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ABSTRACT
Motivation: When targeted to a barcoding region, high-throughput
sequencing can be used to identify species or operational
taxonomical units from environmental samples, and thus to study
the diversity and structure of species communities. Although there
are many methods which provide confidence scores for assigning
taxonomic affiliations, it is not straightforward to translate these
values to unbiased probabilities. We present a probabilistic method
for taxonomical classification (PROTAX) of DNA sequences. Given a
pre-defined taxonomical tree structure that is partially populated by
reference sequences, PROTAX decomposes the probability of one
to the set of all possible outcomes. PROTAX accounts for species
that are present in the taxonomy but that do not have reference
sequences, the possibility of unknown taxonomical units, as well as
mislabeled reference sequences. PROTAX is based on a statistical
multinomial regression model, and it can utilize any kind of sequence
similarity measures or the outputs of other classifiers as predictors.
Results: We demonstrate the performance of PROTAX by using
as predictors the output from BLAST, the phylogenetic classification
software TIPP, and the RDP classifier. We show that PROTAX
improves the predictions of the baseline implementations of TIPP
and RDP classifiers, and that it is able to combine complementary
information provided by BLAST and TIPP, resulting in accurate and
unbiased classifications even with very challenging cases such as
50% mislabeling of reference sequences.
Availability: Perl/R implementation of PROTAX is available at
http://www.helsinki.fi/science/metapop/Software.htm.
Contact: panu.somervuo@helsinki.fi
Supplementary Information: Supplement is available at Bioinformatics
online.

1 INTRODUCTION
DNA barcoding has gained much interest in recent years, the
Barcode of Life project (Sarkar and Trizna, 2011) being the most
widespread endeavour in this field. The great promise of barcoding
approaches is that in principle any organism can be identified from
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a tissue (or other biological) sample. To be effective and practical,
barcoding genes should have sufficient variation between species,
but limited variation within species, to provide the necessary signal
for species-level identification. Commonly used barcoding genes
include COI in animals, ITS in fungi, and rbcL as well as matK
in plants (Hebert et al., 2003; Schoch et al., 2012; Hollingsworth
et al., 2009). Barcoding approaches are particularly powerful when
combined with next-generation sequencing (NGS) methods, which
can be used to produce massive amounts of sequence data from
environmental samples (Wall et al., 2009). That way, entire species
communities can be profiled for taxonomic affiliations.

Two contrasting, although not mutually exclusive approaches
have been applied to analyze the environmental sequence data.
First, a number of approaches have focused on classifying samples
into operational taxonomic units (OTUs), which can be done in
the absence of a well-resolved taxonomy and reference sequence
database. The OTU approach is especially prevalent in studies
on bacteria and other micro-organisms (Hao et al., 2011). The
complementary problem, which we address here, and which
underlies the Barcode of Life project, is the case where a sequence
reference database and an established taxonomy are available. Here
the problem lies in classifying the environmental sequences with
respect to an existing taxonomy. In popular software packages like
MOTHUR (Schloss et al., 2009) and QIIME (Caporaso et al., 2010),
it is possible to carry out both the clustering and the taxonomic
classification.

Several methods exist for assigning taxonomic labels to sequence
data. MEGAN (Huson et al., 2007) classifies sequences according
to the lowest common ancestor (LCA) node of BLAST hits. BLAST
is also used in MetaPhlAn (Segata et al., 2012). There are fast
alternatives for BLAST, e.g. LAST (Kielbasa et al., 2011) which
is based on suffix array and used in Taxator-tk (Dröge et al., 2015).
PhymmBL (Brady and Salzberg, 2009) is based on the combination
of BLAST and interpolated Markov models and mOTU (Sunagawa
et al., 2013) utilizes hidden Markov models (Eddy, 2011). Another
set of tools uses methods from phylogenetics, e.g. TIPP (Nguyen
et al., 2014) is based on a phylogenetic placement algorithm. The
commonly used RDP classifier (Wang et al., 2007) is based on naı̈ve
Bayes classifier (NBC) which uses the 8-mer decomposition of a
sequence. MyTaxa (Luo et al., 2014) allows the use of multiple
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markers simultaneously and Kraken (Wood and Salzberg, 2014)
and CLARK (Ounit et al., 2015) can utilize full-length genome
sequences.

Existing classification methods give good results if the target
classes are well represented with adequate training data (Austerlitz
et al., 2009; Bazinet and Cummings., 2012), but it has remained
difficult to account for taxonomic units without reference sequences
(Ross et al., 2008). Another typical practical problem is the presence
of mislabeled training data, which the present methods to our
knowledge fail to properly account for.

With any method of sequence classification, a central question
concerns the reliability of the classification. To move from sequence
similarity to a more objective measure of the reliability of species
identification, it is desirable to estimate the set of probabilities
by which the query sequence represents the possible candidate
species or higher taxonomical units. In our past work (Ovaskainen
et al., 2010), we developed a statistical model that estimates the
probability by which the best matching reference sequence (for
instance, based on a BLAST search) represents the true species. In
this paper, we develop our previous approach into a general tool for
probabilistic taxonomic classification, called PROTAX. PROTAX
utilizes a reference sequence database and a taxonomic tree structure
to estimate the probability with which an environmental sample can
be placed in a given taxon. Outcomes of the classification include
not only the species for which reference sequences are available,
but also species for which no reference sequences are available, as
well as species – or higher taxonomic units – that are not known
to science in the sense that they are missing from the taxonomy.
PROTAX accounts for the possibility that some of the reference
sequences are mislabeled, a complication often present with real
data.

PROTAX is based on a Bayesian multinomial regression model
and it can use as predictors any kind of covariates, in particular
any kind of sequence similarity measures. In this paper we present
the general statistical framework and illustrate the use of PROTAX
in the context of classifying amplicon sequencing data based on
covariates generated by BLAST sequence similarity and the TIPP
and RDP classifiers, as well as a combination of BLAST and TIPP.
We illustrate with simulated data that PROTAX is able to perform
taxonomical classification in an accurate and unbiased manner. In
particular, we show how PROTAX can improve the classification
accuracies of TIPP and RDP classifiers and remove the bias that they
in some cases have for the estimates of classification uncertainty. We
then apply PROTAX to a fungal case study, illustrating the relevance
and generality of the results obtained for simulated data.

2 METHODS
Concerning the overall workflow of the PROTAX pipeline shown in
Fig. 1, the input files consist of the sequence data to be identified,
the taxonomy against which the sequence data are to be identified,
and the reference sequence database that populates at least part of
the taxonomy. The output file is the classification of the sequence
data, in the fullest version the vector of probabilities of all possible
outcomes for each query sequence.

The taxonomy is viewed as a tree structure in which the leaves
correspond to species, and the other nodes to higher taxonomical
levels such as genera and families. The taxonomy represents the

set of known species and their assumed phylogenetic relationships,
and it includes also those species for which no reference sequences
are available. PROTAX accounts for the possibility of missing
taxonomical levels, i.e. that some branches of the tree may be
missing at any of the levels, due to not-yet-discovered taxonomical
units. The reference sequence data are associated to leaves or higher-
level nodes of the taxonomy, depending whether they have been
identified to the species-level or say, the genus-level only. PROTAX
estimates the fraction of the reference sequences that are mislabeled,
and accounts for it when performing classifications. This is relevant,
as the mislabeling rate can be high in some species groups. For
example, in fungi it is estimated to be more than 10%, e.g. due to the
fruit body from which the sample is derived being misidentified, the
sample being contaminated, or other such problems (Nilsson et al.,
2012).

Taxonomy Reference
sequences

Sequence
data to be
identified

Sequence
classificationmodel

Parameterized
training data

Generation of

parameterization
Model

Predictors
Sequence data with

taxonomic labels
and their reliabilitiesN21

Fig. 1. Flowchart of PROTAX pipeline. PROTAX combines information
of user-defined predictors which can be sequence similarities e.g. based on
BLAST, or outputs of existing classifiers such as TIPP or NBC.

2.1 Modeling the probability of placement to a given
taxonomical level

The aim of PROTAX is to partition the probability of species
identity to all logical outcomes that can be derived from the
taxonomical tree: species present in the taxonomy (with or without
reference sequences), unknown species belonging to one of the
levels of the taxonomy (e.g. an unknown species belonging to a
known genus, or an unknown species belonging to an unknown
genus that belongs to a known family). The collection of all these
cases forms the set of outcomes, for each of which PROTAX
estimates a probability, in such a way that the probabilities sum to
one. If the query sequence can be classified with high certainty, one
of these probabilities will be close to one. If there remains a high
level of uncertainty, even the highest probability may be close to
zero.

The algorithm works in a hierarchical manner from the root of the
tree towards the leaves. As illustrated in Fig. 2, at any given node z,
the task is to decompose the probability assigned to that node to the
known branches and the possible unknown branches. The number of
missing branches is unknown in reality. We denote the expectation
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for the number of missing branches under the node z by uz . Expert
knowledge about which parts of the taxonomy are likely to be more
complete than others can be used to estimate uz . In the absence of
such information, we may simply set uz = 1 for all nodes, as we do
in the rest of this paper.

We denote the levels of the nodes by l = 1, 2, . . . , L, so that for
example the levels l = 1, 2, 3 could correspond to family, genera
and species, respectively. Assume that the node z at level l has nz

known branches. Conditional on the query sequence belonging to
the node z, we aim to decompose the unit probability into 1 + nz

parts, out of which the first one (i = 0) corresponds to the possibility
that the species belongs to an unknown branch, and the remaining
(i = 1, 2, . . . , nz) parts to the known branches. We denote by Yz the
random variable indicating to which of the branches the sequence
belongs. We model Yz by the multinomial regression model

P (Yz = i) =
wzi exp(

∑m
j=1X

z
ijβ

z
j )∑nz

i=0 wzi exp(
∑m

j=1X
z
ijβ

z
j )
. (1)

Here βz
j denotes the regression coefficient associated to predictor

j = 1, . . . ,m at node z. The matrix Xz is the (1 + nz) × m
design matrix which includes m predictors that are used to guide
the classification algorithm. In principle any predictors that are
informative for the classification purpose can be used. The weights
wzi are set to wzi = uz for i = 0 and otherwise to wzi = 1.

While in the more general model the values of the regression
coefficients βz

j can be node-specific, we make here the simplifying
assumption that they are constant within each level, and thus we
denote them henceforth by βl

j , with j = 1, . . . ,m, with l ranging
across the levels present in the tree. Thus, the parameters β1

j guide
the classification from the root level to the lowest taxonomical level
present in the taxonomy, and finally the parameters βL

j guide the
classification from the genus level to the species level. In the more
general model also the numberm can be node- or level-specific, but
here we assume that it is same for all nodes and levels.

To account for the possibility that the reference sequences can
be misidentified, we denote by I(s) the identity of the true species
behind the sequence s, and by I∗(s) the species identity that is
assigned to the sequence. For any species identity I , we denote by
Y (I) the outcome corresponding to the species identity, so that, e.g.
Y = (2, 1, 3), stands for family 2, genus 1 within that family, and
species 3 within that genus. For another example, Y = (2, 0, 0)
stands for family 2, unknown genus within that family, which
implies that also the species within that genus is unknown.

Given a query sequence s, the probability that the observed
outcome Y (I∗(s)) is the outcome y is

P (Y (I∗(s)) = y|β, q) = qP (Y (I∗(s)) = y)

+ (1− q)P (Y (I∗(s)) = y|β, I∗(s) = I(s)) . (2)

Here q is the probability that the training sequence is misidentified
and P (Y = y) is the prior probability of the outcome y.
The probability P (Y (I∗(s)) = y|β, I∗(s) = I(s)) is given by the
product of the multinomial probabilities (Eq. 1) over the relevant
levels.

We fitted the model to training data (see below) with Bayesian
inference, the parameters to be estimated being the level-specific
regression coefficients βl

j and the mislabeling probability q. We
assigned for each of the regression coefficients the essentially

uninformative N(0, 1002) prior, and used the same prior also for
the logit-transformed probability q. As described in the Supplement,
we fitted the model using the Metropolis algorithm, with normally
distributed proposal distributions adjusted adaptively during the
burn-in.
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Fig. 2. Visualization of how PROTAX decomposes the probabilities of
taxonomic placement among different possibilities. We consider here
classification of one level only, e.g. from a given genus to the underlying
species. Nodes A, B, and C represent three known species of this genus
and “unknown” represents possible unknown species within this genus. We
assume that species A and B have reference sequences whereas species C
does not have. Classification probabilities are shown for an input sequence
as a function of the sequence similarity (value between 0 and 100%) for
species A (x-axis) and species B (y-axis). In this example, the design matrix
is X = ((0, 0, 0), (0, 1,simA), (0, 1,simB), (1, 0, 0)), where the rows
correspond to the nodes “unknown”, A, B, and C, respectively, and simA
and simB are the sequence similarities between the query and reference
sequences. In this numerical example, we have assumed the parameter
values β = (0.1,−2, 8). In applications, this parameter vector is estimated
based on training data (see main text). To simplify the illustration, we
have summed here the probabilities of the unknown node and the species
C without reference sequences.

2.2 Model parameterization
As the first example, denoted by PROTAX(BLAST), we construct
the predictors using BLAST sequence similarity, with four
predictors (m = 4). We set the case of a missing branch as the
reference level, and thus the first row (i = 0) of the design matrix to
(0, 0, 0, 0). The subsequent nz rows of the design matrix model the
probability of the species belonging to each of the known branches.
If the branch does not contain any sequence data, the row of the
design matrix is set to (1, 0, 0, 0), and thus the regression coefficient
βl
1 models the probability (relative to a missing branch) that the
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species belongs to a node that is included in the taxonomy but for
which no reference sequences are available. For branches for which
one or more reference sequences are available, the row of the design
matrix is set to (0, 1, s1, s2), where s1 and s2 are respectively
the mean and the maximal sequence similarity between the query
sequence and a representative subset (see Supplementary material)
of reference sequences under the node. The mean s1 is first averaged
over the sequences for each species, then over the species within
each genus, and so on, always averaging over all units for which
at least one sequence is available. Thus the regression coefficients
βl
2, βl

3, and βl
4 model the probability by which the query sequence

belongs to a node with reference sequences with a given mean and
maximal similarity. The reason for including not only maximal
similarity but also mean similarity is that the latter is expected to
be more robust to mislabeling error.

As the second example, denoted by PROTAX(TIPP), we
construct the predictors using the classification provided by TIPP,
with three predictors (m = 3). In this case the first row (i = 0) of
the design matrix is (0, 0, 0), and rows for branches not containing
sequence data are set to (1, 0, 0). The remaining rows are (0, 1, s3),
where s3 = logit(ε+(1−2ε)p), where p is the probability predicted
by TIPP, logit(p) = log(p/(1− p)), and we have set the parameter
ε = 0.001 to avoid singular cases related to classifications with
p = 0 and p = 1. Similarly as with PROTAX(TIPP), we also
construct the predictors for the output of RDP classifier.

As a fourth example, denoted by PROTAX(BLAST+TIPP), we
utilize the predictors s1, s2, and s3 for nodes with reference
sequences, thus ending up to a model with five predictors (m = 5).

2.3 Generation of training data
As PROTAX aims to estimate the probabilities of all possible
outcomes for query sequences derived from environmental data,
the training data should be constructed in such a way that they
represent the expected species diversity in the environmental data.
In the context of Bayesian analysis, information about the expected
species diversity can be incorporated as a prior. The prior is
constructed by listing all the possible outcomes associated with
the taxonomical tree, and giving each outcome a prior probability.
Training data can then be generated by first randomizing the
desired outcome from the prior, and then generating data that
mimic the chosen outcome (see below). The prior that we assume
here corresponds to the assumption that it is equally likely that
the environmental sequence belongs to any node at each level,
including the possibility of an unknown branch. Thus, if the
taxonomy involves e.g. two genera in a given family, we assume
that conditionally on the species belonging to this family, it belongs
to either genera with probability 1/3, and to an unknown genus
under this family with the remaining probability 1/3. Applying this
algorithm recursively generates prior probabilities for each possible
outcome, and these prior probabilities sum to unity.

Ideal training data would consist of sequences that would
represent all outcomes and that would be independent of the
sequences present in the reference database. While such sequences
could be generated in a simulation study, they will not be available
with real data (e.g. sequences that represent species unknown
to science, or sequences that represent known species without
reference sequences). Thus, we attempt to mimic ideal training
data as closely as possible. Exactly how this is done depends on

the nature of the outcome to be mimicked, for which there are the
following three possibilities.

The outcome is a known species with at least one reference
sequence available. In this case ideal training data would be an
additional query sequence of that species. If the species has at least
two reference sequences, we used a randomly selected sequence as
the query sequence, and left the other sequences to the reference
database. If the species has only one sequence, it is not possible
to generate training data for that particular species, as no reference
sequences would remain available after taking the only sequence
as the query sequence. In this case we generated training data for
another outcome, which is as similar as possible to the originally
chosen one, but for which the required data are available. This other
outcome is the node which has the smallest taxonomic distance to
the original node and which is on the same taxonomic level as the
original node.

The outcome is a known species with no reference sequences
available. In this case ideal training data would be a test sequence
for the chosen species. As such data do not exist, we selected
another species which had at least one reference sequence and
was as related to the original species as possible, following the
recursive algorithm described above. We randomly selected one of
the reference sequences as the query sequence, and removed all the
other reference sequences for that species to mimic the situation
where no reference sequences would be available.

The outcome is an unknown branch of a given node. In
this case ideal training data would be a sequence for a randomly
selected species under that node. As such data are not available,
we mimicked such a situation as follows: if the node had any
branches with sequences, we selected randomly one of those
branches, proceeded to a randomly selected species with at least
one sequence, and selected randomly one of the sequences as the
query sequence. We then removed the entire branch under the node
to generate training data mimicking the case of a missing branch.
If the originally chosen node had no branches with sequences, we
generated training data for another node, which was at the same
level as the originally chosen node (e.g. both representing genera)
and as related to the original node as possible (in the sense of the
recursive algorithm as described above), and which had the required
data.

2.4 Evaluating the performance of the algorithm with
simulated data

We evaluated the performance of the algorithm with the help of
simulated data, including taxonomies, reference sequences and
validation sequences. We assumed that the taxonomy consists of two
levels, called here genus and species. We thus consider classification
within a single family, and assume that in the underlying reality it is
split to 10 genera, each of which is split to 10 species, thus yielding
100 species together. We model barcoding sequences by strings
consisting of 300 nucleotides (A, C, T or G). We first generated an
”ancestral sequence” to the root level by assigning each nucleotide
randomly to one of the four possibilities. We generated a mutated
sequence for each genus by assuming that each nucleotide mutates
to a random one with probability ε1. Similarly, we generated a
sequence for each species by mutating each nucleotide of the genus-
level sequence with probability ε2. Finally, to generate multiple
sequences for each species, we mutated the nucleotides of the
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species-level sequences with probability ε3. The first 50 nucleotides
were assumed to form a conserved region, and they were thus kept
identical for all sequences.

We tested the algorithm with eight case studies summarized in
Supplement Table 1. Case 1 was chosen as an easy starting point in
which sequence identification should be successful to the species
level. In this case, we assume that all species were known to
science and thus included in the taxonomy, and that 4 sequences
were available for all species, and that none of the sequences
were mislabeled. The levels of sequence dissimilarity were set
to ε1 = 0.05, ε2 = 0.02, ε3 = 0.01, and thus we assumed
larger differences among genera than among species within a genus,
and larger differences among species within a genus than among
individuals within a species.

The remaining cases are derived from Case 1 by changing some of
the parameters. In Case 2 we made the classification more difficult
by setting ε1 = ε2 = ε3 = 0.01, and thus having only small
differences among genera and species. Case 3 is otherwise identical
to Case 1, but reference sequences are available only for the fraction
p = 0.5 of all species. Cases 4 and 5 differ from Case 3 in that we
assume that 20% (q = 0.2) or 50% (q = 0.5) of the sequences are
mislabeled, respectively. Case 6 differs from Case 3 in that only 7
out of the 10 genera are assumed to be known to science, and that
within each known genus only 7 out of the 10 species are assumed to
be known to science. Thus in this case the taxonomy file consists of
49 species while the underlying reality still consists of the full set of
100 species. Case 7 is otherwise as Case 3 but the level of sequence
similarity is assumed to vary within the taxonomical tree: when
generating the mutations for a given node at level l, we randomized
the level of sequence dissimilarity using a uniform distribution in
the range (0, 2εl), so that the mean mutation probability is εl. The
motivation for this case is that while such variation in sequence
similarity is present in real taxonomies, the statistical model ignores
it. Finally, Case 8 combines the aspects of Case 4 (mislabeled
reference sequences), Case 6 (incomplete taxonomy), and Case 7
(heterogeneity in levels of sequence similarity) that are expected to
make taxonomic classification difficult in the case of real data.

For each of these eight cases, we simulated 5 independent
replicates of the taxonomy and the reference database, as well
as 100 independent validation sequences, one for each species.
We generated training data with 1,000 data points for each of the
four PROTAX models (BLAST, TIPP, RDP classifier, and BLAST
+ TIPP), and used the MAP (maximum a posterior) parameter
estimate for classification. We performed a full classification of
the validation sequences by decomposing the probability of one
among all possible outcomes of the taxonomic tree. We selected
the outcome with the highest probability, and examined if it was
the correct one, i.e. if it matched with the species behind the
generated validation sequence. We assessed the accuracy and bias of
the classifications by plotting the cumulative predicted probabilities
against the cumulative number of cases in which the outcome with
the highest probability was correct. Concerning a possible bias,
if an outcome is assigned e.g. the probability 0.9, it should be
correct in 90% of the cases and wrong in 10% of the cases. If
in reality the answer would be correct, say in 50% or in 99% of
the cases, the assessment of classification reliability is biased. An
unbiased classification is accurate if it assigns high probabilities
to some outcomes and low to others, while it is not accurate if it
assigns equally low probabilities for all outcomes. For example, if

the algorithm would return just the prior probabilities, it would be
unbiased, but not accurate.

While we predicted the probabilities separately for each possible
outcome, we pooled some of them before comparing to the
true species identity in the validation data. The reason here is
that if a genus has several species with no reference sequences,
the classification probabilities for these outcomes are necessarily
identical. Thus we summed these to obtain a single probability
for the outcome being any species within a particular genus with
no reference sequences. Further, we added to this prediction the
probability of the sequence belonging to an unknown species of
that genus, and thus the pooled outcome was ”an unknown species
within this genus, or one of the species in this genus without
reference sequences”.

To compare the performance of the PROTAX models with the
baseline implementations of the TIPP and RDP classifiers, we
performed sequence classification with these (without the PROTAX
extension) and assessed the bias and accuracy in the same way as
we did for the PROTAX models.

2.5 Singling out mislabeled reference sequences
In addition to identifying environmental sequences (mimicked
above by the validation sequences), the fitted model can be used to
single out mislabeled reference sequences by treating the reference
sequences as test sequences, and by comparing the probabilities of
the outcomes to the species label. While making such predictions,
the sequence to be classified is removed from the set of reference
sequences to avoid circular results due to the 100% match to itself.

We considered a reference sequence as inconsistent if the model
predicted a wrong genus with high confidence. To be conservative,
we required the probability of the most likely classification to be
at least 100 times the probability of the outcome corresponding to
the species label. We examined how well this heuristic approach
performed by counting the fraction of truly mislabeled sequences
that were classified as inconsistent (in the optimal case this would
be one), as well as the fraction of correctly labeled sequences that
were classified as inconsistent (in the optimal case this would be
zero). We did this test for the three PROTAX models as well as the
baseline TIPP model.

2.6 Case study of Polyporales of Finland
For the evaluation of the method with real data, we used a database
consisting of ITS sequences of all Polyporales (one fungal order)
species of Finland available through UNITE (Kōljalg et al., 2013).
We used a two-level taxonomy consisting of the genus and species
levels. Our database involves 265 known species in 75 genera,
and 336 ITS sequences that belong to 162 species in 58 genera.
Sequence lengths vary between 502 and 972 bp, mean length being
688 bp. In addition to 103 species without any reference sequences,
more than half (89/162) of the species with sequence information
contained only one reference sequence. We computed pairwise
sequence similarities with BLAST, as detailed in the Supplement.

Unlike with simulated data, with real data there are no validation
sequences for which the species identity would be known with full
certainty. Thus, we tested the performance of the fitted model by
identifying each of the reference sequences against the database
from which the focal sequence was excluded. We then assessed the
performance of the model like we did with simulated data, with the
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Case 8

PROTAX(BLAST+TIPP) PROTAX(BLAST) PROTAX(TIPP) PROTAX(RDP classifier) TIPP RDP classifier

Fig. 3. Accuracy and bias of sequence identification by different versions of PROTAX in comparison to the baseline TIPP and RDP classifiers. The black
lines show a cumulative plot for the predicted probabilities of the best outcome (x-axis) and the correctness of the prediction (y-axis). The grey lines show
the identity line. The model-predicted probabilities are unbiased if the black lines follow the identity line, and they are the more accurate the longer the black
lines are. The panels show the results for the Cases 1-8 (see Supplementary Table 1). Each black line is the summary of five individual test runs. Results from
individual runs are shown in Supplement.

assumption that the query sequences were not mislabeled. Thus, our
assessments of the model’s identification success are likely to be
conservative. We compared the performances between TIPP, RDP
classifier, and the four versions of PROTAX as with simulated data.
In addition, we constructed PROTAX for the full combination where
BLAST, TIPP, and RDP classifier were used as predictors in the
same model.

3 RESULTS
3.1 Simulated data
The performance of PROTAX against the simulated case studies is
shown in Fig. 3. As expected, in Case 1 all algorithms resulted in
almost perfect classifications, which are both accurate (cumulative
probability close to 100%) and unbiased (the lines depicting the
relationship between predicted and true identities fall very close to
the identity line). In other words, all algorithms assigned in almost
all cases a very high probability to only one of the outcomes, and in
almost all cases this outcome was the correct one.

Making the test case more challenging decreased the accuracy,
and in some cases introduced a bias in the predictions (Fig. 3).
The presence of species without reference sequences (Case 3 vs.
Case 1) as well as the presence of species not included in the
taxonomy (Case 6 vs. Case 3) made the baseline TIPP algorithm

produce conservative estimates of the identification probabilities.
The PROTAX extension of TIPP corrected the bias on identification
uncertainty, and also improved the accuracy of the identifications.
However, the presence of 50% mislabeling (Case 5 vs. Case 3)
made the predictions of TIPP and RDP classifier overconfident,
which bias PROTAX was able to correct for on average (Fig. 3)
but not within the individual replicates (Supplement Figs. 2 and
4). In contrast, PROTAX(BLAST) provided essentially unbiased
estimates for all cases studied here.

Interestingly, PROTAX(BLAST) performed better in some
cases, whereas PROTAX(TIPP) performed better in other cases.
In particular, BLAST was a better predictor in the presence
of mislabeling, whereas TIPP was a better predictor in the
presence of heterogeneity in sequence similarity. The latter
result is to be expected, as the phylogenetic model behind
TIPP does not assume that the realized level of mutations is
identical among the branches. The fact that BLAST and TIPP
carry different kinds of information suggests that together they
should perform better than either method in isolation. This was
indeed the case: PROTAX(BLAST+TIPP) performed at least
equally well as PROTAX(BLAST), PROTAX(TIPP), or the baseline
implementation of TIPP in all the cases studied. Quite unexpectedly,
even in the very challenging Case 5, where 50% of the reference
sequences were mislabeled, PROTAX(BLAST+TIPP) was able to
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Fig. 4. a) Accuracy and bias of sequence identification by different versions
of PROTAX, TIPP, and RDP classifier for 336 fungal ITS sequences. For
262 sequences, the best outcome of PROTAX(BLAST+TIPP) was a species
with reference sequences. b) Histogram of best outcome probabilities from
PROTAX(BLAST+TIPP).

correctly classify 87% of the validation sequences, and its estimates
of identification uncertainty were essentially unbiased (Fig. 3).

The PROTAX models which included BLAST as a predictor were
able to estimate the mislabeling probability with good accuracy
in Cases 4 and 8 with q = 0.2 as well as in Case 5 with
q = 0.5 (Supplement Fig. 7). In contrast, the way in which the
statistical model accounts for mislabeling was not compatible with
the predictive information provided by TIPP, as e.g. with q =
0.5 PROTAX(TIPP) tended to estimate the mislabeling probability
either to zero or to one.

All models were successful in assessing the great majority
of mislabeled sequences as unreliable and the great majority of
the correctly labeled sequences as reliable (Supplement Fig. 8).
The combined model PROTAX(BLAST+TIPP) worked the best
also in the task of singling out mislabeled reference sequences.
Interestingly, PROTAX(TIPP) was almost equally successful as
PROTAX(BLAST) in singling out mislabeled reference sequences
(Supplement Fig. 8) in spite of its poor ability to estimate
mislabeling probability (Supplement Fig. 7).

3.2 Case study of Polyporales of Finland
Results based on PROTAX, TIPP, and RDP classifier are shown in
Fig. 4. The conclusions are in concordance with the results from
the simulated data. PROTAX was able to correct the bias of the
TIPP and RDP classifiers, and the baseline correct classification
rate of 71% from TIPP and RDP classifiers increased to 80%
when combining BLAST and TIPP in the PROTAX model. Both
in terms of the classification accuracy and the smallest bias,
PROTAX(BLAST+TIPP) gave the best results. Including the output
of the RDP classifier to the combination of BLAST and TIPP did not
improve the results further, suggesting that TIPP and RDP classifier
did not yield complementary information.

4 DISCUSSION
In this paper, we have introduced PROTAX, a probabilistic
method for taxonomical classification. PROTAX converts sequence
similarities into unbiased taxon membership probabilities. It takes
into account uncertainties of both the taxonomy and the content

of the reference sequence database. We have demonstrated its use
in the context of fungal ITS amplicon sequencing, but the method
is general and can be used with any markers. In addition to DNA
sequences, it can be used also for classifying other types of data.

We emphasize that PROTAX can include any covariates in the
regression model and thus the examples presented in this paper
are demonstrations of only some possible choices. Besides using
pairwise sequence similarities as a proxy for taxon membership,
any node-sequence similarities can be used. As an example of this,
we used the node probability from TIPP and RDP classifier as a
covariate in PROTAX. Further, we note that the choice of using
the maximal and mean sequence similarities in PROTAX(BLAST)
is one choice among many possible sets converting sequence
similarity into PROTAX predictors. We believe that all higher-level
analyses, such as characterization of sample abundance profiles,
benefit if the first step of assigning a sequence read into a taxonomic
unit is done in a manner that enables reliable assessment of
identification uncertainty.

PROTAX provides a statistical model that can be used with
present classifiers or their combinations. It is not a new classifier
per se but it combines the information obtained from user defined
covariate sources. An important feature of PROTAX is that it gives
unbiased probabilities of taxonomic placement. Furthermore, it
explicitly models uncertainty related to missing data and missing
branches in the taxonomy which to our knowledge other classifiers
do not properly take into account.

In the experiments so far we have started with the simple
assumption that the set of explanatory variables are the same for
all nodes, and that the regression coefficients are specific to the
level l only, so that βz

j = β
l(z)
j , where l(z) is the level to which

node z belongs. The results have been satisfactory already with this
approach, but to account for sequence similarity variation between
taxonomical units at the same level (e.g. between genera), it would
be possible to model βz

j e.g. as a random effect with a multivariate
normal structure.

We provide Perl and R scripts for training the models and
using them for classification. Both speed and memory consumption
depend mainly on the choice of covariate sources. As an example,
we have constructed models for a large fungal ITS database with
75,000 reference sequences using a 6-level taxonomy with 130,000
species. For classifying 1,000 sequences using a single processor on
a standard Linux desktop, it took 40 seconds to calculate sequence
similarities using LAST (Kielbasa et al., 2011) and 104 seconds
to perform the taxonomic classification and output all nodes with
probabilities above 0.01. Memory consumption was 477Mb. When
classifying large amounts of sequences, speed and memory usage
can be improved by pre-clustering the data and applying a naive
parallelization of the algorithm.
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Supplement: Unbiased probabilistic taxonomic classification for DNA

barcoding

P. Somervuo, S. Koskela, J. Pennanen, R.H. Nilsson, O. Ovaskainen

1 Simulated data cases 1-8

Table 1: Simulated scenarios used to test the performance of the PROTAX algorithm. The table
describes for each of the Cases 1-8 the true number of branches within each level, the number of
branches that are assumed to be known in the taxonomy, the frequency of mutations when moving
from one level to the next one, variance in frequency of mutations, proportion of species for which
reference sequences are generated, and the assumed mislabeling probability. The number of sequences
per species was four in all cases.

Case

True
number of
branches

within each
level

Number of
branches

assumed to
be known

Frequency of
mutations when
moving from one
level to the next

one [ε1, ε2, ε3]

Variance
in fre-
quency

of muta-
tions

Proportion of
species for

which reference
sequences are

available

Mislabeling
probability

1 10 10 [0.05, 0.02, 0.01] no 1 0
2 10 10 [0.01, 0.01, 0.01] no 1 0
3 10 10 [0.05, 0.02, 0.01] no 0.5 0
4 10 10 [0.05, 0.02, 0.01] no 0.5 0.2
5 10 10 [0.05, 0.02, 0.01] no 0.5 0.5
6 10 7 [0.05, 0.02, 0.01] no 0.5 0
7 10 10 [0.05, 0.02, 0.01] yes 0.5 0
8 10 7 [0.05, 0.02, 0.01] yes 0.5 0.2

The following figures show accuracy and bias of sequence identification by different versions of
PROTAX, TIPP, and RDP classifier. The black lines show a cumulative plot for the predicted proba-
bilities of the best outcome (x-axis) and the correctness of the prediction (y-axis). The grey lines show
the identity line. The model-predicted probabilities are unbiased if the black lines follow the identity
line, and they are the more accurate the longer the black lines are. Each panel shows the results for
five replicate data sets. The panels show the results for the Cases 1-8 (see Table 1).
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Figure 1: Baseline TIPP.
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Figure 2: TIPP output as a covarite in PROTAX.

2



0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

cumulative probability

c
u

m
u

la
ti
v
e

 c
o

rr
e

c
t

RDP classifier

Case 1: correct = 100.0 %

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

cumulative probability
c
u

m
u

la
ti
v
e

 c
o

rr
e

c
t

RDP classifier

Case 2: correct = 92.8 %
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Case 7: correct = 61.2 %
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Figure 3: Baseline RDP classifier.
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Figure 4: RDP classifier output as a covariate in PROTAX.
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Figure 5: BLAST mean and max similarities as covariates in PROTAX.
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Figure 6: BLAST and TIPP as covariates in PROTAX.
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Figure 7: The ability of different PROTAX versions to estimate mislabeling probability. The circles
and the error bars show the posterior mean estimate and the 95% credibility interval for mislabeling
probability. The true mislabeling frequencies of the datasets are shown with the crosses. Results are
shown for 5 replicates of each Case (see Table 1).

5



C M C M C M C M C M C M C M C M

inconsistent

consistent

re
fe

re
n

c
e

 s
e

q
u

e
n

c
e

s
 %

0

20

40

60

80

100
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

PROTAX(BLAST)

C M C M C M C M C M C M C M C M

inconsistent

consistent

re
fe

re
n

c
e

 s
e

q
u

e
n

c
e

s
 %

0

20

40

60

80

100
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

TIPP

C M C M C M C M C M C M C M C M

inconsistent

consistent

re
fe

re
n

c
e

 s
e

q
u

e
n

c
e

s
 %

0

20

40

60

80

100
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

PROTAX(TIPP)

C M C M C M C M C M C M C M C M

inconsistent

consistent

re
fe

re
n

c
e

 s
e

q
u

e
n

c
e

s
 %

0

20

40

60

80

100
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

PROTAX(BLAST+TIPP)

Figure 8: The ability of different versions of PROTAX and TIPP to detect mislabeled reference
sequences. The numbers of reference sequences which are classified as consistent (grey) or inconsistent
(white) are shown for both correct (C) and mislabeled (M) reference sequences. Results are shown for
5 replicates of each Case (see Table 1).
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2 Selecting representative sequences

When using pairwise sequence similarities as a proxy for taxon membership, like e.g. in PRO-
TAX(BLAST), each node of the taxonomy is associated with the set of representative sequences.
Query sequence is compared against the representative sequences and the resulting similarities are
used as covariates in PROTAX. PROTAX works by dividing the probability of one starting from the
root node of the taxonomy and proceeding to higher level nodes until the node probability is below
a user-defined threshold (e.g. 1%). In order for this hierarchical process to produce meaningful class
predictions, intermediate sequence similarities should reflect the structure of the taxonomy so that the
probability is divided correctly for higher-level taxonomy nodes. The number of available reference
sequences may vary considerably between different branches of the taxonomy, which may bias the
similarity score. Therefore the selection process tries to balance the representation of each taxonomic
branch. The selection of representative sequences starts from the species level and proceeds to the
root. During this taxonomy tree traversal, the representative sequences of each node are selected
among the representative sequences of the present node’s child nodes.

In our software, there are three choices for selecting the representative sequences attached to each
taxon node:

1. use all reference sequences

2. pick random subset with user-defined maximum number

3. cluster the reference sequences with user-defined pairwise sequence similarity threshold

In the experiments with simulated data, the maximum number of representative sequences of each
node was set to 20. In the case study of Polyporales of Finland, representative reference sequences
attached to each node was limited to be 5 at the species level and 30 at the genus level. In both cases,
random sampling (choice 2) was used.

3 Large taxonomy with sparse data

Taxonomy with large number of nodes without reference sequences is the reality in many cases, e.g.
fungi where reference sequence data are available for less than 0.5% of the estimated 6 million extant
species. The central question is how reliably we can say that a new sequence belongs to a species with
existing reference data or whether it belongs to a species without any reference sequences. PROTAX
does this via its multinomial regression model whose parameters have been estimated based on the
given taxonomy and all its reference sequences. The sampled (node,sequence) pairs are used as training
data in parameter estimation. Due to the way data generation works as explained in the Methods
section of the main text, the nodes without any reference sequences will be mimicked by the nodes
with reference sequences. As a consequence, if the number of the nodes with reference sequences is
small, they are likely to be replicated in the training data. As implemented in our software, by finding
the replicates, it is possible to make the size of the training data smaller. Each individual sample
is weighted by the number of its replicates during MCMC so that compressed training data will not
cause any bias.

Although the taxonomy in the Polyporales of Finland case study was not very large, for several
taxa there were no sequence data available, so it can be used as an example of compressing the training
data. We sampled 5,000 nodes in the taxonomy and the number of samples representing different types
of nodes were distributed in the following way:

• unknown taxon: 1862

• known taxon without any reference sequences: 1117

• known taxon with only one reference sequence: 1042

• known taxon with at least two reference sequences: 979
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The 5,000 randomly picked taxonomy node samples represented 994 unique (taxonomy node, query
sequence, representative sequence) triplets and therefore the training data could be compressed into
1/5 of its original size.

4 Sequence similarities

In the Polyporales of Finland case study, pairwise sequences similarities were computed with BLAST
initiated dynamic programming. Since BLAST gives local alignments, the overlap between two se-
quences can be fragmented into several BLAST hits. We extended the BLAST results so that the final
similarity score represents the entire overlap region for each sequence pair. There are two possibilities
for the overlap between two sequences:

1. one sequence is completely within another

2. two sequences form a dove tail type of alignment where the beginning of one sequence covers
the end of another sequence.

The overlap alignment must therefore contain at least one beginning and one end nucleotide of a
sequence. Sequence similarity is defined as the number of matching nucleotides divided by the length
of the overlap region. In case there are no initial BLAST hits, the final pairwise similarity score is
zero.

The procedure for calculating the final similarity score is the following: first a fast similarity method
(BLAST) is used to find initial seed segments that are used as anchors for the final alignment done
by rigorous dynamic programming (DP). Since the seed anchors are fixed, they effectively split the
original two-dimensional DP trellis into smaller pieces, which reduces the computation. Furthermore,
since we are not interested in the alignment but only the resulting similarity score, it is enough to use
only two columns of the DP trellis in the computer memory: one for storing the cumulative similarity
score, and another for storing the instantaneous similarity score.

If the number of sequences needed to represent each taxon is very large, there are many sequence
comparisons to be done. Computing all pairwise sequence similarities may simply be too time consum-
ing when using large taxonomies and data sets. Instead of calculating all pairwise sequence similarities,
a database search approach can be used where only top-N hits are calculated for each query sequence.
However, besides the max similarity, one of the PROTAX regression model covariates is the mean
similarity, which requires the sequence comparisons against all representative sequences of the taxon.
Thus, we need a way to handle the sequence similarities outside the top-N list. Since in the amplicon
sequencing each sequence read represents the same genomic region, the similarity between any two
sequences is expected to be nonzero. A possibility is to find an empirical floor value which is used by
default for all pairwise sequence similarities. If a sequence pair is present in the top-N hit list and the
corresponding similarity value exceeds the default value, the new value is used instead of the default
value.

5 Parameter estimation

We used Markov chain Monte Carlo (MCMC) sampling with adaptive proposal distribution as ex-
plained in Ovaskainen et al. (2008), ”Bayesian methods for analyzing movements in heterogeneous
landscapes from mark-recapture data”, Ecology, 89, 542–554.

The proposal distribution is based on the eigenvalue decomposition of the parameter covariance
matrix. All eigenvectors are utilized one by one within each MCMC cycle. For the i:th eigenvector,
the proposal for the new parameter vector is βnew = βold + rei, where r is a random sample from
N(0, (kidi)

2), ki is the step size, di is the square root of the i:th eigenvalue, and ei is the i:th eigenvec-
tor. Here β includes both regression coefficients and the parameter for mislabeling probability. The
parameter covariance matrix and step sizes are updated during the adaptation phase, which serves as
burn-in after which the proposal distribution is fixed. Step size is adapted based on acceptance ratio
of previous iterations, the targeted acceptance ratio being 0.44. In case the Markov chain has slow
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mixing, the adaptation phase can be repeated and the MCMC sampling be continued with new fixed
proposal distribution. In the re-adaptation, the parameter vector is initialized by the values of the
most recent iteration, the parameter covariance matrix is initialized to be an identity matrix, and the
adaptive step sizes are initialized to be equal to one.

In our experiments, we fitted the model with 5,000 MCMC iterations (out of which 2,000 were
used for burn-in). After training, we checked visually the parameter trace plots, and if the chain was
not well mixed, applied new adaptation phase for 2,000 iterations and continued sampling another
3,000 iterations.
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