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Abstract

Objective. The objective is to perform a comprehensive
review of the literature up to 2015 on the genetics and pre-
cision medicine relevant to otitis media.

Data Sources. PubMed database of the National Library of
Medicine.

Review Methods. Two subpanels were formed comprising
experts in the genetics and precision medicine of otitis media.
Each of the panels reviewed the literature in their respective
fields and wrote draft reviews. The reviews were shared with
all panel members, and a merged draft was created. The entire
panel met at the 18th International Symposium on Recent
Advances in Otitis Media in June 2015 and discussed the
review and refined the content. A final draft was made, circu-
lated, and approved by the panel members.

Conclusion. Many genes relevant to otitis media have been
identified in the last 4 years in advancing our knowledge
regarding the predisposition of the middle ear mucosa to
commensals and pathogens. Advances include mutant animal
models and clinical studies. Many signaling pathways are
involved in the predisposition of otitis media.

Implications for Practice. New knowledge on the genetic back-
ground relevant to otitis media forms a basis of novel
potential interventions, including potential new ways to
treat otitis media.
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G
enetics is critical in otitis media (OM) pathogenesis,

an infectious disorder involving inflammation of the

middle ear. Family and twin studies have proven that

the heritability of OM is high. Multiple factors and many

genes are involved in the predisposition of OM. The genetic

risk factors include the transforming growth factor beta

(TGFb) signaling pathway, mucin genes, vascular endothelial

growth factor, Toll-like receptors (TLRs), and ERK signaling

pathways. These pathways overlap and affect innate/adaptive

immunity and inflammatory responses of the middle ear

mucosa or normal cellular functions (angiogenesis, hypoxia,

lymphangiogenesis, mucociliary transport system, mucin pro-

duction, and mucous cell metaplasia). Increased understand-

ing of these genes and pathways has led to novel therapeutic

strategies for OM. Precision medicine (PM)—the use of spe-

cific patient genotypic and phenotypic characteristics to

inform individualized therapeutic decisions—has also

emerged as a consideration for OM management. Tools in

PM include molecular diagnostics by panomic analysis and

systems biology to understand the specific causes underpin-

ning a patient’s OM pathogenesis.
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Method and Search Strategy

Published literature in PubMed was searched since the last

symposium. Search terms included OM, recurrent acute OM,

chronic OM, chronic OM effusion, acute OM, heritability,

genetic, SNP, genes, genetic polymorphism, GWAS, linkage

study, genetics, signaling pathways, mucins, transforming

growth factor beta, Toll-like receptor, mucosal metaplasia,

chinchilla genome, and animal model. The search included

all published literature with available English abstracts. No

further exclusion or selection criteria were employed.

Discussion

Recent Advances in the Genetics of OM

Chronic infectious diseases, including OM, have been

linked to specific genetic profiles. For example, TLR2-defi-

cient mice develop purulent OM because of abundant infil-

tration of neutrophils related to the absence of goblet cell

metaplasia/hyperplasia in the middle ear mucosa.1 The

genetic background interacts with other host and environ-

mental factors to affect the phenotype of OM. Several

animal model studies, as well as human studies, have solidi-

fied the link between OM phenotypes and genetics.2

The branch of PM that addresses OM is referred to as

‘‘precision OM,’’ based on OM properties and genetic back-

grounds, such as chronic OM, secretory OM, serous OM,

mucous OM, and silent OM. A genetic predisposition or

susceptibility to OM is a genetic characteristic feature that

influences the possible phenotypic development. Genetic

testing and analysis can identify individuals who are geneti-

cally predisposed or susceptible to certain OM phenotypes.

Precision Medicine in OM

Understanding of disease susceptibility factors (intrinsic and

extrinsic), the characteristics of the pathogens, and how

these potentially affect a patient provides a basis for preci-

sion medical care for OM.3 Recent literature has highlighted

the importance of distinguishing patterns of illness in acute

OM to enable appropriate precision and individualized

care.4 Currently, these concepts apply primarily to clinical

presentations, such as bilateral acute disease, to inform the

use of antibiotics or surgical intervention.5 However, the

ability to use patient-specific genetic information to simi-

larly influence treatment decisions has been much studied

and published since the last symposium.

In OM, PM offers the potential to tailor a medical treat-

ment to a subgroup of individuals who have similar genetic

backgrounds, susceptibilities to pathogens, and responses to

external stimuli. Preventive or therapeutic interventions can

then be concentrated on those who will benefit, sparing

expense and potential complications to those who will not.

Genetic Aspect of Inflammation

Inflammation is a hallmark of OM. Appropriate inflamma-

tion is essential for eradicating pathogens. However, exces-

sive inflammation is clearly detrimental to the host.

Uncontrolled inflammation in the middle ear significantly

contributes to the development and progression of OM.

Thus, inflammation must be tightly regulated. However,

little is known about how inflammation is regulated in the

pathogenesis of OM.

A number of studies were carried out to investigate the role

of proinflammatory mediators in OM, with in vitro and in

vivo approaches. Zhang et al6 found that blockade of macro-

phage migration inhibitory factor suppresses inflammation and

improves the hearing level in an acute OM model. From a

whole genome gene array analysis, Suzukawa et al7 identified

that heparin binding–epidermal growth factor is a key mediator

of inflammation-induced mucosal proliferation in a mouse

model of OM. Kurabi et al8 found that mice lacking ASC, the

inflammasome adaptor protein, exhibited impairment of IL-1b

maturation, reduction in neutrophil recruitment, and bacteria

clearance of nontypable Haemophilus influenzae (NTHi) in

middle ear. Preciado et al9 found that NTHi challenge in the

mouse middle ear led to chronic epithelial mucosal metaplasia

and that Cxcl2 was a key proinflammatory mediator.

Investigating the negative regulators of inflammation

over the past years also brought novel insights into the tight

regulation of inflammatory responses. Woo et al10 found

that IL-10/HMOX1 signaling played a critical role in pro-

tecting the cochlea from inflammation-mediated tissue

damage through inhibition of MCP-1/CCL2 regulation.

Wang et al11 found that deubiquitinase cylindromatosis

(CYLD) suppressed NTHi-induced expression of key proin-

flammatory chemokine IL-8 via MAP kinase phosphatase 1

(MKP-1)–dependent inhibition of ERK. In addition,

Komatsu et al12 identified phosphodiesterase 4B (PDE4B)

as a key negative regulator for CYLD, and inhibition of

PDE4B markedly suppressed bacteria-induced inflammation

via upregulating CYLD expression by siRNA technology

and Cyld-deficient mice. Taken together, all of these studies

may lead to the development of new anti-inflammatory ther-

apeutics by targeting key regulators of inflammation in OM.

Genes Relevant to Human OM

Genetic studies are one way to research the pathophysiology

behind OM and eventually find new strategies for the ther-

apy and prevention of OM. There are several strategies to

conduct human genetic studies.

Heritability Studies

Heritability is the variance of phenotypic variation due to gen-

otype and has been estimated on twin studies for OM. Hafrén

et al estimated heritability from an OM-prone cohort of 590

families, consisting of 2436 subjects. The heritability estimates

were 38.5% for recurrent acute OM, 22.1% for OM with effu-

sion, and 47.8% for all OM.13,14 These results were somewhat

lower than heritability estimates from twin studies.

Linkage Studies

The purpose of linkage studies is to find genomic loci asso-

ciated to a phenotype. One or several families are geno-

typed, and with information about the affected status of the
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subject and genotype, the loci are calculated. Chen et al did

a follow-up linkage study, fine-mapping chromosome 19 on

their cohort of 139 families consisting of 607 study subjects.

They replicated their previous finding of linkage to loci 19q

(LODBEST = 3.75).15 Rye et al did a linkage study on a

cohort of 468 subjects from 101 families. They found signif-

icant evidence of linkage to 10q26.3 (Zlr = 2.69, P = .0036)

and borderline linkage to 10q22.3 (Zlr = 1.67, P = .05).

They further fine mapped the region in a cohort of 256

affected cases and 575 controls with imputation data from a

previous genome-wide association study (GWAS) that

revealed 4 candidate genes: TCERG1L, PP2R2D, DOCK1,

and ADAM12. Expression analysis and in silico analysis

concluded that PPP2R2D, part of the TGFb pathway, is the

most likely candidate gene underlying the linkage result.16

Candidate Gene Association Studies. In candidate gene studies,

the frequencies of a genetic marker is compared between

affected study subjects and control subjects. The control subjects

can be unrelated healthy controls (case-control study) or healthy

siblings or other family members (family study). Sale et al con-

duced a candidate gene study on 15 genes with separate poly-

morphisms in 142 families with 618 subjects. Nominal genetic

association was found for MUC5AC (rs2735733, P = .002, odds

ratio [OR] = 0.646; rs7396030, P = .049, OR = 1.565;

rs2075859, P = .041, OR = 0.744). Three other single-

nucleotide polymorphisms (SNPs) at 3 separate genes showed a

trend toward association: SCN1B (rs810008, P = .013), SFTPD

(rs1051246, P = .039), and TLR4 (rs2770146, P = .038).17 Rye

at al studied the candidate gene SLC11A1 in 660 affected chil-

dren from 531 families in a case/pseudo-control study. The best

SNP association was in the genetic model at the rs2776631

(P = .025). Haplotype analysis revealed the 3_C_C_G hap-

lotype (rs34448891_rs2276631_rs3731865_rs2695343) to

be more common in the affected study subjects (P =

.0008). Functional studies supported SLC11A1 as a novel

candidate gene for OM.18 A candidate gene study of 192

SNPs from 8 genes was conducted by MacArthur et al on

100 cases and 79 controls. Eight SNPs on 4 genes (TLR4,

MUC5B, SMAD2, SMAD4) showed a trend toward associa-

tion (PBEST_ADJUSTED = .625, rs10116253 on TLR4).19

Nokso-Koivisto et al studied 21 SNPs as risk factors for

upper respiratory tract infections, OM, and OM proneness

in 653 children. An increased risk for OM proneness was

associated with the CX3CR1 gene (Thr280Met, OR = 6.23,

P = .038). Also white race combined with IL-1b (-511) wild

type and IL-10 (-1082) non–wild type were associated with

OM proneness.20 A Greek cohort of 96 children was studied

for 8 SNPs of 5 cytokine genes. IL-10 (-592, -819, and -

1082) and TGFb (codon 10C.T) were associated with an

increased number of acute OM episodes (P \ .001, P \
.001, P \ .001, and P = .002, respectively). IL-10 (-1082)

and TGFb (codon 10C.T) were also associated to a later

onset of AOM (P = .007 and P = .0039, respectively).21

Gessner et al showed in 1032 study subjects from Alaska

that those who were homozygous for the arctic variant of

CPT1A (c.1436C.T) demonstrated a trend to more likely

have OM (OR = 3.6, 95% confidence interval: 1.4-8.9).22

Primary ciliary dyskinesia is a genetic disease inherited in

an autosomal recessive manner. The prevalence of primary

ciliary dyskinesia is estimated to be 1 in 20,000 live births.

Congenital abnormality of the primary cilia results in situs

inversus in 50% of patients. Decreased function of motile

cilia causes chronic rhinosinusitis, OM with effusion,

bronchiectasis, and infertility.23 Hafrén et al did a candidate

gene study with 53 SNPs on 624 study subjects with recur-

rent acute OM and/or chronic OM with effusion and 778

control subjects. The positive result for TLR4 (rs5030717,

OR = 1.33, P = .003) was further investigated by a tagging

SNP analysis, and 2 additional SNPs were identified

(rs1329060 and rs1329057). There was an increased associa-

tion among patients with a more severe phenotype: those

with OM starting before the age of 6 months (OR = 2.42,

P = .0005, for rs1329060) and those with repeated inser-

tions of tympanostomy tubes (OR = 1.65, P = .00004 for

rs1329060). The result was replicated in a Finnish OM

cohort of 205 children (s1329060, OR = 1.32, P = .002;

rs1329057, OR = 1.30, P = .003; rs5030717, OR = 1.34,

P = .002). In 3 other cohorts (2 in the United States and 1

in United Kingdom), the 3 SNPs failed to show associa-

tion with the risk for OM.25

A TLR4 variant (Asp299Gly, rs4986790) is related to the

colonization of Moraxella catarrhalis in the upper respira-

tory tract of children (43%) in comparison with the TLR4

wild type (9%) (RR = 4.91, P = .0001).24,25 The IL-10

rs1800896TC SNP and the IL-1a rs6746923A and AG

SNPs were significantly more and less common, respec-

tively, among children without a history of tympanic mem-

brane perforation than among those who suffered from this

complication.26

Genome-wide Association Studies. Genome-wide association

studies (GWASs) require no previous assumption on under-

lying genetic loci. They are used in the research of

common, complex diseases. Hundreds of thousands to mil-

lions of SNPs are analyzed in cases and controls to find

SNPs associated to the trait. Two GWASs have been pub-

lished on OM.

The first was published by Australian colleagues Rye et al

in 2012. They used the Illumina 660W-Quad to study 416

affected cases and 1075 controls. No marker showed

genome-wide significance (P \ 10-8), but there was a trend

toward association in the genes CAPN14 and GALNT14 on

chromosome 2p23.1 and BPIFA3 and BPIFA1 on chromo-

some 20q11.21. The top results did not replicate in an inde-

pendent cohort of 793 affected study subjects from 645

families, nor did they replicate in a North American cohort

of 596 subjects and 370 affected.27

The second GWAS study on OM was conducted on a

North American cohort of 602 study subjects from 143 fam-

ilies, with 373 affected subjects. Allen et al used the

Illumina Human CNV370-Duo. No SNP reached genome-

wide significance, but they conducted a replication study on

53 SNPs in an independent cohort of 1584 study subjects
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from 441 families. In an intergenic region on chromosome

2, the SNP rs10497394 replicated, thus giving a significant

association to OM (PMETA-ANALYSIS = 1.52 3 10-8). Three

other SNPs on chromosomes 15 and 5 showed a trend

toward association.15 Allen et al28 noted that diagnostic

approaches such as human linkage studies and GWASs may

provide new insights to OM research for the development of

novel therapeutic strategies.

Sequencing. Sequencing is becoming more affordable these

days and is mainly used to find rare variants in rare dis-

eases. In recent years, there has also been an increasing

number of studies on complex diseases. In 2015 Santos-

Cortez et al published the first sequencing study on OM.29

They did exome sequencing on 2 second cousins in a

Filipino isolate populate where the prevalence of OM is

almost 50%. They found a variant of A2ML1 (a-macroglo-

bulin-like 1) as a new risk variant for OM. The result was

replicated in 51 other subjects in the same isolate (LOD,

7.5). The variant is due to a duplication in the gene

(p.Ser829Trpfs*9). A2ML1 is expressed in murine middle

ear and is a rare, high genetic–risk variant for OM.

Genes Involved in Hearing Loss and OM in Animal
Models

The mouse model is a useful tool to study and identify the

genes relevant to OM. The advance in genetic studies

through mutant mice is summarized in Table 1.30-61

Genes Whose Deficiency Results in OM

There are genes that are essential for the maintenance of the

middle ear epithelial cell integrity and health. The defi-

ciency of the following genes results in OM. (1) Tgif1—it

functions through several routes as a negative regulator of

the TGFb signaling pathway. Tgif1 mutant mice have sig-

nificantly raised auditory thresholds due to a conductive

deafness arising from OM.37 (2) Phex—a mutation in the

Phex gene is linked to predisposition to OM in mice. The

mutation in the Phex gene primarily upregulates the expres-

sion level of the FGF23 gene in the middle ears.39

There is a report where FGF23 mutant mice showed

mixed hearing loss and middle ear malformation.62 (3)

Oxgr1—the Oxgr1 gene encodes oxoglutarate receptor 1. The

ligand for Oxgr1 was reported to be involved in regulation of

vascular endothelial growth factor, an important inducer of

angiogenesis and vascular permeability. Oxgr1 deficiency

demonstrated the presence of inflammatory cells, changes in

the mucosal epithelium, and middle ear fluid in mice.38 (4)

Mcph1—the Mcph1-deficient mice had mild to moderate

hearing impairment (around 70% penetrance). Other defects

of Mcph1-deficient mice included small skull sizes, increased

micronuclei in red blood cells, increased B cells, and ocular

abnormalities.36 (5) Df1—the Df1 gene is cytogenetic risk

factor for schizophrenia and can cause hearing difficulties as

well as a variety of other medical problems.63 (6) Lmna—

mutant Lmna mice exhibited profound early-onset hearing def-

icits and abnormal positioning of the eustachian tube

accompanied by OM.40 (7) Spag6—mammalian sperm-

associated antigen 6 (Spag6) is required for normal flagella and

cilia motility. The deficiency of this gene in humans causes OM

due to accumulation of fluid and mucociliary abnormality.32

Genes Associated with Virulence in OM

(1) Hfq—in the chinchilla model of OM, the hfq mutant of

86-028NP exhibited impaired competitive fitness when

compared with its wild-type progenitor but exhibited no

apparent defect in virulence to elicit OM.64 (2) HemR—

this gene is involved in the uptake of iron and iron-

containing moieties, essential for Haemopilus. Variability

of the HemR polymorphism may result in a reduced ability

to acquire iron, rendering NTHi unable to survive in the

middle ear.65 (3) Fur—this gene is also essential for

Haemopilus to grow in the middle ear.66 (4) VapBC-1

VapXD ToxAVapA—deletions in vapBC-1, vapXD, and

ToxAVapA significantly decreased the survival of NTHi in

the chinchilla model of OM.67,68

Signaling Pathways and Inflammatory
Factors Involved in OM

(1) Asc—mice lacking the Asc gene showed a reduction in leu-

kocyte recruitment and infiltration to the cavity, and their macro-

phages exhibited reduced phagocytosis of NTHi.8 (2) Pai-1—

plasminogen activator inhibitor (PAI-1) regulates inflammatory

cell migration. PAI-1 knockout mice showed significant patholo-

gic changes of tympanosclerosis.30 (3) C5a—mice deficient in

the C5a gene showed the reduced levels of IL-6, mKC, and

MCP-1, in association with reduced inflammatory cell recruit-

ment, mucosal inflammation, and bacterial clearance.69 (4) Il-

17a—the function of interleukin 17A (IL-17A), a neutrophil-

inducing factor. Mice lacking the IL-17A gene were associated

with abnormal recruitment and apoptosis of neutrophils.70

Mucin OM

Cxcl2 is identified as the most significant increased inflam-

matory mediator during the early acute phase of infection.9

Math1, a critical transcription factor, with proinflammatory

cytokine tumor necrosis factor alpha (TNFa) and retinoid

acid, promoted differentiation of normal mouse middle ear

epithelium into mucus-producing cells via upregulation of

mucins and trefoil factors. This results in pathologic

mucous cell metaplasia and increased susceptibility of

chronic OM.34 GalNAc residue essential for binding of bac-

teria to respiratory epithelium is localized in mucin-

producing epithelium and submucosal glands of normal rat

eustachian tube.71 Combination of certain NTHi and

Streptococcus pneumoniae strains, but not all, worked

synergistically to upregulate the gel-forming mucin tran-

scripts. Mucins play a protective role in the epithelium but

with their dysregulation can lead to mucus stasis.72

Acrolein, a hazardous air pollutant in tobacco smoke, pro-

moted inflammatory responses, mucin gene expression, and

cell death in human middle ear epithelium culture.73 Other

air-suspended urban particles, both artificial and naturally

occurring, induced COX-2 and MUC5AC expression in
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Table 1. Important Genes Involved in OM of Animals.

Gene Variant and Strain Background Finding

PAI-1 Type 1 plasminogen activator inhibitor (PAI-1)

knockout PAI-1 KO mice (B6.129S2-

Serpine1tm1Mlg)

Low levels of inflammation against NTHi at the

early stage of OM and fail to terminate

inflammation.30

JNK1 JNK1 knockout, C57BL/6 Exhibit enhanced mucosal thickening, with delayed

recovery, enhanced neutrophil recruitment early

in OM, and delayed bacterial clearance.31

JNK2 JNK2 knockout C57BL/6 Delayed mucosal hyperplasia, delayed recruitment

of neutrophils, and failure of bacterial clearance.31

SPAG6 Sperm-associated antigen 6 (Spag6)-deficient mice Associated with disordered cilia orientation, leading

to uncoordinated cilia beating.32

HB-EGF C57BL/6:CB F1 hybrid mice Inducing mucosal epithelial hyperplasia in vitro.7

TBX21 Tbx21-deficient mice (C.129S-Tbx21tm1Glm/J) TBX21 regulating innate immune responses, via

TLR2 during pneumococcal infections.33

Math1 Mouse middle ear epithelial cells Plays a critical role in the pathogenesis of OM by

induction of mucous cell differentiation, in the

presence of TNFa and retinoid acid.34

Pax9 Pax9 mutant homozygosity for

Slc25a21tm1a(KOMP)Wtsi

OM and hearing impairment in mice may be due to

disrupted Pax9 expression.35

Mcph1 A knockout-first allele in which a promoter-less

cassette including LacZ and neo genes

were inserted in intron 3-4 of the Mcph1 gene,

Mcph1-deficient (Mcph1tm1a(EUCOMM)Wtsi)

Underlying genetic predisposition to OM.36

TGFb TGFb knockout, Tgif1 homozygous mutant mice on

a C57BL/6J background

A role of TGFb signaling and its impact on

responses to hypoxia in the inflamed middle ear.37

Oxgr1 Mutant (Oxgr1–/–) A trend of increase in Muc5B and Muc19

expression in the middle ear.38

Phex A spontaneous intragenic deletion involving at least

30 kb containing Phex exons 13 and 14, BALB/c-

PhexHyp-Duk/Y

Affecting the FGF23 mediated pathways in the

middle ears, predisposition to OM.39

Lmna Mutant Lmna mice heterozygous (LmnaDhe/1) A model of human OM and laminopathy.40

Chd7 Spontaneous deletion of Chd7 exons 2-3I2 OM with effusion.41

Tc1 Tc1 mouse model of Down syndrome, C57BL/

6J6129S8 background

A limited region of human chromosome 21 involved

in OM.42

HIF Junbo and Jeff mouse mutant models The role of hypoxia and HIF-mediated pathways.43

Isl1 A nonconservative tyrosine to cysteine (Y71C)

missense mutation in the Islet1 gene, Isl1Drsh.

C3HeB/FeJ background

Predisposition carriers to OM.44

Sh3pxd2b Sh3pxd2bnee heterozygous mice All mice that had the Sh3pxd2bnee mutation went

on to develop craniofacial dysmorphologies and

subsequently OM, by as early as 11 days of age.45

Factor B C57BL/6 mice Factor B deficiency decreases C3 activation during

acute pneumococcal OM. Complement C3

activation and opsonophagocytosis of S

pneumoniae were greatly attenuated in factor

B- and factor B/C2-deficient mice.46

TNFA TNFA deletion The TNF and TNF receptor superfamilies mediate

both inflammation and apoptosis during OM.

TNFA is also required for appropriate regulation

of caspase genes.47

TLR9 Toll-like receptor 9–/– mice on a C57BL/6

background

DNA sensing via TLR9 plays a role in OM

pathogenesis and recovery.48

(continued)
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human middle ear epithelium culture.74 Injection of urban

particle solution into rat middle ear induced mucosal

changes and dysregulation of genes associated with inflam-

matory response and mucin production.75 The impact of

these environmental exposures on mucin regulation and

mucosal changes conferred the development of OM.

Immune Tolerance of Middle Ear Mucosa

Clinically, the middle ear is considered an immune-

privileged area.76 Homografts of the tympanic member

usually survive for a long time without administration of

any immunosuppressive drugs after surgery.77 For this

reason, the middle ear is tolerant to the invading upper

respiratory commensals that reside and thrive, frequently

causing OM. Consistent with this, immune- and

inflammatory-related cytokines, such as TNFa and inter-

feron gamma,78,79 are induced, which regulate the immunity

of the middle ear mucosa against infectious agents.

Programmed death ligand 1 (PD-L1), an inducible protein

in the middle ear epithelial cells, is induced, which inhibits

Table 1. (continued)

Gene Variant and Strain Background Finding

RPL38 An 18-kb deletion/insertion of the Rpl38 gene,

encoding a ribosomal protein of the large subunit.

Tail-short mouse

Skeletal defects, conductive hearing impairment,

ectopic mineralization in the middle ear and

chronic OM with effusion.49

MCP-1/CCL2 C57BL/6, MCP-1–/–, CCR2–/–, and TNF–/– mice Deficiency of MCP-1/CCL2 or CCR2 alone was

limited to inhibit OM-induced inner ear

inflammation due to compensation of alternative

genes.50

CCL3 TNF2/2 mice (B6/129S6-Tnf tm1Gkl/J) CCL3 is a potent downstream effector of TNF-

mediated inflammation in vitro and in vivo.51

TLR TLR2–/– and TLR4–/– mice on a C57BL/6

background

TLR2 and TLR4 signaling critical to the regulation of

NTHi-induced OM and critical for bacterial

clearance.52

Fbxo11 A role for Fbxo11 in TGF-b signaling is involved in

chronic inflammation of the middle ear.

TGF-b Defects in TGF-b signaling or associated pathways

may underlie the development of chronic OM.53

MyD88 MyD88–/– mice Prolonged ME mucosal thickening and delayed

recruitment of neutrophils and macrophages.54

Lysozyme M Lysozyme M–/– mice Lysozyme M plays an important role in protecting

the middle ear from invading pathogens,

particularly in the early phase.55

Eya4 Eya4-deficient (Eya4–/–) mice Severe hearing deficits, developed OM with

effusion, abnormal middle ear cavity and

eustachian tube dysmorphology.56

Fbxo11 Jeff mouse The heterozygotes develop chronic suppurative

OM. The homozygotes show cleft palate, facial

clefting and perinatal lethality.57

Evi1 locus A missense change in the C-terminal zinc finger

region of the transcription factor Evi1 Junbo

mutant

Hearing loss due to chronic suppurative OM and

otorrhea.58

Enpp1 Enpp1asj/asj Otitis media with effusion (OME) in all of the

hearing-impaired Enpp1asj/asj mice by anatomic

and histological examinations.59

C3H/HeJ A single amino acid substitution in its Toll-like

receptor 4, making it insensitive to endotoxin

Reduced lipopolysaccharide responsiveness, less

capable of reacting immunologically to bacterial

infection and clearance.60

Dp(16)1 yey The Dp(16)1Yey mouse in associated with Down

syndrome

Middle ear suppressed cellular hypoxia and

inflammation in the middle ear.61

Slc25a21 The homozygous Slc25a21 (tm1a(KOMP)Wtsi) mice Associated with OM and hearing impairment.35

Abbreviations: CCL3, Chemokine (C-C motif) ligand 3; CCR2, C-C chemokine receptor type 2; HB-EGF, heparin-binding-epidermal growth factor; KO,

knockout; MCP-1,monocyte chemoattractant protein-1; OM, otitis media; Y71C, a nonconservative tyrosine to cysteine.
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middle ear immunity when PD-L1 binds to its receptor, pro-

grammed death 1 (PD-1), on the surface of mucosal lym-

phocytes.80-82 This way, the PD pathway is formed in the

middle ear mucosa to suppress the immunity of the middle

ear, making a regional immunotolerance at this specific

tissue while the entire immune system is normal.

PD-L1 negatively regulates the activity of effector T lym-

phocytes, including intraepithelial lymphocytes, in the

mucosa,80,83 reducing the production of IL-2, which is a

major cytokine to expand T cells. T cells participate in the

innate and adaptive immunity. Due to the negative effects of

PD-L1 on the T-cell activity, the innate and adaptive immune

systems are both suppressed, and invading microorganisms

survive and thrive in the middle ear. This is a unique pheno-

type of OM characterized by the activation of the PD path-

way. In this particular phenotype of OM, the PD pathway

may serve as a novel target for the treatment of OM.

New Intervention for OM

Nonconventional approaches to treatment were examined in

an OM animal model. The noninvasive transcutaneous

immunization to induce protective immune responses

against NTHi-induced OM was conducted in the chinchilla

model. The vaccine formula, utilizing a new chimeric

immunogen, targeted 2 important bacterial outer membrane

proteins and effectively removed mucosal surface bacteria

and mucosal biofilm in the middle ear. The increase of acti-

vated T cells and the release of host defense peptide con-

tributed to a rapid disease resolution.84 Antimicrobial

activity of photodynamic therapy with porfimer sodium

(Photofrin) was assessed against clinical isolates of Mcat.

The treatment demonstrated significant reduction in plank-

tonic bacteria and viable bacteria in the biofilm structure.85

Various drug delivery methods were attempted to

improved efficacy of OM treatment. OTO-201, a sustained-

release formula of ciprofloxacin administered via intratym-

panic injection, was proved to be more effective and conve-

nient in OM treatment.86 Levofloxacin thermosensitive gel

allowed on-site delivery and prolonged the release of anti-

biotics in the middle ear space. This characteristic provides

effective treatment of suppurative OM without recurrence.87

In summary, there have been more animal models avail-

able for genetic studies regarding OM in recent years and

more genes in animal models and human genetic linkage

studies relevant to the pathogenesis of OM. In general,

these studies are evolving, and the relationship between

these genes and human OM remains to be clarified in the

years to come.
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