums for consistency resolution. It also employs gossip
algorithms for failure detection. Like other distributed databases, also Dynamo
was developed with the assumption that the hardware it is running on is
constantly failing [11].

Apache Geode: The development of the Geode data management platform started
already in 2002, when the project was conceived by GemStone. The subsequent
commercial product, Gemfire by Pivotal, is now being brought into the Apache
Software Foundation via an incubation phase. At heart Geode is an in-memory
object storage system featuring, among others, synchronous or asynchronous
replication, data partitioning and processing collocation, tunable consistency,
configurable persistence, and so on. Data in the system is hosted by a region
that can be dynamically hosted at any connected server. Very low latency in
Geode is achieved with a single-hop architecture and in-order updates to a
master host enable strong consistency in the distributed environment. Geode
can detect and act on network partitions; in the event of a network failure the
minority of the quorum will cease to function while the majority continues

34http://infinispan.org, Referenced on 1.11.2016
35https://ignite.apache.org, Referenced on 1.11.2016
36http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
37http://hbase.apache.org, Referenced on 1.11.2016
38http://redis.io, Referenced on 1.11.2016

31

http://infinispan.org
https://ignite.apache.org
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hbase.apache.org
http://redis.io

normally. The Apache Geode system also supports delta updates via Geode’s
own Delta-interface.39

Figure 5 highlights some of the important properties of chosen data stores. We
observe the following properties:
Consistency model: how consistently the same the data is across hosts, how is

this achieved and to what extent. As alluded to previously, data consistency
is paramount if multiple consumers of the data rely on it to make changes
that rely on the up to date state of the data.

Availability model: in the event of network partitions, how available the data
is for reading and writing. Sometimes data may not be available, and it is
necessary to understand the circumstances in which it might happen, and if
necessary find ways to correct the matter.

Partitioning model: is the data split to be hosted by multiple hosts, how is
it achieved. When multiple hosts are used for the data, it is often more
reasonable to split data into disjoint sets and store the sets on different hosts
rather than store all data on each host. With large enough data volumes it is
impossible to do so, and partitioning is the only method to scale the system
to accommodate the data.

Distribution model: are all components the same (symmetrical), or is there a
hierarchy of dedicated controlling and serving components. Depending on the
requirements of the consumers of the data it may be more efficient to extract
orchestration of the hosting members into separate components.

Data model: how the data is seen by the system. Traditional databases were
built with the relational data model. Many modern systems support simpler
and also more complex ways of modelling data. Exactly what model is used
dictates the way that data is read and written in the data store.

Replication model: is the data stored at multiple hosts, how is it achieved. To
achieve redundancy in the event of failures, it is necessary that the system
has multiple copies of the same data. Keeping the data copies in the same
state is dictated by the consistency model.

Data localisation: how the system supports locating data to hosts or geographic
regions. To avoid placing redundant copies in the same physical machine or
even rack in a datacentre it is necessary for the system to be aware of the
underlying hardware. Should the data store be distributed across a wide
geographical area it may become necessary to place data in specific regions
for fast access or durability.

Failure model: how the system is built to operate in the event of data loss or
disappearance of hosts due to e.g. network partitions. In distributed systems
failures are common and mechanisms are needed to cope with them. For
example if a network partition splits the system so that no communication
can be completed, the different parts need to know how to function on their
own with the information at hand.

Data storage: can the data be written to disk or some other persistent system,
how. If a host has a CPU failure which is subsequently fixed, it may be more
advantageous and fast for the host to read the data it was hosting from its
local disk rather than transfer all of it via a slow network link.

39http://geode.apache.org, Referenced on 1.11.2016

32

http://geode.apache.org

Figure 5: Relevant properties of promising distributed data storage solutions.

33

5.2 Meeting the requirements
Throughout the compared systems we can see that well known techniques are

being used in various areas of distributed data management. Each system has been
constructed to serve as a relatively general data storage system supporting in-memory
operations. With the exception of Memcached, which is meant to serve as a ‘front
end’ cache, most all support replication for higher availability of data throughout
the deployment zone. Consistent hashing [27] is employed in many systems as the
model for partitioning the data among hosts, speaking for its usefulness also in
choosing placement for redundant copies. Many systems reportedly have tweaked
algorithms for choosing the hosting members in a partitioned setting due to the
unbalanced nature of the naive consistent hashing algorithm.

Most systems also support some form of data persistence. It is an important
factor as disk failure is rarely the sole cause of data loss. Often, it is faster to repair
a system and restore some data from the disk rather than transferring all of it via
the network. Off-site analysis is just as important and often impossible without
proper persistence of data. The architecture of most systems is symmetrical or at
least mostly symmetrical. For example, Google Spanner and Apache Cassandra
employ symmetrical storage tier architectures with hierarchical orchestration layers.
Most systems don’t have a strong basis in choosing geographical locations for data,
rather, rack or datacentre awareness or usage patterns are metrics which can be
used for locating data.

Consistency techniques are quite standard, as well. Many systems use quorums
to decide whether a write (or read) was successful or whether the distributed system
is still intact and is able to operate. It would seem two modes of operating are
popular: one in which the partitioned systems keep operating as usual, implying
eventual consistency, and another where the minority of the quorum of the partition
stops functioning or at least has reduced capabilities, namely writes are disabled.

Looking back at the desired properties in section 4.2, we can see that some listed
systems adhere to them better and some worse. However, where most systems don’t
make it explicitly clear, the Apache Geode supports delta updates. In the attempt
to keep network bandwidth usage minimal in update procedures it becomes crucial
to update only necessary parts of a stored value. This can be achieved with delta
updates: an item is updated and only the difference to the old item is sent over the
network. While the implementation of delta update procedures are not extremely
complex in principle, it would require significant effort to add the functionality to
a system that does not support it. Procedures which resemble delta updates are
achievable with some SQL-like query languages supported by some noSQL data
stores, but with much increased complexity and decreased elasticity of the system:
query strings are often static and are not capable of supporting multiple versions of
objects in the same data store.

With the added option of easy geo-location of data and strong consistency that it
is built for, the Apache Geode system was deemed most proper in the context of the
coreless mobile architecture. It could be argued, that as the data is unavailable in
the minority quorum the failure model is unfavourable in our proposed architecture
and that a more high availability failure model should be adopted. However, we
assume that the interconnecting network is stable and that there are redundant
paths to keep it functioning properly even in the event of network partitions. To
reiterate: we assume that the consistency of the UE context state in the local
geographic region is more important than ultra-high availability.

34

6 Evaluation of a data store: Apache Geode
It is not wise to base trust solely on the described performance and suitability of

a system as it may be, and often is, biased [12]. Rather, the system must be tested,
evaluated, in order to ascertain its characteristics [9]. For the reasons presented in
section 5.2 the Apache Geode distributed data store was chosen to be evaluated as a
possible data store to manage the state in the coreless mobile network architecture.
In this section we detail the benchmarking system in section 6.1, the workloads
and cluster topology used in the evaluation in section 6.2, and finally the results in
section 6.3.

Having decided on the system, the actual performance of Apache Geode needed
to be understood. From the previous section on desired properties, section 4.2,
the speed, scalability and leanness of the system remain to be established. Each
property can be divided into subcategories. Speed encompasses the throughput
and latency of the system. Additionally, the latency of the system to reach full
consistency can be seen as a separate variable to measure. Scalability pertains to
the question of how well the systems’ speed stays constant when data, transactions
and hosts increase in the system [9]. Leanness, as alluded to previously, has to do
with the size of update procedures: the smaller and less frequent updates and data
fetching are in terms of network usage—while still keeping the system consistent
and available—the more lean the system is said to be.

However interesting, it was not possible to map all of the aforementioned
properties simply due to time constraints. Therefore, arguably the most interesting
aspects of the system, its throughput, latency and scaling (to an extent), were
evaluated. The standard method to test such attributes of a system is to benchmark
it with appropriate workloads. The Yahoo! cloud serving benchmark [9] was chosen
for this purpose as it is viewed as an industry standard for benchmarking noSQL
systems,40 it is open source and provides a straightforward interface to extend.

6.1 Yahoo! cloud serving benchmark
The YCSB was developed to provide a relatively general purpose tool for

benchmarking cloud serving systems. It was designed to be flexible in the definition
of workloads and easily extensible to enable benchmarking of new data stores.

6.1.1 Yahoo! cloud serving benchmark architecture overview
The YCSB client, a Java program which runs the benchmarks, is depicted in

figure 6. It consists of the following components [9]:

Workload definition: A file which contains definitions about the number of oper-
ations, for instance insert, update and read proportions. It also contains the
number of data items to load into the database and the distributions of inter-
nal variables. May also contain database interface and other parameters. By
defining new workload parameter files the user can create custom workloads.
See appendix A for an example workload file used in our benchmarks.

Workload executor: The YCSB contains a default CoreWorkload executor, which
can be used for many purposes. It reads the workload definition file and
takes in other parameters optionally supplied at the command line. Using

40http://blog.cloudera.com/blog/2015/08/ycsb-the-open-standard-for-nosql-
benchmarking-joins-cloudera-labs/ (Referenced on 28.10.2016)

35

http://blog.cloudera.com/blog/2015/08/ycsb-the-open-standard-for-nosql-
benchmarking-joins-cloudera-labs/

these properties it executes the loading or transaction phase of the workload,
depending on the command. The executor was meant to be easily extensible:
new workloads can be created by creating a Java class which extends the
Workload abstract class. Our benchmark was designed in this way, as the full
capabilities of the Apache Geode system were otherwise not available.

Statistics module: The statistics are gathered at each transaction automatically.
The user can additionally define the collection of read-write latencies, for
instance. The module collects results from individual threads so that only a
single set of results are output per YCSB client.

Database interface: The YCSB client must somehow connect to the data-base.
The database connection has been abstracted so that the workload definition
file and other parameters may stay the same, but only the interface to the
database is swapped from one to another. This way it is possible to produce
comparable results. It makes the extension of the benchmarking tool easier, as
well, since the inclusion of a new database requires only that a new database
interface is written in Java.

Client thread: The client thread holds a Java-thread instance of the workload
executor, which connects to the defined database, performs the workload,
measures throughput and latency, and returns the results to the parent process.
The parent process then aggregates and finally outputs results to the standard
out and, optionally, files.

Figure 6: The Yahoo! cloud serving benchmark architecture [9].

6.1.2 Benchmark implementation details
To take advantage of Geode’s delta update neither the existing database adapter

nor the database interface in YCSB were sufficient. Instead, we implemented the
benchmark as an entirely new Workload class, similar to the CoreWorkload. In
the GeodeWorkload class the database connection is set up in-place, bypassing
the database interface altogether. This allowed us to pass our own object, which
implemented the Geode Delta-interface, to the database connection. The UE object
was built around the cases described in the EMM-scenario detailed in section 2.3.

36

In addition to allowing use of our own objects, implementing the GeodeWork-
load allowed us to implement our own latency measurements which are important
as the standard CoreWorkload only measures read and write latencies separately,
whereas all our operations are read-write combinations. Furthermore, it enabled
introducing new transaction types beyond the simple Create, Read, Update, Delete
(CRUD)-operations, and finally the programmatic combination of regions to demon-
strate HAC-zoning became possible. Full source code is available for download from
GitHub.41

Method 1. The GeodeWorkload functions as follows:
1. Initialise GeodeWorkload class: read properties from file and initialise vari-

ables.
2. Initialise client thread: read properties from file and initialise some more

variables.
3. Loading phase: In this phase the data store is primed with objects to query

in the transaction phase: call the insert-transaction method according to the
count of UE objects to insert into the database. Use the identifiers to use as
keys from the appropriate file and create UE objects.

4. Transaction phase: In this phase the data store is read and written to by the
YCSB load generating threads: for each running thread continuously call the
doTransaction method until the desired transaction count is reached.
4.1 doTransaction: This is the method in which the case to be performed

is chosen: query the discreteOperationChooser for a transaction type
according to the probabilities set in the workload file. Call the designated
transaction method.

4.2 Transaction method: In this method the actual reading and writing the
data store takes place. There are in total eight transaction methods,
one for each case which do the following actions: 1. choose a random
identifier to query from an in-memory list, 2. start a timer, 3. query
the object from the database 4. transform it accordingly, 5. put it back
into the database, 6. stop the timer and report the elapsed time.

5. Report collected statistics.

The UE object to store was built as close to the 3GPP specification [13, 14, 15]
of the context data as possible with the knowledge at hand. At this stage the
subscriber profile was not included in full as its description was convoluted to the
untrained. However, in addition to some important identifiers, the encryption and
integrity keys were included. The full UE object is included in appendix B. The
methods were modelled after the cases in the EMM scenario. Implementing the
Delta-interface required two additional methods: toDelta and fromDelta. They
were modelled after the recommendations in Geode documentation using transient
boolean values, which are not included in serialisation, to mark changed fields. In
benchmarking the Geode system two versions of the UE object were used: one with
Delta updates enabled, one without. This can be seen in the source code for the
object in appendix B on lines 16 and 17. The data contained in the UE object
implementation (not including overheads) is compared to the specification in table

41Branch: geode-updates, https://github.com/Virta/YCSB/tree/geode-updates

37

https://github.com/Virta/YCSB/tree/geode-updates

6. While the actual size of the object even after serialisation is not very easy to
calculate precisely, we can calculate a good estimate by understanding the data
structures used in variables. We can thus gain some insight into update sizes. As can
be seen, the difference, that arises from having to use certain programming language
dependent variables, to the specification is not big. Even overheads that double
the object size in program memory—which are quite common in Java—should not
constitute any problems in modern computing systems.

In addition to the seven cases in the EMM scenario, there remains one important
procedure, or set of procedures, that is relevant but has not been touched on. That is
session management,42 which is used to activate, manage, and tear down dedicated
bearers that carry traffic to the UE within the core network. Dedicated bearers are
tunnels separate of the default bearer and have their own QoS parameters. They can
be used to carry, for example, real-time traffic for VoIP which would else be incurred
suboptimal QoS in the default bearer, resulting in lowered voice quality. The session
management operation is important also because it procedures considerable, albeit
not the most, traffic within the EPC, but also because it incurs changes to the UE
context. It was deemed sufficient that Session management was implemented as a
simple change in the default bearer context.

Table 6: UE context size in implementation vs. specification and involvement
in case. Static stands for hard coded, one-time for generation on insert. In
specification we assume one digit (D) to be one byte, 8 bits (b).

Table 6: UE context size
Item Implementation Specification Case (table 7)
MNC 3x16 b = 48 b 3Dx8 b = 24 b Static
MCC 3x16 b = 48 b 3Dx8 b = 24 b Static
PLMN ID 6 x 16 b = 96 b MNC+MCC = 48 b Static
MMEGI 1x16 b = 16 b 16 b Static
MMEC 1x16 b = 16 b 8 b Static
MMEI 2x16 b = 32 b MMEGI+MMEC =

24 b
Static

GUMMEI 8x16 b = 128 b PLMNID+MMEC
= 56 b

Static

PGW ID 19x16 b = 304 b FQDN(32 b) Static
TAI size 1x32 b = 32 b n/a Static
IMEI 15x16 b = 240 b 15Dx8 b = 120 b Static
MSIN 6x16 b = 96 b 10Dx8 b = 80 b Static
IMSI 15x16 b = 240 b 15Dx8 b = 120 b One-time
Kmaster 8x16 b = 128 b 128 b One-time
Kcipher 8x16 b = 128 b 128 b One-time
Kenc 8x16 b = 128 b 128 b One-time
Status 1x8 b = 8 b n/a 1 – 8
MTMSI 1x32 b = 32 b 32 b 1, 5
GUTI 8x16 b + 1x32 b =

160 b
GUMMEI+MTMSI
= 80 b

1, 5

TIN GUTI = 160 b 80 b 1, 5

42http://www.3gpp.org/technologies/keywords-acronyms/96-nas, (Referenced on
1.11.2016)

38

http://www.3gpp.org/technologies/keywords-acronyms/96-nas

Table 6 continued
Item Implementation Specification Case (table 7)
IP 1x32 b = 32 b 32 b 1, 2
CRNTI 1x16 b = 16 b 16 b 1 – 4, 6
eNB UE S1AP 1x32 b = 32 b 32 b 1 – 4, 6
MME UE S1AP 1x32 b = 32 b 32 b 1 – 4
OLD eNB X2 1x32 b = 32 b 32 b n/a
NEW eNB X2 1x32 b = 32 b 32 b n/a
ECI 1x32 b = 32 b 28 b 1 – 4, 6
ECGI PLMN ID + ECI =

128 b
52 b 1 – 4, 6

TAI 1x32 b = 32 b 32 b 1, 5
TAI list 15x32 b = 480 b 15Dx32 b = 480 b 1, 5
PDN ID 656 b FQDN(100Dx8 b =

800 b)
1, 2

EPS bearer 1x8 b = 8 b 4 b 1, 2, 8
E-RA bearer 1x8 b = 8 b 4 b 1, 2, 8
DR bearer 1x8 b = 8 b 4 b 1 – 4. 6
S1 TEID UL 1x32 b = 32 b 32 b 1, 2, 8
S1 TEID DL 1x32 b = 32 b 32 b 1, 2, 8
S5 TEID UL 1x32 b = 32 b 32 b 1, 2, 8
S5 TEID DL 1x32 b = 32 b 32 b 1, 2, 8
KASME 16*16 b = 256 b 256 b 1, 2
KeNB 16*16 b = 256 b 256 b 1 –4, 6
KNASint 16*16 b = 256 b 256 b 1
KNASenc 16*16 b = 256 b 256 b 1
KRRCint 16*16 b = 256 b 256 b 1 – 4, 6
KRRCenc 16*16 b = 256 b 256 b 1 – 4, 6
KUPenc 16*16 b = 256 b 256 b 1 – 4, 6
Total 5’152 b 4’596 b

6.2 Workload and cluster setup
Our aim was to benchmark the Apache Geode system with workloads as close

to those seen in the real world as possible. The UE object and transitions in context
reflect this with respect to individual updates. In addition, we wanted to base the
count and frequency of transitions close to a real world model. Combined, the
two facets could provide information about the speed of the data store to accredit
comparisons to an actual deployment.

6.2.1 Defining the workload
We resolved to replicate workload according to the signalling load distribution

in a report by Alcatel-Lucent [4]. It reports the signalling load distribution within
the EPC according to a 16 busy hour call attempts per subscriber and 15 eNB TA
size traffic model. While this is a traffic model, we assume that it is reasonably
close to a real world scenario. The distribution of signalling loads is reproduced in
figure 7.

The counts of messages were approximated from the original graph because the
actual numbers were not available. The components participating into the signalling
in figure 7 were then translated into the cases of the EMM scenario as follows:

39

Figure 7: Signalling message load distribution in the EPC [4].

Attach / detach: Correspond directly to attach and detach cases. Totalling 11
messages.

Session management: Corresponds to the session management described in sec-
tion 6.1.2 on page 38. Totalling 33 messages.

Mobility in idle: Corresponds to TAU and cell reselection with TAU. Totalling
47 messages.

Handover: Corresponds to handover and handover with TAU. Totalling 89 mes-
sages.

Service request + lu release: Correspond to service request and S1 release. To-
talling 300 messages.

Paging: Does not correspond to any case, therefore omitted.
Total events: 480 messages.

The probabilities of context switches, i.e. occurrence of a case, were calculated
from the distribution according to their respective proportions. Equation 1 details
the calculation:

Pcase =
∑
nsc
ncc

· 1
N · nocc

(1)

Where
Pcase is the probability of a case.
nsc is the count of signals in components where case occurs.
ncc is the count of cases in a component.
nocc is the count of occurrences of a case.
N is the total number of signals.

As an example, equation 2 details calculation of the probability of the initial
attach case:

Pattach = 11signals
2cases/component · 1

480 · 1component = 0.011 (2)

40

The probabilities yielded by applying equation 1 to all cases are listed in table
7, and are depicted in figure 8. These probabilities were defined in the benchmark
workload files for each case respectively. See appendix A. Table 7 also lists the
approximate update size of each transition in UE context in our implementation.
Update sizes are derived from table 6 by summing the changed context items for
each case, respectively. As with table 6, it is difficult to accurately calculate the
serialised delta update size, but the figures provide good estimates. The table also
details the count of signalling messages for each case. They are needed in calculating
the count of supported UE from the throughput achieved in our experimentation.

Table 7: Translated probabilities of a case occurrence and update size.
Table 7: case probabilities

Case Probability Update size Signals
1: Initial attach 11/2 · 1/480 = 0,011 3’744 b 30
2: Detach 11/2 · 1/480 = 0,011 2’400 b 15
3: Service request 300/2 · 1/480 = 0,313 1’280 b 16
4: S1 release 300/2 · 1/480 = 0,313 1’280 b 6
5: TA update (47+89)/3 · 1/480 = 0,094 736 b 16
6: Handover 89/3 · 1/480·2 = 0,124 1’088 b 17
7: Cell reselection 47/3 · 1/480·2 = 0,065 0 b 0
8: Session management 33 / 480 = 0,069 152 b 8

Figure 8: Probabilities of a case, transition in UE context.

6.2.2 Apache Geode cluster topology
Apache Geode supports many different topologies for deployment.43 We chose

to deploy the cluster in the client-server model for our benchmarks for the following
reasons: it matches the model of the coreless mobile network architecture where the
EPC-controller is a client requesting services and the cluster provides them, it allows
us to choose if the client should have a local cache, it has a better performance and

43http://geode.apache.org/docs/guide/topologies_and_comm/topology_
concepts/topology_types.html (Referenced on 8.11.2016)

41

http://geode.apache.org/docs/guide/topologies_and_comm/topology_concepts/topology_types.html
http://geode.apache.org/docs/guide/topologies_and_comm/topology_concepts/topology_types.html

scales better. We did not deem it wise to employ a mode of operation where the EPC-
controller itself would be a part of the data distribution framework, which would
have been the case in the peer-to-peer topology, as it would tie the EPC-controller
implementation to that of the data store connection.

Figure 9 provides an overview of the topology. The cluster is comprised of two
types of processes: locators and serving nodes. The locators orchestrate the cluster.
They connect to the serving nodes to receive load information and to orchestrate
data balancing. Client applications connect to the locators to query connections to
serving nodes, which are provided by the locator in a least-loaded first fashion. The
connections returned to clients are pooled in their connection pool and are used for
single-hop querying of data to and from the serving nodes. The cluster topology is
the same for replicated and partitioned regions. A replicated region is a set of data
that is replicated on every single serving node on the cluster, whereas a partitioned
region is one where the data is partitioned to the serving nodes with a consistent
hashing function. A partitioned region in Geode as configurable data redundancy.

Figure 9: Overview of the client-server cluster topology.

For the benchmarking, we used up to six Dell C6320 server machines, each
containing 2 x Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz (48 logical cores
with hyperthreading enabled), 256 GB DDR-4 dual rank 2133MHz main memory,
2x10Gbps NICs with bonding disabled, and 2x600GB 10 krpm disk storage in
hardware RAID 1 configuration. All machines were installed with Ubuntu Linux
16.04, swap was disabled because of ample RAM. The network was reserved for the
machines only, with very little other traffic, the average ping measured between
any two machines was 150 µs. The Apache Geode cluster was built from the
incubating.M2 -source44 with Oracle Java 1.8 as the compiler and runtime. The
same Java version was used also for the compilation and running of our customised
YCSB.

The benchmarking procedure itself consisted of a preliminary setup of the
cluster, and an automated scaling benchmark procedure which was repeated each
time a new machine was brought into the setup. The preliminary setup included
starting one instance of locator and server processes on each machine used in the
current benchmark, and initialising the data store with data. For the main body of
benchmarks we used 1’000’000 UE instances and 3’000’000 transactions, these are
defined in the YCSB workload files, an example is in appendix A. Method 2 describes
the automated scaling benchmark procedure.45 The resulting cluster configuration

44https://github.com/apache/incubator-geode/tree/rel/v1.0.0-incubating.M2
45For the detailed procedures see the source code in https://github.com/Virta/YCSB/

42

https://github.com/apache/incubator-geode/tree/rel/v1.0.0-incubating.M2
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking

is depicted in figure 10. We scaled the number of load generating threads of YCSB
incrementally to find the maximum throughput as it was not possible to achieve
maximum throughput with a single load generating thread. While not strictly
necessary, we included a locator on each physical machine for two reasons: it eased
the automation of the scaling benchmark, and it provides extra redundancy for the
clients pool requests in the event of a locator failure.

Figure 10: Benchmarking cluster configuration.

Method 2. Procedure for the automated scaling benchmark of Apache Geode:
1. Repeat for Tn=1 until Tn >= Tmax:

1.1 Run the benchmark with Tn threads on each participating machine.
1.2 Increment Tn by scaling factor I.

2. If Scurrent < Smax repeat step 3 for I times and continue. Else stop.
3. For each machine:

3.1 Start a new Geode serving node, with optional grouping parameter.
4. Initiate cluster rebalance operation.
5. Return to step 1.

Where:
Tn is the current thread count for YCSB.
Tmax is the maximum desired YCSB thread count.
I is the scaling factor according to which thread count is incremented, and
how many more serving nodes are started.
Scurrent is the current number of Geode serving nodes per machine.
Smax is the maximum desired number of Geode serving nodes per machine.

6.3 Results
The scaling benchmark was applied to the Apache Geode distributed storage

system deployed in our local computing cluster. The benchmark scaled from 1
to 40 load generating threads for each combination of hardware machines and

tree/geode-updates/GeodeBenchmarkingScripts/benchmarking.

43

https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking

active serving nodes. The serving node count was incremented on each machine
to discover how the system performs in this type of scaling. We present results of
benchmarking the system in the following region configurations: simple partitioned
region, partitioned region with three-way redundancy, replicated regions, and a
programmatic combination of the two. The latter forms an example use case
featuring a global region and a HAC-zone. We applied the benchmark symmetrically
to both versions of the UE object, with Delta updates and without. The full result
set including some preprocessing is available online.46

Figure 11: Maximum throughput and latency achieved on a single machine
with a simple partitioned region with no redundancy.

6.3.1 Baseline
To understand the baseline throughput that the Apache Geode data store

and our benchmarking system could achieve we ran a very simple benchmark. It
consisted of a partitioned region with no redundancy (each data item is stored in
the system only once), and one physical machine. In the setup we could observe
how the system, while confined to one machine, performs in terms of latency and
throughput on incrementing serving nodes. The benchmark used delta updates.

Figure 11 presents the result of benchmarking the simple system. We can clearly
see how the throughput decreases and latency increases as we add more serving
nodes to the system. The maximum throughput is observed with one serving node
in the system at 70’272 ops/s, the average latency was 0.51 µs. The throughput
decreased to 42’487 ops/s, latency was 0.96 µs. There are likely two phenomena
that constitute the decrease in throughput. Firstly, there is a single locator in the
system which must serve the benchmarking client with the appropriate connections

46https://github.com/Virta/Written-works/blob/master/GeodeBenchmarkingResults.tar.gz
(Referenced 24.11.2016)

44

to serving nodes, it may become overburdened. Secondly, we increase the number of
load generating threads from 1 to 40 and their presence on the same machine may
induce resource contention. Any one machine has a limited amount of resources
for which all processes are contending. Increasing the number of processes on the
machine will eventually result in all resources being in use, whose effect is increased
CPU context switching and memory access. Too much context switching and
queuing in the operating system’s process pool decreases the efficacy of all processes
and therefore decreases throughput and increases latency. In fact, we observed that
with 10 serving nodes and 20 threads the CPU utilisation was about 70% on all
48 logical cores, and it did not change significantly with more serving nodes and
threads.

6.3.2 Partitioned regions
In Geode, a partitioned region with redundant copies of data contains a primary

copy, which functions as the update anchor. All writes go to the primary from
whence they are synchronously (not involving the original client) propagated to all
secondaries. Reads go to any member hosting the data. In our benchmark we used
a three-way redundancy policy, which Geode locators try to uphold in the event
of a loss of serving nodes. Geode also tries to place the three copies of data into
serving nodes on different physical machines. The behaviour can be enforced, and
Geode will stop serving data if the policy if violated. We did not enforce unique
hosts in our experimentation.

Figure 12 details the maximum throughput at each machine and serving node
increment. From it can be seen how the throughput rapidly increases when adding
more machines into the cluster. With only one machine in the cluster, RD1 and
RND1, the throughput is good and, as in the simple partition experiment, it
decreases quite rapidly with the addition of serving nodes, likely due to resource
contention. After three physical machines in the cluster the throughput increases
rapidly and peaks at 134’938 ops/s with Delta updates and with four serving nodes
per machine, 24 in total. The delta update enabled cluster delivers 130’565 ops/s
with 2 serving nodes per machine, 12 in total; at the same point (12 serving nodes
total) the non-delta update peaks at 155’882 ops/s, delivering a 19,4% increase in
throughput. Contrary to expectations the non-delta update mechanism performs
constantly better. This is highly likely due to the overhead in applying the delta
update to the data in the cluster. We discuss the possible cause more at length in
section 7.3. The slight decline of throughput with increasing serving nodes is likely
due to resource contention.

Figure 13 details how the client observed latencies evolved in the benchmark.
The declining throughput for one machine is evident also in the latencies which
increase in the very beginning, then stay constant. We are also observing expected
behaviour in the five and six machine experiments: in the beginning the latencies
decrease where the throughput is also peaking, and later the latency increases with
the increment of serving nodes and declined throughput.

This behaviour is possibly due to the following phenomenon: with less serving
nodes the likelihood of a data item to be residing on another machine is higher than
with more serving nodes. For example: with five machines, one serving node per
machine and three redundant data replicas, there are 5

3 · 1′000′000 = 600′000 data
items on the local machine assuming Geode was able to place them all in different
machines (which is the default behaviour with best-effort). Assuming a totally even

45

distribution (resulting from the random choosing of UE objects) 40% of objects
are read over the slow network link. In theory, not including processing delays,
this should lead to an average latency of about 60·0.5µs+40·150µs

100 = 60µs. On the
other hand, calculating the theoretical latency (including processing delays) from
throughput, we arrive at 1′000′000µs

100′000op(/s) = 10µs.

Figure 12: Maximum aggregate throughput for a partitioned region with
redundancy starts from around 40’000 ops/s and scales to about 150’000
ops/s.

Label Update type Machines Serving nodes
PD1 Delta 1 1–10
PD3 Delta 3 3–30
PD5 Delta 5 5–50
PD6 Delta 6 6–60
PND1 No delta 1 1–16
PND3 No delta 3 3–30
PND5 No delta 5 5–50
PND6 No delta 6 6–60

The source of these discrepancies is yet to be determined but it is entirely
possible that there are further optimisations implemented in Geode that we are
not aware of. For instance, a client may be allowed to return immediately after
transmitting an update to the serving node, rendering the update local at first and
Geode may propagate the update to the cluster after-the-fact. As our configuration
contained one or more serving nodes per physical machine, it is very possible that
the client is connected to the local serving node rather than one across a network
link, making the connection from client to serving node very fast. At this stage we
do not know if there is a mechanism for observing the clients’ connection to the
serving node.

46

Figure 13: Average latencies for a partitioned region with redundancy. The
latencies are mostly under 2µs, speaking for the in-memory operations.

YCSB reported the latencies in the experiment to be, on average, below 2 µs
and just above that even for 60 serving nodes in both delta and non-delta update
mechanisms. The observed 99th-percentile latencies were reported to be 1 µs. As
an in-memory data store Geode seems to be performing well according to this
experiment.

6.3.3 Replicated regions
A replicated region in Apache Geode is a data set that is symmetrically stored

at every serving node that hosts the region. Our benchmark was configured to use
the distributed-ack update procedure, which states that on sending an update the
client must receive an acknowledgement of reception from all serving nodes before
continuing. The procedure is slower than no acknowledgement, but it increases
cache consistency dramatically. It is also possible to configure Geode with global
locking, but the mechanism is slow as it requires all serving nodes to lock the data
item for the duration of the update.

The results are detailed in figure 14. Following the trend of the partitioned
region result, the non-delta updated region performs better than the delta update
in all but one (RD2 vs. RND2) setting. Experiment RND5 (with 5 machines)
performs best throughput-wise, starting from 74’614 ops/s and declining to 16’369
ops/s. As expected, the throughput of the system gradually decreases with the

47

increase of new serving nodes, as the count of update acknowledgements increases
proportionally. The maximum throughput achieved at one serving node per physical
machine is 66’722 ops/s for the delta update and 74’614 ops/s for non-delta updates.
The maximum achieved throughput at 15 serving nodes without delta updates is
43’864 ops/s. Despite the relatively low and slow decline of throughput compared
to partitioned regions, the overall result indicates that even replicated regions scale.
At best, there is a 50% increase in throughput when scaling from RND4 to RND5.

Figure 14: Maximum throughput for a replicated region. The throughput
expectedly declines with the increment of serving nodes.

Label Update type Machines Serving nodes
RD1 Delta 1 1–10
RD2 Delta 2 2–20
RD3 Delta 3 3–30
RD4 Delta 4 4–40
RD5 Delta 5 5–50
RND1 No delta 1 1–10
RND2 No delta 2 2–20
RND3 No delta 3 3–30
RND4 No delta 4 4–40
RND5 No delta 5 5–50

Figure 15 details the average latencies observed at the client during benchmarking
the replicated region. The latencies behave as expected: with the increase of serving
nodes the latency for operations steadily increase. YCSB reports latencies to
steadily increase from under 2 µs with less than 5 serving nodes, to 16 µs with 50
serving nodes. The latencies for delta and non-delta update mechanisms followed
the observed pattern where delta updated objects are slower than their non-delta

48

counterparts. We did observe maximum latencies reaching 8’003 µs in the RD5
experiment with 33 load generating threads. However, the observed 99th-percentile
latencies were reported to be no larger than 64 µs. The high maximum latency is
likely due to resource contention as well as the high number of serving nodes and
subsequent delays from replication acknowledgements.

Figure 15: Average latencies in a replicated region. The latencies increase
almost linearly with the increase of serving nodes.

6.3.4 Programmatic combination: an example of high availability
and consistency zoning

As a demonstration of a type of HAC-zoning we implemented the programmatic
combination of the two types of regions already benchmarked: partitioned and
replicated regions. First the 1’000’000 UE objects were split into 10 disjoint chunks
of 100’000. Each chunk was assigned to a specific member group. In Geode a region
can be defined to be hosted by a group of serving nodes (members). Only the serving
nodes started with the specific group identifier host data in the said region. We
assigned each physical machine with a group identifier and started each serving node
with the identifier of the host machine. Each group was made host of a replicated
region, within which the chunk of data is hosted. Further, all serving nodes were
made host of a global region of type partitioned with three copy redundancy.

Next, we implemented extra logic in the GeodeWorkload transaction phase:
each transaction fetches a random UE object from the group according to the group
identifier of the physical machine that the YCSB client is on, modifies it according

49

Figure 16: HAC-zoning with Apache Geode. This example contains two
machines, each containing one HAC-zone which are hosted by two serving
nodes on each machine. The global region is hosted by all four serving nodes.

to the case type, the puts the object back into the same replicated region (same
group) and additionally to the global partitioned region. The handover procedure
was modified as follows: once a UE object had been fetched and mutated, a new
group was randomly selected, a new connection pool was established to the new
group and the object was put there and the global region, finally the UE object was
removed from the old group. Figure 16 demonstrates the configuration.

Figure 17: Maximum throughput in programmatic HAC-zoning. The
throughput is stable but much lower than in other benchmarks, likely due to
implementation issues.

Label Update type Machines Serving nodes
HAC2 Delta 2 2–22
HAC3 Delta 3 3–33
HAC4 Delta 4 4–44
HAC5 Delta 5 5–55

50

All other parameters in the benchmark were kept the same, with the exception
that the experiment was started at two physical machines. We did not see value in
benchmarking the system with only a single machine, because it would inevitably
mean that our implementation of the handover case would not do anything useful.
The serving nodes were instantiated similarly as in previous benchmarks but with
the additional grouping parameter according to the physical machine.

The resulting throughput with delta updates in the experimental HAC-zone
benchmark are depicted in figure 17. Even though relatively constant in throughput,
the HAC-zoning performed poorly in comparison to the previous results. Even with
five machines, HAC5, the throughput peaks only at 15’741 ops/s with one serving
node, then continues in the same numbers until finally falling off to 12’103 ops/s.
Despite that, the benchmark demonstrates that the system scales with the addition
of machines: there is a 22% improvement in throughput from HAC4 to HAC5.

Figure 18: Average latencies in experimental programmatic HAC-zoning.
The difference in percent in between the configuration is not large, which
points to implementation issues.

The poor performance is most likely due to the implementation and artefacts
thereof. In implementing the handover operation in this experiment we were forced
to introduce some thread synchronisation into the GeodeWorkload. This was due
to the structure of the implementation, where the next UE identifier is randomly
chosen from a list in the local process space, the list is not thread specific. In
order to make modification of the list thread safe and avoid exceptions during

51

running the benchmark we introduced read-write locks around the list operations.
As demonstrated in the results by the stable throughput, this had the unfortunate
effect that throughput declined dramatically. Without the aforementioned locking,
it is expected that the HAC-zone could perform as the replicated region because it
is implemented as one.

The average latencies reported by YCSB have been gathered in figure 18. The
steady throughput is quite evident from the graph, the latencies are roughly in
the same numbers, and of the same order of magnitude. The effect of locking is
evident because there is little development in throughput and latency throughout
the experiment. The average latencies stay within 9–12 µs, the 99th-percentile
is reported at most 22 µs while maximum latencies did not exceed 443 µs. The
reported latencies include only the read, modify and update operations, and none
of the other processing latencies in the GeodeWorkload program code.

6.3.5 Summary
In this section we presented the results of benchmarking Geode partitioned and

replicated regions, and additionally the results from a programmatic combination of
the two. The partitioned region with three copy redundancy demonstrated good
scaling properties with the addition of new machines into the cluster, and retention of
throughput when adding serving nodes. Replicated regions demonstrated expected
properties of diminishing throughput when new serving nodes and machines were
brought into the cluster. Between both the partitioned and replicated regions the
non-delta update mechanism performed better than the delta counterpart, highly
likely due to the processing overhead of delta updates.

Even though the resulting throughput in our experimental HAC-zoning is
poor compared to the other two types of regions, it servers as a demonstration
of the capabilities of programming with Apache Geode. It is likely that it could
be significantly improved through redesign of the implementation and taking full
advantage of Geode’s advanced features. The main reason for lowered throughput
comes from the introduction of thread synchronisation in our implementation. In
principle it should follow the throughput of replicated regions, as it has been
established as the bottleneck compared to partitioned regions.

6.4 Comparisons
In the time of writing this thesis only one source detailing the benchmark of

the related GemFire data store was found that provides sufficient detail to accredit
comparison. Zdata conducted a benchmark similar to ours, with the aim of dis-
covering various aspects, including horizontal and vertical scaling characteristics of
partitioned regions. The report concludes that in their experimentation the maxi-
mum sustained throughput reached 100’000 ops/s with read/write latencies under
2ms, and up to 25% throughput increase in horizontal scaling.47 The throughput
achieved in their benchmark is remarkably close to our result. However, there is a
1000-fold difference in latencies. Namely, where our results for partitioned regions
indicate microsecond latencies the results of the Zdata benchmark indicate latencies
in the millisecond range.

Comparing the result from our benchmark to that of other distributed storage
systems we gain some insight to the relative performance of the Geode data store.

47http://zdatainc.com/2015/02/gemfire-performance-evaluation-aws/ (Refer-
enced 10.11.2016)

52

http://zdatainc.com/2015/02/gemfire-performance-evaluation-aws/

For example, Kuhlenkamp et al. used YCSB to benchmark the Cassandra and
HBase data stores [30]. Their results show that at eight serving nodes on separate
machines the maximum attainable throughput for a read intensive workload is under
50’000 ops/s for Cassandra and around 10’000 ops/s for HBase. Their respective
latencies are reported at an average of 30 ms (above 200 ms at 99th-percentile)
and about 100 ms (above 1000 ms at 99th-percentile). Both systems have been
optimised for writes, and it is reflected in the results: at the same eight nodes,
Cassandra achieves 75’000 ops/s and HBase about 150’000 ops/s for a write intensive
workload. Their respective latencies are reported at an average 15 ms (110 ms
at 99th-percentile) and 1 ms (1 ms at 99th-percentile). The results go to show
that depending on the purpose of the data storage system, whether it be write
or read optimised, has a tremendous impact on the performance of the system in
different scenarios. Comparing our results, it would seem that the Apache Geode
system can perform well in both read and write intensive workloads. The in-memory
characteristic of the Apache Geode is shown in the resulting extremely low latencies.

53

7 Discussion
We have proposed and presented a high level description on a new mobile

network architecture, the coreless mobile network. To support the architecture we
have analysed the suitability of modern noSQL data stores as a unifying data layer
for the EPC controllers residing in smart-boxes. We built a benchmarking system
on the YCSB framework to assess the characteristics of one data store, the Apache
Geode, and to provide a rough proof-of-concept of HAC-zoning. In this section we
aim to discuss the interpretations that can be drawn from the results and to provide
critique on some relevant aspects.

7.1 Interpreting the results
Looking back at the definition of the workload in section 6.2 and our results in

section 6.3 we can calculate the theoretical number of active UE that our system
could support. We fist transform the ops/s quantity into signals/s for each case
according to equation 3. After summation of the signals from each case, we can
divide the sum by the amount of signals per UE per busy hour traffic to yield total
UE count per hour supported by our system, see equation 4. The resulting UE
count at 5 machines with a total of 15 serving nodes (an approximation of 15 eNBs)
with maximum throughput is summarised in table 8.

signals/seccase = ops/sec · Pcase · signals/case (3)

Where Pcase is the designated probability of a case, see table 7.

UE/h =
∑
signals/seccase · 3600sec/hour

480signals/UE/hour (4)

Table 8: Maximum theoretical count of supported UE with 5 machines, 15
serving nodes (simulated 15 eNB).

Table 8: supported UE count
Region type Throughput Signals UE / h UE / eNB
Partitioned, delta 110’739 ops/s 1’278’481 sig/s 9’588’613 639’241
Partitioned, no delta 128’108 ops/s 1’479’006 sig/s 11’092’551 739’503
Replicated, delta 37’652 ops/s 434’692 sig/s 3’260’192 217’346
Replicated, no delta 43’864 ops/s 506’409 sig/s 3’798’074 253’205
HAC, delta 14’526 ops/s 167’702 sig/s 1’257’770 83’851

As a part of their study, Jin et al. collected traces from a large ISP’s LTE
network [25]. The traces indicate that the maximum number of active users per
base station was close to, but under 1000 UE. Contrasting to our results, if the
measured throughput is actually attainable, the Apache Geode data store could in
principle support several orders of magnitude more connected devices. Even the
lowest result achieved in our programmatic HAC-zoning with a modest 15 simulated
eNBs could in theory support up to 83’851 UE per eNB, over 80 times more active
UEs than in the aforementioned report.

The limiting factor is therefore the latency with which data can be read from
the storage. The latency results indicate that at least the partitioned region with
99th-percentile read-write latencies of 1 µs could deliver data fast enough. Even
other region types could be leveraged in the right configuration to deliver sufficiently

54

low latencies. It should be noted that the EPC controller needs to be able to read
the data store faster than write to it, since it is more important for it to be able
to set up the appropriate context in its process space. As we didn’t measure read
and write latencies separately it is difficult to draw clear conclusions on whether
our implementations could provide sufficiently low read latencies even though the
results indicate very low microsecond-scale latencies.

With these figures in mind, we can conclude that with the right optimisations
and configurations applied in the data layer the scoped 100–1000-fold increase in
connected devices could be achieved and perhaps even surpassed. Furthermore,
should the interconnect behind the coreless mobile network architecture be flat and
connection to the Internet unhindered, we postulate that the chances of reaching the
scoped 10–100 data rate increase and 5-fold decrease in latency cloud be markedly
improved.

7.2 Scaling Apache Geode
The throughput achieved at two serving nodes per machine is plotted in figure

19. It can be seen that all regions (not including HAC-zoning) start at roughly
the same level of throughput. The partitioned regions experience a major drop
off in throughput when the number of machines is increased to three, but rises
and seems to stay relatively stable thereafter. The replicated region expectedly
experiences incrementally dropping throughput with the addition of more machines
to the cluster. The experimental HAC-zone is almost constant and we expect its
throughput to be eventually bottlenecked by the performance of replicated regions.

Figure 19: Throughput per machine with two serving nodes per machine.

Label Expanded label
PD Partitioned region, Delta
PND Partitioned region, No delta
RD Replicated region, Delta
RND Replicated region, No delta
HAC HAC-zoning, Delta

55

How exactly the throughput scales beyond the observed is left to another experimen-
tation, but we can make some predictions on its evolution. Taking into consideration
the structure of updates in partitioned regions we can assume that the throughput
that is reached at five machines will stay relatively constant, if not improve. The
throughput per machine for the partitioned region is 21’842 ops/s and 26’149 ops/s
for the delta and regular updates respectively. Assuming the throughput stays
constant we can expect the system to reach 1’000’000 ops/s with 46 and 38 machines
with delta and regular updates respectively.

For the replicated regions the behaviour is less predictable. We can certainly say
that with the addition of new machines into the cluster the throughput will decrease
incrementally. This is also evident from the aggregate throughput detailed in section
6.3.3. The throughput would seem to plateau at four machines, but we predict
that this will not be the observed behaviour in the long run. In fact, taking into
consideration the update mechanism in replicated regions (with the distributed-ack
or global locking) we postulate that increasing the cluster size indefinitely will
eventually render the system quite unusable. The size of replicated regions in
deployment will therefore need careful consideration of required throughput and
redundancy.

In our benchmarks we did not address the issues of server failure, serving
node crash or network churn. Apache Geode has been built specifically around
high availability and strong consistency, which were seen as the most important
characteristics regarding the coreless mobile network architecture. We assumed that
the operator network would be relatively stable and contain redundant paths, and
that the deployment of a data store would contain more than enough redundant
nodes for data storage. However, as mentioned, it is an optimisation problem to
decide on the trade-off between excessive redundancy and high availability (and
ultimately reliability). Figure 19 features a case with two serving nodes per physical
machine. Assuming that the deployment scenario requires that each machine or
smart-box site must contain at least one local serving node for maximum throughput
and minimum latency, one could lose one of the two serving nodes and still function
normally without seeing much effect on throughput or latency. It would critically
important, however, to restart the serving node as fast as possible to resume normal
operation because the loss of two serving nodes could be catastrophic. The amount
of serving nodes could be increased to begin with, but again we return to the
questions on optimisation.

7.3 Update mechanisms: delta versus regular
We explored the effect of delta updates on the throughput and latency of the

Apache Geode data store. The delta update was implemented with the Geode
internal Delta-interface according to recommendations in the documentation. The
results in section 6.3 detail the difference and show that the delta update mechanism
is consistently performing worse than the regular mechanism, where the entire
object is sent over the network. The result seems surprising at first, but at a closer
inspection is understandable.

The result is highly likely due to the processing overhead of the delta update
mechanism and our small UE object: the entire object with all variables in use
takes only 5’152 bits plus a small amount of overhead when serialised. Assuming
that the serialised object takes 6’000 bits, then it can be transmitted in 6000bits÷
1500bits/packet = 4packets, with a standard maximum transmission unit of 1’500

56

bits omitting TCP and UDP overheads. The network connecting the machines in
our experiments consisted of a single switch, two network hops. This has the effect
that by the time a host starts sending the last packet of the four, the receiving host
is already receiving the first three. Thus the total time to transmit all four packets
is roughly the same as the time to transmit two single packets back-to-back. On the
other hand, the vast majority of delta updates are less than 1’280 bits in size, fitting
into a single packet to be sent over the network. The difference in time required
to transmit the updates is small, almost negligible. Should the object be of much
larger size overall while keeping small delta updates, the time to update via the
regular mechanism would increase substantially as more bytes need to be sent over
the network. Therefore in our experiment, even with updates sent over the network
the time difference is not substantial enough to set the delta update mechanism
far ahead. If the client is connected to a serving node on the local machine the
difference is even smaller.

The delta update functions as follows. The first stage is the same for both
delta and regular updates where the delta or the object is serialised and sent to
the connected serving node. Geode then deserialises the serialised data in the
serving node, calls the appropriate fromDelta method of the UE object to deserialise
the serialised delta update, and finally re-serialises the updated object back into
the data store. On the other hand the regular update mechanism only takes the
received serialised object and replaces the old object with it. It is clear that there is
significantly more processing delay in applying the delta update than the regular
update, and this is likely causing the drop in throughput. It is important to note,
however, that delta updates use potentially much less bandwidth (up to 75% less
in our implementation) than non-delta update mechanism, allowing the network
bandwidth to be used for other traffic. The decision to use either update mechanism
needs to consider the deployment scenario and the network usage versus throughput
desired of the system.

7.4 High availability and consistency zone implementations
Our experimental implementation of HAC-zoning suffered greatly from artefacts

in the benchmark implementation. In the short period of time it was not possible
to further study the more advanced features of Apache Geode. For example, Geode
supports executing custom functions server side, in asynchronous or synchronous
manners. Such functions could be leveraged to implement moving data between
HAC-zones behind-the-scenes, and not explicitly in client code. Other useful features
include moving data buckets and single data items explicitly between serving nodes,
allowing for a fine grained control of data geo-location.

We implemented the experimental HAC-zoning as a replicated region combined
with a partitioned region. In principle the HAC-zone need not be this type of
region. For example it is possible to achieve high availability and consistency in
the partitioned region type, and if network churn presents a significant problem the
replication factor of the partitioned region can be configured higher. Nevertheless,
there are multiple points available for optimisation even just in the case of Apache
Geode.

57

7.5 Reliability of reported latencies
In our benchmarking we attempted to map the scaling characteristics of the

Geode data store by i) involving incremental numbers of serving nodes, and ii)
involving incremental numbers of physical machines in the Geode cluster. How-
ever, due to infrastructure concerns we were inadvertently restricted to at most
seven physical machines. Additionally, the network infrastructure available in our
experimentation was very stable, had no other load and the machines were within
two switch hops of each other. This presents a serious limitation in predicting the
full scaling characteristics of the system beyond our setup. It is difficult to predict
how the system performs with hundreds or thousands of machines when network
conditions are less than optimal. Therefore, it suffices to say that, while the results
are definitely promising they are also inconclusive in the grand scheme.

The Yahoo! cloud serving benchmark has been taken seriously as an industry
leading benchmark platform. It has also received critique regarding its implementa-
tion. In his blog, Wakart presents compelling evidence of the benchmarks’ problem
with coordinated omission.48 Coordinated omission is a common problem relating
to benchmark implementation, where some results are omitted from results. The
phenomenon occurs when the benchmarking system experiences a stop-the-world
event, such as garbage collection in Java programs. During garbage collection, which
may last a comparatively long time, no actual processing is done even though in a
real scenario requests would be made to the system under test. If not accounted
for the benchmark system will record only a single instance of a large latency when
in fact there would have been many. This significantly skews the end result of the
benchmark.49

The effect of the coordinated omission is mitigated in our experimentation for
two reasons: i) we tested the data store according to the maximum throughput
setting, and ii) YCSB has received corrections to the code to mitigate the effect
to an extent.50 As said, our measurements were completed with maximising load
and observing the achieved throughput. In this mode of operation the effect of
stop-the-world events, while not absent, is minimal.

7.6 Accuracy of used traffic model
Some time into the benchmarking we came across another view of signalling

load data, also by Nokia.51 According to the report, which quotes data from
a service provider in USA, the probabilities of a case occurrence are somewhat
different. Specifically, the occurrence of session management and paging operations
are significantly higher and the load from handover is significantly lower than in the
data used to construct our workload. However, there is some room for interpretation
in the new source: it does not explicitly state the service request and lu-release
procedures that were included in the original, see figure 7; should said operations be
included in the session management, then the picture is already much closer to our

48http://psy-lob-saw.blogspot.fi/2015/03/fixing-ycsb-coordinated-
omission.html (Referenced on 2.11.216)

49https://www.infoq.com/presentations/latency-pitfalls Referenced on
11.11.2016)

50https://github.com/brianfrankcooper/YCSB/blob/master/core/CHANGES.md (Ref-
erenced on 11.11.2016)

51https://insight.nokia.com/managing-lte-core-network-signaling-traffic
(Referenced on 11.11.2016)

58

http://psy-lob-saw.blogspot.fi/2015/03/fixing-ycsb-coordinated-omission.html
http://psy-lob-saw.blogspot.fi/2015/03/fixing-ycsb-coordinated-omission.html
https://www.infoq.com/presentations/latency-pitfalls
https://github.com/brianfrankcooper/YCSB/blob/master/core/CHANGES.md
https://insight.nokia.com/managing-lte-core-network-signaling-traffic

original data. It is evident, that obtaining current data which accurately describes
real world scenarios is difficult.

Lastly, despite the standard interfaces the implementation of any 4G/LTE
system is largely vendor dependent, and the same will apply to 5G systems. Exactly
how much space is required by a UE object and what form it will take is ultimately
dependent on the implementation.

59

8 Concluding remarks
In this thesis we have presented the current state of the 4G/LTE mobile telecom-

munications network and key concepts in UE connectivity. Based on the technology,
a novel network architecture was proposed. The coreless mobile network architecture
was detailed, and its core properties analysed in the context of the requirements
for the next generation 5G mobile networks. As state management was identified
as the main purpose of the EPC entities, we presented and analysed data storage
solutions that may be capable of hosting the state in the new architecture.

8.1 Contributions
By analysis of the current 4G/LTE architecture we realised that by virtualising

the EPC entities and by bringing them into the same environment they could
function much like an SDN controller. To make the envisioned controller scalable
the UE context state needed to be separated from the entities into a ubiquitous data
layer. This thesis thereafter focused on the data layer distribution. We analysed
the requirements of the smart-box and based on the requirements we proposed
that the Apache Geode data store could be leveraged as an example data storage
solution. Finally, we benchmarked the Apache Geode data store with workloads
attempting to model a real world scenario. The results indicate that depending on
its configuration, Geode can indeed support the throughput and latency needed of
the data layer.

8.2 Future work
While the results of benchmarking Geode are promising there is much room

for optimisation. Of relevance is the final latency with which data needs to be
available to the smart-box, and the latency at which any given configuration of
a distributed data store can deliver data. Explicitly measuring latency of data
accessed over the network would bring further insights into the latencies observed in
our experimentation. We attempted to model some scaling properties but ultimately
we were lacking in infrastructure, and as such the final scaling characteristics are yet
to be discerned. Characterising the full scaling properties would require machines
in the hundreds or even thousands, a feat that often is accomplished only at the
deployment stage. Regarding Geode it is also of importance to discover more
intricate possibilities of region combination into HAC-zoning.

Exactly how the smart-box or EPC controller is realised was beyond the scope
of this thesis. There has been some research toward software defined control of the
EPC which may be leveraged in this respect. A related topic is the propagation
of flow rules into the interconnect or operator backbone network. For example,
how deep into the backbone network are new flow rules installed, should there be
regional master controllers?

Mobile edge computing may provide unprecedented throughput and latency
for applications residing on the edge of the mobile network connecting with UE.
Caching at the edge, for example, has been seen as one major possibility to reduce
load in the core network. It is possible that the data layer used in hosting the UE
context state could be used also in this respect, in caching and storing other data
besides the context. The viability of using the data layer for more purposes should
be researched.

60

Notes

1 https://www.ericsson.com/news/1925907 (Referenced on 28.10.2016) . 1
2 http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-

by-the-numbers-market-estimates-and-forecasts/ (Referenced on 8.11.2016) 1
3 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/mobile-white-paper-c11-520862.html
(Referenced on 28.10.2016) . 1

4 http://resources.alcatel-lucent.com/asset/200004 (Referenced on
28.10.2016) . 1

5 http://www.4gamericas.org/files/8914/6774/6748/Global_Organizations_
Forge_New_Frontier_of_5G_Final.pdf (Referenced on 28.10.2016) . . . 3

6 http://www.chinaeu.eu/wp-content/uploads/2016/04/mazhigang-5G-
Progress-and-Cooperation-in-China-20160408.pdf (Referenced on 28.10.2016) 3

7 http://www.5gforum.org (Referenced on 28.10.2016) 3
8 http://5gmf.jp/en/ (Referenced on 28.10.2016) 3
9 https://5g-ppp.eu/white-papers/ (Referenced on 28.10.2016) 3
10 Figure adapted from https://en.wikipedia.org/wiki/System_Architecture_

Evolution, licence CC BY-SA 4.0, (Referenced on 28.10.2016) 5
11 https://en.wikipedia.org/wiki/System_Architecture_Evolution (Ref-

erenced on 28.10.2016) (Referenced on 28.10.2016) 7
12 Eleven EMM Cases in an EMM Scenario: http://www.netmanias.com/

en/?m=view&id=techdocs&no=6002 (Referenced on 28.10.2016) 7
13 http://www.netmanias.com/en/?m=view&id=techdocs&no=10441&page=

2 (Referenced on 28.10.2016) . 9
14 http://www.netmanias.com/en/?m=view&id=techdocs&no=6108 (Refer-

enced on 28.10.2016) . 11
15 http://www.netmanias.com/en/?m=view&id=techdocs&no=6110 (Refer-

enced on 28.10.2016) . 12
16 http://www.netmanias.com/en/?m=view&id=techdocs&no=6134 (Refer-

enced on 28.10.2016) . 13
17 http://www.netmanias.com/en/?m=view&id=techdocs&no=6193 (Refer-

enced on 28.10.2016) . 15
18 http://www.netmanias.com/en/?m=view&id=techdocs&no=6324 (Refer-

enced on 28.10.2016) . 15
19 http://www.netmanias.com/en/?m=view&id=techdocs&no=6224 (Refer-

enced on 28.10.2016) . 16
20 http://www.netmanias.com/en/?m=view&id=techdocs&no=6257 (Refer-

enced on 28.10.2016) . 16
21 http://www.netmanias.com/en/?m=view&id=techdocs&no=6286 (Refer-

enced on 28.10.2016) . 16
22 http://www.netmanias.com/en/?m=view&id=techdocs&no=6322 (Refer-

enced on 28.10.2016) . 17
23 http://www.netmanias.com/en/?m=view&id=techdocs&no=6324 (Refer-

enced on 28.10.2016) . 17
24 https://www.opennetworking.org/sdn-resources/openflow (Referenced

on 28.10.2016) . 18
25 https://code.facebook.com/posts/1653074404941839/under-the-hood-

broadcasting-live-video-to-millions/ (Referenced 15.11.2016) . . . 20

61

https://www.ericsson.com/news/1925907
http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/
http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://resources.alcatel-lucent.com/asset/200004
http://www.4gamericas.org/files/8914/6774/6748/Global_Organizations_Forge_New_Frontier_of_5G_Final.pdf
http://www.4gamericas.org/files/8914/6774/6748/Global_Organizations_Forge_New_Frontier_of_5G_Final.pdf
http://www.chinaeu.eu/wp-content/uploads/2016/04/mazhigang-5G-Progress-and-Cooperation-in-China-20160408.pdf
http://www.chinaeu.eu/wp-content/uploads/2016/04/mazhigang-5G-Progress-and-Cooperation-in-China-20160408.pdf
http://www.5gforum.org
http://5gmf.jp/en/
https://5g-ppp.eu/white-papers/
https://en.wikipedia.org/wiki/System_Architecture_Evolution
https://en.wikipedia.org/wiki/System_Architecture_Evolution
https://en.wikipedia.org/wiki/System_Architecture_Evolution
http://www.netmanias.com/en/?m=view&id=techdocs&no=6002
http://www.netmanias.com/en/?m=view&id=techdocs&no=6002
http://www.netmanias.com/en/?m=view&id=techdocs&no=10441&page=2
http://www.netmanias.com/en/?m=view&id=techdocs&no=10441&page=2
http://www.netmanias.com/en/?m=view&id=techdocs&no=6108
http://www.netmanias.com/en/?m=view&id=techdocs&no=6110
http://www.netmanias.com/en/?m=view&id=techdocs&no=6134
http://www.netmanias.com/en/?m=view&id=techdocs&no=6193
http://www.netmanias.com/en/?m=view&id=techdocs&no=6324
http://www.netmanias.com/en/?m=view&id=techdocs&no=6224
http://www.netmanias.com/en/?m=view&id=techdocs&no=6257
http://www.netmanias.com/en/?m=view&id=techdocs&no=6286
http://www.netmanias.com/en/?m=view&id=techdocs&no=6322
http://www.netmanias.com/en/?m=view&id=techdocs&no=6324
https://www.opennetworking.org/sdn-resources/openflow
https://code.facebook.com/posts/1653074404941839/under-the-hood-broadcasting-live-video-to-millions/
https://code.facebook.com/posts/1653074404941839/under-the-hood-broadcasting-live-video-to-millions/

26 http://www.etsi.org/technologies-clusters/technologies/mobile-
edge-computing (Referenced on 28.10.2016) 20

27 Ubiquitous to the core network entities, not to the world. 23
28 Alcatel-Lucent (Nokia): Creating a new data freedom with the Shared

Data Layer, at http://resources.alcatel-lucent.com/asset/200238
(Referenced on 28.10.2016) . 24

29 For instance, we can assume it moves at a speed less than the speed of
sound. 26

30 For a more comprehensive listing of noSQL data stores, the reader is
advised to refer to http://nosql-databases.org. 29

31 http://cassandra.apache.org, Referenced on 1.11.2016 29
32 https://memcached.org, Referenced on 1.11.2016 30
33 http://www.project-voldemort.com/voldemort/, Referenced on 1.11.2016 30
34 http://infinispan.org, Referenced on 1.11.2016 31
35 https://ignite.apache.org, Referenced on 1.11.2016 31
36 http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html 31
37 http://hbase.apache.org, Referenced on 1.11.2016 31
38 http://redis.io, Referenced on 1.11.2016 31
39 http://geode.apache.org, Referenced on 1.11.2016 32
40 http://blog.cloudera.com/blog/2015/08/ycsb-the-open-standard-

for-nosql-
benchmarking-joins-cloudera-labs/ (Referenced on 28.10.2016) . . . 35

41 Branch: geode-updates, https://github.com/Virta/YCSB/tree/geode-
updates . 37

42 http://www.3gpp.org/technologies/keywords-acronyms/96-nas, (Ref-
erenced on 1.11.2016) . 38

43 http://geode.apache.org/docs/guide/topologies_and_comm/topology_
concepts/topology_types.html (Referenced on 8.11.2016) 41

44 https://github.com/apache/incubator-geode/tree/rel/v1.0.0-incubating.
M2 . 42

45 For the detailed procedures see the source code in https://github.com/
Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking. 42

46 https://github.com/Virta/Written-works/blob/master/GeodeBenchmarkingResults.tar.gz
(Referenced 24.11.2016) . 44

47 http://zdatainc.com/2015/02/gemfire-performance-evaluation-aws/
(Referenced 10.11.2016) . 52

48 http://psy-lob-saw.blogspot.fi/2015/03/fixing-ycsb-coordinated-
omission.html (Referenced on 2.11.216) 58

49 https://www.infoq.com/presentations/latency-pitfalls Referenced
on 11.11.2016) . 58

50 https://github.com/brianfrankcooper/YCSB/blob/master/core/CHANGES.
md (Referenced on 11.11.2016) . 58

51 https://insight.nokia.com/managing-lte-core-network-signaling-
traffic (Referenced on 11.11.2016) . 58

62

http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://resources.alcatel-lucent.com/asset/200238
http://nosql-databases.org
http://cassandra.apache.org
https://memcached.org
http://www.project-voldemort.com/voldemort/
http://infinispan.org
https://ignite.apache.org
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hbase.apache.org
http://redis.io
http://geode.apache.org
http://blog.cloudera.com/blog/2015/08/ycsb-the-open-standard-for-nosql-
http://blog.cloudera.com/blog/2015/08/ycsb-the-open-standard-for-nosql-
benchmarking-joins-cloudera-labs/
https://github.com/Virta/YCSB/tree/geode-updates
https://github.com/Virta/YCSB/tree/geode-updates
http://www.3gpp.org/technologies/keywords-acronyms/96-nas
http://geode.apache.org/docs/guide/topologies_and_comm/topology_concepts/topology_types.html
http://geode.apache.org/docs/guide/topologies_and_comm/topology_concepts/topology_types.html
https://github.com/apache/incubator-geode/tree/rel/v1.0.0-incubating.M2
https://github.com/apache/incubator-geode/tree/rel/v1.0.0-incubating.M2
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
https://github.com/Virta/YCSB/tree/geode-updates/GeodeBenchmarkingScripts/benchmarking
http://zdatainc.com/2015/02/gemfire-performance-evaluation-aws/
http://psy-lob-saw.blogspot.fi/2015/03/fixing-ycsb-coordinated-omission.html
http://psy-lob-saw.blogspot.fi/2015/03/fixing-ycsb-coordinated-omission.html
https://www.infoq.com/presentations/latency-pitfalls
https://github.com/brianfrankcooper/YCSB/blob/master/core/CHANGES.md
https://github.com/brianfrankcooper/YCSB/blob/master/core/CHANGES.md
https://insight.nokia.com/managing-lte-core-network-signaling-traffic
https://insight.nokia.com/managing-lte-core-network-signaling-traffic

References
[1] ONF WHITE PAPER on software-defined networking: The new

norm for networks. Whitepaper, Open Networking Foundation,
2012. https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf.

[2] Abdelwahab, S., Hamdaoui, B., Guizani, M., and Znati, T. Network
function virtualization in 5g. IEEE Communications Magazine 54, 4 (2016),
84–91.

[3] Alcatel-Lucent. The lte network architecture, 2009. A comprehensive
tutorial.

[4] Alcatel-Lucent. Managing the signaling traffic in packet core, 2013. METH-
ODS TO REDUCE THE SIGNALING LOAD IN 3G/LTE NETWORKS.

[5] Alsedairy, T., Qi, Y., Imran, A., Imran, M. A., and Evans, B. Self
organising cloud cells: a resource efficient network densification strategy. Trans-
actions on Emerging Telecommunications Technologies 26, 8 (2015), 1096–1107.

[6] Blenk, A., Basta, A., Reisslein, M., and Kellerer, W. Survey on
network virtualization hypervisors for software defined networking. IEEE
Communications Surveys & Tutorials 18, 1 (2016), 655–685.

[7] Casas, P., D’Alconzo, A., Fiadino, P., Bär, A., Finamore, A., and
Zseby, T. When youtube does not work—analysis of qoe-relevant degradation
in google cdn traffic. IEEE Transactions on Network and Service Management
11, 4 (2014), 441–457.

[8] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,
Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A
distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS) 26, 2 (2008), 4.

[9] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and
Sears, R. Benchmarking cloud serving systems with ycsb. In Proceedings of
the 1st ACM symposium on Cloud computing (2010), ACM, pp. 143–154.

[10] Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Fur-
man, J. J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P.,
et al. Spanner: Google’s globally distributed database. ACM Transactions
on Computer Systems (TOCS) 31, 3 (2013), 8.

[11] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman,
A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels, W.
Dynamo: amazon’s highly available key-value store. ACM SIGOPS Operating
Systems Review 41, 6 (2007), 205–220.

[12] DeWitt, D. J. The wisconsin benchmark: Past, present, and future. In The
Benchmark Handbook. 1991, pp. 119–165.

[13] ETSI, T. 123 003. Digital cellular telecommunications system (Phase 2+).

[14] ETSI, T. 123 008. Digital cellular telecommunications system (Phase 2+).

[15] ETSI, T. 123 401. Digital cellular telecommunications system (Phase 2+).

63

[16] Ford, A., Raiciu, C., Handley, M., and Bonaventure, O. Tcp extensions
for multipath operation with multiple addresses. Tech. rep., 2013.

[17] George, L. HBase: the definitive guide. O’Reilly Media, Inc., 2011.

[18] Gilbert, S., and Lynch, N. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News 33,
2 (2002), 51–59.

[19] Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford,
J., Xie, G., Yan, H., Zhan, J., and Zhang, H. A clean slate 4d approach to
network control and management. ACM SIGCOMM Computer Communication
Review 35, 5 (2005), 41–54.

[20] Hämäläinen, S., Sanneck, H., and Sartori, C. LTE self-organising
networks (SON): network management automation for operational efficiency.
John Wiley & Sons, 2012.

[21] He, J., and Song, W. Evolving to 5g: A fast and near-optimal request routing
protocol for mobile core networks. In 2014 IEEE Global Communications
Conference (2014), IEEE, pp. 4586–4591.

[22] Hossain, E., and Hasan, M. 5g cellular: key enabling technologies and
research challenges. IEEE Instrumentation & Measurement Magazine 18, 3
(2015), 11–21.

[23] Hossain, E., Rasti, M., Tabassum, H., and Abdelnasser, A. Evolution
toward 5g multi-tier cellular wireless networks: An interference management
perspective. IEEE Wireless Communications 21, 3 (2014), 118–127.

[24] Jain, R., and Paul, S. Network virtualization and software defined networking
for cloud computing: a survey. IEEE Communications Magazine 51, 11 (2013),
24–31.

[25] Jin, X., Li, L. E., Vanbever, L., and Rexford, J. Softcell: Scalable and
flexible cellular core network architecture. In Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies (2013), ACM,
pp. 163–174.

[26] Kantola, R. Performance of Handover in Long Term Evolution. PhD thesis,
Aalto University, 2011.

[27] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M.,
and Lewin, D. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing (1997), ACM,
pp. 654–663.

[28] Kempf, J., Johansson, B., Pettersson, S., Lüning, H., and Nilsson,
T. Moving the mobile evolved packet core to the cloud. In 2012 IEEE 8th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob) (2012), IEEE, pp. 784–791.

[29] Khan, F. Coreless 5g mobile network. arXiv preprint arXiv:1508.02052 (2015).

64

[30] Kuhlenkamp, J., Klems, M., and Röss, O. Benchmarking scalability and
elasticity of distributed database systems. Proceedings of the VLDB Endowment
7, 12 (2014), 1219–1230.

[31] Lakshman, A., and Malik, P. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

[32] Liang, C., and Yu, F. R. Wireless network virtualization: A survey, some
research issues and challenges. IEEE Communications Surveys & Tutorials 17,
1 (2015), 358–380.

[33] Liang, C., Yu, F. R., and Zhang, X. Information-centric network function
virtualization over 5g mobile wireless networks. IEEE Network 29, 3 (2015),
68–74.

[34] Liu, Q., Wu, G., Guo, Y., and Zhang, Y. Energy efficient resource alloca-
tion for control data separation architecture based h-cran with heterogeneous
fronthaul. arXiv preprint arXiv:1511.01969 (2015).

[35] Mäki, J. O. A., et al. Distributed OpenFlow Control-Plane for Mobile
Network Gateways. PhD thesis, University of Helsinki, 2013.

[36] Marotta, M. A., Kaminski, N., Gomez-Miguelez, I., Granville, L. Z.,
Rochol, J., DaSilva, L., and Both, C. B. Resource sharing in hetero-
geneous cloud radio access networks. IEEE Wireless Communications 22, 3
(2015), 74–82.

[37] Mehani, O., Holz, R., Ferlin, S., and Boreli, R. An early look at
multipath tcp deployment in the wild. In Proceedings of the 6th International
Workshop on Hot Topics in Planet-Scale Measurement (2015), ACM, pp. 7–12.

[38] Nygren, E., Sitaraman, R. K., and Sun, J. The akamai network: a
platform for high-performance internet applications. ACM SIGOPS Operating
Systems Review 44, 3 (2010), 2–19.

[39] Orange, J. S.-B., Armada, A. G., Evans, B., Galis, A., and Karl, H.
White paper for research beyond 5g. Accessed 23 (2015), 2016.

[40] Osmani, L., Lindholm, H., Chemmagate, B., Rao, A., Tarkoma, S.,
Heinonen, J., and Flinck, H. Building blocks for an elastic mobile core.
In Proceedings of the 2014 CoNEXT on Student Workshop (2014), ACM,
pp. 43–45.

[41] Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P.,
Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka,
H., et al. Scenarios for 5g mobile and wireless communications: the vision of
the metis project. IEEE Communications Magazine 52, 5 (2014), 26–35.

[42] Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal,
A., et al. Mobile-edge computing introductory technical white paper. White
Paper, Mobile-edge Computing (MEC) industry initiative (2014).

[43] Peng, M., Wang, C., Lau, V., and Poor, H. V. Fronthaul-constrained
cloud radio access networks: Insights and challenges. IEEE Wireless Commu-
nications 22, 2 (2015), 152–160.

65

[44] Pentikousis, K., Wang, Y., and Hu, W. Mobileflow: toward software-
defined mobile networks. IEEE Communications magazine 51, 7 (2013), 44–53.

[45] Pirinen, P. A brief overview of 5g research activities. In 5G for Ubiquitous
Connectivity (5GU), 2014 1st International Conference on (2014), IEEE, pp. 17–
22.

[46] Qazi, Z. A., Penumarthi, P. K., Sekar, V., Gopalakrishnan, V., Joshi,
K., and Das, S. R. Klein: A minimally disruptive design for an elastic cellular
core. In Proceedings of the Symposium on SDN Research (New York, NY, USA,
2016), SOSR ’16, ACM, pp. 2:1–2:12.

[47] Rost, P., Bernardos, C. J., De Domenico, A., Di Girolamo, M.,
Lalam, M., Maeder, A., Sabella, D., and Wübben, D. Cloud technolo-
gies for flexible 5g radio access networks. IEEE Communications Magazine 52,
5 (2014), 68–76.

[48] Sabella, D., Rost, P., Sheng, Y., Pateromichelakis, E., Salim, U.,
Guitton-Ouhamou, P., Di Girolamo, M., and Giuliani, G. Ran as a
service: Challenges of designing a flexible ran architecture in a cloud-based
heterogeneous mobile network. In Future Network and Mobile Summit (Fu-
tureNetworkSummit), 2013 (2013), IEEE, pp. 1–8.

[49] Sama, M. R., Contreras, L. M., Kaippallimalil, J., Akiyoshi, I., Qian,
H., and Ni, H. Software-defined control of the virtualized mobile packet core.
IEEE Communications Magazine 53, 2 (2015), 107–115.

[50] Sato, I., Bouabdallah, A., and Lagrange, X. Improving lte/epc signaling
for sporadic data with a control-plane based transmission procedure. In Wire-
less Personal Multimedia Communications (WPMC), 2011 14th International
Symposium on (2011), IEEE, pp. 1–5.

[51] Sesia, S., Toufik, I., and Baker, M. LTE - The UMTS long term evolution.
Wiley Online Library, 2015.

[52] Talwar, S., Choudhury, D., Dimou, K., Aryafar, E., Bangerter, B.,
and Stewart, K. Enabling technologies and architectures for 5g wireless. In
2014 IEEE MTT-S International Microwave Symposium (IMS2014) (2014),
IEEE, pp. 1–4.

[53] Tu, G.-H., Li, Y., Peng, C., Li, C.-Y., and Lu, S. Detecting prob-
lematic control-plane protocol interactions in mobile networks. IEEE/ACM
Transactions on Networking 24, 2 (2016), 1209–1222.

[54] Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D.,
Aggoune, H. M., Haas, H., Fletcher, S., and Hepsaydir, E. Cellular
architecture and key technologies for 5g wireless communication networks.
IEEE Communications Magazine 52, 2 (2014), 122–130.

[55] Wang, X., Chen, M., Taleb, T., Ksentini, A., and Leung, V. C. Cache
in the air: exploiting content caching and delivery techniques for 5g systems.
IEEE Communications Magazine 52, 2 (2014), 131–139.

[56] Widjaja, I., Bosch, P., and La Roche, H. Comparison of mme signaling
loads for long-term-evolution architectures. In Vehicular Technology Conference
Fall (VTC 2009-Fall), 2009 IEEE 70th (2009), IEEE, pp. 1–5.

66

[57] Yan, Q., Yu, F. R., Gong, Q., and Li, J. Software-defined networking (sdn)
and distributed denial of service (ddos) attacks in cloud computing environ-
ments: A survey, some research issues, and challenges. IEEE Communications
Surveys & Tutorials 18, 1 (2016), 602–622.

[58] Yousaf, F. Z., and Taleb, T. Fine-grained resource-aware virtual network
function management for 5g carrier cloud. IEEE Network 30, 2 (2016), 110–115.

67

A LTEworkload
1 # Copyright (c) 2012−2016 YCSB con t r i bu t o r s . Al l r i g h t s r e s e rved

.
2 #
3 # Licensed under the Apache License , Vers ion 2 .0 (the " L i cense ")

; you
4 # may not use t h i s f i l e except in compliance with the L icense .

You
5 # may obta in a copy o f the L icense at
6 #
7 # http ://www. apache . org / l i c e n s e s /LICENSE−2.0
8 #
9 # Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing ,

so f tware
10 # d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an "AS IS "

BASIS ,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s

or
12 # impl i ed . See the L icense f o r the s p e c i f i c language governing
13 # permi s s i ons and l im i t a t i o n s under the L icense . See

accompanying
14 # LICENSE f i l e .
15
16 # Yahoo ! Cloud System Benchmark
17 # Workload Template : Defau l t Values
18 #
19 # F i l e conta in s a l l p r op e r t i e s that can be s e t to d e f i n e a
20 # YCSB s e s s i o n . Al l p r op e r t i e s are s e t to t h e i r d e f au l t
21 # value i f one e x i s t s . I f not , the property i s commented
22 # out . When a property has a f i n i t e number o f s e t t i n g s ,
23 # the d e f au l t i s enabled and the a l t e r n a t e s are shown in
24 # comments below i t .
25 #
26 # Use o f most exp la ined through comments in C l i en t . java or
27 # CoreWorkload . java or on the YCSB wik i page :
28 # https : // github . com/ br ian f rankcooper /YCSB/wik i /Core−Prope r t i e s
29
30 # The name o f the workload c l a s s to use
31 workload=com . yahoo . ycsb . workloads . GeodeWorkload
32
33 # There i s no d e f au l t s e t t i n g f o r recordcount but i t i s
34 # requ i r ed to be s e t .
35 # The number o f r e co rd s in the tab l e to be i n s e r t e d in
36 # the load phase or the number o f r e co rd s a l r eady in the
37 # tab l e be f o r e the run phase .
38 recordcount=1000000
39
40 # There i s no d e f au l t s e t t i n g f o r operat ioncount but i t i s
41 # requ i r ed to be s e t .
42 # The number o f ope ra t i on s to use during the run phase .
43 operat ioncount=3000000
44
45 # The o f f s e t o f the f i r s t i n s e r t i o n

1

46 i n s e r t s t a r t=0
47
48 # The d i s t r i b u t i o n used to choose the l ength o f a f i e l d
49 f i e l d l e n g t h d i s t r i b u t i o n=constant
50 #f i e l d l e n g t h d i s t r i b u t i o n=uniform
51 #f i e l d l e n g t h d i s t r i b u t i o n=z i p f i a n
52
53 i n s e r t p r opo r t i o n=0
54 attach_proport ion=0.01
55 detach_proport ion=0.01
56 se rv i ce_reques t_propor t ion =0.31
57 s1_re lease_proport ion =0.31
58 tau_proport ion=0.09
59 handover_proportion=0.12
60 c e l l_ r e s e l e c t_p ropo r t i on =0.07
61 session_management_proportion=0.07
62
63 geode . l o c a t o r=l o c a l h o s t [1 0334]
64
65 # The name o f the database t ab l e to run que r i e s aga in s t
66 tab l e . name=us e r t ab l e
67
68 # How the la t ency measurements are presented
69 measurmenttype=hdrhistogram+histogram
70 measurment . i n t e r v a l=both
71 hdrhistogram . f i l e o u t p u t=true
72 hdrhistogram . output . path=hdrhistogram_

2

B UE.java
1 package com . yahoo . ycsb . workloads ;
2 /∗∗
3 ∗ Created by f r o j a l a on 19/08/16.
4 ∗/
5 import com . gemstone . gemf i r e . Inva l idDe l taExcept ion ;
6 import java . i o . DataInput ;
7 import java . i o . DataOutput ;
8 import java . i o . IOException ;
9 import java . i o . S e r i a l i z a b l e ;

10 import java . u t i l . ArrayList ;
11 import java . u t i l . L i s t ;
12 import java . u t i l .Random ;
13
14 // p u b l i c c l a s s UE implements S e r i a l i z a b l e {
15 public class UE implements com . gemstone . gemf i r e . Delta ,

S e r i a l i z a b l e {
16 /∗∗
17 ∗ S t a t i c e n t i t y codes , w i l l never change in t h i s benchmark .
18 ∗/
19 private stat ic f ina l St r ing MNC = " 244 " ;
20 private stat ic f ina l St r ing MCC = " 921 " ;
21 private stat ic f ina l St r ing PLMN_ID = MNC + MCC;
22 private stat ic f ina l St r ing MMEGI = "M" ;
23 private stat ic f ina l St r ing MMEC = "C" ;
24 private stat ic f ina l St r ing MMEI = MMEGI + MMEC;
25 private stat ic f ina l St r ing GUMMEI = PLMN_ID + MMEI;
26 public stat ic f ina l St r ing PGW_ID = " ub iqu i tous . i n t e r n e t " ;
27 private stat ic f ina l int TAI_SIZE = 15 ;
28
29 /∗∗
30 ∗ Semi−s t a t i c e n t i t y codes . Once genera ted on i n s e r t , w i l l

not be changed .
31 ∗/
32 private St r ing IMEI ;
33 private St r ing MSIN;
34 private St r ing IMSI ; // = PLMN_ID + MSIN;
35 private St r ing EPS_KEY; // = 128 b i t (8 chars)
36 private St r ing Cipher_KEY ; // = 128 b i t
37 private St r ing Encryption_KEY ; // = 128 b i t
38
39 /∗∗
40 ∗ Dynamic e n t i t i e s , w i l l e xper i ence change on a r e g u l a r

b a s i s .
41 ∗/
42 private byte s t a tu s ; // 0 = Detached , 1 = Attached , 2 = ac t i v e

, 3 = i d l e ;
43 private int M_TMSI;
44 private St r ing GUTI; // = GUMMEI + M_TMSI;
45 private St r ing TIN ;
46 private int IP ;
47 private short C_RNTI;
48 private int eNB_UE_S1AP;

3

49 private int MME_UE_S1AP;
50 private int OLD_eNB_UE_X2;
51 private int NEW_eNB_UE_X2;
52 private int ECI ;
53 private St r ing ECGI ; // = PLMN_ID + ECI ;
54 private int TAI ;
55 private List<Integer> TAI_list ;
56 private St r ing PDN_ID;
57 private byte EPS_bearer ;
58 private byte E_RA_bearer ;
59 private byte DR_bearer ;
60 private int S1_TEID_UL;
61 private int S1_TEID_DL;
62 private int S5_TEID_UL;
63 private int S5_TEID_DL;
64 private St r ing K_ASME; // = 256 b i t (16 chars)
65 private St r ing K_ENB; // = 256 b i t
66 private St r ing K_NASint ; // = 256 b i t
67 private St r ing K_NASenc ; // = 256 b i t
68 private St r ing K_RRCint ; // = 256 b i t
69 private St r ing K_RRCenc ; // = 256 b i t
70 private St r ing K_UPenc ; // = 256 b i t
71
72 /∗∗
73 ∗ The t r a n s i e n t s to suppor t d e l t a s .
74 ∗/
75 private transient boolean master_ch ;
76 private transient boolean status_ch ;
77 private transient boolean M_TMSI_ch;
78 private transient boolean GUTI_ch ;
79 private transient boolean TIN_ch ;
80 private transient boolean IP_ch ;
81 private transient boolean C_RNTI_ch;
82 private transient boolean eNB_UE_S1AP_ch;
83 private transient boolean MME_YE_S1AP_ch;
84 private transient boolean OLD_eNB_UE_X2_ch;
85 private transient boolean NEW_eNB_UE_X2_ch;
86 private transient boolean ECI_ch ;
87 private transient boolean ECGI_ch ;
88 private transient boolean TAI_ch ;
89 private transient boolean TAI_list_ch ;
90 private transient boolean PDN_ID_ch;
91 private transient boolean EPS_bearer_ch ;
92 private transient boolean E_RA_bearer_ch ;
93 private transient boolean DR_bearer_ch ;
94 private transient boolean S1_TEID_UL_ch ;
95 private transient boolean S1_TEID_DL_ch ;
96 private transient boolean S5_TEID_UL_ch ;
97 private transient boolean S5_TEID_DL_ch ;
98 private transient boolean K_ASME_ch;
99 private transient boolean K_ENB_ch;

100 private transient boolean K_NASint_ch ;
101 private transient boolean K_NASenc_ch ;
102 private transient boolean K_RRCint_ch ;

4

103 private transient boolean K_RRCenc_ch ;
104 private transient boolean K_UPenc_ch ;
105
106 public UE(St r ing IMSI) {
107 Random rand = new Random() ;
108 this . IMEI = randomString (15 , rand) ;
109 this . IMSI = IMSI ;
110 this .MSIN = IMSI . sub s t r i ng (6) ;
111 this .EPS_KEY = randomString (8 , rand) ;
112 this . Cipher_KEY = randomString (8 , rand) ;
113 this . Encryption_KEY = randomString (8 , rand) ;
114 this . s t a tu s = 0 ; // d e f a u l t de tached
115 }
116
117 public void i n i t i a l_a t t a c h () {
118 Random rand = new Random() ;
119 this . s t a tu s = 2 ; /∗ Act ive ∗/

this . status_ch = true ;
120 this .M_TMSI = rand . next Int () ;

this .M_TMSI_ch = true ;
121 this .GUTI = GUMMEI + M_TMSI;

this .GUTI_ch = true ;
122 this . TIN = " " ;

this .
TIN_ch = true ;

123 this . IP = rand . next Int () ;
this . IP_ch = true ;

124 this .C_RNTI = (short) rand . next Int (Short .MAX_VALUE − 1) ;
this .C_RNTI_ch = true ;

125 this .eNB_UE_S1AP = rand . next Int () ;
this . eNB_UE_S1AP_ch = true ;

126 this .MME_UE_S1AP = rand . next Int () ;
this .MME_YE_S1AP_ch = true ;

127 this . ECI = rand . next Int () ;
this . ECI_ch = true ;

128 this .ECGI = PLMN_ID + ECI ;
this . ECGI_ch = true ;

129 this . TAI = rand . next Int () ;
this . TAI_ch = true ;

130 this . TAI_list = new ArrayList <>() ;
this . TAI_list_ch = true ;

131 for (int i = 0 ; i < TAI_SIZE ; i++) TAI_list . add (rand . next Int
()) ;

132 this .PDN_ID = rand . next Int () + " . apn . epc .mnc" + MNC + " .mcc "
+ MCC + rand . next Int () + " 3gppnetwork . org " ;

133 this .PDN_ID_ch = true ;
134 this . EPS_bearer = (byte) rand . next Int (Byte .MAX_VALUE − 1) ;

this . EPS_bearer_ch = true ;
135 this . E_RA_bearer = (byte) rand . next Int (Byte .MAX_VALUE − 1) ;

this . E_RA_bearer_ch = true ;
136 this . DR_bearer = (byte) rand . next Int (Byte .MAX_VALUE − 1) ;

this . DR_bearer_ch = true ;
137 this .S1_TEID_UL = rand . next Int () ;

this . S1_TEID_UL_ch = true ;

5

138 this .S1_TEID_DL = rand . next Int () ;
this . S1_TEID_DL_ch = true ;

139 this .S5_TEID_UL = rand . next Int () ;
this . S5_TEID_UL_ch = true ;

140 this .S5_TEID_DL = rand . next Int () ;
this . S5_TEID_DL_ch = true ;

141 this .K_ASME = randomString (16 , rand) ;
this .K_ASME_ch = true ;

142 this .K_ENB = randomString (16 , rand) ;
this .K_ENB_ch = true ;

143 this . K_NASint = randomString (16 , rand) ;
this . K_NASint_ch = true ;

144 this .K_NASenc = randomString (16 , rand) ;
this .K_NASenc_ch = true ;

145 this .K_RRCint = randomString (16 , rand) ;
this .K_RRCint_ch = true ;

146 this .K_RRCenc = randomString (16 , rand) ;
this .K_RRCenc_ch = true ;

147 this .K_UPenc = randomString (16 , rand) ;
this .K_UPenc_ch = true ;

148 this . master_ch = true ;
149 }
150
151 public void detach () {
152 this . s t a tu s = 0 ; /∗ Detached ∗/ this .

status_ch = true ;
153 this . IP = 0 ; this . IP_ch

= true ;
154 this .C_RNTI = 0 ; this .

C_RNTI_ch = true ;
155 this .eNB_UE_S1AP = 0 ; this .

eNB_UE_S1AP_ch = true ;
156 this .MME_UE_S1AP = 0 ; this .

MME_YE_S1AP_ch = true ;
157 this . ECI = 0 ; this . ECI_ch

= true ;
158 this .ECGI = PLMN_ID + ECI ; this .

ECGI_ch = true ;
159 this .PDN_ID = " " ; this .

PDN_ID_ch = true ;
160 this . EPS_bearer = 0 ; this .

EPS_bearer_ch = true ;
161 this . E_RA_bearer = 0 ; this .

E_RA_bearer_ch = true ;
162 this . DR_bearer = 0 ; this .

DR_bearer_ch = true ;
163 this .S1_TEID_UL = 0 ; this .

S1_TEID_UL_ch = true ;
164 this .S1_TEID_DL = 0 ; this .

S1_TEID_DL_ch = true ;
165 this .S5_TEID_UL = 0 ; this .

S5_TEID_UL_ch = true ;
166 this .S5_TEID_DL = 0 ; this .

S5_TEID_DL_ch = true ;

6

167 this .K_ASME = " " ; this .
K_ASME_ch = true ;

168 this .K_ENB = " " ; this .
K_ENB_ch = true ;

169 this .K_RRCint = " " ; this .
K_RRCint_ch = true ;

170 this .K_RRCenc = " " ; this .
K_RRCenc_ch = true ;

171 this .K_UPenc = " " ; this .
K_UPenc_ch = true ;

172 this . master_ch = true ;
173 }
174
175 public void S1_re lease () {
176 this . s t a tu s = 3 ; /∗ I d l e ∗/ this .

status_ch = true ;
177 this .C_RNTI = 0 ; this .

C_RNTI_ch = true ;
178 this .eNB_UE_S1AP = 0 ; this .

eNB_UE_S1AP_ch = true ;
179 this .MME_UE_S1AP = 0 ; this .

MME_YE_S1AP_ch = true ;
180 this . ECI = 0 ; this . ECI_ch

= true ;
181 this .ECGI = PLMN_ID + ECI ; this .

ECGI_ch = true ;
182 this . DR_bearer = 0 ; this .

DR_bearer_ch = true ;
183 this .S1_TEID_DL = 0 ; this .

S1_TEID_DL_ch = true ;
184 this .K_ENB = " " ; this .

K_ENB_ch = true ;
185 this .K_RRCint = " " ; this .

K_RRCint_ch = true ;
186 this .K_RRCenc = " " ; this .

K_RRCenc_ch = true ;
187 this .K_UPenc = " " ; this .

K_UPenc_ch = true ;
188 this . master_ch = true ;
189 }
190
191 public void s e rv i c e_reque s t () {
192 Random rand = new Random() ;
193 this . s t a tu s = 2 ; /∗ Act ive ∗/

this . status_ch = true ;
194 this .C_RNTI = (short) rand . next Int (Short .MAX_VALUE − 1) ;

this .C_RNTI_ch = true ;
195 this .eNB_UE_S1AP = rand . next Int () ;

this . eNB_UE_S1AP_ch = true ;
196 this .MME_UE_S1AP = rand . next Int () ;

this .MME_YE_S1AP_ch = true ;
197 this . ECI = rand . next Int () ;

this . ECI_ch = true ;
198 this .ECGI = PLMN_ID + ECI ;

7

this . ECGI_ch = true ;
199 this . DR_bearer = (byte) rand . next Int (Byte .MAX_VALUE − 1) ;

this . DR_bearer_ch = true ;
200 this .S1_TEID_DL = rand . next Int () ;

this . S1_TEID_DL_ch = true ;
201 this .K_ENB = randomString (16 , rand) ;

this .K_ENB_ch = true ;
202 this .K_RRCint = randomString (16 , rand) ;

this .K_RRCint_ch = true ;
203 this .K_RRCenc = randomString (16 , rand) ;

this .K_RRCenc_ch = true ;
204 this .K_UPenc = randomString (16 , rand) ;

this .K_UPenc_ch = true ;
205 this . master_ch = true ;
206 }
207
208 public void tracking_area_update () {
209 Random rand = new Random() ;
210 this .M_TMSI = rand . next Int () ; this .M_TMSI_ch =

true ;
211 this .GUTI = GUMMEI + M_TMSI; this .GUTI_ch = true ;
212 this . TIN = GUTI; this . TIN_ch = true ;
213 this . TAI = rand . next Int () ; this . TAI_ch = true ;
214 this . TAI_list = new ArrayList <>() ; this . TAI_list_ch =

true ;
215 for (int i = 0 ; i < TAI_SIZE ; i++) { TAI_list . add (rand .

next Int ()) ; }
216 this . master_ch = true ;
217 }
218
219 public void handover () {
220 // in in tra −LTE the in format ion e n t i t e s are the same as in

X2 handover . T
221 // This i s a mockup , as in the deployment scenar io we

env i s i on the r e to be no need f o r t h i s .
222 Random rand = new Random() ;
223 this .S1_TEID_DL = rand . next Int () ;

this . S1_TEID_DL_ch = true ;
224 this . DR_bearer = (byte) rand . next Int (Byte .MAX_VALUE − 1) ;

this . DR_bearer_ch = true ;
225 this . ECI = rand . next Int () ;

this . ECI_ch = true ;
226 this .ECGI = PLMN_ID + ECI ;

this . ECGI_ch = true ;
227 this .C_RNTI = (short) rand . next Int (Short .MAX_VALUE − 1) ;

this .C_RNTI_ch = true ;
228 this .eNB_UE_S1AP = rand . next Int () ;

this . eNB_UE_S1AP_ch = true ;
229 this .K_ENB = randomString (16 , rand) ;

this .K_ENB_ch = true ;
230 this .K_RRCint = randomString (16 , rand) ;

this .K_RRCint_ch = true ;
231 this .K_RRCenc = randomString (16 , rand) ;

this .K_RRCenc_ch = true ;

8

232 this .K_UPenc = randomString (16 , rand) ;
this .K_UPenc_ch = true ;

233 this . master_ch = true ;
234 }
235
236 public void session_management () {
237 // we mock a s e s s i o n management ac t by changing the EPS, S1

and S5 TEID f o r c r e a t i o n o f new beare r s .
238 Random rand = new Random() ;
239 this . EPS_bearer = (byte) rand . next Int (Byte .MAX_VALUE − 1) ;

this . EPS_bearer_ch = true ;
240 this .S1_TEID_UL = rand . next Int () ;

this . S1_TEID_UL_ch = true ;
241 this .S1_TEID_DL = rand . next Int () ;

this . S1_TEID_DL_ch = true ;
242 this .S5_TEID_UL = rand . next Int () ;

this . S5_TEID_UL_ch = true ;
243 this .S5_TEID_DL = rand . next Int () ;

this . S5_TEID_DL_ch = true ;
244 this . master_ch = true ;
245 }
246
247 public void c e l l _ r e s e l e c t () {
248 // noth ing happens .
249 }
250
251 public int getStatus () {
252 return this . s t a tu s ;
253 }
254
255 public St r ing getIMSI () { return this . IMSI ; }
256
257 private St r ing randomString (int chars , Random rand) {
258 St r ing s = " " ;
259 St r ing hexa = " 0123456789ABCDEF" ;
260 for (int i = 0 ; i < chars ; i++) {
261 s += hexa . charAt (rand . next Int (16)) ;
262 }
263 return s ;
264 }
265
266 // @Override
267 public boolean hasDelta () {
268 return master_ch ;
269 }
270
271 // @Override
272 public void toDelta (DataOutput out) throws IOException {
273 out . wr i teBoolean (status_ch) ; i f (status_ch) {

out . writeByte (s t a tu s) ; this . status_ch = fa l se ; }
274 out . wr i teBoolean (M_TMSI_ch) ; i f (M_TMSI_ch) {

out . w r i t e In t (M_TMSI) ; this .M_TMSI_ch = fa l se ; }
275 out . wr i teBoolean (GUTI_ch) ; i f (GUTI_ch) {

out . writeUTF(GUTI) ; this .GUTI_ch = fa l se ; }

9

276 out . wr i teBoolean (TIN_ch) ; i f (TIN_ch) {
out . writeUTF(TIN) ; this . TIN_ch = fa l se ; }

277 out . wr i teBoolean (IP_ch) ; i f (IP_ch) { out
. w r i t e In t (IP) ; this . IP_ch = fa l se ; }

278 out . wr i teBoolean (C_RNTI_ch) ; i f (C_RNTI_ch) {
out . wr i t eShort (C_RNTI) ; this .C_RNTI_ch = fa l se ; }

279 out . wr i teBoolean (eNB_UE_S1AP_ch) ; i f (
eNB_UE_S1AP_ch) { out . w r i t e In t (eNB_UE_S1AP) ; this .
eNB_UE_S1AP_ch = fa l se ; }

280 out . wr i teBoolean (MME_YE_S1AP_ch) ; i f (
MME_YE_S1AP_ch) { out . w r i t e In t (MME_UE_S1AP) ; this .
MME_YE_S1AP_ch = fa l se ; }

281 out . wr i teBoolean (OLD_eNB_UE_X2_ch) ; i f (
OLD_eNB_UE_X2_ch) { out . w r i t e In t (OLD_eNB_UE_X2) ; this .
OLD_eNB_UE_X2_ch = fa l se ; }

282 out . wr i teBoolean (NEW_eNB_UE_X2_ch) ; i f (
NEW_eNB_UE_X2_ch) { out . w r i t e In t (NEW_eNB_UE_X2) ; this .
NEW_eNB_UE_X2_ch = fa l se ; }

283 out . wr i teBoolean (ECI_ch) ; i f (ECI_ch) {
out . w r i t e In t (ECI) ; this . ECI_ch = fa l se ; }

284 out . wr i teBoolean (ECGI_ch) ; i f (ECGI_ch) {
out . writeUTF(ECGI) ; this . ECGI_ch = fa l se ; }

285 out . wr i teBoolean (TAI_ch) ; i f (TAI_ch) {
out . w r i t e In t (TAI) ; this . TAI_ch = fa l se ; }

286 out . wr i teBoolean (TAI_list_ch) ; i f (TAI_list_ch)
{ out . w r i t e In t (TAI_list . s i z e ()) ; for (int TAI : TAI_list)

out . w r i t e In t (TAI) ; this . TAI_list_ch = fa l se ; }
287 out . wr i teBoolean (PDN_ID_ch) ; i f (PDN_ID_ch) {

out . writeUTF(PDN_ID) ; this .PDN_ID_ch = fa l se ; }
288 out . wr i teBoolean (EPS_bearer_ch) ; i f (

EPS_bearer_ch) { out . writeByte (EPS_bearer) ; this .
EPS_bearer_ch = fa l se ; }

289 out . wr i teBoolean (E_RA_bearer_ch) ; i f (
E_RA_bearer_ch) { out . writeByte (E_RA_bearer) ; this .
E_RA_bearer_ch = fa l se ; }

290 out . wr i teBoolean (DR_bearer_ch) ; i f (DR_bearer_ch
) { out . writeByte (DR_bearer) ; this . DR_bearer_ch = fa l se ;
}

291 out . wr i teBoolean (S1_TEID_DL_ch) ; i f (
S1_TEID_DL_ch) { out . w r i t e In t (S1_TEID_DL) ; this .
S1_TEID_DL_ch = fa l se ; }

292 out . wr i teBoolean (S1_TEID_UL_ch) ; i f (
S1_TEID_UL_ch) { out . w r i t e In t (S1_TEID_UL) ; this .
S1_TEID_UL_ch = fa l se ; }

293 out . wr i teBoolean (S5_TEID_DL_ch) ; i f (
S5_TEID_DL_ch) { out . w r i t e In t (S5_TEID_DL) ; this .
S5_TEID_DL_ch = fa l se ; }

294 out . wr i teBoolean (S5_TEID_UL_ch) ; i f (
S5_TEID_UL_ch) { out . w r i t e In t (S5_TEID_UL) ; this .
S5_TEID_UL_ch = fa l se ; }

295 out . wr i teBoolean (K_ASME_ch) ; i f (K_ASME_ch) {
out . writeUTF(K_ASME) ; this .K_ASME_ch = fa l se ; }

296 out . wr i teBoolean (K_ENB_ch) ; i f (K_ENB_ch) {
out . writeUTF(K_ENB) ; this .K_ENB_ch = fa l se ; }

10

297 out . wr i teBoolean (K_NASint_ch) ; i f (K_NASint_ch)
{ out . writeUTF(K_NASint) ; this . K_NASint_ch = fa l se ; }

298 out . wr i teBoolean (K_NASenc_ch) ; i f (K_NASenc_ch)
{ out . writeUTF(K_NASenc) ; this .K_NASenc_ch = fa l se ; }

299 out . wr i teBoolean (K_RRCint_ch) ; i f (K_RRCint_ch)
{ out . writeUTF(K_RRCint) ; this .K_RRCint_ch = fa l se ; }

300 out . wr i teBoolean (K_RRCenc_ch) ; i f (K_RRCenc_ch)
{ out . writeUTF(K_RRCenc) ; this .K_RRCenc_ch = fa l se ; }

301 out . wr i teBoolean (K_UPenc_ch) ; i f (K_UPenc_ch)
{ out . writeUTF(K_UPenc) ; this .K_UPenc_ch = fa l se ; }

302 this . master_ch = fa l se ;
303 }
304
305 // @Override
306 public void fromDelta (DataInput in) throws IOException ,

Inva l idDe l taExcept ion {
307 i f (in . readBoolean ()) this . s t a tu s = in . readByte () ;
308 i f (in . readBoolean ()) this .M_TMSI = in . readInt () ;
309 i f (in . readBoolean ()) this .GUTI = in . readUTF () ;
310 i f (in . readBoolean ()) this . TIN = in . readUTF () ;
311 i f (in . readBoolean ()) this . IP = in . r eadInt () ;
312 i f (in . readBoolean ()) this .C_RNTI = in . readShort () ;
313 i f (in . readBoolean ()) this .eNB_UE_S1AP = in . readInt () ;
314 i f (in . readBoolean ()) this .MME_UE_S1AP = in . readInt () ;
315 i f (in . readBoolean ()) this .OLD_eNB_UE_X2 = in . readInt () ;
316 i f (in . readBoolean ()) this .NEW_eNB_UE_X2 = in . readInt () ;
317 i f (in . readBoolean ()) this . ECI = in . r eadInt () ;
318 i f (in . readBoolean ()) this .ECGI = in . readUTF () ;
319 i f (in . readBoolean ()) this . TAI = in . r eadInt () ;
320 i f (in . readBoolean ()) {
321 int s i z e = in . r eadInt () ;
322 this . TAI_list = new ArrayList <>() ;
323 for (int i = 0 ; i < s i z e ; i++) this . TAI_list . add (in .

r eadInt ()) ;
324 }
325 i f (in . readBoolean ()) this .PDN_ID = in . readUTF () ;
326 i f (in . readBoolean ()) this . EPS_bearer = in . readByte () ;
327 i f (in . readBoolean ()) this . E_RA_bearer = in . readByte () ;
328 i f (in . readBoolean ()) this . DR_bearer = in . readByte () ;
329 i f (in . readBoolean ()) this .S1_TEID_DL = in . readInt () ;
330 i f (in . readBoolean ()) this .S1_TEID_UL = in . readInt () ;
331 i f (in . readBoolean ()) this .S5_TEID_DL = in . readInt () ;
332 i f (in . readBoolean ()) this .S5_TEID_UL = in . readInt () ;
333 i f (in . readBoolean ()) this .K_ASME = in . readUTF () ;
334 i f (in . readBoolean ()) this .K_ENB = in . readUTF () ;
335 i f (in . readBoolean ()) this . K_NASint = in . readUTF () ;
336 i f (in . readBoolean ()) this .K_NASenc = in . readUTF () ;
337 i f (in . readBoolean ()) this .K_RRCint = in . readUTF () ;
338 i f (in . readBoolean ()) this .K_RRCenc = in . readUTF () ;
339 i f (in . readBoolean ()) this .K_UPenc = in . readUTF () ;
340 }
341
342 }

11

	Abbreviations
	List of figures
	List of tables
	Introduction
	State of the art
	A global research community
	System Architecture Evolution
	Overview
	The edge: eNodeB
	The core: evolved packet core

	The Evolved Mobility Management scenario
	Initial attach
	Detach
	S1 release
	Service request
	Tracking area update
	Handover
	Cell reselection

	Summary

	Overview of important research topics
	Software defined networking
	Virtualised network functions
	Cloud radio access networks
	Mobile edge computing
	Massive multiple input multiple output
	Spectrum reuse and new new bands
	Full-duplex communication
	Wireless charging
	Self organising and cognitive networks
	Multipath Transmission Control Protocol
	Summary

	Coreless mobile networks
	Architecture of the network
	A shared, distributed data store
	High availability and consistency zoning
	Concerning the Evolved Mobility Management scenario
	Summary

	Related work in data storage solutions
	Distributing data storage
	Meeting the requirements

	Evaluation of a data store: Apache Geode
	Yahoo! cloud serving benchmark
	Yahoo! cloud serving benchmark architecture overview
	Benchmark implementation details

	Workload and cluster setup
	Defining the workload
	Apache Geode cluster topology

	Results
	Baseline
	Partitioned regions
	Replicated regions
	Programmatic combination: an example of high availability and consistency zoning
	Summary

	Comparisons

	Discussion
	Interpreting the results
	Scaling Apache Geode
	Update mechanisms: delta versus regular
	High availability and consistency zone implementations
	Reliability of reported latencies
	Accuracy of used traffic model

	Concluding remarks
	Contributions
	Future work

	References
	LTEworkload
	UE.java

