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Abstract

Defects always exists in a crystal lattice at temperatures above absolute zero. Our knowledge

of defect concentration and mobility is crucial, due to their profound influence on the material

properties.

By the means of thermodynamics it is possible to estimate defect concentrations at the equi-

librium conditions. Near the melting point of pure metals the vacancy fraction is typically

about 10−4. However, it has been shown that the presence of light impurities may enhance

vacancy formation in many metals and metal alloys. The main reason for this phenomenon,

often referred to as the superabundant vacancy formation, is the lowering of the vacancy form-

ation energy due to the impurity trapping. In this thesis a theoretical thermodynamics model

has been developed to study the equilibrium vacancy concentrations as a function of impur-

ity concentration and temperature. Our model takes into account monovacancy and divacancy

thermodynamics as well as the binding energy of each trapped impurity and the vibrational

entropy of defects.

The diffusion of monovacancies and hydrogen in tungsten is studied due to its relevance to fusion

research. Extraordinary thermal and mechanical properties, like high melting temperature, high

heat conductivity, low sputtering yield and low hydrogen retention makes tungsten a prime

candidate for a divertor plate material in the next step fusion device ITER. At this region of

the fusion reactor, the material is exposed to the highest heat and particle fluxes producing

damage in the plasma facing components. Open volume defects are known to trap hydrogen

and, thus, are the main reasons for hydrogen retention in tungsten. The radioactive hydrogen

isotope tritium retention in the fusion reactor is especially undesirable due to efficiency and

safety reasons.

The molecular dynamics method has been used to simulate the diffusion of hydrogen in tung-

sten. The commonly accepted and so far used H diffusion migration barrier is revised and a

new analysis method to determine diffusion coefficients that accounts for the random oscilla-

tion of atoms around the equilibrium position is presented. At high hydrogen concentrations, a

dramatic reduction in the diffusion coefficient is observed, due to the neighbouring interstitial
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site blocking and the repulsive interaction between the hydrogen atoms. The results of this

study indicate that high flux hydrogen irradiation would lead to much higher H concentrations

in tungsten than previously expected.

The diffusion through the vacancy mechanism is the dominating mechanism behind self-diffusion

in most metals and substitutional alloys. However, the precise self-diffusion experimental meas-

urements show that some FCC and BCC metals exhibit non-Arrhenius behaviour of self-

diffusion close to the melting point. Several mechanisms have been proposed to interpret the

slight upward curvature of the Arrhenius diagram. The results of this study obtained employing

molecular dynamics method show the presence of multiple nearest neighbour jumps of monova-

cancy above 2/3 of the melting temperature of tungsten. For the first time, the W monovacancy

diffusion prefactor is calculated, and found to be unexpectedly high, resulting in a monovacancy

diffusion attempt frequency of about 2-3 orders of magnitude higher than the values commonly

used.

A comparative study between the molecular dynamics and a Monte Carlo method – binary

collision approximation has been carried out in this thesis by simulating the single ion impacts

on silicon and tungsten surfaces. It has been experimentally shown that cumulative ion impacts

can result in surface pattern formation. Under certain conditions, periodic patterns such as

ripples may form. This phenomenon has been studied for decades and several theoretical models

for ripple formation have been proposed. A recent theoretical model based on the displacement

analysis from molecular dynamics simulations suggest that the main mechanism responsible

for the ripple formation is atom redistribution upon the ion impact, sputtering being less

important. Molecular dynamics is limited in the size of systems that it can model, creating

a demand for computationally more efficient methods to study ion irradiation effects, such as

binary collision approximation. The results from both methods are compared and found to be

in a good agreement for crystalline structures. However, large discrepancies between the two

methods arise for materials that are amorphous or become amorphized during ion irradiation.

The binary collision approximation approach does not account for a very large number of small

displacements seen in molecular dynamics that are attributed to the collective phenomenon of

amorphous material flow. This shortcoming can seriously compromise the ability to use the

binary collision approximation for explaining such phenomena as surface pattern formation,

where small displacements play a central role.
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Chapter 1

Introduction

’Crystals are like people: it is the defects in them which tend to make them interesting!’ – Colin

Humphreys.

In nature solids are rarely perfectly ordered. Above temperatures of 0 K, imperfections in

a crystalline structure are always present. Imperfections in the materials are called defects

and may be categorized by their size – zero, one, two and three dimensional defects. The

zero dimensional defects include isolated vacancies and impurity atoms, and are commonly

referred to as the point defects. Defects such as dislocations and crowdions are considered one-

dimensional. Grain boundaries and external surfaces are thought of as the two-dimensional

defects, and three-dimensional defects are volume imperfections in the crystal that include

voids, precipitates or the presence of a different phase.

Another useful way to classify defects is to distinguish between intrinsic and extrinsic defects.

Intrinsic defects are imperfections in a pure material, such as vacancies and self-interstitial

atoms. Extrinsic defects, on the other hand, are caused by the presence of impurity atoms.

According to thermodynamics, nature always tries to minimize its free energy. In order to create

a defect a certain amount of energy is needed. However, the presence of a defect in the lattice

also increases the entropy of the system, reducing the free energy of the system. Defects will

increase in their concentration until the free energy reaches its minimum - systems in this state

are said to be in thermodynamic equilibrium.

Defects profoundly affect the physical, mechanical and electrical properties of materials and

their presence in materials can be desired or unwanted.
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In a fusion reactor, high heat and particle fluxes damage the plasma facing components, creating

vacancies and other open volume defects that act as trapping centres for hydrogen (H) isotopes.

It is especially undesirable due to the retention of the radioactive isotope of H - tritium.

The ion irradiation processes can be used to intentionally alter material properties. Introducing

foreign impurities in pure semiconductor materials, changing the electron and hole concentra-

tions, is called doping and is the basis in modern electronic device technology. Using ion beams,

it is possible to modify the morphology of surfaces to form periodic structures such as ripples.

To predict the performance of materials, studying their structures and estimating defect pro-

duction is essential. Defects can be studied employing various methods. A suitable method

for calculating the equilibrium concentration of defects is the thermodynamics approach. The

defect formation energies and migration barriers can be determined using the first principle

methods. The dynamics of defects can be addressed employing molecular dynamics. The dam-

age to materials upon the irradiation can be computationally most efficiently studied using

binary collision approximation simulations. Many experimental methods exist to investigate

defects in materials. Positron annihilation spectroscopy is commonly used to estimate vacancy

concentration in crystals [1]. Secondary ion mass spectrometry provides the information on the

composition of the material and the impurity depth profiles [2–4]. To estimate vacancy forma-

tion upon light impurity presence in a lattice, a temporal variation of a lattice parameter at high

temperature and high H pressures can be measured by X-ray diffraction. Temporal electrical

resistivity measurements as a function of temperature, pressure and H concentrations also have

been used to estimate the vacancy formation influenced by impurities in various metals.

The present thesis is focused on studying the formation of vacancies in metals in the presence of

H impurities by applying thermodynamic calculations. Due to its relevance to fusion research,

the monovacancy and H diffusion in tungsten is studied using molecular dynamics simulations. A

comparative study of two fundamentally different computational methods, molecular dynamics

and binary collision approximation, is carried out to examine the atom displacements in silicon

and tungsten upon ion irradiation.
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Chapter 2

Purpose and Structure of this study

The purpose of this thesis is to provide a better understanding of defect formation and evolution

in metals and silicon. The theoretical thermodynamics calculations are used to quantitatively

estimate defect formation in metals. The molecular dynamics and binary collision approxim-

ation simulations are employed to study the diffusion of monovacancies and H impurities in

tungsten and atom displacements upon ion irradiation in amorphous and crystalline silicon,

and tungsten.

This thesis is based on four articles published in international peer-reviewed journals.

The structure of the thesis is as follows. In the following section, the four publications are

summarized and the author’s contributions are indicated. Chapter 3 contains the theoretical

background on thermodynamics of defect formation and diffusion. Chapter 4 contains the the-

oretical background on the irradiation effects in solids. The methods used to study the defect

dynamics are summarized in Chapter 5. In Chapter 6 the main results of the thesis are presented

and discussed. The summary and main conclusions are provided in Chapter 7.
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2.1 Summary of Original Publications

Publication I: Thermodynamics of impurity-enhanced vacancy formation in metals

L. Bukonte, T. Ahlgren and K. Heinola, Journal of Applied Physics, 121, 045102 (2017).

In this study, we develop a general theoretical thermodynamics model that allows us

to study the thermodynamics of vacancy formation in metals with the presence of

interstitial impurities. We study the vacancy formation as a function of temperature

and the impurity concentration. For the correct description of free energy of the

system, we take into account the binding energies of each trapped impurity, the

vibrational entropy of defects and thermodynamics of divacancy formation. We show

that vacancies are formed in metals due to the presence of H impurities, regardless

of their binding energy to the vacancy. We demonstrate that the divacancy fraction

gives a major contribution to the total vacancy fraction at high H fractions and

cannot be neglected when studying superabundant vacancies. Our study leads to

an important conclusion that SAV formation is more pronounced in the FCC phase

compared to the BCC phase.

Publication II: Modelling of monovacancy diffusion in W over a wide temperature

range

L. Bukonte, T. Ahlgren and K. Heinola, Journal of Applied Physics 115, 123504 (2014)

In this paper, we study the monovacancy diffusion in tungsten over a wide temper-

ature range. Multiple nearest neighbour jumps of monovacancy are found to play

an important role in the contribution to the total diffusion coefficient at temperat-

ures above 2/3 of Tm, which could be one of the reasons of the upward curvature

of the Arrhenius diagram in tungsten self-diffusion experiments. The diffusion pre-

exponential factor for monovacancy diffusion is found to be two to three orders of

magnitude higher than commonly used in computational studies, resulting in an

attempt frequency of the order of 1015 Hz. The use of this remarkably much higher

jump frequency might have surprisingly large effects on the simulation results of

different multi-scale models.
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Publication III: Concentration dependent hydrogen diffusion in tungsten

T. Ahlgren and L. Bukonte, Journal of Nuclear Materials 479 (2016) 195.

In this article, we study the diffusion of H in tungsten as a function of temperature,

H concentration and pressure by employing the molecular dynamics method. The

diffusion coefficient of H is found to decrease with increasing H concentration due

to the neighbouring interstitial site blocking and repulsion between H atoms. We

present a new analysis method to determine the diffusion coefficient that accounts

for the random oscillation of atoms around the equilibrium position. A more accurate

H migration barrier of 0.25 eV is obtained in this study and should be used instead

of the commonly accepted value of 0.39 eV.

Publication IV: Comparison of molecular dynamics and binary collision approxim-

ation simulations for atom displacement analysis

L.Bukonte, F. Djurabekova, J. Samela, K. Nordlund, S. A. Norris and M. J. Aziz, Nuclear

Instruments and Methods in Physics Research Section B 297 (2013) 23 – 28.

The aim of this publication is to compare two simulation methods, molecular dy-

namics (MD) and binary collision approximation (BCA). The predictions of BCA

and MD simulations for displacement cascades in amorphous and crystalline silicon

and BCC tungsten by 1 keV Ar ion bombardment are compared. The results reveal

a significant shortcoming of the BCA approach when applied to materials that are

amorphous or become amorphous during ion irradiation. For the conditions repor-

ted in this article, BCA agrees with MD simulation results at displacements larger

than 5 Å, whereas at smaller displacements a difference between BCA and MD

arises due to large amount of small displacements observed in MD simulations, but

absent from a regular BCA approach due to the algorithm limitations.

2.2 Author’s Contribution

The author developed a theoretical thermodynamics model to estimate the equilibrium va-

cancy fraction in metals accounting for the presence of interstitial impurities for Publication

I, obtained and analyzed the results. The author employed the molecular dynamics method to

simulate vacancy diffusion in Publication II and analyzed the results. For Publication III, the
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author contributed to the MD simulations by finding the correct H positions in the crystal lat-

tice and, by fitting, obtained the equation for the concentration dependent diffusion coefficient.

The author carried out all molecular dynamics and binary collision approximation simulations

for Publication IV, compared and analyzed the results obtained by both methods. Publications

I, II and IV are written by the author of this thesis. In Publication III, the authour contributed

to the conclusions of the presented work.
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2.3 Other Scientific Work

The author has also contributed to the following publications in related scientific fields. These,

however, are not discussed in detail in this thesis.

[1] MD-Predicted Phase diagrams for Pattern Formation

S. A. Norris, J. Samela, C. S. Madi, M. P. Brenner, L. Bukonte, M. Backman, F. Djurabekova,

K. Nordlund and M. J. Aziz, Nature communications 2, 276 (2011).

[2] Mechanism of vacancy formation induced by hydrogen in tungsten

Y.-N. Liu, T. Ahlgren, L. Bukonte, K. Nordlund, X. Shu, Y. Yu, Guang-Hong and X.-C. Li,

AIP Advances 3, 122111 (2013).

[3] The relationship between gross and net erosion of beryllium at elevated tem-

perature

R. P. Doerner, I. Jepu, D. Nishijima, E. Safi, L. Bukonte, A. Lasa, K. Nordlund and T. Schwarz-

Selinger, Journal of Nuclear Materials 463 (2015), 777.

[4] Sink strength simulations using the Monte Carlo method: applied to spherical

traps

T. Ahlgren, L. Bukonte, submitted for publication in Journal of Nuclear Materials
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Chapter 3

Theoretical Background on
Thermodynamics of Defects

3.1 Defect formation

Crystal with no intrinsic defects are highly improbable in temperatures above absolute zero.

The presence of defects in the crystalline lattice may greatly influence the properties of the

material, therefore, studying the formation and migration mechanisms of various defects and

estimating their concentration is of crutial importance. Despite the fact that the creation of a

defect in a crystal lattice requires energy, there is also a gain in the entropy upon the formation

of a defect. Defects continue to increase in their concentration until the free energy of the

system has reached its minimum. According to thermodynamics [5–7], the change of the Gibbs

energy, ΔG at temperature T is associated with the change in enthalpy, ΔH, and the change

in entropy, ΔS, of the crystal by the following equation:

ΔG = ΔH − T ΔS. (3.1)

The enthalpy of a system is the sum of the internal energy and the product of pressure and

volume of the system (H = E+PV ). At zero pressure the enthalpy and the total energy of the

crystal are equivalent quantities. To the first approximation the change in the enthalpy is pro-

portional to the number of defects formed. Assuming the crystal contains only monovacancies,

the change in the total enthalpy of the system can be written as:

ΔH = ΔHv1 = N v1 Ev1
f , (3.2)
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where ΔHv1 is the change of the total enthalpy of a system containing only monovacancies,

Ev1
f is the monovacancy formation energy and N v1 is the number of monovacancies.

The monovacancy formation energy, Ev1
f , is the energy required to create a vacancy in the

system near the surface, and is calculated as the difference between the energy of a system

containing one vacancy, EN0−1, and the energy of a perfect crystal, E0, [8]:

Ev1
f = EN0−1 −

(
N0 − 1

N0

)
E0, (3.3)

where N0 is the number of host atoms.

The total entropy term, ΔS, consists of the vibrational entropy, ΔSvib, and the configurational

entropy, ΔSconf , as well as the electronic and magnetic entropy, the two later being neglected

in this thesis due to the small effect on the total entropy. The vibrational entropy describes

random vibrational motion in a defected crystal and is also proportional to the number of

defects formed:

ΔSvib = N v1ΔSv1
vib. (3.4)

The configurational entropy, on the other hand, has a probabilistic nature, and is associated

with the defect distribution in the lattice. The configurational entropy is the main reason for

defect presence in a crystal lattice. Having a crystal with no intrinsic defects at equilibrium

is highly improbable, whereas, for example, vacancies give rise to many lattice configurations

with different energy states. The increasing amount of defects results in higher configurational

entropy and, as a consequence, in the lowering of the Gibbs free energy of the system. The

configurational entropy of the system depends on the statistical weight, Ω, that describes the

permutation of defect distribution in the crystal lattice. Again assuming that the crystal con-

tains only monovacancies – the number of possible ways isolated monovacancies can reside in

N latt = N0 +N v1 sites is:

Ωv1 =
N latt!

N0!N vac!
=

(N0 +N v1)!

N v1 !N0!
, (3.5)

where N latt is the number of lattice sites.
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According to the Boltzmann’s definition of entropy, the total configurational entropy of the

system is written as:

ΔSconf = kB ln Ωv1 . (3.6)

Using the Stirling’s formula: log(A!) ≈ A log(A)− A, the Eq. (3.6) takes the form:

ΔSconf = kB

(
N0 ln

N0 +N v1

N0
+N v1 ln

N0 +N v1

N v1

)
. (3.7)

Combining Eqs. (3.1), (3.2), (3.4) and (3.7) results in:

ΔG = N v1 Ev1
f − T N v1ΔSv1

vib + kBT

(
N0 ln

N0 +N v1

N0
+N v1 ln

N0 +N v1

N v1

)
. (3.8)

Using the equilibrium condition:

∂ΔG

∂N v1
= 0, (3.9)

and rearranging the equation, results in:

N v1

N0 +N v1
= exp

(−Ev1
f

kBT

)
· exp

(
ΔSv1

vib

kB

)
. (3.10)

This is the equation for estimating the monovacancy fraction in the pure crystal at thermody-

namic equilibrium.

It is known that the presence of impurity can enhance vacancy formation due to trapping in

vacancies [9, 10]. This phenomena is called superabundant vacancy formation (SAV) and can be

quantitatively estimated by applying thermodynamic theory as follows. The impurity atoms,

N imp, present in a crystal can be located at interstitial sites (IS), also called solution sites,

whereas others are trapped in the vacancies, i.e., reside in the trapping sites (TS). If there is

an attraction between impurity atoms and a vacancies, the vacancies can usually trap several
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impurity atoms. The binding energy Eb for the nth trapped impurity is the energy needed to

remove it from the vacancy and place it on an IS, and is expressed as:

Eb = [E(n− 1) + E1]− [E(n) + E0], (3.11)

where E(n−1) is the energy of the system, where (n−1) impurities are in the vacancy, and E1

is the energy with one impurity in an IS, E(n) is the energy of the system, where n impurities

are in the vacancy and E0 is the energy of the reference system.

If the binding energy is positive, energy is gained when an additional impurity is trapped in

the vacancy. The binding energy for each additional impurity usually depends on the number

of impurities already occupying the vacancy. The cumulative binding energy for n impurities

in a vacancy can be very generally expressed by a polynomial function of n:

Ecum
b (n) =

n∑
i=1

Eb(i) = (a n3 + b n2 + c n), (3.12)

where a, b and c are fitting constants (presented in Publication I for systems studied in this

thesis and shown to give a good fit to the binding energies obtained from the first principle

studies).

To find the enthalpy change, ΔH imp, when impurity atoms are trapped in the vacancies we

define the number of trapped impurities as:

N imp
tr = n1 N

v1 , (3.13)

where n1 is the number of trapped impurities in one monovacancy. The enthalpy change of the

system when N imp
tr impurity atoms are trapped in N v1 is:

ΔH imp = −N v1 (An3
1 + B n2

1 + C n1), (3.14)

where A, B, C are the fitting parameters of H cumulative binding energy to a monovacancy.

Then the total enthalpy change of the system with N v1 vacancies and N imp
tr trapped impurity

atoms becomes:

ΔH = ΔHv1 +ΔH imp = N v1 [Ev1
f − (An3

1 + B n2
1 + C n1)]. (3.15)

The enthalpy of the vacancy formation is decreased due to the energy gained when impurity

atoms from the IS are trapped in the vacancies.
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The interstitial or trapping site occupancy of impurity atoms can considerably change the

vibrational entropy value. The vibrational entropy associated with impurities, ΔSimp1
vib , is pro-

portional to vacancies formed in the host material since it is the difference in the vibrational

entropy between IS and TS occupancy of the impurity atoms. The total vibrational entropy

change when N v1 vacancies are formed in a crystal with n1 impurities per vacancy can be

written as:

ΔSvib = N v1
(
ΔSv1

vib + n1ΔSimp1
vib

)
. (3.16)

The total statistical weight to distribute defects in a crystal lattice becomes:

Ωtot = Ωv1 Ωtrap1 Ωint, (3.17)

where Ωtrap1 is the number of ways to distribute n1 N
v1 trapped impurities among total number

of trapping sites nmax
1 N v1 (nmax

1 being the maximum number of impurities one monovacancy

can accommodate):

Ωtrap1 =
(nmax

1 N v1)!

(n1 N v1)!(nmax
1 N v1 − n1 N v1)!

, (3.18)

and Ωint is the number of ways to distribute N imp − n1 N
v1 residual impurity atoms among all

interstitial sites (mN0) in the crystal lattice, where m is the number of IS per host atom:

Ωint =
(mN0)!

(N imp − n1 N v1)! (mN0 − (N imp − n1 N v1))!
. (3.19)

For convenience, we express the system parameters as fractions:

Fraction of monovacancies: [V1] = Nv1

N0

Fraction of divacancies: [V2] = Nv2

N0

Fraction of impurities: [I] = N imp

N0

Fraction of impurities in IS: [IIS] =
N imp

IS

N0

Total fraction of vacancies: [Vtot] = [V1] + 2 [V2]

where N0 is the number of host atoms.
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Following the equilibrium condition and minimizing the Gibbs free energy of the system, the

final system of equations is obtained:

⎧⎪⎨
⎪⎩

E
v1
f −(An3

1+B n2
1+C n1)

kBT
− (ΔS

v1
vib+nΔSimp1

vib )

kB
= ln

(
1

[V1]
+ 1

)
− nmax

1 α + n1 M

−(3An2
1+2B n1+C)
kBT

− ΔSimp1
vib

kB
= M

(3.20)

(3.21)

where M = ln
(

[IIS ]
m−[IIS ]

)
and α = ln

(
nmax
1 −n1

n1

)
.

Using this set of equations it is possible to estimate the monovacancy fraction in a crystal in

the presence of impurities.

Depending on the material properties and impurity amounts, divacanies and larger vacancy

clusters may considerably contribute to the total equilibrium vacancy fraction and need to be

taken into consideration. Following the procedure above, a system of equations for calculating

the total vacancy fraction including the thermodynamics of monovacancies and divacancies, as

well as the entropy and impurity binding parameters, is obtained as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(E
v2
f −E n3

2−F n2
2−Gn2)

kBT
− (ΔS

v2
vib+n2ΔSimp2

vib )

kB
=

= ln
(

(L−[V2])
[V2]

)
+ n2 β + z ln( L

(L−[V2])
) + n2 M − nmax

2 β

(E
v1
f −An3

1−B n2
1−C n1)

kBT
− (ΔS

v1
vib+n1ΔSimp1

vib )

kB
=

= ln( 1
[V1]

+ 1) + n1 α + n1 M + z
2
ln( L

(L−[V2])
)− nmax

1 α

−ΔSimp1
vib

kB
− (3An2

1+2B n1+C)

kBT
= α +M

−ΔSimp2
vib

kB
− (3E n2

2+2F n2+G)

kBT
= β +M

(3.22)

(3.23)

(3.24)

(3.25)

where L = z
2
(1 + 2 [V2] + [V1]), β = ln(

(nmax
2 −n2)

n2
), Ev2

f is the divacancy formation energy, E, F ,

G are the fitting parameters for impurity binding to the divacancy, ΔSv2
vib is the change in the

vibrational entropy of the divacancy formation, n2 - impurities trapped per divacancy, ΔSimp2
vib

vibrational entropy change of impurity atom occupancy in IS sites and TS in divacancy and z

is the configurational factor associated with the divacancy.
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This set of equations (3.22 - 3.25) is utilized in Publication I to estimate the total equilibrium

vacancy fraction in four metals (Pd, Ni, Co, Fe) in correlation with varying H amounts. The

results are compared with the experimental data and further discussed in Chapter 6.1.

3.2 Defect diffusion

In crystal at finite temperatures each atom resides in its lattice position and oscillates around its

equilibrium position with some frequency ν. Occasionally, given enough thermal energy, these

oscillations may become large enough for a particle to overcome the energy barrier, arising from

the bond breaking with neighbouring atoms and lattice distortions, and change the lattice site.

This process can be characterized by the change in the Gibbs free energy of migration, ΔGm,

representing the free energy difference between the equilibrium position and the activated state

with the largest energy – the saddle point [11]:

ΔGm = ΔHm − TΔSm + PΔVm, (3.26)

where ΔHm is the change in the enthalpy of migration, ΔSm is the change in the entropy

of migration, P is pressure and ΔVm is the migration volume. The migration volume is the

volume change when the diffusing particle is transferred from its equilibrium position to the

saddle point. The enthalpy of migration ΔHm denotes the height of the energy barrier a particle

needs to overcome for a diffusion jump to occur.

The change in the migration entropy, ΔSm, corresponds to the difference in lattice vibrations

at the equilibrium position and the saddle point:

ΔSm = kB

[
3N−1∑
j �=0

ln

(
hνj
kBT

)
−

3N−1∑
j �=0

ln

(
hν ′

j

kBT

)]
, (3.27)

where vj are the 3N−1 normal mode frequencies for vibrations around the equilibrium position,

v′j are the frequencies for the saddle point configuration, having one real normal mode less than

the frequencies at the equilibrium site, because the negative curvature of energy landscape leads

to one imaginary frequency in the direction of a jump, and h is Plank’s constant.
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According to the rate theory [12] an average jump frequency of a particle to move from one

lattice position to a neighbouring one, assuming the pressure is small or the migration volume

is zero, is:

w = ν0 exp

(−ΔGm

kBT

)
= ν0 exp

(
ΔSm

kB

)
exp

(−ΔHm

kBT

)
, (3.28)

where ν0 is the attempt frequency for diffusion jump. The exp
(

−ΔHm

kBT

)
term is the ”Boltzmann

factor” that gives the probability for the diffusing particle to have an energy ΔHm at temper-

ature T . In the harmonic approximation, the attempt frequency is expressed as:

ν0 =

∏3N
i=1 vj∏3N−1

i=1 v′j
. (3.29)

It is usually assumed to be of the order of the Debye frequency [13].

Depending on the diffusion mechanism and material under the consideration these equations

can take slightly different forms, however, the main principle of the jumping process stays the

same.

One can distinguish between several diffusion mechanisms – the most common of them being

vacancy diffusion and interstitial diffusion. If a lattice atom moves from its position to a neigh-

bouring empty lattice site, it is said that an atom has diffused via the vacancy mechanism. If

the crystal contains impurity atoms that reside in the interstitial positions and move from one

interstitial position to another without permanently displacing the host atoms, it is called the

interstitial mechanism of diffusion.

Other diffusion mechanisms exist. As an example, self-interstitial diffusion in BCC metals usu-

ally occur by the collective motion of atoms along the 〈111〉 direction, this is called the crow-

dion mechanism. In the case of semiconductors the diffusion is more complex. The charge of

the moving defect plays an important role in the diffusion process. For example, if a vacancy is

an electron acceptor, the diffusion coefficient would increase in the n-type semiconductor and

decrease in the p-type semiconductor [14]. These complex diffusion mechanisms in semicon-

ductors, however, are not discussed in more detail in this thesis.



16

For atom diffusion via the vacancy mechanism, the probability for an atom to make a jump

can be expressed as a product of the jump frequency (or jump rate) and the probability that

the site next to it is vacant:

Γ = Z w [V1] = Z ν0 exp

(
−
[
ΔHv1

f +ΔHv1
m

]
kBT

)
exp

(
ΔSv1

f +ΔSv1
m

kB

)
, (3.30)

where Z is the coordination number (in the case of diffusion via the vacancy mechanism it is

the number of atoms adjacent to a vacancy). The diffusion through the vacancy mechanism is

the dominating mechanism of self-diffusion in most metals and substitutional alloys.

When considering the interstitial diffusion mechanism for a dilute solution of foreign atoms

assuming that the neighbouring interstitial sites are unoccupied, the total jump rate can be

written as:

Γ = Z w = Z ν0 exp

(
−ΔHv1

m

kBT

)
exp

(
ΔSv1

m

kB

)
, (3.31)

where Z is the number of nearest neighbour interstitial sites of the same type.

To derive the diffusion coefficient it is useful to consider a concentration C of particles located

in plane x at time t + τ . At time t these particles were located in the planes x−X, where X

is the displacement of the particles [11]. The balance equation for the number of particles can

be written as:

C(x, t+ τ) =
∑
X

C(x−X, t) ·W (X, τ), (3.32)

where W (X, τ) is the distribution function, which denotes the probability that after a time τ

a particle will have travelled a path X along the x-axis, where the sum is done over all values

of X. The explicit form of the distribution function is not needed in this derivation.

Expanding the left hand side of the above equation in a Taylor series for the small time step

τ , we obtain:

C(x, t+ τ) = C(x, t) + τ
δC

δt
+ ... (3.33)

For small τ the higher order terms become negligible.
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Using the Taylor series on the concentration term on the right hand side of the equation,

expanding around X = 0:

∑
X

C(x−X, t) ·W (X, τ) = (3.34)

∑
X

[
C(x, t)−X

δC

δx
+

X2

2

δ2C

δx2
+ ...

]
·W (X, τ).

It is useful to introduce:

∑
X

W (X, τ) = 1

∑
X

XnW (X, τ) = 〈Xn〉 ,

(3.35)

(3.36)

where the first equation states that the probabilities are normalized, and the second defines the

nth moments of X.

For the limit τ −→ 0 the probability distribution function becomes localized at point x = 0,

therefore, terms higher than the second order in Eq. (3.34) can also be omitted.

Combining these equations and cancelling the common term C(x, t), the balance equation

becomes:

δC

δt
= −〈X〉

τ

δC

δx
+

〈X2〉
2τ

δ2C

δx2
. (3.37)

For a random walk with the absence of driving force 〈X〉 = 0, the equation reduces to the one

dimensional diffusion equation:

δC

δt
=

〈X2〉
2τ

δ2C

δx2
, (3.38)

with the definition of the diffusion coefficient:

D ≡ 〈X2〉
2τ

. (3.39)

This expression relates the diffusion coefficient to the mean square displacement in the x dir-

ection. Since the total displacement of a diffusing particle after many individual displacements

is composed of its X, Y and Z components as R2 = X2 + Y 2 +Z2, then for cubic crystals and
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isotropic medium (〈X2〉 = 〈Y 2〉 = 〈Z2〉 = 1
3
〈R2〉) the three dimensional diffusion coefficient

becomes:

D ≡ 〈R2〉
6τ

. (3.40)

This is called the Einstein−Smoluchowski relation [15]. A modified Einstein−Smoluchowski

equation is used in Publications II and III to calculate the diffusion coefficient for monovacan-

cies and H atoms in tungsten.

The monovacancy diffusion in tungsten is studied in Publication II in order to address the

unresolved question of the reasons for the increase of the diffusion coefficient at temperatures

above 2/3 of Tm observed in tungsten self-diffusion experiments [16]. The H diffusion in tungsten

is studied in Publication III. An analytical form for the concentration dependent diffusion

coefficient is proposed and the reasons for the decrease of diffusion coefficient with increasing

H concentration are discussed.

Diffusion in cubic crystals

From the microscopic point of view, the diffusion can be thought of as a random walk problem.

The displacement of the diffusing particle in one dimension can be expressed as a sum of the

individual jump projections on the x-axis:

X = x1 + x2 + ...+ xn =
n∑

i=1

xi. (3.41)

The mean squared displacement is averaged over an ensemble of diffusing particles:

〈
X2

〉
=

n∑
i=1

〈
x2
i

〉
+ 2

n−1∑
i=1

n∑
j=i+1

〈xixj〉 . (3.42)

The first term contains only the average squared magnitude of each jump separately. The second

term is a product of two subsequent jumps, and it is said to contain a memory of the walk. If

the jumps are truly random and, thus, uncorrelated, the root mean square displacement takes

a form containing no double sums ( 〈xixj〉 cancel out when an average is taken over a large

number of particles)
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〈
X2

〉
=

n∑
i=1

〈
x2
i

〉
. (3.43)

In crystalline solids diffusion is usually mediated by the lattice defects, such as vacancies and

interstitials. These defects move in a lattice towards definite directions s with the discreate

jump length. The total number of jumps n is made from ns jumps in the s direction, where

s ranges from 1 to Z amd Z is the coordination number of a crystal. The projected length of

ns jump on x-axis is xs. The mean squared displacement in the x-direction can be written as

follows:

〈
X2

〉
=

n∑
i=1

〈
x2
i

〉
=

Z∑
s=1

〈ns〉x2
s. (3.44)

Introducing the average jump frequencies as Γs ≡ 〈ns〉/τ of the type s, the mean squared

displacement becomes:

〈
X2

〉
= τ

Z∑
s=1

Γsx
2
s. (3.45)

Combining Eq. (3.45) with the one dimensional Einstein−Smoluchowski relation, the diffusion

coefficient in x-direction is expressed as:

Dx =
1

2

Z∑
s=1

Γsx
2
s. (3.46)

This equation is used to obtain the diffusion in crystalline solids when diffusing via definite

lattice sites.

For cubic crystals the jump rate Γs is a constant, i.e., it is independent of jump type s (Dx =

Dy = Dz = D) and the total jump rate is Γ = Z · Γs:
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D = Dx =
1

2
Γs

Z∑
s=1

x2
s =

1

2Z
Γ

Z∑
s=1

x2
s. (3.47)

The diffusion coefficient in terms of the jump length λ in 3 dimension:

D =
1

6
Γs

Z∑
s=1

λ2 =
Γ

6Z

Z∑
s=1

λ2. (3.48)

If the jump length λ is the same in all s type jumps, we finally get:

D =
1

6
Γλ2. (3.49)

This equation, Eq. (3.49), is valid for all cubic structures with nearest neighbour jumps. To jus-

tify this statement, the diffusion coefficients for BCC and FCC structures are derived as follows.

Diffusion in a BCC lattice.

Figure 3.1: Monovacancy (in the middle) in the BCC lattice.
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In a BCC crystal with a lattice constant a, an atom has Z = 8 jump directions (Fig. 3.1),

each with the projected length ±a/2 on the x-axis, same projections to y and z-axis. Using Eq.

(3.47), we get:

D = Dx =
1

2 · 8Γ
[
8
(a
2

)2
]
=

Γ

8
a2. (3.50)

Using the jump length λ =
√
3a/2, gives a = 2λ/

√
3, which when inserted into Eq. (3.50) gives:

D =
Γ

8

[
4λ2

3

]
=

Γ

6
λ2. (3.51)

Diffusion in a BCC lattice through tetrahedral interstitial sites.

Figure 3.2: On the left: The BCC lattice with four tetrahedral interstitial sites of each of the
six cell faces. On the right: the tetrahedral interstitial site with four nearest neighbour host
atoms.

In a BCC lattice there are four nearest neighbour tetrahedral interstitial sites (Z = 4), shown

in Fig. 3.2. The distance (jump length) between these sites is λ = a/
√
8. The interstitials

occupying the tetrahedral sites do not move from one interstitial position to another with equal

projections in all directions, thus the diffusion coefficient must be obtained by examining each

direction separately. The tetrahedral interstitial jumps in the BCC lattice: all four possible

jumps move in the x direction with the projection a/4, two of these jumps move also in the

z direction with the projection a/4, having y projection 0 and the other two jumps have a y

projection a/4 with z projection equal to 0.
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Employing the Einstein–Smoluchowski relation, Eq. (3.39), with:

〈
X2

〉
= τ

4∑
s=1

Γsx
2
s = τ

[
Γs

a2

16
+ Γs

a2

16
+ Γs

a2

16
+ Γs

a2

16

]
= 4 · τ

[
Γs

a2

16

]
, (3.52)

〈
Y 2

〉
= τ

4∑
s=1

Γsy
2
s = τ

[
Γs

a2

16
+ Γs

a2

16
+ 0 + 0

]
= 2 · τ

[
Γs

a2

16

]
, (3.53)

〈
Z2

〉
= τ

4∑
s=1

Γsz
2
s = τ

[
0 + 0 + Γs

a2

16
+ Γs

a2

16

]
= 2 · τ

[
Γs

a2

16

]
. (3.54)

Equation (3.40) gives:

D =
〈R2〉
6τ

=
〈X2〉+ 〈Y 2〉+ 〈Z2〉

6τ
=

τ8Γs a
2

6τ 16
=

Γs a
2

12
. (3.55)

Since the total jump rate Γ = 4Γs and λ = a/
√
8, the diffusion coefficient is:

D =
Γ a2

4 · 12 =
Γ 8λ2

4 · 12 =
Γλ2

6
. (3.56)

The diffusion coefficient in an FCC crystal through octahedral interstitial sites.

In an FCC crystal there are 12 neighbouring octahedral sites for an interstitial impurity atom

(Z = 12). The octahedral interstitial sites in an FCC lattice are shown in Fig. 3.3. Four of these

diffusion jumps are perpendicular to the x-axis (the projection being 0) and eight jumps have

projected lengths ±a/2 on the x-axis. The diffusion coefficient, according to Eq. (3.47), with a

jump length λ = a/
√
2, again becomes the same as Eq. 3.49:

Dx = D =
Γ

2 · 12
[
4 · 0 + 8

a2

4

]
=

Γ

12
a2 =

Γ

6
λ2. (3.57)
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Figure 3.3: On the left: an FCC lattice with octahedral interstitial sites. On the right: an
octahedral interstitial site with six nearest neighbour host atoms.

Correlation effects

In the previous section the expression for diffusion coefficient was derived and given in Eq.

(3.40), which relates the mean squared displacement to the diffusion coefficient. 〈R2〉 consists
of two terms: the first term represents a random walk, whereas the second term is a product

between two subsequent jumps and if the diffusion process is correlated, this term is no longer

zero:

〈
R2

〉
=

n∑
i=1

〈
r2i
〉
+ 2

n−1∑
i=1

n∑
j=i+1

〈rirj〉 . (3.58)

For example, in a dilute solution of interstitials among the host atoms, there is a high probability

that the neighbouring interstitial sites are available and therefore there is no correlation between

the diffusion jumps. However, if the concentration of interstitial atoms is high, the mobility of

particles is limited due to site blocking. The interstitial atom cannot jump to one or several

interstitial sites because they are already occupied. Then the diffusion path depends on the

local environment and it can be accounted for by introducing a correlation factor f [11]:

f = lim
n→∞

〈R2〉
〈R2

random〉
= 1 + 2 lim

n→∞

∑n−1
i=1

∑n
j=i+1〈rirj〉∑n

i=1〈r2i 〉
(3.59)

The diffusion coefficient then should be modified as follows:



24

D =
1

6
fΓλ2. (3.60)

If f = 1 the diffusion is random, if f < 1 diffusion is said to have correlation effects.
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Chapter 4

Theoretical Background on Irradiation
Effects in Solids

Ion irradiation is a process often used to study and alter the physical, chemical and electrical

properties of materials. Understanding the events taking place when an energetic ions interacts

with a material have been of a crucial interest for technological purposes. Ion implantation

has been widely used, for example, in semiconductor doping, which is the basis of nearly all

modern electronic devices. Each implanted ion entering the material and interacting with the

target atoms loses energy until it stops completely at some depth. The stopping power, S, for

this particle is a measure of the average energy loss per unit path length:

S =
dE

dx
, (4.1)

where dE is the kinetic energy change and dx is the path of the particle along its trajectory.

At high ion energies (above ≈ 10 keV/u) a charged particle mostly undergoes a process called

electronic stopping that occurs due to inelastic collisions between the ion and bound electrons

in the medium. At lower energies the entering ion loses its energy mainly due to collisions with

target atoms. This process, called nuclear stopping, is elastic and can be described by classical

kinematics. The classical transfer of energy between a moving and a stationary particle depends

on the mass and charge of both particles and the velocity of the incident ion. When the moving

particle impacts the stationary particle, the stationary particle is displaced from its initial

position due to the energy transfer and the moving particle is deflected. Since it is an elastic

process, the energy and the momentum of the system is conserved, the energy transfer T from
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a projectile to the stationary atoms can be written as [17]:

T =
4m1 ·m2

(m1 +m2)
2E0 sin

2 Θ

2
= Tmax sin

2 Θ

2
. (4.2)

This is also the energy for a recoil ion in the binary collision approximation (BCA) simulations.

The maximum transfer of energy occurs when the angle Θ = 180o is called a head-on collision.

The scattering angle of deflection in the spherically symmetric potential can be expressed as

[18]:

Θ = π − 2b

∞∫
−∞

dr

r2
[
1− V (r)

Ecm
− b2

r2

]1/2 . (4.3)

This equation can be numerically integrated taking the limits of integration rmin and rmax,

where rmin is the closest approach during the scattering event and can be found if the following

condition is true: [
1− V (rmin)

Ecm

− b2

r2min

]
= 0 (4.4)

and rmax can be chosen large enough, where the change of the integral is negligible. In practice

the lower limit of intergration is chosen rmin + ε, where epsilon is a small number.

The energy of the centre of mass coordinates expressed in terms of the energy in the laboratory

frame is:

Ecm =

(
m2

m1 +m2

)
Elab. (4.5)

Upon the irradiation of energetic particles, surface atoms can be ejected from a solid target,

this process is called sputtering. It may happen when the energy transferred from a projectile

to the target atoms is larger than the surface binding energy. The average number of sputtered

atoms per incoming ion is called sputtering yield. It is an important parameter that depends

on the ion incidence angle, the energy of the ion, the masses of the ion and the target atoms

and the surface binding energy of the target material.

In order to permanently displace an atom from its initial lattice site to a defect position, the

target atom must receive energy, Eq. (4.2), that is larger than the threshold displacement

energy Ed of the material. The displacement energy can be expressed as a sum of the vacancy

formation energy, the interstitial formation energy and the component that depends on the
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surrounding lattice (mostly of the bond-bending). The lattice component arises due to the

multi-body collision processes taking place in the collision cascade – an atom receiving the

recoil energy can return to its lattice site or push a neighbouring atom into its place. Therefore,

the average threshold displacement energy is typically much higher (∼ 20 eV) than the Frenkel

pair (vacancy–interstitial pair) formation energy (∼ 5 - 10 eV) [19]. Threshold displacement

energy depends on the crystallographic direction, hence very often the average displacement

energy is used to describe the material. In irradiation processes the crystal orientation axes

with respect to the surface is also important due to the channelling effects.

The irradiation effects on amourphous and crystalline silicon, and BCC tungsten are studied

in Publication IV.
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Chapter 5

Computational methods

5.1 Classical Molecular Dynamics

The molecular dynamics (MD) method is based on numerically solving the classical Newton’s

equations of motion of all the N particles present in the system:

Fi = miai, i = 1, 2, ...N, (5.1)

where Fi denotes the force acting on each particle, mi is the mass and ai is the acceleration [20].

A simplified MD algorithm for atomistic simulations is shown in Fig. 5.1. Several numerical

algorithms have been developed for integrating the equations of motion. The Verlet algorithm

[21], for example, uses the Taylor expansion series to approximate the position, velocity and

acceleration of all the particles. This method has the advantage of preserving the reversibility

that is one of the most important properties of the Newton’s equations. The error in the

estimate of the position depends on the order of Taylor expansion. In applications where only

the positions need to be calculated, this method has been proven to be very accurate and

computationally efficient. However, normally in molecular dynamics simulations the velocities

need to be calculated in order to compute, for example, the temperature and kinetic energy

of the system. The velocities in the Verlet method are not explicitly solved. The error in the

velocity calculation is, therefore, two orders of magnitude higher that in the estimate of the

position. This leads to the main shortcoming of the Verlet method: energy fluctuations – the

energy conservation rule might be violated.

Another, more accurate way to integrate numerically the equations of motion is the predictor

– corrector algorithm. The predictor – corrector method is composed of three steps: predic-

tion, evaluation, and correction. The predictor – corrector method first predicts the system



29

Figure 5.1: A simplified MD algorthm.

configuration at time t+Δt using a Taylor expansion series:

rp(t+Δt) = r(t) + v(t)Δt+
1

2
a(t)Δt2 +

1

6
b(t)Δt3 +

1

24
c(t)(Δt4) +

1

120
d(t)(Δt5), (5.2)

where r is the position, v is the velocity, a is the acceleration and b, c, d are the higher order

time derivatives of the position, the superscript p denotes the predicted configuration. The same

procedure is carried out for the time derivatives of the position.

The forces are then evaluated at the new positions at the time t+Δt to obtain the acceleration

a(t+Δt). The differences between the predicted and calculated accelerations are calculated in

order to obtain the error Δa(t+Δt) and the error is used to correct all the predicted positions
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and their derivatives:

rc(t+Δt) = rp(t+Δt) +Δa(t+Δt). (5.3)

The corrections of the time derivatives are performed in the same manner.

The molecular dynamics code PARCAS (PARallel CAScade) [22] employed in this study, uses

a Gear algorithm [25] based on the predictor– corrector method. The Gear method in addition

to the predictor–corrector algorithm uses the set of coefficients ci that are chosen depending

on the order of the Taylor series expansion. The Gear algorithm is more accurate than the

Verlet for short time steps, although the error increases more rapidly for longer time steps [20].

This method provides both the positions and velocities of the atoms at the same time and it

can be used to calculate forces that depend explicitly on the velocity, this is indeed needed in

algorithms which control temperature and pressure.

Molecular dynamics time step.

An important parameter in MD simulations is the integration time step Δt. It defines how

often interactions between atoms in the system are calculated. The choice of Δt depends on

the material and the nature of the simulation. To conserve the total energy of the system, the

time step should be chosen to be about the magnitude of the fastest motion in the system. The

atomic vibrational frequencies typically are of an order of 1013 Hz, which corresponds to 100 fs.

However, during the simulations of energetic processes the atom displacements are much larger

than in the thermal equilibrium simulation, as a consequence the time step needs to be chosen

to be small enough to realistically describe the trajectories of fast moving atoms.

For computational efficiency, the MD code PARCAS uses the adaptive timestep [26]:

Δtn+1 = min

(
Δxmax

vmax

,
ΔEmax

Fmaxvmax

, cΔtΔtn,Δtmax

)
, (5.4)

where Δxmax is the maximum allowed distance at any time t, ΔEmax is the maximum allowed

change in energy, vmax and Fmax is the maximum speed of a particle and the maximum force

that can act on it, respectively. The constant cΔt is chosen in such way that it prevents sudden

changes in the time step and Δtmax is the time step for a system at equilibrium.

Temperature and pressure control

One common approach to control the temperature during the MD simulation is the Berendsen

thermostat [27], which is based on a weak coupling between the system and an external bath.
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In this method the velocities are scaled at each time step in such a way that the rate of change

of temperature is proportional to the difference in temperature:

dT

dt
=

1

τ
(T0 − T ), (5.5)

where τ is the coupling parameter that determines how tight is the coupling between the bath

and the system, T0 and T are desired and current temperature, respectively.

The temperature of a system is related to the kinetic energy of the particles in the system,

therefore, the temperature can be easily altered by multiplying the velocities v by a factor λ:

λ =

[
1 +

Δt

τT

(
T0

T
− 1

)]1/2
. (5.6)

In a similar way as the temperature control, the Berendsen’s pressure control is done by intro-

ducing a scaling factor μ to scale the size of the system and all atom coordinates:

μ =

[
1 +

βΔt

τP
(P0 − P )

]1/3
, (5.7)

where β is the inverse of the bulk modulus of the system, P0 is the desired pressure, P is the

actual pressure of the system and τP is the time constant for pressure scaling.

5.1.1 Molecular Dynamics potential

MD allows us to follow the interactions of millions of atoms for up to microsecond time scales.

To describe the atom interactions in MD simulation the analytical interatomic potentials are

used. The forces between atoms are derived from the potential energy:

�Fi = −∇rV (r1, r2, ..., rN). (5.8)

In general, the total potential energy of the system can be written as:

Vtot =
N∑
i

V1(�ri) +
N∑
i,j

V2(�ri�rj) +
N∑

i,j,k

V3(�ri�rj�rj) + ..., (5.9)
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where V1 is the one-body term that arises due to the external forces acting on the system or

the boundaries of the cell. With no external forces
∑N

i V1(�ri) can be omitted. V2 is the two-

body term that includes the interaction for every pair in the system and its magnitude depends

only on the interatomic distance between the pairs completely neglecting the influence of other

atoms. V3 is the three-body term which in addition to the pair interaction includes the effect

of the third atom. A variety of interatomic potentials exist and the choice of it depends on the

material and the nature of simulation. The requirements for a good interatomic potential are:

it needs to reproduce the material properties as closely as possible, it should be able to predict

some properties that it has not been fitted and it should be efficient.

Due to efficiency reasons higher terms than V3, in Eq. (5.9), are often neglected. In order to

simulate strongly bonded systems (with the absence of external forces) one needs to include

the pair interaction V2 and the three-body term V3.

Two major classes of many-body potentials can be distinguished: bond-order potentials (BOP)

and the embedded atom model (EAM).

The Tersoff potential is one of the potentials belonging to the BOP class. It has a three-body

potential functional form which explicitly includes an angular contribution of the force called

bond order – the strength of each bond depends on the local environment and is lowered when

the number of neighbours is relatively high. The Tersoff potential can be written as the sum of

the attractive fA and repulsive fR pair potentials:

Vij = fC(rij)[fR(rij) + bijfA(rij)], (5.10)

where rij is a distance between the atoms, bij is the bond-order term and fC is a smooth cut-off

function.

The Environment-Dependent Interatomic Potential (EDIP) [28] is also classified as being BOP

and is an efficient and realistic model for interatomic forces in covalent materials [29, 30]. It

consists of the two-body and three-body terms that both depend on the local environment of

atom through the effective coordination number.

The embedded atom method (EAM) [31, 32] is an interatomic potential that treats the material

as nuclei embedded in a charged density distribution (’electron sea’). This approach represents

the total energy of the system as two additive terms, a pairwise sum of interactions between

atoms, and a term representing the electron density of each atomic site:
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E =
∑
i

Fi(
∑
i �=j

ρj(rij)) +
1

2

∑
i,i �=j

Vij(rij), (5.11)

where E is the total energy of the system, i and j indicate the unique pairs of atoms within

the N atoms of the system, rij is their interatomic separation, V (rij) is a pairwise potential,

and F (ρj) is the embedding function for atom j which depends on the electron density ρj,

experienced by that atom. Due to their analytical formalism, EAM type potentials describe

metallic systems exceptionally well and are computationally very efficient.

5.2 Binary Collision Approximation

Binary collision approximation (BCA) simulation method is a useful tool for studying high

energy cascades [33, 34]. This method approximates the full atomic dynamics of a material

by a series of binary collisions neglecting possible many body effects. When an energetic atom

enters the material it collides with the target atoms. The scattering angle and the energy

transferred to the target atom can be obtained by solving the classical scattering integral for

each collision, Eq. (4.3). The impact parameter b and the azimuthal angle φ (the angle from the

initial direction of a particle) are chosen randomly for each collision. The impact parameter is

selected within the scattering cross section (dσ = 2πbdb) and is dependent on the composition

and the atomic density of the target material.

The BCA is a computationally very efficient simulation method due to the fact that it considers

only atoms that have energy above a chosen cut-off value. If the kinetic energy falls below this

cut-off value, the atom is treated as stationary and its movement is not further considered. A

criterion for atom being stationary can be accounted for using a cut-off energy. In Publication

IV the cut-off energy for the bulk and surface layer is chosen to be 3 eV and 1 eV, respectively. In

the BCA code CASWIN [35], used in this thesis, a particle is treated as sputtered if its energy

in the direction perpendicular to the surface has exceeded the surface binding energy. The

determination of the damage production in BCA simulations strongly relies on the threshold

displacement energy (Ed), which is the parameter describing the energy needed to permanently

displace an atom from its position.

The interatomic potential between two particles in the BCA simulation is given by a screened

Coulomb’s potential:
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V (r) =
1

4πε0
· Z1 · Z2 · e2

r
· φ(r/a), (5.12)

where e is the electron charge, ε0 is the permittivity of a vacuum, Z1 and Z2 are the charges of

the interacting nuclei, r the distance between them, a is the so-called screening parameter.

The potential V (r) in Eq. (5.12) becomes purely Coulombic at short distances. At larger dis-

tances the Coulomb potential is screened by the surrounding electrons, and the effect of the

electrons can be described by introducing a dimensionless screening function φ(r/a) to the

Coulomb potential. A very commonly used repulsive potential is the one given by Ziegler, Bier-

sack and Littmark [17], suggesting that the universal screening potential is a function of the

dimensionless reduced radius x which is related to the real radius by the scaling length aU , and

depends on the charges of the involved atoms:

x =
r

aU
, (5.13)

and

a = aU = 0.8854 · a0
Z0.23

1 + Z0.23
2

, (5.14)

where a0 = 0.529 Å is the Bohr radius. The resulting in screening function φ(x) is:

φ(x) = 0.1818e−3.2x + 0.5099e−0.9423x + 0.2802e−0.4029x + 0.02817e−0.2106x (5.15)

This is the so-called ZBL repulsive potential.

In Publication IV the BCA simulation method is used to simulate single ion impacts to study

the displacements and sputtering of the target atoms.
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Chapter 6

Results

6.1 Impurity Induced Defect Formation

As described previously in Chapter 3, defects such as monovacancies are always present in the

materials above the absolute zero. Similarly, all solids in nature contain a certain amount of

impurities. The presence of foreign atoms may greatly affect material properties.

Over the past couple of decades H – metal interaction has been of a great interest, since the

experimental observations of H assisted vacacy formation [9, 10]. Typically near the melting

point of metals the equilibrium vacancy fractions range from about 10−4 to 10−3 while due to

the presence of large amounts of H this fraction can increase up to 0.1 – 0.3. The origin of

this phenomenon, often referred to as the superabundant vacancy (SAV) formation, lies in the

lowering of the total free energy of the system due to the H trapping in vacancies.

As a part of this thesis, a theoretical thermodynamics model was developed to quantitatively

demonstrate the vacancy formation as a function of temperature and the impurity concentra-

tion.

In Publication I, the total equilibrium vacancy fraction is calculated as a function of H fraction

in four metals: palladium (Pd), nickel (Ni), cobalt (Co) and iron (Fe). The results from the

theoretical thermodynamics calculations are compared with the experimental data by Fukai

and co-workers, where the authors using the lattice contraction measurements for Ni, Co, Pd

and X-ray diffraction measurements for Fe, observed SAV formation [36, 37]. The energy and

entropy parameters for vacancy formation and H binding to the vacancies are found from the

literature and used as the input for our theoretical thermodynamics model. The H fractions

and temperature of the system are taken from the corresponding experiments [36, 37].
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The total vacancy fraction in a material can be expressed as the sum of fractions of monova-

cancy, divacancy and larger vacancy clusters:

[Vtot] = [V1] + 2 [V2] + 3 [V3] + ... (6.1)

Several thermodynamics approaches may be employed to estimate the total vacancy concentra-

tion in materials. The simplest way is to take into account only monovacancy thermodynamics

neglecting larger vacancy clusters completely. This is a sufficient approach when divacancies

and larger vacancy clusters give a negligible contribution to the total vacancy fraction, e.g, in

the case of a pure metal with a large divacancy formation energy. However, when the monova-

cancy fraction is large, vacancy clustering takes place. Besides, when the divacancy formation

energy is relatively small, the divacancy contribution to the total vacancy fraction can not be

neglected. The efficient way to estimate the divacancy fraction [V2] is to calculate it from the

monovacancy fraction and taking into account their binding properties [38]:

[V2] =
z

2
exp

(
ΔSv2

b

kB

)
[V1]

2 exp

(−Ev2
b

kBT

)
, (6.2)

where z is the configurational factor that accounts for possible orientations of the divacancy, Ev2
b

is the divacancy binding energy, ΔSv2
b is the divacancy binding entropy and for simplicity the

entropy term exp
(

ΔS
v2
b

kB

)
is assumed to be unity. This commonly used assumption is accurate

for divacancy estimation in pure metals. In the presence of H Eq. 6.2 largely overestimates the

divacancy fraction and, therefore, should not be used when studying SAV formation.

In this thesis, a more accurate way to study SAV’s is proposed: the thermodynamics of mono-

vacancy and divacancy formation is considered, the binding energy of each trapped H is taken

into account and the defect entropy terms are included, as described in Publication I.

The comparison of the two approaches is shown in Fig. 6.1, the thermodynamics of only mono-

vacancies with divacancies being calculated from the squared monovacancy fraction, as in Eqs.

(6.1, 6.2), and the thermodynamics of both – monovacancy and divacancy formation, shown

in Eqs. (3.22 – 3.25). The results show that at high H fractions, the vacancy fraction is over-

estimated if the divacancy fraction is assumed to be proportional to the monovacancy fraction

squared. Besides, the total vacancy fraction becomes increasingly overestimated for metals with

larger divacancy binding energies.

In Fig. 6.2, a comparison of equilibrium vacancy fraction in Ni–H system is presented, calculated

using the thermodynamics model of monovacancies and divacancies, as in Eqs. (3.22 – 3.25), and
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Figure 6.1: Comparison between theoretically calculated vacancy fraction as a function of H
fraction for the Ni-H system using thermodynamics model taking into account the monovacancy
and divacancy thermodynamics as shown in Eqs. (3.22 – 3.25), and taking into account only
monovacancy thermodynamics and obtaining divacancies from Eqs. ( 6.2, 6.1), both methods are
presented and discussed in detail in Publication I. The parameters used in the thermodynamics
calculations are: Ev1

f = 1.37 eV, Ev2
f = 2.42 eV, ΔSv1

vib = 2.00 kB, ΔSimp1
vib = −0.1 kB, T = 1100

K. The fitting constant to the H cumulative binding energy to monovacancy and divacancy: A
= 0.005273, B = −0.070655, C = 0.640694, D = 0.002492, E = −0.061665, F = 0.828168.

the thermodynamics of only monovacancies Eqs. (3.20) (completely neglecting the presence of

divacancies). A very good agreement is found for low H fractions. However, at larger H fractions,

where the divacancy fraction becomes increasingly dominant over the monovacancy fraction, a

deviation is observed between both approaches. This stems from the higher H binding energy

to the divacancy. As a consequence the thermodynamics of only monovacancies is capable

to accurately describe the total equilibrium vacancy fraction below the H fraction ∼ 10−3.

Above this H fraction (if H is stronger bound to the divacancy than to the monovacancy), the

divacancy contribution becomes dominant and the thermodynamics of both monovacancies and

divacancies is a more accurate way to calculate the total equilibrium vacancy fraction.

To prove the proposed hypothesis, the case where H does not bind to vacancies is demonstrated

(the binding energy of 0 eV is assumed). The temperature of the system is chosen to be the

melting point of pure Ni. In Figure 6.3, as anticipated, the monovacancy contribution to the

total equilibrium vacancy fraction dominates over the divacancy contribution. Interestingly,
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Figure 6.2: Comparison between theoretically calculated vacancy fraction as a function of H
fraction for the Ni-H system using the thermodynamics model of monovacancies and divacancies
Eqs. (3.22 - 3.25), and the thermodynamics of only monovacancies Eq. (3.20), from Publication
I. In the inset, we show that the thermodynamics for only monovacancies is not sufficient to
accurately describe the total vacancy fraction. Note the logarithmic scale. The parameters used
in the thermodynamics calculations are the same as in Fig. 6.1.

even if the H binding energy to vacancies is zero, SAV formation is observed at H fractions

above 10%. The reason for SAV formation at large H fractions is the H configurational entropy:

when a vacancy is formed, more possible sites to accommodate H become available, increasing

the total entropy.

This leads to the other important conclusion that H configurational entropy is one of the reasons

for the SAV formation observed most often in an FCC phase. Depending on the host material,

in an FCC structure H can occupy one octahedral or two tetrahedral interstitial sites per host

atom, whereas in a BCC crystal H can be distributed over six tetrahedral or three octahedral

interstitial positions per host atom. As a consequence, the formation of a vacancy in an FCC

metal gives rise to more configurations to distribute H than in the BCC metal.

To show the effect of the material structure on SAV formation, in Fig. 6.4 a hypothetical metal

is presented (the parameters used in the thermodynamics calculations Ev1
f = 1.50 eV, Ev2

f =

2.99 eV, ΔSv1
vib = 2.00 kB, ΔSimp1

vib = −0.1 kB, T = 1100 K) with two different structures – BCC

and FCC. The hypothetical metal is assumed to accommodate H in six tetrahedral interstitial
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Figure 6.3: The vacancy fraction as a function of H fraction for the Ni-H system using the
thermodynamics approach as in Eqs. (3.22 – 3.25), from Publication I (the parameters used in
the thermodynamics calculations Ev1

f = 1.37 eV, Ev2
f = 2.42 eV, ΔSv1

vib = 2.00 kB, ΔSimp1
vib =

−0.1 kB, T = 1728 K). Here the binding parameters A, B, C and E, F, G for monovacancies
and divacancies, respectively, are zero. Note that even if the H binding energy to vacancies is
zero, the vacancy fraction increases due to the presence of H.

positions (m = 6) in BCC phase and one octahedral interstitial position, when it is in the FCC

phase (m = 1). The figure shows that a metal with the FCC structure has about a two decade

larger vacancy fraction than a metal with the BCC structure, with the same energy and entropy

parameters.

To conclude the main results of this chapter: the thermodynamics of only monovacancies is

capable to accurately describe the total equilibrium vacancy fraction below the H fraction 10−3.

Above this H fraction (if H is stronger bound to the divacancy than to the monovacancy), the

divacancy contribution becomes dominant and the thermodynamics of both monovacancies and

divacancies is a much more accurate way to calculate the total equilibrium vacancy fraction.

Obtaining the divacancy fraction from the monovacancy fraction squares highly overestimates

the total vacancy fraction and is not suitable for studying SAVs at large H fractions. One of the

factors strongly mediating SAV formation is the H configurational entropy. It is responsible for

vacancy formation at large H fractions even if there is no binding between the H and a vacancy,

and is a reason for SAVs being seen mainly in FCC metals.
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Figure 6.4: The equilibrium vacancy fraction as a function of H fraction for a hypothetical
metal with FCC and BCC structure, note the logarithmic y scale. The difference between the
two structures arises due to the H configurational entropy factor (Publication I).

6.2 Defect Dynamics

6.2.1 Diffusion

In Publications II and III the diffusion of monovacancies and H impurities in tungsten is

studied employing the MD method. The diffusing particle is tracked during simulation and the

diffusion coefficient is determined by the improved Einstein-Smoluchowsky equation with the

independent interval method (IIM) [39], as follows:

D =
1

N

N∑
i

R2
i (t)

6
N∑
i

Δti

, (6.3)

R2
i (t) being the squared displacement of the diffusing species, Δt is the diffusion time and N

is the number of intervals the diffusion path is divided into.

Monovacancy diffusion
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Table 6.1: Melting temperatures, diffusion activation energies Ea, pre-exponential factors D0

and attempt frequencies for W ν.

Method Tm(K) Ea (eV) D0 (m2/s) ν (Hz)

Exp [16, 40] 3695 1.8 4.0×10−6∗ -
DFT [42, 43] – 1.71, 1.78 - -
BOP-1 [44] 2750 1.84 1.5×10−5 1.2×1015
BOP-2 [42] 4550 1.59 4.0×10−6 3.2×1014
BOP-3 [45] 4550 1.69 4.2×10−6 3.4×1014
EAM [46] ∼ 3750 2.09 1.0×10−5 8.2×1014

∗Data extracted from self-diffusion experiments

In Publication II, employing the MD simulation method and using four interatomic potentials

(three bond order potentials: BOP-1, BOP-2 and BOP-3 and an EAM potential) the diffusion

of a single vacancy is simulated over a wide temperature range.

By fitting the Arrhenius function to the diffusion coefficients attained from the simulations, the

diffusion parameters such as monovacancy migration energy and the diffusion pre-exponential

factor are obtained. The experimental and simulated melting points and diffusion parameters

are summarized in Table 6.1.

The monovacancy migration energies are found to be in the range from 1.59 to 2.09 eV, de-

pending on the interatomic potential. This is in reasonable agreement with the experimental

value 1.78 eV [40].

The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three

orders of magnitude higher than commonly used in computational studies [41], resulting in the

highest attempt frequency (for BOP-1) of the order of 1015 Hz. This high jump frequency is

quite unexpected, considering that a vacancy jump in BCC metals occurs when any of the

eight one nearest neighbour (1NN) W atoms with an approximated jump frequency of 5×1012
Hz jumps into the vacancy.

When analyzing the vacancy diffusion process in more detail, multiple monovacancy jumps have

been discovered: at higher temperatures (above about 2/3 of the melting temperature Tm) an

increasing number of the vacancy position changes are not 1NN jumps, but two or three atoms

in the 〈111〉 row move towards the empty lattice position, i.e. the vacancy moves two or three

nearest neighbour distances at once.

Furthermore, it is shown that a simultaneous movement of W atoms occurs not only along the

〈111〉 direction: a significant number of two nearest neighbour jumps of monovacancy occur

first in 〈111〉 direction, then in either
[
1 1 1

]
,
[
1 1 1

]
,
[
1 1 1

]
, giving the total displacement of
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≈ 3.17 Å, later referred to as LA, or in
[
111

]
,
[
11 1

]
,
[
1 11

]
direction, with total displacement

≈ 4.48 Å referred to as LB. The nearest and next-nearest neighbour jumps are illustrated in

Fig. 6.5.

Figure 6.5: Monovacancy jump paths in BCC metals.

The sum of all these jump contributions (1NN jumps, as well as the other diffusion mechanisms),

explain the exceptionally high effective monovacancy jump frequency obtained from the MD

simulations.

The probabilities for different nearest neighbour jumps for a single vacancy in W was calculated

from the MD simulations, and it was found that already at 2/3 of Tm, a significant number

of vacancy jumps are larger than the 1NN jump, which gives an evident contribution to the

diffusion coefficient with different activation parameters.

The total diffusion coefficientDtot, taking into account all diffusion mechanisms, may be written:

Dtot = D1 · exp
(−E1

kBT

)
+D2 · exp

(−E2

kBT

)
+D3 · exp

(−E3

kBT

)
+

+DA · exp
(−EA

kBT

)
+DB · exp

(−EB

kBT

)
, (6.4)

where Di and Ei are pre-exponential factors and migration barriers, respectively, for i=1: 1NN

jumps, i=2: 2NN, i=3: 3NN jumps, i=A: LA jumps and i=B: LB jumps.

The W monovacancy diffusion coefficients obtained with MD and the fit to the Arhenius func-

tion is shown in Fig. 6.6. The monovacancy diffusion exhibits the super-exponential behaviour.

The multiple vacancy jumps could be one of the reasons for the upward curvature of the Arrhe-

nius diagram and could possibly explain the increase in the diffusion coefficient above 2/3 Tm

in the early W self-diffusion experiments [16].

Other mechanisms have also been proposed to interpret the slight upward curvature of the

Arrhenius diagram, such as the simultaneous diffusion of monovacancies and larger vacancy
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Figure 6.6: Arrhenius diagram for W monovacancy diffusion (BOP-1). Fitted D0 = 1.5×10−5

m2/s, Ea = 1.84 eV for temperatures 1300K – 1600K, resulting in the attempt frequency ν
= 1.2×1015 Hz. The diffusion coefficient shows the upward curvature of Arrhenius diagram at
higher temperatures (Publication II).

clusters (divacancies), self-interstitial atom (SIA) diffusion, and the temperature dependence

of vacancy formation and diffusion parameters.

Due to the fact that the binding energy for two W monovacancies, obtained by DFT and MD

(Publication II), is close to 0 eV, the divacancy contribution is expected to play a minor role

in the increase of self-diffusion coefficient. The formation energy of an SIA in W is over 9 eV

[47, 48] making its thermodynamic contribution to self-diffusion negligible at any temperature.

However, DFT studies show that the vacancy formation energy in W decreases somewhat at

higher temperatures, which explains partly, nevertheless not fully, the deviation from Arrhenius

behaviour [49].

Hydrogen diffusion

In Publication III, the diffusivity of H is studied using MD simulations over the temperature

range from 300 K to 2000 K. At lower temperatures than about 200 K the quantum diffusion

of H takes place which cannot be described by the classical MD. Therefore, temperatures below

room temperature are not considered in this thesis. The H atom is an endothermic impurity in

W with high solution energy Esol of about 1 eV [50] leading to low equilibrium concentrations

of H in W. However, large H flux from a fusion device, plasma source or ion implanter can result

in concentrations that considerably exceed the equilibrium value in W. This H concentration

is proportional to the incoming flux and inversely proportional to the H diffusivity.
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The migration barrier for H in tungsten is obtained from an Arrhenius fit to MD simulated

diffusion coefficients to be 0.25 eV. This value is in agreement with the DFT value 0.26 eV [47].

However, the commonly accepted and recommended value for the H migration barrier from

Fraunfelder experiments [50] is 0.39 eV, which is significantly larger.

The Arrhenius diagram for simulated and experimental H diffusion coefficients is shown in Fig.

6.7. The MD simulation results agree with the Fraunfelder data when the low temperature

points are omitted from the fit (see Fig. 6.7, red line). This omission is justified due to the H

trapping effects [51]: at low temperatures when H is occasionally trapped into other defects

such as vacancies, the effective diffusion coefficient becomes lower than the actual diffusion

coefficient resulting in the overestimated activation energy for H diffusion. Due to this fact the

value of 0.25 eV for H migration barrier in W should be used in the calculations instead of the

0.39 eV commonly used.

To obtain the impurity diffusion coefficient from MD simulations the Eq. (6.3) can be used.

However, the distance squared in Eq. (6.3) includes also the random oscillation of the H atom

around its equilibrium position. This means that when a large number of MD simulations

are done, the obtained mean displacement squared is larger than the actual distance squared

between two atomic equilibrium positions:

〈
ΔR2

MD

〉
>

〈
ΔR2

〉
(6.5)

where 〈ΔR2
MD〉 is the simulated mean displacement squared including random oscillation, and

〈ΔR2〉 is the mean displacement squared (distance squared between two atomic equilibrium

positions).

This discrepancy gets even more significant when the diffusion path is divided into large number

of intervals N (in order to improve statistics). For increasing number of intervals the random

oscillation around the equilibrium position becomes comparable to the diffusion path itself,

increasing the error for the calculated diffusion coefficient.

In Publication III, a new method to obtain the correct diffusion coefficient is developed:

D =

∑N
i ΔR2

MD,i −N × 2 〈Δr2〉
6
∑N

i ΔTi

, (6.6)

where ΔR2
MD,i is the simulated displacement squared and 〈Δr2〉 is the mean oscillation distance

squared around the atomic equilibrium position. The 〈Δr2〉 is obtained from the simulations

averaging over thousands of MD simulated position points.
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Figure 6.7: Arrhenius plot of simulated and experimental H isotope (deuterium) diffusion coef-
ficients. The Fraunfelder data has been divided by the square root of two to obtain the correct
values for deuterium. The red line is the fit to the Fraunfelder data where the two lowest tem-
perature points, T < 1400 K, have been omitted. The labels and units in the inset are the same
as for the main plot.

By using Eq. (6.6), the diffusion path can be divided into many intervals (to improve statistics)

and still an accurate diffusion coefficient can be obtained.

In Publication III, it is shown that the H diffusion has a strong dependence on its concentration:

the diffusivity of H decreases with the increasing concentration. At high H concentration, the

lowering of the diffusion coefficient can be mostly attributed to the neighbouring interstitial

site blocking.

On the other hand, the diffusion of H atoms is significantly affected by H cencentration already

at H concentrations above 1%. The observed diffusivity decrease can be explained by the close

range repulsive H-H interaction [52], where it was seen by Liu et al. [53] that the H atoms repel

each other for distances below about 3.2 Å.
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This rather long range repulsion prevents a H atom from diffusing towards another H atom,

decreasing the effective diffusion coefficient. This explanation seems feasible, as the observed

diffusion coefficient reduction is largest at low temperatures where a small repulsion between

atoms is enough to keep them apart. The equation accounting for the concentration dependent

H diffusion is proposed to be:

D = D0 exp

(
−(X − α)2

β

)
exp

(
−(Em + γXδ)

kBT

)
, (6.7)

whereX is the number of H atoms divided by the total number of interstitial sites:X = H
W ·6 , the

BCC lattice has six TIS per atom. Parameters D0, Em, α, β, γ and δ are the fitting parameters.

The lines in Fig. 6.8 show that Eq. (6.7) describes very well the simulated diffusion coefficients

for the whole H/W ratio as well as the temperature region. The fitted parameter values are:

D0 = 1.2737×10−7 m2s−1, Em = 0.2430 eV, α = 0.028314, β = 0.002167, γ = 2.13773 and

δ = 0.73842. The decreasing H diffusion coefficient as a function of H concentration might have

Figure 6.8: The simulated H isotope (deuterium) diffusion coefficients as a function of temper-
ature and H/W fraction. The Fraunfelder data (circles) has been divided by the square root of
deuterium’s atomic mass (publication II). The solid lines are given by Eq. (6.7).

serious implications on the properties of tungsten material in H-rich environments. In high H

flux experiments, the concentration of H in W might become much higher than expected due

to the self-induced decrease in the diffusivity.
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This is especially important at lower temperatures as seen in Fig. 6.8, where the diffusivity

reduction as a function of concentration is most pronounced.

6.2.2 Displacements

Ion irradiation is a tool to study and alter material properties. It is a widely used approach

to introduce impurity atoms in semiconductor materials and to study the irradiation tolerance

of shielding materials exposed to the particle bombardment. Ion-beam irradiation has proven

to be a promising method for surface morphology modifications. Under certain conditions, ion

irradiation can cause ripple formation on the target material surfaces. This phenomenon has

been seen on various semiconductor [54] and metal surfaces [55, 56] and has been intensively

studied for the past couple of decades.

A recent theoretical model based on the displacement analysis obtained from the MD sim-

ulations of single ion impacts suggests that the ripple formation is dominated by the atom

redistribution in a target, the sputtering being irrelevant [57]. The theoretical approach to pre-

dict the surface pattern formation requires knowledge of the ”crater function” - the partial

differential equation describing the evolution of the surface. The most direct method of determ-

ining the crater function is molecular dynamics (MD) studies of individual ion impacts. The

MD technique based on the analytical interatomic potentials is limited in the size of the system

it can model, however, at high ion energies the size of the simulation cell must be large enough

to enclose the evolving cascade. This creates a demand for a computationally more efficient

method - BCA.

In Publication IV, the single 1 keV Ar+ ion impacts on amorphous silicon (a-Si), crystalline Si

and W have been simulated with MD and BCA techniques. The average displacement profiles

have been calculated and compared for the two fundamentally different computational methods

(Fig. 6.9, 6.10 and 6.11). The results reveal a significant shortcoming of the BCA approach when

applied to materials that are amorphous or become amorphous during ion irradiation. The study

shows that at displacements above about 5 Å, the MD and BCA displacement distributions are

in a good agreement for all three target materials. At small displacements – below about one

bond length – the BCA and MD results show large discrepancies for a-Si and crystalline Si, and

gives good agreement for W. This difference between MD and BCA simulations arises due to

the neglect of many-body interactions in BCA. The BCA approach misses a very large number

of small displacements seen in MD and attributed to the collective phenomenon of amorphous

material flow. This shortcoming could seriously compromise the ability to use BCA to accurately

evaluate crater functions for description of surface pattern formation. Interestingly, the BCA
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method, which does not account for the crystal structure of a material in any way, describes

the atom displacements clearly better for crystalline than amorphous materials. Tungsten does

not become amorphized upon irradiation and, therefore, the BCA and MD results are in good

agreement.

Figure 6.9: Atom displacement statistics for single 1 keV Ar+ impact on amorphous Si at 50o

incidence angle. Comparison between the MD and BCA methods, from Publication IV.
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Figure 6.10: Atom displacement statistics for single 1 keV Ar+ impact on crystalline Si at 50o

incidence angle. Comparison between the MD and BCA methods, from Publication IV.

Figure 6.11: Atom displacement statistics for single 1 keV Ar+ impact on crystalline W at 50o

incidence angle. Comparison between the MD and BCA methods, from Publication IV.
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Chapter 7

Summary

The purpose of this thesis is to deepen knowledge of defect formation and diffusion phenomena.

In this thesis the defect formation in metals is studied applying thermodynamic theory. A

general thermodynamics model, developed by the author, quantitatively demonstrates vacancy

formation as a function of temperature and impurity concentration. For the correct description

of the free energy of the system, the binding energies of each trapped impurity, the vibrational

entropy of defects and the thermodynamics of divacancy formation are taken into account.

The results of the thermodynamics calculations are compared with the available experiments

and are found to be in good agreement. The model shows that the divacancy fraction makes

a major contribution to the total equilibrium vacancy fraction due to the higher impurity

binding energy to divacancies than to monovacancies. The results also indicate that calculating

the thermodynamic formation of only monovacancies is not a sufficient approach for estimating

the total equilibrium vacancy fraction in most metals. The comparative study between different

thermodynamics approaches and experiments shows that the divacancy contribution must be

calculated according to the thermodynamics by minimizing Gibbs free energy, and demonstrates

that the approximation of the divacancies being proportional to the squared monovacancy

fraction can be used only for pure metals or metals containing small amounts of impurity

atoms, making it an unsuitable approach for calculating superabundant vacancy formation.

The thermodynamics model also shows that vacancies are formed in metals due to the pres-

ence of impurities such as H, and at high impurity fraction vacancies are formed regardless

of the impurity binding energy to the vacancy. The reason for this phenomenon is shown to

be the impurity configurational entropy increase upon the vacancy formation which explains

superabundant vacancy formation being more pronounced in the FCC phase than in the BCC

phase.
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Inspired by fusion research the diffusion of monovacancies and H impurities in tungsten has been

studied employing the MD technique. The hydrogen migration barrier is revised and proposed

to be 0.25 eV. A new general method is derived to obtain an accurate diffusion coefficient in

simulations dealing with the random oscillations of diffusing species around the equilibrium

position. This correction improves the accuracy of determining the diffusion coefficient at all

temperatures, but the main advantage is that it makes it possible to simulate atomic diffusion,

and determine the corresponding diffusion coefficients at lower temperatures than previously.

The H diffusion is shown to be concentration dependent due to the neighbouring site blocking

at high concentrations and repulsive H interactions.

The monovacancy diffusion was studied in tungsten, and it was found that the diffusion coef-

ficient exhibits a slight increase at high temperatures. The reason for this upward curvature

is not fully established yet. The molecular dynamics simulations indicate the occurrence of

multiple nearest neighbour vacancy jumps that take place mostly at temperatures of 2/3 of the

melting point. Moreover, the diffusion pre-exponential factor was calculated for monovacancy

diffusion in tungsten and found to be higher than expected resulting in a monovacancy diffusion

attempt frequency two to three orders of magnitude higher, of about 1015, than commonly used

in computational models.

Lastly, a single Ar ion bombardment of amorphous Si, crystalline Si and BCC tungsten was

studied. The results for molecular dynamics and binary collision methods are compared to

answer a question of the suitability of BCA for studying atomic displacements when it comes

to explaining such phenomena as the formation of ripples. The results from both methods

show good agreement for crystalline materials, however, large discrepancies are observed at

distances below about one bond length for amorphous materials or materials that become

amorphous during irradiation. Due to the nature of the BCA simulations that neglect many-

body interactions, it is impossible to reproduce the very large amount of small displacements

present in MD. This shortcoming of BCA could seriously compromise the ability to use BCA

to describe the amorphous material flow which hes been reported to be the main reason for

ripple formation. Interestingly, the Monte Carlo BCA simulations, which do not account for

the crystal structure of a material in any way, describe the atom displacements clearly better

for crystalline than amorphous materials.

The results of this thesis contribute to a better understanding of defect formation and diffusion

in metals. However, predicting the material performance in such extreme conditions as in fusion

reactors is very complex and needs extensive studies. Vacancy formation in tungsten should

be studied as a function of impurity flux and fluence in future studies. For this purpose the

thermodynamics model can be combined with the Kinetic Monte Carlo simulations or the mean
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field rate equation theory. Such an approach together with the experimental studies would allow

us estimate the vacancy formation in material and impurity retention as a function of incoming

impurity amounts. Although ion induced nano-patern formation have been studied for decades,

the complete understanding of processes taking place in materials under different conditions

is still lacking. Future work in this field should include examining the the role of the stress

accumulation in the amorphous layer during the irradiation process.
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