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Abstract 

Background:  The clinical CardShock risk score, including baseline lactate levels, was recently shown to facilitate risk 
stratification in patients with cardiogenic shock (CS). As based on baseline parameters, however, it may not reflect the 
change in mortality risk in response to initial therapies. Adrenomedullin is a prognostic biomarker in several cardiovas‑
cular diseases and was recently shown to associate with hemodynamic instability in patients with septic shock. The 
aim of our study was to evaluate the prognostic value and association with hemodynamic parameters of bioactive 
adrenomedullin (bio-ADM) in patients with CS.

Methods:  CardShock was a prospective, observational, European multinational cohort study of CS. In this sub-analy‑
sis, serial plasma bio-ADM and arterial blood lactate measurements were collected from 178 patients during the first 
10 days after detection of CS.

Results:  Both bio-ADM and lactate were higher in 90-day non-survivors compared to survivors at all time points 
(P < 0.05 for all). Lactate showed good prognostic value during the initial 24 h (AUC 0.78 at admission and 0.76 at 
24 h). Subsequently, lactate returned normal (≤2 mmol/L) in most patients regardless of later outcome with lower 
prognostic value. By contrast, bio-ADM showed increasing prognostic value from 48 h and beyond (AUC 0.71 at 48 h 
and 0.80 at 5–10 days). Serial measurements of either bio-ADM or lactate were independent of and provided added 
value to CardShock risk score (P < 0.001 for both). Ninety-day mortality was more than double higher in patients with 
high levels of bio-ADM (>55.7 pg/mL) at 48 h compared to those with low bio-ADM levels (49.1 vs. 22.6%, P = 0.001). 
High levels of bio-ADM were associated with impaired cardiac index, mean arterial pressure, central venous pressure, 
and systolic pulmonary artery pressure during the study period. Furthermore, high levels of bio-ADM at 48 to 96 h 
were related to persistently impaired cardiac and end-organ function.

Conclusions:  Bio-ADM is a valuable prognosticator and marker of impaired hemodynamics in CS patients. High 
levels of bio-ADM may show shock refractoriness and developing end-organ dysfunction and thus help to guide 
therapeutic approach in patients with CS.
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Background
Cardiogenic shock (CS) is a state of global tissue hypop-
erfusion caused by severe cardiac dysfunction. In spite 
of advances in therapeutic options, the short-term mor-
tality associated with CS remains unacceptably high [1, 
2]. While very early mortality is largely related to sud-
den and severe circulatory failure, subsequent death is 
strongly influenced by activation of neurohumoral and 
inflammatory responses leading to multiorgan failure [3]. 
Risk stratification is crucial in order to accurately identify 
patients that could potentially benefit from more aggres-
sive strategies, and moreover, to identify advanced stages 
of shock when restoring cardiac function may not reverse 
end-organ failure. The CardShock risk score was recently 
introduced to help risk stratification in the early phase of 
CS. The score includes lactate levels and six other clinical 
variables available at the time of detection of shock [2]. 
However, as based on baseline parameters, the score may 
not reflect the change in mortality risk in response to ini-
tial therapies.

At present, few biomarkers have been proven benefi-
cial in risk stratification of patients with CS. Lactate is 
an established marker of hemodynamic instability and 
prognosis in critically ill patients [4–6]. Adrenomedul-
lin (ADM) has been shown as prognosticator in CS after 
an acute coronary syndrome [7]. The study was small, 
monocentric, and based only on one sample measured at 
24 h, however. In patients with septic shock, higher ADM 
levels were associated with hemodynamic instability, 
requirement of vasopressor therapy, and increased mor-
tality [8]. The aim of the present study was to evaluate 
the prognostic value and association with hemodynamic 
parameters of serial measurements of mature bioactive 
ADM (bio-ADM) in patients with CS, in order to help 
risk assessment and support clinical decision in CS.

Methods
Study population and endpoints
CardShock study (NCT01374867) is a prospective Euro-
pean multicenter and multinational cohort study that 
enrolled consecutive CS patients in 9 centers in 8 coun-
tries between October 2010 and December 2012. The 
inclusion criteria were systolic blood pressure <90 mmHg 
for 30 min despite fluid administration or need for vaso-
active therapy, and one or more signs of organ hypop-
erfusion (cool extremities, confusion or altered mental 
status, oliguria <0.5 ml/kg/h for the previous 6 h, or blood 
lactate >2 mmol/l), cardiac origin of the state of hypoper-
fusion, and age over 18 years. Study inclusion was within 
the first 6 h of the detection of shock. Exclusion criteria 
were shock caused by ongoing hemodynamically signifi-
cant arrhythmias and shock after cardiac or non-cardiac 

surgery. For this sub-study, 178 patients with biomarker 
data (lactate and bio-ADM) available were included.

The primary endpoint of the study was to determine 
the prognostic value of serial measurements of bio-ADM 
on mortality prediction at 90  days. Secondary endpoint 
was to describe the relationship of bio-ADM and lactate 
with hemodynamic parameters.

Study protocol
Detailed medical history and patient characteristics were 
collected. Clinical signs with routine laboratory meas-
urements, including lactate which was measured locally, 
were registered at presentation to the hospital. A total 
of 69 (39%) patients had pulmonary artery catheter, and 
additional 42 (24%) patients had central venous pressure 
monitoring. As per study protocol, all patients had echo-
cardiography performed at baseline and at 72 h. Patients 
were treated according to local practice in each hospital. 
Vital status during follow-up was determined through 
direct contact with the patient or next of kin, or through 
population and hospital registries. Three patients were 
lost to follow-up; in the mortality analyses their cases were 
censored at the time of hospital discharge. Serial plasma 
samples were taken at various time points after presenta-
tion and immediately frozen and stored at −80  °C. Both 
bio-ADM and arterial lactate were measured at 0, 12, 24, 
48, 72, and 96 h, and bio-ADM again at 5–10 days.

The CardShock study was approved by local ethics 
committees at the participating centers and conducted in 
accordance with the Declaration of Helsinki. All patients 
or their next of kin gave informed consent.

Bio‑ADM measurement
All bio-ADM measurements were taken blinded for 
clinical data in the laboratories of Sphingotec GmbH, 
Hennigsdorf, Germany, with a previously described 
immunoassay [8]. Mid-regional pro-Adrenomedullin 
(MR-proADM), a non-bioactive precursor of ADM, has 
been used in recent years to overcome the obstacles of 
mature ADM measurement relating to analyte stability 
and interference with complement factor H in the meas-
urement [9–11]. In our study, the novel immunoassay 
allowed reliable ultrasensitive measurement of bioac-
tive ADM peptide from small sample volume (50 uL of 
plasma), contrary to the earlier measurement of mature 
ADM levels [12]. Briefly, a one-step sandwich-coated 
tube chemiluminescence immunoassay was used based 
on acridinium NHS-ester labeling for the detection of 
human ADM in plasma. More detailed description of the 
bio-ADM measurement is provided in Additional file 1. 
The upper limit of normal values of bio-ADM with the 
assay used is 43 pg/mL [8].
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Statistical analysis
Results are presented as numbers (n) and percentages 
(%), and means with standard deviations (SD) or medians 
with interquartile ranges (IQRs) as appropriate. Between 
groups, comparisons were made using Chi-square test, t 
test, or Wilcoxon rank-sum test as appropriate.

Cox proportional hazards regression was used to ana-
lyze the time-dependent effect of serial measurements of 
bio-ADM and lactate on 90-day survival in uni- and mul-
tivariable analyses [13, 14]. Hazard ratios (HRs) are given 
with 95% confidential intervals (CIs). Both biomarkers 
were tested for independency from the previously devel-
oped CardShock risk score [2], which summarizes seven 
clinical parameters, which were associated with in-hos-
pital mortality. The model included baseline lactate as its 
strongest component, as well as age over 75 years, acute 
coronary syndrome as the etiology of CS, previous his-
tory of myocardial infarction or coronary artery bypass 
surgery, altered mental status at presentation, renal func-
tion, and left ventricular ejection fraction below 40% at 
baseline. The assumptions of proportional hazard were 
tested for all variables. For all analyses, biomarkers (bio-
ADM and lactate) were log-transformed and HR was 
standardized to describe the HR for a biomarker change 
in one IQR. Wald statistics were used to investigate the 
prognostic value of each biomarker and their combina-
tion when measured at each time point. To give an effect 
measure for the prognostic value of bio-ADM and lactate 
in 90-day mortality, the receiver-operating characteris-
tic (ROC) curve analysis was performed and areas under 
ROC curves (AUCs) were calculated. Kaplan–Meier 
curves were also used in survival analyses. Dichotomiza-
tion of patients was based on bio-ADM level 55.7 mg/ml, 
which was the optimal cutoff with highest sensitivity and 
specificity for 90-day mortality when measured at 48  h, 
and similar to the median values of bio-ADM during the 
first 96 h (range of medians at 0–96 h 54.5–59.9 pg/ml).

For comparison of biomarker levels with hemodynamic 
parameters, median of all biomarker measurements taken 
during the initial 96 h of each patient was used. Dichoto-
mization was based on bio-ADM level of 55.7 pg/mL and 
lactate level of 1.63 mmol/L, which was the median value 
of each patient’s median lactate level during the first 96 h. 
For comparison of hemodynamic measures and end-organ 
dysfunction at 48–96  h, the median value of the meas-
ures between 48 and 96  h of each patient was used, and 
dichotomization was based on median value of bio-ADM 
at 48–96 h with the cutoff level of 55.7 pg/mL. A two-sided 
P value <0.05 was regarded as statistically significant. The 
statistical analyses were performed using R version 2.5.1 
(http://www.r-project.org, library Design, Hmisc, ROCR), 
SPSS 21.0 statistical software (IBM Corp, Armonk, NY, 
USA) and STATA (version 13, Statacorp, Texas, USA).

Results
The mean age of the 178 patients included in this study 
was 66 ± 12 years, and 137 (74%) were men. Most com-
mon etiology of CS was acute coronary syndrome (78%). 
The overall 90-day mortality was 43% (n =  75). Table  1 
describes the patient characteristics of the 90-day survi-
vors and non-survivors. Twenty-nine (16%) patients died 
before 48 h from the detection of shock, and the remain-
ing 46 (26%) patients died between 48 h and 90 days. The 
earlier deaths tended to occur more often due to myocar-
dial infarction (71 vs. 51%, P = 0.086) and less often due 
to worsening heart failure (17 vs. 42%, P =  0.017). On 
the contrary, the later occurring deaths were numerically 
more often related to infection, renal failure, and stroke, 
although these differences did not reach statistical signifi-
cance (Additional file 2: Table S1). 

Bio‑ADM and lactate levels in survivors and non‑survivors
Plasma bio-ADM levels and arterial blood lactate were 
higher in non-survivors compared to survivors at all 
time points. The highest lactate levels were observed at 
baseline both in survivors and non-survivors (2.2 and 
5.0 mmol/L, respectively, P < 0.0001). The median levels 
of lactate returned to normal values within 12 h in sur-
vivors and within 24 h in non-survivors (Fig. 1). Hence, 
at 24 h 76% of all patients had normal lactate levels. The 
time course of plasma bio-ADM levels was divergent 
between survivors and non-survivors; bio-ADM levels 
stayed close to the upper normal limit (43 pg/mL) in sur-
vivors while remained elevated in non-survivors (Fig. 1).

Prognostic value of bio‑ADM and lactate levels
Serial measurement of the biomarkers showed that for 
both bio-ADM and lactate, a normalization of concen-
tration was associated with a decrease in mortality risk, 
while a continuing high concentration or increasing con-
centrations were associated with a high mortality risk. In 
time-dependent Cox model, serial bio-ADM and lactate 
measures were associated with increased 90-day risk of 
death in univariate time-dependent Cox analysis (HR 
2.22, CI 1.76–2.80, P < 0.001 and HR 3.83, CI 2.73–5.37, 
P < 0.001, respectively) and after adjustment for the Card-
Shock risk score (HR 1.62, 95% CI 1.26–2.09, P < 0.001, 
and HR 2.78, 95% CI 1.94–3.97, P < 0.001, respectively). 
Time-dependent Cox model for serial bio-ADM and lac-
tate was associated with increased risk of 90-day mortal-
ity also when selecting only patients with CS caused by 
ACS (HR 1.49, CI 1.10–2.02, P = 0.01 for bio-ADM and 
HR 2.76, CI 1.94–3.92, P < 0.001 for lactate).

In the early phase of CS, lactate had good prognos-
tic value (AUC at baseline 0.76, 95% CI 0.69–0.82) that 
rapidly decreased, whereas bio-ADM had incremental 
prognostic value with an AUC of 0.71 at 48  h (95% CI 

http://www.r-project.org
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0.62–0.79) up to 0.80 (95% CI 0.78–0.91) at 5–10  days 
(Fig.  2). The 90-day mortality was more than double 
higher in patients with high levels of bio-ADM at 48  h 
compared to those with low levels of bio-ADM (mortality 
49.1 vs. 22.6%, P = 0.001), as shown in Fig. 3.

A more in-depth analysis of individual time points 
revealed that for lactate, its measurement at early time 
points provided added value to risk prediction, and later 
time points showed poor prognostic ability. For bio-
ADM, the later time points provided the most added 
value and best discriminatory power (Table 2).

Bio‑ADM and hemodynamic alterations
Overall, both high bio-ADM levels and high lactate lev-
els during the study period were associated with low 
cardiac index and low mean arterial pressure. In addi-
tion, high bio-ADM levels, but not high lactate levels, 
were associated with high central venous pressure and 
high systolic pulmonary artery pressure (Fig.  4). Fur-
thermore, high bio-ADM levels at 48–96 h were associ-
ated with impaired cardiac and end-organ dysfunction, 
as shown in Fig. 5. Of note, at that time period, of the 
hemodynamic parameters only cardiac index was a 
good prognosticator of later outcome (Additional file 3: 
Table S2).

Discussion
The present study shows that bio-ADM has strong prog-
nostic value in CS when measured after the initial phase 
of management (at 48 h or later), and is associated with 
impaired hemodynamics and persistently impaired car-
diac and end-organ dysfunction.

Lactate is a well-known marker of hemodynamic 
instability and disease severity in patients with shock. 
It is a marker of poor outcome if measured during the 

Table 1  Characteristics of 90-day survivors and non-survi-
vors

Continuous variables expressed as mean (standard deviation) or median 
(interquartile range), as appropriate; categorical variables expressed as number 
(percentage). BMI body mass index, CABG coronary artery bypass graft surgery, 
COPD chronic obstructive pulmonary disease, TIA transient ischemic attack, 
BP blood pressure, LVEF left ventricular ejection fraction, hs-TnT high sensitive 
troponin T, NT-proBNP N-terminal pro-brain natriuretic peptide, eGFR estimated 
glomerular filtration rate, PCI percutaneous coronary intervention, IABP intra-
aortic balloon pump, LVAD left ventricular assist device, ECMO extracorporeal 
membrane oxygenation

Survivors
(n = 103)

Non-survivors
(n = 75)

P value

Age 63 (13) 71 (11) <0.001

Male gender 82 (80%) 51 (68%) 0.08

CardShock risk score 3.4 (1.7) 5.5 (1.5) <0.001

Medical history

 Hypertension 59 (57%) 51 (68%) 0.15

 Hyperlipidemia 41 (40%) 44 (59%) 0.013

 Diabetes 23 (22%) 30 (40%) 0.011

 Smoker 48 (47%) 23 (31%) 0.032

 Ischemic heart 
disease

23 (22%) 36 (48%) <0.001

 Previous infarction 16 (16%) 29 (39%) <0.001

 Previous CABG 1 (1%) 10 (13%) 0.001

 Chronic heart failure 13 (13%) 16 (21%) 0.12

 Stroke or TIA 8 (8%) 8 (11%) 0.5

 Peripheral artery 
disease

6 (6%) 13 (17%) 0.014

 Asthma or COPD 11 (11%) 9 (12%) 0.8

Status at inclusion

 Altered mental status 56 (55%) 61 (81%) <0.001

 Systolic BP, mmHg 80 (70–85) 75 (66–80) 0.016

 Mean BP, mmHg 58 (53–64) 53 (47–60) 0.011

 Heart rate 88 (27) 89 (31) 0.94

 LVEF,  % 36 (15) 29 (12) <0.001

 hs-TnT, ng/L 1366 (183–4191) 2862 (1124–7842) 0.008

 NT-proBNP, ng/L 2026 (443–7101) 5174 (1447–16,547) 0.001

 eGFR, ml/min/1.72m2 71 (29) 51 (27) <0.001

 Post-resuscitation 20 (19%) 27 (36%) 0.013

Etiology of cardiogenic 
shock

 Acute coronary 
syndrome

77 (75%) 65 (87%) 0.051

  Left main stenosis 11 (14%) 15 (25%) 0.09

  Three-vessel 
disease

17 (22%) 25 (42%) 0.008

  PCI 66 (88%) 52 (80%) 0.2

  Thrombolysis 12 (16%) 5 (8%) 0.13

 Myocarditis or Takot‑
subo

8 (8%) 0 (0%)

 Valvular cause 6 (6%) 6 (8%) 0.6

 Chronic cardiomyo‑
pathy/heart failure

11 (11%) 4 (5%) 0.2

In-hospital manage‑
ment

 Any inotrope 74 (76%) 54 (81%) 0.5

 Any vasopressor 75 (76%) 64 (94%) 0.002

 Invasive ventilation 54 (52%) 56 (75%) 0.003

 IABP treatment 51 (50%) 45 (60%) 0.17

Survivors
(n = 103)

Non-survivors
(n = 75)

P value

 ECMO 2 (2%) 1 (1%) 0.8

 LVAD 1 (1%) 4 (6%) 0.08

Table 1  continued
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initial 24 h of intensive care unit admission in CS [5] or 
in overall critically ill patient population [6]. Our study 
confirmed the prognostic value of lactate during the first 
24 h in CS. Later, in patients surviving the early phase of 
shock, arterial blood lactate levels returned normal in the 
majority of patients regardless of outcome, and the asso-
ciation with mortality was less significant.

In recent years, mature ADM, a hormone with potent 
vasodilatory and inotropic properties, or its precursor 
protein MR-proADM as its surrogate, have evolved as 
powerful prognostic markers in patients presenting with 

acute chest pain [15], dyspnea [16–18] and in those with 
acute heart failure [19]. In patients with acute myocardial 
infarction, high ADM levels have been associated with 
impaired left ventricular function and death [7, 20, 21]. 
Moreover, in patients with refractory CS requiring extra-
corporeal membrane oxygenation (ECMO) support, the 
levels of MR-proADM were found steadily elevated dur-
ing first seven days and did not differ regardless of wean-
ing success [22]. In our study, using a novel ultrasensitive 
method for bio-ADM measurement [8, 12], we showed 
that bio-ADM had good prognostic value in patients with 
CS. Indeed, bio-ADM was elevated during the whole 
study period in non-survivors, and high levels of bio-
ADM were associated with increased short-term death, 
especially after 48 h, time when lactate had lower prog-
nostic value than at baseline.

The exact source and the role of bio-ADM in CS are 
unknown. Plasma ADM is mainly derived from vascu-
lar endothelial cells, smooth muscle cells, and adven-
titial fibroblasts. Catecholamines, angiotensin II, and 
aldosterone, all of which are highly elevated in CS, are 
potent stimulators of ADM production [23]. Inflamma-
tory cytokines, such as interleukins and TNFα, appearing 
in CS complicated by systemic inflammatory response 
syndrome [3], have also been advocated to stimulate 
ADM secretion [24–26]. Furthermore, in septic shock, 
high ADM levels are associated with decreased vascular 
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tone and requirement of vasopressor therapy [8, 27]. In 
this study, we found that in contrast to lactate, bio-ADM 
levels are not only related to hypoperfusion (low cardiac 
index and low mean arterial pressure) but also with high 
cardiac filling pressures (central venous pressure and pul-
monary artery pressure). We hypothesize that myocardial 
stunning is responsible for the activation of neurohu-
moral response (catecholamines, angiotensin II, inter-
leukins), leading to bio-ADM production. Bio-ADM with 
its potent vasodilatory properties may act perpetuating 
shock and contributing to end-organ damage associated 
with poor prognosis. The exact pathways implicated in 
these processes need further investigation.

Interestingly, causes of death differed between patients 
who died before 48 h and later. The early deaths tended 
to occur more often due to myocardial infarction and 
less often due to worsening heart failure. Initial manage-
ment in CS, as it was recently published in international 
recommendations [28–31], includes stabilization with 
volume expansion, inotropes, and vasopressors. This 
aggressive resuscitation in patients surviving the initial 
phase may be enough to reestablish a correct perfusion 
allowing lactate levels to decrease and even to normalize, 
as we found in our work. Nevertheless, in patients with 
activations of systemic inflammatory response, mortal-
ity has been reported to remain high related to other 
causes of death [32]. After initial medical stabilization, in 
many centers, mechanical assist devices are an increas-
ingly used alternative to support circulation and allow 

recovery of stunned or hibernating myocardium if clini-
cal signs of recovery are absent [33–35]. It seems that 
to increase survival, these advanced therapies should be 
started before irreversible end-organ dysfunction has 
occurred to carefully selected patients, considering the 
costs and possible complications of these therapies [36]. 
High levels of bio-ADM at 48 h or later may reflect a state 
of refractory shock with end-organ damage, despite nor-
malization of lactate levels, and may help the clinician in 
a more accurate patient selection for advanced therapies, 
or guide in the difficult process of limiting the therapeu-
tic effort.

Our study carries several limitations. Plasma samples 
were not available in all patients and at all time points. 
The high early mortality further decreased the number 
of subsequent samples. Nevertheless, considering the dif-
ficulties in prospectively studying patients with CS with 
timely plasma sampling, this is one of the largest cohorts 
of biomarker studies in patients with CS. As we used a 
novel technique for the identification of plasma bio-ADM, 

Fig. 3  Ninety-day survival of patients with high (>55.7 pg/mL) or 
low (≤55.7 pg/mL) levels of bio-ADM at 48 h (P value = 0.001 with 
log-rank testing)

Table 2  Predictive value for  90-day mortality with  Wald 
statistics of  lactate and  bio-ADM at  each time point 
after the detection of shock

Lactate and bio-ADM levels were log10-transformed for the analysis. During the 
first 24 h, only lactate contributes to mortality prediction, later only bio-ADM 
contributes to prediction

x2 P value

0 h

 Lactate 38.44 <0.0001

 Bio-ADM 0.09 0.8

 Total 42.76 <0.0001

12 h

 Lactate 23.99 <0.0001

 Bio-ADM 4.28 0.039

 Total 46.69 <0.0001

24 h

 Lactate 38.03 <0.0001

 Bio-ADM 2.41 0.12

 Total 44.82 <0.0001

48 h

 Lactate 3.14 0.077

 Bio-ADM 9.79 0.002

 Total 20.58 <0.0001

72 h

 Lactate 2.52 0.11

 Bio-ADM 8.01 0.0047

 Total 15.08 0.0005

96 h

 Lactate 0.18 0.7

 Bio-ADM 17.01 <0.0001

 Total 19.95 <0.0001
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Fig. 4  Comparison of hemodynamics between patients with a high and low bioactive adrenomedullin (bio-ADM) and b high and low lactate 
levels. Data presented as median with interquartile range of hemodynamic and biomarker data collected during the initial 96 h. The number (n) 
of patients with each measure is indicated on top of the box plot. CI cardiac index (L/min/m2), MAP mean arterial pressure (mmHg), CVP central 
venous pressure (mmHg), sPAP systolic pulmonary artery pressure (mmHg). Dichotomization of biomarker values was based on median lactate 
(1.63 mmol/L) or bio-ADM (55.7 pg/ml) during the study period. P value based on Wilcoxon rank-sum test



Page 8 of 10Tolppanen et al. Ann. Intensive Care  (2017) 7:6 

the levels of bio-ADM were directly comparable with only 
a few studies. However, the novel technique used is accu-
rate and allows measures from small amounts of plasma 
and thus has the potential to become the technique of 
choice to assess ADM pathway in the future. Being still in 
experimental use, the measurement of bio-ADM is cur-
rently less available and a considerably more expensive 
laboratory test compared to lactate. Nevertheless, it is 
expected to become available on widespread fully auto-
mated platforms in near future. As this was an observa-
tional multinational study, the management of patients 
was not guided per protocol. Management in this study, 
however, reflects the real-world practice in European ter-
tiary care university hospitals with high rate of accord-
ance to the international recommendations. There were 

only a few patients treated with circulatory assist devices, 
thus preventing sub-analyses of these patients.

Conclusions
As a conclusion, our study has a potentially important 
clinical implication, suggesting that bio-ADM meas-
urement could be added to CS evaluation because of its 
prognostic value after the initial phase of management in 
patients with CS. Elevated levels of bio-ADM seem to be 
related to persistent cardiac and end-organ dysfunction 
and may support clinical decision when choosing thera-
peutic approach in patients with refractory CS. Whether 
risk estimation based on bio-ADM levels may help to 
optimize therapies and improve outcome needs further 
investigation.

Fig. 5  Association of bioactive adrenomedullin (bio-ADM) with hemodynamics and organ dysfunction at 48–96 h. Dichotomization of bio-ADM 
was based on 55.7 pg/ml cut-point at 48–96 h. The number (n) of patients with each measure is indicated on top of the box plot. P value based 
on Wilcoxon rank-sum test. CI cardiac index (L/min/m2), CVP central venous pressure (mmHg), eGRF estimated glomerular filtration rate (ml/
min/1.73m2), ALAT alanine transaminase (UI/L)
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