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Abstract
Effects of gadolinium (Gd) and tin (Sn) on the growth and 
production of oxidative enzymes with five basidiomycetous fungi 
were tested. For this study we have selected well-known white-rot 
fungi Obba rivulosa and Kuehneromyces mutabilis, in addition to 
this we have tested three new isolates, the white-rot fungus Phlebia 
subochracea, the litter-degrading fungus Gymnopus dryophilus and 
the brown-rot fungus Heliocybe sulcata. This approach allowed 
us to find possible new sources for oxidative enzymes, such as 
laccases and versatile peroxidases (VPs). All five tested fungi grew 
in the presence of Gd (0-200 mg/l) or Sn (0-200 mg/l) on ABTS 
(2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) containing 
plates. The growth rate of H. sulcata was tolerant to Gd and Sn (0-
200 mg/l). The growth rates of P. subochracea and G. dryophilus 
were sensitive to Gd (5-200 mg/l) and Sn (5-200 mg/l). O. rivulosa, 
K. mutabilis, P. subochracea and G. dryophilus formed colour zones 
on the ABTS plates indicating that these fungi produced oxidative 
enzymes, most probably laccases. The brown-rot fungus H. sulcata 
did not form colour zone on the ABTS plate indicating that this 
fungus did not produce laccase. The production of laccase with G. 
dryophilus and K. mutabilis was tolerant to Gd (0-200 mg/l) and Sn 
(0-200 mg/l). The production of laccase with P. subochracea was 
sensitive to Gd (5-200 mg/l) and Sn (5-200 mg/l). P. subochracea 
decolorized the dye Reactive Black 5 without or with Gd and Sn (0-
200 mg/l) indicating the production of VP. O. rivulosa, K. mutabilis, 
G. dryophilus and H. sulcata did not produce VP. The production of 
VP by P. subochracea was sensitive to 200 mg/l Gd and Sn. 
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Introduction
Harmful xenobiotics are released from various sources to the 

soil and water. Contaminated soil and water need new technologies 
so that these are possible to remediate to clean and safe. All white-
rot fungi are able to produce oxidative lignin modifying enzymes, 
such as laccases and versatile peroxidases (VPs) [1-3]. These two 

oxidative enzymes are suitable for remediation of harmful xenobiotic 
compounds, particularly aromatic structure containing compounds 
in contaminated environment and recycling of carbon from natural 
compounds [3-6]. VP typically catalyzes oxidation reaction, where 
an aromatic structure containing dye compound, Reactive Black 5, 
in the presence of H2O2 is transformed to the oxidized (bleached) 
form of Reactive Black 5 and water [7,8]. VP has properties of both 
manganese peroxidase and lignin peroxidases and has non-specific 
substrate specificity [9-11]. VPs are biotechnologically interesting 
since they do not need a mediator for the oxidation of substrate 
[2,10]. Laccases have broad substrate specificity and they are useful 
in many biotechnological applications [2]. Basidiomycetous fungi are 
able to decolorize several synthetic dyes [2]. Brown-rot fungi produce 
hydrolytic enzymes, which degrade cellulose and hemicellulose, 
but usually do not produce laccase or ligninolytic peroxidases [2]. 
Contaminated areas are often polluted with organic xenobiotic 
compounds and metals. Rare earth elements include the lanthanide 
gadolinium (Gd). The mean abundance of Gd is 5.4 (2.2-7.9) µg g-1 
dw at 30 sites in A-horizon in Swedish forest soil [13]. Gd containing 
compounds have been used as paramagnetic contrast agents for 
people who need magnetic resonance Imaging [14,15]. Gd has been 
found in the waste water [14,15] and in contaminated soil [2]. Tin 
(Sn) is present in waste water effluents and contaminated soils [17] 
and sediments [18]. Sn is a post-transition metal, which belongs to 
group 14 in the periodic table. The white rot fungi Obba rivulosa 
(=Physisporinus rivulosus, [19]) and Kuehneromyces mutabilis [20,21] 
were selected for this study. New isolates the white-rot fungus Phlebia 
subochracea, the litter-degrading fungus Gymnopus dryophilus and 
the brown-rot fungus Heliocybe sulcata were selected for this study 
to find possible new sources of oxidative enzymes, namely laccases 
and versatile peroxidases. Only a little is known about impacts of 
gadolinium and tin on any basidiomycetous fungi. The aim this 
study of was to find out effects of gadolinium (Gd) and tin (Sn) to the 
growth rate and production of extracellular oxidative laccase enzyme 
of basidiomycetous fungi.

Materials and Methods
For this study five functionally different basidiomycetous fungi 

were selected from the Fungal Biotechnology Culture Collection 
(FBCC) at the University of Helsinki, Department of Food and 
Environmental Sciences, Microbiology and Biotechnology Division. 
The fungi were Kuehneromyces mutabilis (Agaricales, FBCC 508) 
and Obba rivulosa (= Ceriporiopsis rivulosa, Physisporinus rivulosus, 
Polyporales, FBCC 939). The new isolates of fungi, which were studied 
first time in the present study, were Phlebia subochracea (Polyporales), 
OM 19353, FBCC 2376, Gymnopus dryophilus (Agaricales), OM 
19240, FBCC 2376 and Heliocybe sulcata (Gloeophyllales), OMC 
1185, FBCC 2375. The draft genome of H. sulcata has been produced 
by Joint Genome Institute, CA, USA. 

Indicator plate tests

Effects of selected metals on the production of extracellular 
oxidative enzymes and the growth of six basidiomycetous fungi 
were tested with gadolinium (0, 5, 50, 200 mg Gd kg-1) and tin (0, 5, 
50, 200 mg Sn kg-1) in the form of chlorides on the indicator plates. 
The test chemicals were GdCl3 · 6 H2O (Sigma-Aldrich, U.S.A.) and 
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SnCl4·5 H2O (Sigma-Aldrich, U.S.A). The basic test medium had 10 
g glucose, 2 g KH2PO4, 0,5 g MgSO4 7 H2O, 0,1 g CaCl2, 0,5 g NH4-
tartrate, 2.2 dimethylsuccinate, 0,1 g yeast extract and 25 g agar 
per litre. The pH was adjusted to 5.0. The medium for indicator 
plates was supplemented with 250 mg kg-1 ABTS (2,2’-azino-bis(3-
ethylbenzthiazoline-6-sulfonic acid, Sigma-Aldrich, U.S.A.) or 250 
mg kg-1 RB5 (Reactive Black 5, Sigma-Aldrich, U.S.A.). All indicator 
plates were done as triplicate. For inoculum, a fungus-containing 
malt (2% w/v) agar plug, which had a 4 mm diameter, was added to 
the center of the indicator plate. The plates were incubated at 25.0 °C. 
The formed green colour in the ABTS containing plate indicated the 
production of oxidative enzyme, most probably laccase. The growth 
and the colour changes were measured at four positions across the 
plate at 90° angles, and averages of these four measurements per plate 
were calculated.

Statistical tests

ANOVA was performed to test statistical difference between the 
growth rate and the formation of colour zone with certain fungi in 
the presence of added Sn or Gd compared to those without added 
metal. Tukey test was performed as a post-hoc test. Statistical tests 
were done with SPSS Statistics software (IBM).

Results
Figure 1A displays the growth of five basidiomycetous fungi with 

and without tin (Sn). All five fungi grew in the presence of Sn. The 
growth rate of fungi without added metal decreased in the following 
order, which was O. rivulosa, H. sulcata, P. subochracea, K. mutabilis 
and G. dryophilus The growth rate of K. mutabilis and O. rivulosa 
remained stable with 5-50 mg/ l and decreased with 200 mg Sn/ l 
compared to the control indicating that K. mutabilis and O. rivulosa 
were tolerant to Sn in the lower concentrations. The growth rate of P. 
subochracea and G. dryophilus decreased with 5-200 mg/ l indicating 
that P. subochracea and G. dryophilus were sensitive to Sn. The growth 
rate of H. sulcata remained similar or even increased in the presence 
of Sn (5-200 mg/l) compared to the control indicating that H. sulcata 
also benefitted from the Sn. 

Figure 1B displays the growth of five basidiomycetous fungi in 
the presence of gadolinium (Gd). All five fungi grew in the presence 
of Gd. The growth rate of K. mutabilis and O. rivulosa remained stable 
with 5-50 mg Gd/l and decreased in the presence of 200 mg Gd/l 
indicating that these fungi were sensitive to higher Gd concentrations. 
The growth of H. sulcata remained similar or even increased in the 
presence of 5-200 mg Gd/l indicating that H. sulcata was tolerant 
to Gd. The growth of P. subochracea and G. dryophilus decreased in 
the presence of 5-200 mg Gd/l indicating that P. subochracea and G. 
dryophilus were sensitive to Gd.

Figure 2A displays the formation of colour zone in ABTS 
containing plates in the presence of tin (Sn). K. mutabilis, O. rivulosa, 
P. subochracea and G. dryophilus formed colour zone in the ABTS 
containing plates in the presence of Sn indicating production of 
oxidative enzyme, most probably laccase. H. sulcata did not form 
colour zone indicating that H. sulcata does not produce any oxidative 
enzymes. The formation rate of colour zone with G. dryophilus 
increased with 5-200 mg Sn/l indicating that the production of 
laccase enzyme with G. dryophilus benefitted from Sn. The formation 
rate of colour zone with P. subochracea decreased in the presence 
of 5-200 mg Sn/l indicating that Sn was harmful to P. subochracea. 
The formation rate of colour zone remained stable or even increased 

with K. mutabilis in the presence of 5-200 mg Sn/l indicating that K. 
mutabilis was tolerant to Sn. The formation rate of colour zone with 
O. rivulosa in the presence of 200 mg Sn/l decreased indicating that 
O. rivulosa was sensitive to Sn. 

Figure 2B displays the formation of colour zone in ABTS 
containing plates in the presence of gadolinium (Gd). The formation 
of colour zone in ABTS plate indicates the production of oxidative 
laccase enzyme. K. mutabilis, O. rivulosa, P. subochracea, and G. 
dryophilus formed colour zone in the ABTS containing plates 
indicating production of laccase type activity. The production rate 
of colour zone decreased with P. subochracea in the presence of 
5-200 mg Gd/l indicating that P. subochracea is sensitive to Gd. The 
production rate of colour zone even increased with G. dryophilus 
in the presence of 5-200 mg Gd/l indicating that G. dryophilus even 
benefitted from Gd. The production rate of colour zone with 200 mg 
Gd/l remained stable with K. mutabilis and O. rivulosa indicating that 
these fungi are tolerant to Gd. 

The decolorization rate of Reactive Black 5 (RB5) in the presence 
of tin (Sn) or gadolinium (Gd) was studied. P. subochracea decolorized 
RB5 in the presence of Sn or Gd or without added metal indicating 
that this fungus produced versatile peroxidase (VP) activity. The 
other four fungi K. mutabilis, O. rivulosa, G. dryophilus and H. 
sulcata, did not decolorize RB5 indicating that these fungi did not 
produce VP. The production rate of VP with P. subochracea remained 
similar with 5-50 mg/l Sn and Gd and decreased 27% with 200 mg 
Sn/l and 9 % with 200 mg Gd/l indicating that the production rate 
by P. subochracea was sensitive to higher Sn and Gd concentrations. 
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Figure 1: The growth rate of five basidiomycetous fungi with tin (Sn) or 
gadolinium (Gd) compared to those without added metal. A. Lower panel: 
with Sn. B. Upper panel: with Gd. Asterisks (*) indicates statistically 
significant differences (p<0.05) between with and without added metal 
(control). Bars represent standard error of mean (n=3). 
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in the ABTS containing plates indicating the production of oxidative 
enzymes, namely laccases and peroxidases. The production of laccase 
has been reported by P. rivulosus [24], K. mutabilis [25] and other 
isolate of G. dryophilus (= Collybia dryophila, K209) and tested in the 
present study [26]. The white-rot fungus P. rivulosus showed colour 
zone on ABTS plates [12] with Al, W, Ga, Zr, Mo and V and without 
metals [23] as was observed also in the present study. P. rivulosus 
was sensitive to Al, Mo, V, W and Zr and tolerant to Ga [23]. Ten 
of eighteen tested Phlebia species including Phlebia subochracea 
HHB8494 were able to degrade over 50% organochloride pesticide 
heptachlor [27]. Our study shows formation of the colour zone in 
the ABTS containing plates indicating production of laccase type 
activity by P. subochracea OM19353 and G. dryophilus OM19240. H. 
sulcata did not form colour zone in ABTS plates indicating that it 
does not produce oxidative enzymes such as laccases and peroxidases, 
which indicates that H. sulcata is a typical brown-rot fungus. The 
brown-rot fungi do not usually produce laccases or lignin modifying 
peroxidases [2], although there are some exceptions. Along with this 
gene encoding laccases have been found in the whole genomes of 
some brown-rot fungi [28]. 

Reactive Black 5 (RB5) is a specific substrate to test the activity 
of versatile peroxidase (VP), which oxidizes directly RB5 without 
mediators, and it can be seen as decolorization of RB5. This dye has 
been used to screen VP activity in a number of lignin degrading 
fungi [29]. Lignin peroxidase needs a redox mediator to oxidize 
this compound [2]. Our study is the first study which shows that P. 
subochracea decolorized RB5 in the presence of Sn or Gd or without 
added metal indicating that this fungus produces VP activity. The 
other two white-rot fungi K. mutabilis and O. rivulosa did not produce 
VP activity in the present study. We also showed that G. dryophilus 
and H. sulcata did not decolorize RB5 indicating that these fungi did 
not produce VP activity. 

Conclusions
The three new isolates, the white-rot fungus P. subochracea, the 

litter-degrading fungus G. dryophilus and the brown-rot fungus H. 
sulcata as well as the earlier isolated and much studied white-rot 
fungi P. rivulosus and K. mutabilis grew in the presence of Sn (0-200 
mg/l) and Gd (0-200 mg/l). The formation rate of colour zones with P. 
rivulosus, K. mutabilis, P. subochracea and G. dryophilus on the ABTS 
plates indicated that these four fungi produce laccase type oxidative 
enzyme. No formation of colour zone with the brown-rot fungus H. 
sulcata was seen on the ABTS plates indicating that H. sulcata did 
not produce any oxidative enzymes, which was also expected as it is 
a brown-rot fungus.
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Figure 2: The colour formation rate of five basidiomycetous fungi with tin 
(Sn) or gadolinium (Gd) on ABTS plate compared to those without added 
metal. A. Upper panel: with Sn. B. Lower panel: with Gd. Asterisks (*) 
indicates statistically significant differences (p<0.05) between with and 
without added metal (control). Bars represent standard error of mean (n=3). 
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