1 Accepted for publication in Canadian Journal of Fisheries and Aquatic Sciences, doi
2 10.1139/cjfas-2016-0008:

Modeling the spatial distribution of larval fish abundance

 provides essential information for managementMeri Kallasvuo ${ }^{1}$, Jarno Vanhatalo ${ }^{2,3}$, Lari Veneranta ${ }^{4}$
${ }^{1}$ Natural Resources Institute Finland (Luke), Bioproduction of Renewable Resources, Viikinkaari 4, FI-00790 Helsinki, Finland, meri.kallasvuo@luke.fi
${ }^{2}$ Department of Mathematics and Statistics, University of Helsinki, Gustaf Hällströmin katu 2
B, P.O. Box 68, FI-00014 University of Helsinki, jarno.vanhatalo@helsinki.fi
${ }^{3}$ Department of Biosciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014
University of Helsinki, jarno.vanhatalo@helsinki.fi
${ }^{4}$ Natural Resources Institute Finland (Luke), Bioproduction of Renewable Resources,
Korsholmanpuistikko 16, FI-65100 Vaasa, Finland, lari.veneranta@luke.fi

Corresponding author:

22 Resources, Viikinkaari 4, FI-00790 Helsinki, Finland, +358295327070, meri.kallasvuo@luke.fi

Abstract

Productive fisheries are strongly linked to the ecological state of the essential habitats. In this study, we developed a methodology to assess the most important reproduction habitats of fish by using larval survey data and Bayesian species distribution models that predict the spatial distribution and abundance of fish larvae. Our case study with four commercially and ecologically important fish species in the coastal zone of the northern Baltic Sea demonstrated that the production of fish stocks can be concentrated to an extremely limited area compared to the entire suitable production area. The area suitable for larval production varied from 3.7% to 99.8% between species, but the smallest area responsible for 80% of the cumulative larval production was two to five times more limited, varying from 1.4% to 52.9% between species. Hence, instead of the traditional approach of modeling only habitat suitability for fish production, marine spatial planning and management should take into account the areal production potential. Moreover, the developed methodology enables linking of the total production potential across the whole distribution area to fisheries stock assessment and management.

Introduction

The water areas that fish use for reproduction or as nurseries are referred to as essential fish habitats (Cross et al. 1997; Benaka 1999), since fish usually have the most specific habitat demands during spawning and early life-stages. Hence, the size of the reproduction habitats forms a habitat bottleneck that limits fish production (Halpern et al. 2005; Sundblad et al. 2014). Essential fish habitats often exist in shallow coastal areas (Seitz et al. 2014), which are also heavily exploited and threatened by various anthropogenic pressures (Seitz et al. 2014; Sundblad and Bergström 2014). Therefore, there is a growing need to find concrete tools to manage coastal areas effectively and plan multiple uses and conservation to ensure that coastal resources and services are utilized sustainably.

During the last two decades, advances in marine habitat mapping and the development of geographic information system (GIS)-based tools for predicting species and habitat distributions (Guisan and Zimmermann 2000; Elith et al. 2006) have facilitated a detailed and explicit assessment of habitat availability. The main objectives in species distribution modeling are to predict the spatial and temporal occurrence or abundance pattern over a region of study and to identify the range of environmental covariates that best describe these patterns (Latimer et al. 2006; Austin 2007; Elith and Leathwick 2009). This information can also be used to predict species distributions under a changing environment.

Traditionally, species distribution models have focused on occurrence (Elith et al. 2006, Latimer et al. 2006). However, this approach fails to describe the abundance of a species, which may vary considerably between regions and habitats, and is essential information for management (Shelton et al. 2014; Thorson et al. 2015) and also for conservation purposes (Johnston et al. 2015). When abundance data, such as the number of
individuals observed at a survey site, are available, it is possible to model the density of a species, i.e., the number of individuals within a given area (e.g. Vanhatalo et al., in press), or in the case of fish, in a given volume of water (e.g. Juntunen et al. 2012; Shelton et al. 2014; Thorson et al. 2015). The modeling outcome can then be presented as density maps that allow a comprehensive numerical evaluation of the species distribution and essential habitats. For example, those areas that are the most crucial for the total production of a fish stock can be identified.

In this study, we used a GIS- and modeling-based, spatially explicit approach to quantitatively assess the reproduction habitats of four commercially and ecologically important fish species in the northern Baltic Sea by predicting the distribution and abundance of their early life stages. We propose a novel approach to visualize and communicate the results to managers and other end-users by classifying areas based on their predicted contribution to the total production. As a result, we explicitly identify geographical areas that host the most productive coastal habitats and show that very limited coastal areas, compared to the total distribution area, can be crucial for fish production.

Materials and methods

Study species

The study considered four fish species that have both ecological and economic significance in the northern Baltic Sea area. The Baltic herring (Clupea harengus membras) is one of the most important pelagic species in the Baltic ecosystem and the most important species for fisheries in the northern Baltic Sea (Söderkultalahti 2015). The perch (Perca
fluviatilis) and pikeperch (Sander lucioperca) are top predators and central species in the coastal system. They are fished commercially and are also highly sought after by recreational fishers (Söderkultalahti 2015). The smelt (Osmerus eperlanus) is a common species in estuarine areas (Shpilev et al. 2005), but nowadays mainly fished in the Gulf of Bothnia, the northernmost part of the Baltic Sea (Söderkultalahti 2015).

Three of the target species, the perch, pikeperch, and smelt, are of freshwater origin, and the Baltic herring is of marine origin. All the target species spawn in the spring in shallow (<10 m) coastal waters in the northern Baltic Sea (Aneer 1989; Lappalainen et al. 2003; Shpilev et al. 2005; Snickars et al. 2010). The two predatory species, perch and pikeperch, have specific habitat requirements for their reproduction, selecting shallow, vegetated, and sheltered bays that warm up early in the spring (Snickars et al. 2010; Veneranta et al. 2011). The smelt is perhaps even more selective and exclusively spawns in low salinity estuaries and river mouths (Urho et al. 1990; Shpilev et al. 2005). The perch, pikeperch, and smelt usually spawn in one reproductive cohort. The timing mostly depends on the development of spring temperatures (Lappalainen et al. 2003; Shpilev et al. 2005; Snickars et al. 2010; Veneranta et al. 2011). The Baltic herring is the most flexible of the studied species in its reproductive requirements, and spawns in several reproductive cohorts on both vegetation and hard bottoms in relatively low salinity coastal waters over the entire northern Baltic Sea (Aneer 1989; Parmanne et al. 1994). Despite some dissimilarity in their life history, the larvae of all four species use coastal habitats during their entire first summer (Sjöblom and Parmanne 1978; Urho and Hildén 1990; Sundblad et al. 2014).

Here, our main interest was in the early-stage larvae, which are found in the open water within the archipelago zone, usually still relatively close to the spawning sites, at approximately the same time of a year. It is not well known whether the larvae are only
present in the surface water layer or more uniformly also in the deeper water layers. However, in the spring, the water temperature is always highest near the surface, which makes it the most favorable location for the larvae. Therefore, here we sampled fish larvae only in the surface water layer.

Study area and data collection

The study area was located in the northern Baltic Sea, which is one of the largest brackish semi-enclosed seas in the world. The coastal areas of the northern Baltic Sea typically consist of extensive, shallow and topographically complex archipelagos, where the coastline is indented and long, the sea is covered with ice in the winter months, and tides and strong currents are absent (Voipio 1981). The study area covered the whole Finnish coastal region (N 59.8-65.8, E 19.1-27.8) of $30100 \mathrm{~km}^{2}$ in the northern Baltic Sea (Fig. 1). Environmental gradients are typically strong in the area, both north-south and west-east along the coastline, and also from inshore to offshore (Kallasvuo 2010). For example, surface salinity ranges from below 1 to almost 7 ppt and the spring temperature varies strongly between inner bays and open water areas.

To collect data on the distribution of the larvae of the four target species, an extensive field survey of the surface water layer was conducted in 2007-2014 with paired Gulf ichthyoplankton samplers, which have been used to quantitatively monitor the abundance and spatial occurrence of, for example, Baltic herring larvae (Sjöblom and Parmanne 1978; Parmanne and Sjöblom 1988; Urho and Hildén 1990) and pikeperch larvae (Veneranta et al. 2011). The Gulf samplers, with a mouth opening of $0.028 \mathrm{~m}^{2}$, were attached bilaterally to the bow of the boat. The sampling was systematically conducted during the day
(8 am to 8 pm) over transects of 400 m (in 2007-2008) or 500 m (in 2009-2014) at a speed of 2.2 kn and only in good weather conditions (wind speed $<8 \mathrm{~m} / \mathrm{s}$, wave height $<30 \mathrm{~cm}$). The paired samplers had fixed depths of 0.5 m and 1.0 m , and the catch and effort were pooled to form one sample observation with a total effort (volume) of $22.68 \mathrm{~m}^{3}$ and $28.35 \mathrm{~m}^{3}$ per shorter and longer transect, respectively. In 2014, at 18 very shallow, flad-type sampling sites, Gulf sampling with a boat was not possible to conduct, and a similar net as in the Gulf samplers was consequently used as a tow net. The tow net had a mouth opening of $0.166 \mathrm{~m}^{2}$ and it was hauled over five $30-\mathrm{m}$-long transects per flad. The catch and effort were pooled, and the total sampling effort of one sample was $24.93 \mathrm{~m}^{3}$. These observations are a proxy measure of larval abundance in units of count per effort, where the effort is the volume of sampled water.

All samples were fixed in the field with 4% formaldehyde solution, and species identification, counting, and measurement took place later in the laboratory. Since the aim was to describe the distribution of the most sensitive reproduction habitats, not the larger nursery areas, only early-stage larvae were included in the analysis. Our classification followed that of Urho (1996; 2002), with a larval size range of 4-23 mm for perch, $5-15 \mathrm{~mm}$ for pikeperch, and $4-36 \mathrm{~mm}$ for smelt. For Baltic herring, there is a known landward movement and concentration of larger larvae in very shallow inner bay areas (Urho and Hildén 1990), and we therefore used a more restrictive size range of $4-9 \mathrm{~mm}$ for Baltic herring larvae. In 2007 in the Archipelago Sea, length measurements were not available for Baltic herring larvae and the data from that year were not consequently used for the Baltic herring model.

The larval fish survey comprised a total of 1788 sampling occasions at 655 distinct sampling sites in 5 sea areas (Fig. 1). Sampling sites were dispersed over the entire
archipelago gradient, from the inner to the outer archipelago. In order to obtain survey results that were as representative as possible, the sampling was stratified according to bottom depth and exposure. Since different species hatch at different times, sampling was conducted two to four times per year at intervals of about 10-14 days at each site during a period from midMay to early July. In order to remove sampling occasions that were sampled before or after the larvae were present, we retained for each species only the sampling occasion with the largest larval abundance per sampling site and per year, which resulted in 655 observations of larval abundance per varying sampling effort. Each observation location was defined with coordinates corresponding to the start location of the sampling transect.

Spatial environmental data

The larval fish survey data were linked to 15 environmental predictor covariates falling into seven groups of covariates: depth, average depth, distance to deep water, influence of rivers, shoreline density, exposure, and cumulative spring temperature (summarized in detail in Table 1). The covariate depth corresponded to the actual depth at a point measured from the depth model at maximum resolution, while the covariate average depth described the water depth gradient on a large spatial scale. The covariate distance to deep water indicated the location in the archipelago zone, e.g. sheltered inner bays were emphasized. The covariate influence of rivers described the influence of freshwater runoff from the river mouths. The covariate shoreline density, i.e. length of the shoreline in meters in a grid cell, described the effect of wind exposure and water exchange, while the covariate exposure described the degree of wave exposure. The covariate cumulative spring
temperature, i.e. the sum of daily sea surface temperatures from ice break up to July 15 th, described how rapidly the water area warmed up in the spring after ice break-up.

The covariate GIS rasters were mainly constructed during this study by the authors, exceptions being depth, obtained from the Finnish Environment Institute (E. Virtanen, Finnish Environment Institute, Helsinki, personal communication, 2015), and exposure, which was obtained from AquaBiota Water Research (Isæus 2004). The influence of rivers and shoreline density were calculated based on basic maps (scale 1:5000, National Land Survey of Finland). The cumulative spring temperature was constructed by modeling the cumulative temperatures from survey loggers located in the study region and predicting the cumulative spring temperature for the entire study area (L. Veneranta, Natural Resources Institute Finland, Vaasa, personal communication, 2015). In order to enable spatial prediction, all covariates were in GIS raster format with the same extent and spatial resolution of 50 m and covered the whole geographical extent of the study area (see Fig. 1). The total number of grid cells across the study area was 12040 218. Covariate values were extracted for each observation from the grid cell in which that observation's starting point was located. Even though each transect passed through 7-12 grid cells, we did not expect this spatial misalignment to introduce large bias, since the environmental covariates were approximately constant along all transects at a sampling site. Most of the environmental variables were practically uncorrelated (the pairwise correlation in the data was less than 0.3), but there was greater correlation between the depth, average depth, and distance to deep water covariates (pairwise correlations ranged from 0.4 to 0.6) and between the influence of rivers and distance to deep water (pairwise correlation of 0.48). All GIS analyses were performed using the ESRI ArcGIS (ArcMap 10.2.1 and Spatial Analyst extension).

Species distribution models

Traditional examples of species distribution models are generalized linear and additive models (Guisan et al. 2002; Gelfand et al. 2006). Additionally, a wide variety of other models have been proposed (e.g. Elith et al. 2006; Shelton et al. 2014; Thorson et al. 2015), and some of the most popular are non-parametric (Austin 2007; Elith et al. 2008). Here, we built Bayesian species distribution models using Gaussian processes (GPs), as proposed by Vanhatalo et al. (2012). GPs are stochastic processes that define the probability distribution over functions and can be seen as an extension to linear and additive models (Rasmussen 2004; Vanhatalo et al. 2012). They have received considerable interest in many fields of science in recent years due to their semi-parametric nature, which allows flexible and versatile modeling.

We modeled the conditional distribution for the number of larvae, $y(s, t)$, at sample location s (coordinates in kilometers) in year t with a negative binomial distribution

$$
y(s, t) \mid f(s, t), r \sim \text { Negative }-\operatorname{Binomial}\left(z(s, t) e^{f\left(s, t, x_{s}\right)}, r\right),
$$

where $z(s, t)$ is the corresponding sampling effort, the latent function $f\left(s, t, x_{s}\right)$ corresponds to the logarithm of the larval density, x_{s} is the spatially indexed vector of D covariates (see Table 1), and r is the overdispersion parameter. We parameterized the negative binomial as in Vanhatalo et al. (2013) with a quadratic mean-variance relationship so that mean $E[y(s, t)]=z(s, t) e^{f\left(s, t, x_{s}\right)}$ and variance $\operatorname{Var}[y(s, t)]=E[y(s, t)]+E[y(s, t)]^{2} / r$. Hence, increasing r corresponds to decreasing variance, and at the limit, as r approaches infinity, the negative binomial approaches a Poisson distribution. Before modeling, we scaled all the covariates to have a unit standard deviation and zero mean according to the observed values.

The larval density should be interpreted as an index proportional to the true density, since our model does not account for the catchability of the used sampling gear, and it represents the expected (average) number of larvae per cubic meter of water at a particular location and time. The catchability of our sampling gear was mostly influenced by the weather conditions during the sampling occasions. Special attention was paid to standardizing these conditions as well as possible, and there were no systematic variations in the sampling conditions between different areas (see also Study area and data collection section). Hence, it is reasonable to assume that catchability did not vary systematically. However, due to random variation in the sampling conditions, there might still be random variation in catchability. In addition to other sources of extra variation, the spatial and spatio-temporal random effects account for spatially correlated and the overdispersion in negative-binomial distribution for uncorrelated variation in catchability. Overdispersion may arise from various factors in addition to the variation in catchability, including a spatially aggregated distribution of individuals (Lindén and Mäntyniemi 2011).

We assumed that the latent function is additive so that

$$
f\left(s, t, x_{s}\right)=\alpha+\sum_{d=1}^{D} g_{d}\left(x_{s, d}\right)+h\left(x_{s}\right)+\rho(s)+\phi(s, t)
$$

Here, α is the intercept, $g_{d}(\cdot)$ is a univariate function of the $d^{\text {th }}$ covariate, $h\left(x_{s}\right)$ is a function of interactions between all the covariates, $\rho(s)$ is a spatial random effect, and $\phi(s, t)$ is a spatio-temporal random effect. Hence, the model is essentially a generalized additive model with random effects (Hastie and Tibshirani 1990) and the motivation for the chosen model structure is the following. The intercept describes the average density of larvae across the study area. The univariate function, $g_{d}(\cdot)$, corresponds to the independent effect of a covariate d and, hence, describes the average relative change in density with respect to that covariate across the whole study area. The function of interactions governs the joint effect of
all the covariates. The lower order interactions were left out in order to reduce the complexity of the model (see e.g. Plate 1999). This choice was justified, since it was a priori likely that the independent effects would be stronger than interactions, and because our prior for $h\left(x_{s}\right)$ shrinks the effects of covariates towards zero if the data do not support the full order of interactions. The spatial random effect captures spatial autocorrelation, which causes neighboring areas to have similar larval densities because of, for example, associations unexplained by the available covariates (Latimer et al. 2006; Elith and Leathwick 2009). Similarly, the spatio-temporal random effect adjusts for annual variation in density that cannot be described by the temporally constant covariates.

Following Vanhatalo et al. (2012), we gave a Gaussian prior for the intercept $\alpha \sim N\left(0, \sigma_{\alpha}^{2}\right)$ and Gaussian process (GP) priors for all the latent functions

$$
\begin{gathered}
g_{d}\left(x_{s, d}\right) \sim G P\left(0, k_{g_{d}}\left(x_{s, d}, x_{s^{\prime}, d} \mid \theta_{g_{d}}\right)\right) \\
h\left(x_{s}\right) \sim G P\left(0, k_{\mathrm{h}}\left(x_{s}, x_{s^{\prime}} \mid \theta_{\mathrm{h}}\right)\right) \\
\rho(s) \sim G P\left(0, k_{\rho}\left(s, s^{\prime} \mid \theta_{\rho}\right)\right) \\
\phi(s, t) \sim G P\left(0, k_{\phi}\left((s, t),\left(s^{\prime}, t^{\prime}\right) \mid \theta_{\phi}\right)\right)
\end{gathered}
$$

GP is a stochastic process that defines the probability distribution over functions (Gelfand et al. 2010; Rasmussen and Williams 2006). It is defined by a mean function, here zero, and a covariance function, e.g., $k_{g_{d}}\left(x_{s, d}, x_{s^{\prime}, d}\right)=\operatorname{Cov}\left(g_{d}\left(x_{s, d}\right), g_{d}\left(x_{s^{\prime}, d}\right)\right)$, which determines the properties of the process, such as how much and how fast (smoothness) the function varies along a covariate. Here, $x_{s, d}$ and $x_{s^{\prime}, d}$ are the $d^{\text {th }}$ covariate at locations s and s^{\prime}, respectively.

We used the neural network covariance function for each univariate function,
$k_{g_{d}}\left(x_{s, d}, x_{s^{\prime}, d} \mid \theta_{g_{d}}\right)=\frac{2}{\pi} \sin ^{-1}\left(\frac{2 \tilde{x}_{s, d}^{T} \theta_{g_{d}} \tilde{x}_{s^{\prime}, d}}{\sqrt{\left(1+2 \tilde{x}_{s, d}^{T} \theta_{g_{d}} \tilde{x}_{s, d}\right)\left(1+2 \tilde{x}_{s, d}^{T} \theta_{g_{d}} \tilde{x}_{s^{\prime}, d}\right)}}\right)$ (Rasmussen and Williams
2006), where $\tilde{x}_{s, d}=\left[1, x_{s, d}\right]$ and $\theta_{g_{d}}=\operatorname{diag}\left(\sigma_{g_{d, 0}}^{2}, \sigma_{g_{d}}^{2}\right)$. The parameters $\sigma_{g_{d}}^{2}$ and $\sigma_{g_{d}, 0}^{2}$ respectively govern how smooth the function is along x_{d} and its offset from zero, so that the larger the variance parameters are, the more quickly the function varies. The neural network covariance function gives rise to non-linear and non-stationary random processes whose expected value outside the data range stabilizes (approximately) to the level at which it was at the end of the data range (Vanhatalo et al. 2012). These properties are justified, since it was a priori likely that abundance responds to covariates non-linearly, and due to the sampling design, the density is not expected to change radically from the level at the end of the data range when moving outside the data range.

The interactions between covariates were modeled by giving $h\left(x_{s}\right)$ a squared exponential covariance function $k_{h}\left(x_{s, d}, x_{s \prime, d} \mid \theta_{\mathrm{h}}\right)=\sigma_{h}^{2} e^{-\sum_{d=1}^{D} w_{d}^{2}\left(x_{s, d}-x_{s \prime, d}\right)^{2} / 2}$, where $\theta_{\mathrm{h}}=$ $\left[\sigma_{h}^{2}, w_{1}, \ldots, w_{D}\right], w_{d}$ is the weight (inverse length scale; Rasmussen and Williams 2006) along covariate d and σ_{h}^{2} is the process variance (magnitude). The weight governs how fast the function varies along $x_{s, d}$ and hence its effect in the interaction term. The effect of a covariate in the interaction term vanishes when the respective weight approaches zero. The magnitude governs the importance of the interaction term relative to other terms.

For the spatial random effect, we used an exponential covariance function $k_{\rho}\left(s, s^{\prime}\right)=\sigma_{\rho}^{2} \mathrm{e}^{-\sqrt{\sum_{i=1}^{2}\left(s_{i}-s^{\prime}\right)^{2} / \lambda_{i}^{2}}}$, and for the spatio-temporal random effect we used a separable covariance function with an exponential form for both the space and the time components, so that $k_{\phi}\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right)=\sigma_{\phi}^{2} \mathrm{e}^{-\sqrt{\sum_{i=1}^{2}\left(s_{i}-s^{\prime} i\right)^{2} / l_{i}^{2}}} \mathrm{e}^{-\left|t-t^{\prime}\right| / l_{3}}$. The length-scale parameters govern the autocorrelation length of the GP along longitude $\left(\lambda_{1}, l_{1}\right)$, latitude (λ_{2}, l_{2}) and time $\left(l_{3}\right)$, so that the correlation between two locations drops below 5% of its maximum when these locations are further than approximately three times the length scale
apart. The variance parameters σ_{ρ}^{2} and σ_{ϕ}^{2} govern the magnitude of the process variation. The exponential covariance function leads to a stationary process in time and space, and is a common choice when modeling spatial processes (Gelfand et al. 2010).

We used log-uniform priors for the variance parameters $\sigma_{\rho}^{2}, \sigma_{\phi}^{2}, \sigma_{h}^{2}$ and $\left\{\sigma_{g_{d}, 0}^{2}, \sigma_{g_{d}}^{2}\right\}_{d=1}^{D}$ and weakly informative half Student-t priors (Gelman 2006) for the other hyper-parameters. For weights w_{d} and the temporal length scale, l_{3}, we used four degrees of freedom and scale one in the half Student-t prior, and for the spatial length scales $\lambda_{1}, \lambda_{1}, l_{1}$, l_{2} we used four degrees of freedom and scale 100. All the priors are summarized in Table 2. Since the chosen priors have most of their mass near zero, they favor rigid functional forms (that is, functions that vary slowly along the covariates) with a low order of interactions and a short autocorrelation length in the random effects. We conducted a sensitivity test for the priors by increasing the scale of the half Student- t priors by ten-fold and could conclude that the results were not sensitive to the chosen priors.

Inference, prediction, and model assessment

We built and inferred one model for each of the four target species. We applied Bayes' theorem and calculated the posterior distribution of all model parameters and latent functions using the expectation propagation and Markov chain Monte Carlo algorithms implemented in the Matlab toolbox GPstuff (Vanhatalo et al. 2013; Appendix A1) ${ }^{1}$. We conducted convergence diagnostics for the Markov chains and used the posterior predictive check (Gelman et al. 2013) for model validation by simulating replicate measurements from

[^0]the posterior predictive distribution of each model and compared the samples with the measured data. We also assessed the importance of the spatial and spatio-temporal random effects by comparing our model with similar models without the random effects. See Appendix A1 for details.

The full set of environmental covariates fell into seven groups of covariates that were a priori potentially good proxies for the essential environmental characteristics of the reproduction habitats. Three of the groups contained several similar covariates at varying spatial scales (Table 1). For example, varying the diameter from 3 km to 15 km for the circles in which the shoreline density was calculated corresponded to a change from a local to a more global shoreline density index. On the other hand, changing from the distance to $10-\mathrm{m}-$ deep water to the distance to 30 -m-deep water changed the focus from shallow waters to deeper waters, since in the coastal region of the northern Baltic Sea, the distance from $10-\mathrm{m}$ deep to $30-\mathrm{m}$-deep waters may be so large that the latter is not descriptive in the shallowest regions. For each species, we selected the best environmental covariate from each of the groups of covariates according to the leave-one-out cross-validated log predictive density (Vehtari and Ojanen 2012). The final analyses were conducted with the reduced covariate set, which made the interpretation of the results easier.

After solving for the posterior, we calculated the marginal posterior predictive distribution of the latent function $f\left(s, t, x_{s}\right)$ and, hence, larval density in the surface water layer of all grid cells in the entire study area. Since we had the spatio-temporal component in our model, we predicted the mean density over the survey years as detailed in Appendix A1. For each species, we present the larval density and its coefficient of variation over the study area. We also approximated the total number of larvae in the surface water layer per sea area and across the whole study area from the sum of the predictive densities in grid cells in an
area multiplied by the water volume of the surface water layer up to the depth of 1.5 m in a grid cell (i.e., $1.5 \times 50 \times 50 \mathrm{~m}^{3}$). Since we had over 12 million grid cells in the whole study area, we needed to approximate the posterior distribution of the sum as described in Appendix A1.

In order to study the relative importance of different parts of the study area for fish reproduction, we classified the total area into not suitable, suitable, and important areas. Each grid cell was classified as not suitable if the expected probability for zero observations in a sample of three transects (the average number of transects per sample) was more than 50%. This limit corresponds to using an occurrence model to classify areas as not suitable based on a 50% cut-off value. Next, in order to emphasize the most important fish reproduction areas, we further divided the remaining grid cells into two classes. The important grid cells are those that were in the smallest subset of grid cells whose expected cumulative number of larvae was 80% of the total expected number of larvae in all grid cells that had a presence probability of 50% or more. The rest of the grid cells were classified as suitable. The rationale for this division is the following. Knowledge of potential species reproduction areas (areas with 50% or more probability of larval presence) is necessary for coastal spatial planning and management. However, it is not sufficient information for efficient management, since the larval density in these areas may vary considerably, and the importance of these areas for reproduction at the population level may thus range from very low to very high. Hence, the expected number of larvae produced by an area provides a more informative summary for management, since it is directly related to that area's expected utility for fish production. Here, we chose the cut-off value for demonstrative purposes, and other values could be more justified in specific management applications.

Since the latent function includes interactions between covariates, its response along individual covariates may vary across locations (Vanhatalo et al. 2012). Hence, in order to examine the effect of covariates on larval density, we visualized the expected, zerocentered change in the log density along each covariate and variation in it over the training data locations. See Appendix A1 for details.

Results

Model assessment and posterior inference

All models performed well according to the posterior predictive checks. Table 3 summarizes the posterior distribution of the spatial random effects, the overdispersion parameter, and the variance of the interaction term. The posterior mean of the intercept term corresponded to an average of 2.3×10^{-2} larvae per m^{3} for perch, 1.4×10^{-3} larvae per m^{3} for pikeperch, 6.3×10^{-2} larvae per m^{3} for Baltic herring, and 3.6×10^{-2} larvae per m^{3} for smelt. In perch, herring, and smelt models, there was clear overdispersion compared to a standard Poisson model. In the pikeperch model, the overdispersion parameter was higher, but on the other hand, the length scales of the spatio-temporal random effect in this model were considerably smaller than in other models. As the length scales approach zero, this random effect approaches spatially independent overdispersion and takes essentially the same role as the overdispersion parameter. According to the spatial length scales, the spatial autocorrelation in the random effects vanished in tens of kilometers. Hence, compared to the scale of the whole modeled area, the random effects described local corrections to density predictions made by the covariates only. According to the temporal length scales of the
spatio-temporal random effects, the spatio-temporal correlations dropped to approximately 20% of their maximum between consecutive years and practically to zero correlation after two years. Hence, there were no temporal trends in larval abundances.

According to the cross-validation tests, the models worked significantly better than otherwise similar models without any random effects and practically as well as or better than otherwise similar models only having either one of the random effects. Moreover, once random effects were dropped from a model, its overdispersion parameter tended to decrease, which indicates that (part of) the variation captured by the random effects was then transferred to the overdispersion. See Appendix A1 for the comparison results.

Figure 2 shows the posterior predictive response of log density along environmental covariates for each species. All the responses were mostly additive, since there was only moderate variation in the responses across the study region. A change in log density by one unit corresponded to a 2.7 -fold increase in the density. Hence, the most significant covariate effects, with a change in \log density by 3-4 units, corresponded to a $20-50$-fold increase in the larval density. The responses of larval densities along environmental covariates varied between the species. Perch had negative responses to an increasing depth, average depth and exposure and positive responses to an increasing distance to deep water $(10 \mathrm{~m})$, the influence of rivers, and the cumulative spring temperature. Pikeperch had strong negative responses to an increasing average depth, shoreline density, and exposure, and strong positive responses to an increasing distance to deep water $(10 \mathrm{~m})$ and the cumulative spring temperature. Baltic herring had a negative response to the distance to deep water (20 $\mathrm{m})$ and strong positive responses to an increasing average depth, shoreline density, and exposure. The response of Baltic herring to an increasing cumulative spring temperature was positive, with a peak at 1200 day-degrees, and at higher cumulative temperatures it turned
negative. Smelt had strong negative responses to an increasing average depth, negative responses to shoreline density and exposure, and positive responses to an increasing distance to deep water $(30 \mathrm{~m})$, the influence of rivers, and the cumulative spring temperature.

Larval density predictions

Larval habitats for pikeperch, perch, and smelt were characterized as shallow, sheltered and, thus, areas that warmed relatively rapidly, which were most often found in the inner archipelago, frequently close to river mouths. A somewhat opposite pattern was typical for Baltic herring larval habitats, which were characterized as more exposed areas with a lower cumulative spring temperature compared to other studied species (Figs 2 and 3). Pikeperch had the most and the Baltic herring the least limited environmental requirements of the studied species, concerning the environmental covariates used here.

Figure 3 illustrates the predicted larval density classified into three classes: not suitable, suitable and important. Figure 4 summarizes the posterior predictive median and coefficient of variation of the larval density, and Table 4 summarizes the total number of larvae and areas suitable for reproduction across the study region and the five sea areas. Baltic herring had the highest predicted total number of larvae of the target species in the studied area; the predicted total number of larvae as a percentage of the total number of Baltic Herring larvae was 17.9% for perch, 6.2% for pikeperch, and 67.8% for smelt. The total area suitable for larval production was largest for Baltic herring, covering 99.8% of the studied coastal area. The most limited larval production area (3.7\%) was recorded for pikeperch. The proportion of the studied coastal area suitable for larval production was 13.7% for perch and 22.5% for smelt. There was, however, variation in the species-specific distribution of larval
production areas between the five studied sea areas (Table 4); larval production areas for perch and smelt were proportionally larger in the northern parts of the study area (I-III for perch, I for smelt), whereas larval production areas for pikeperch and Baltic herring were proportionally larger in the southern parts of the study area (IV-V).

The important habitats (those that accounted for 80% of larval production) were more limited than the suitable larval habitats, comprising 3.0% of the studied sea area for perch, 1.4% for pikeperch, 52.9% for Baltic herring, and 4.4% for smelt (Table 4). The spatial focus of the important habitats also varied, reflecting the same south-northward pattern seen for the total larval production areas (Fig. 3).

By modeling and mapping the reproduction habitats of four common commercially and ecologically important fish species in the northern Baltic Sea, we demonstrated that very limited coastal areas can be crucial for fish reproduction. The availability of suitable larval reproduction habitats is not necessarily a good indicator of important fish reproduction areas, since some suitable habitats may contribute orders of magnitude more to the total larval production than others. Therefore, abundance models should be preferred over occurrence models when studying the reproduction habitats of fish and their quality and impact on total fish production. Our results support the recent findings of Johnston et al. (2015) that abundance models are more accurate and thus preferable for both aggregated and non-aggregated species.

High-resolution prediction maps are a powerful tool that aids visual communication. However, scaling and setting the right cut-off values for map visualization
are fundamentally important in order to quantify the interpretation of the maps, prevent misunderstanding, and enable the comparison and value judgment of different coastal sea areas for larval fish production. Visualizing maps, as proposed in this work, very clearly show that the most productive larval habitats can be very limited compared to the entire suitable reproduction habitats of a species; the areas expected to produce 80% of the speciesspecific larval production (important areas) were two to five times more limited than the entire larval production areas (suitable areas), and varied between species from 1.4% to 52.9% of the total study area. This information should be taken into account when planning management and conservation measures. However, the 80% cut-off level in this work was chosen for demonstrative purposes and, depending on a species, another level could be more justified. For example, when analyzing healthy and balanced fish stocks that allow for exploitation without risk of stock depletion, a lower cut-off level ($<80 \%$ of the cumulative larval production) could be enough to present the assumedly extensive larval production habitats. On the other hand, some endangered fish stocks could demand a much higher cut-off level (>80\% of the cumulative larval production) in order to apply a precautionary approach when focusing conservation acts. Hence, the cut-off level for the important reproduction areas should ideally be chosen in parallel with stock assessment and reflect the management and conservation objectives. Moreover, in some applications, we could be interested in a more precautionary summary than the expected number of larvae. For example, the important area could have a cut-off value ensuring that the total number of larvae in that area is greater than a certain percentage of the total number of larvae in the whole study area with a probability greater than, for example, 0.9 .

We found large differences in the spatial larval habitat distribution between the four studied fish species. The response of Baltic herring to environmental covariates, i.e.
environmental requirements, was the least limited of the studied species, and its larval production area was the widest. The pikeperch, on the other hand, is an example of a species with very strict environmental requirements in the reproductive stage (Sundblad et al. 2014; Veneranta et al. 2011), and its total reproduction area was accordingly the most limited. The specific ecological habitat requirements of each species were also reflected in the responses of larval densities to the environmental covariates chosen for the species-specific models. For example, both pikeperch and perch larvae were most abundant in areas that had a high cumulative spring temperature, which supports the finding that the year-class strength of both pikeperch and perch is known to largely depend on temperature (Kjellman et al. 2003; Pekcan-Hekim et al. 2011; Lehtonen et al. 1996). Moreover, the covariates chosen for the pikeperch model describe very local aspects in the inner archipelago, whereas the covariates chosen for the herring model describe broader and more pelagic aspects. Overall, the results emphasized the importance of the shallow parts of the coastal area, but when interpreting the results one has to keep in mind that the field survey was only conducted in the surface water layer.

The Baltic herring had the highest predicted total number of larvae according to our results. This was expected, since it has the highest stock size of the studied species and is the most important species for fisheries in the northern Baltic Sea (Söderkultalahti 2015). The Baltic herring is a pelagic species that is known to reproduce over a large area and during a time period of several months in spring and early summer (Parmanne et al. 1994; Fey 2001; Hakala et al. 2003). Perch, pikeperch, and smelt, on the other hand, are strictly coastal species with specific and rather similar reproductive requirements and a reproductive period of some weeks (Snickars et al. 2010; Sundblad et al. 2014). Therefore, the suitability of the used field survey and modeling methods probably varied between species. Firstly, sampling should
optimally have been carried out during the whole summer in order to cover several reproductive cohorts and enable modeling of the length of the reproduction season for each species. However, this was not feasible in our survey program, and our model does not therefore take into account the lengths of the reproductive seasons nor the number of cohorts; hence, the total numbers of larvae represent the numbers of larvae produced by those cohorts that our survey covered during the reproduction season. Secondly, only the surface water layer was sampled and modeled here. Larval perch, pikeperch, and smelt are known to be abundant in the surface water layer (Urho et al. 1990), but Baltic herring larvae are also found in deeper water layers (Sjöblom and Parmanne 1978). Therefore, the model should have taken into account the entire water layer in which larvae are present in order to compare the total numbers of larvae between species. Since our sampling did not provide information on the distribution depth, we restricted our study to the surface water layer and assumed that the distribution depth does not differ significantly between areas. According to earlier studies (Parmanne and Sjöblom 1988), this assumption is reasonable. Thirdly, our model did not explicitly account for variation in catchability, but the modeled density accounted for both catchability and the total abundance of larvae. Hence, systematically varying catchability would introduce bias in our density estimates. However, we do not expect the catchability to have varied systematically between areas, since the weather conditions during the surveys were standardized as well as practically possible. Moreover, the catchability was not expected to differ significantly between pikeperch, perch, and smelt. However, according to the posterior distributions of spatial and spatio-temporal random effects and the overdispersion parameter, the overdispersion compared to the expected density (that is, extra uncertainty) was significant for all species. This overdispersion is expected to partly arise from varying catchability due to weather and other sampling conditions. Therefore, the results presented
here are most robust when examining regional differences in species-specific distribution areas and densities and, unfortunately, the quantitative comparison of the total number of larvae between the studied species is only indicative between perch, pikeperch, and smelt and not possible between herring and other species. It is also important to keep in mind that we sampled early-stage fish larvae, which still have many bottlenecks to survive before they recruit to the adult population (Miller et al. 1988; Myers 1998).

The distribution of species-specific reproduction habitats and species abundances are not static over time, and temporal changes may reduce the long-term generality of the habitat and abundance predictions. Matching the field sampling with the occurrence of early-stage larvae is also challenging, producing uncertainty in the probability of detection. Moreover, constructing good environmental covariates is difficult, and GISbased environmental covariates can never encode all essential abiotic aspects related to species distributions (Elith et al. 2006). We have addressed these challenges in both the data collection and modeling. The temporal fluctuations were accounted for by using field survey data from multiple years (2007-2014), which allowed us to model the average distribution of reproduction habitats and the average density over those years. The sampling was performed multiple times each year so that the probability of matching it with the presence of earlystage larvae was increased. In constructing the environmental covariates, we used only general environmental descriptors such as depth to increase the generality of the predictions, as suggested by Sundblad et al. (2014), among others. The annual fluctuations and possible time mismatch in sampling were also explicitly modeled by the spatio-temporal random effects component. Moreover, we included the spatial random effect in our model to account for static patterns in data that were not explained by our covariates. According to the results, the random effects improved the model performance compared to otherwise similar models
without the random effects (see Appendix A1). Hence, the inclusion of the random effects was justified. If a priori justified, we could also model multiple spatial processes at different scales with a different choice of the covariance functions, such as an additive covariance function with short and long length scales (Vanhatalo and Vehtari 2008).

GP formalism gives considerable freedom in how to choose the covariance structure of the predictive model for the covariates (Vanhatalo et al. 2012). Here, we used an additive structure that included non-linear univariate terms and a function with interactions. We used neural-network covariance functions for the univariate terms, since they were shown to work well in extrapolation by Vanhatalo et al. (2012). The squared exponential covariance function, on the other hand, is a standard choice to model full interactions (see e.g. Rasmussen and Williams 2006). Our choice of covariance functions proved to be justified here, since all the responses were non-linear and the interactions were rather weak. The models also performed well in the posterior predictive checks. However, the interpolation and extrapolation behavior of a GP depend on the chosen covariance function (Vanhatalo et al., 2012). Some covariance functions, such as the commonly used squared exponential, behave similarly to splines (which are often used in generalized additive models) so that they typically perform well when predicting within the data range (interpolation). However, when extrapolating the prediction outside the data range, the result may be unfavorable, since predictions approach the prior mean (that is, zero). The neural network covariance function works differently by allowing non-linear responses and extrapolations that follow the level at which the predictive function is at the end of the data (see Appendix A1 and Figure A1). However, if we had strong prior knowledge on the likely response, we could describe this with a parametric function, such as a linear, bell shaped or, for instance, Michaelis-Menten functional form (Vanhatalo et al., in press) and use GPs to model possible discrepancies from
this parametric form. We chose the environmental variables based on their biological justification and did not transform them in order to remove collinearity, because such transformations would obscure the interpretation of the responses. Collinearity is not a problem when predicting the larval distribution. Compared to prediction with one covariate, in case of strong collinearity between two or more covariates, the predictive contribution is simply divided between the correlated covariates. However, as in (generalized) linear and additive models, collinearity is a challenge when inferring the responses along covariates. In order to remedy this, the hyperparameters of the predictive functions were given weakly informative priors, which prefer constant functions. Hence, in the case of strong collinearity, the response along the "weaker" covariates will be shrunk towards zero, whereas the covariates that explain data better should have a stronger response (see also Simpson et al. 2015 for a more general discussion on penalized complexity priors). However, our prior structure did not strictly promote sparsity, and theoretically or empirically justified general rules for choosing the covariance functions for the predictive GP models and priors for their hyperparameters still provide room for future research.

The methods presented here provide concrete support for environmental management and the spatial planning of coastal and marine areas by providing a means to prioritize areas with a high production potential (abundance) over areas that are suitable for reproduction but do not significantly contribute to larval production. For example, the results presented here aid in the implementation of the EU Maritime Spatial Planning directive and local dredging permission procedures in Finland to focus on the most important areas from the perspective of larval production. Fisheries stock assessment and management could also benefit from this type of approach, since the results for larval abundance could be used to describe the reproductive potential of a fish stock, as has been conducted for Baltic Salmon
(Kuikka et al. 2014), which would not be possible with presence/absence models. Regarding their short-term utilization, the results of this study will help in the implementation of the new Finnish Fishing Act (enacted on January $1^{\text {st }}, 2016$) which involves changes in the spatial organization of fisheries management in terms of utilization and conservation planning. The implementation of the new law requires detailed information, among others, on fish production areas. Moreover, scientific knowledge of the distribution of fish stocks and important production areas is needed to inform policy makers about the best sustainable management practices and to assess the current fisheries management policies in general.

Habitat protection is a strategy often proposed in fisheries and environmental management to help maintain viable populations of exploited or endangered species. Besides habitat quality, habitat connectivity is also considered an important characteristic in the protection of essential coastal habitats (Halpern et al. 2005; Lipcius et al. 2008). In this study, we have shown that species distribution models providing high-resolution predictions for larval density on a geographically wide scale can be used to numerically compare and value different sea areas for larval fish production, and therefore provide easy-to-interpret maps for management and coastal and marine spatial planning purposes. Sundblad et al. (2014) have suggested that a substantial proportion of the potential production of adult fish can be estimated by mapping the distribution of essential fish habitats, since habitat bottlenecks in the early life-stages limit the abundance of later adult stages of predatory fish. Here, we showed that the production of fish stocks can be concentrated in spatially extremely limited areas compared to the suitable production areas. Hence, the total production potential (abundance) of an area should be taken into account in, for example, marine spatial planning. Future efforts should focus on linking this modeling and mapping approach to catches to
study the link between essential habitats and stock assessment of the most important coastal commercial fish species.

Acknowledgements

The authors thank the field staff of Luke who took part in the extensive larval fish survey and Prof. Sakari Kuikka, Dr Antti Lappalainen, Dr Mika Rahikainen, and two anonymous reviewers for valuable comments on the manuscript. The authors also thank Elina Virtanen from the Finnish Inventory Programme for Marine Underwater Environment (VELMU), the Finnish Environment Institute (Syke), for providing the depth data. Meri Kallasvuo and Lari Veneranta were funded by the Ministry of Agriculture and Forestry Finland / VELMU programme (2502/311/2012) and by the Strategic Research Council of the Academy of Finland / SmartSea (grant 292985). Jarno Vanhatalo was funded by the Academy of Finland (grants 266349 and 292985) and Research Funds of the University of Helsinki.

References

Aneer, G. 1989. Herring (Clupea harengus L.) spawning and spawning ground characteristics in the Baltic sea. Fish. Res. 8: 169-195.

Austin, M. 2007. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 200: 1-19.

Benaka, L. 1999. Fish habitat: Essential fish habitat and rehabilitation. American Fisheries Society, Symposium 22, Connecticut.

Cross, J.N., Brown, D.W., and Kurland, J.M. 1997. Essential fish habitat: A new fisheries management tool. ICES council meeting papers, Copenhagen, Denmark.

Elith, J., and Leathwick, J.R. 2009. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40: 677-697. doi: http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.110308.120159

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M.C., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S., and Zimmermann, N.E. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29(2): 129-151. doi: 10.1111/j.2006.0906-7590.04596.x.

Elith, J., Leathwick, J.R., and Hastie, T.R. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77: 802-813. doi: 10.1111/j.1365-2656.2008.01390.x.

Fey, D.P. 2001. Differences in temperature conditions and somatic growth rate of larval and early juvenile spring-spawned herring from the vistula lagoon, Baltic Sea manifested in the otolith to fish size relationship. J. Fish. Biol. 58: 1257-1273.

Gelfand, A.E., Holder, M., Latimer, A., Lewis, P.A., Rebelo, A., Silander, J.A., and Wu, S. 2006. Explaining species distribution patterns through hierarchical modeling. Bayesian Anal. 1: 41-92.

Gelfand, A., Diggle, P.J., Fuentes, M., and Guttorp, P. 2010. Handbook of spatial statistics. CRC press, Miami, USA.

Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1(3): 515-533.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D. 2013. Bayesian data analysis, third edition. Chapman \& Hall / CRC Texts in Statistical Science, Miami, USA.

Guisan, A., and Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135(2-3): 147-186.

Guisan, A., Edwards Jr, T.C., and Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 157(2): 89-100. doi: http://dx.doi.org/10.1016/S0304-3800(02)00204-1.

Hakala, T., Viitasalo, M., Rita, H., Aro, E., Flinkman, J., and Vuorinen, I. 2003. Temporal and spatial variation in the growth rates of Baltic herring (Clupea harengus membras L.) larvae during summer. Mar. Biol. 142(1): 25-33. doi: 10.1007/s00227-002-0933-3.

Halpern, B.S., Gaines, S.D., and Warner, R.R. 2005. Habitat size, recruitment, and longevity as factors limiting population size in stage-structured species. Am. Nat. 165(1): 82-94.

Hastie, T., and Tibshirani, R. 1990. Generalized additive models. Chapman and Hall, London.Isæus, M. 2004. Factors structuring Fucus communities at open and complex coastlines in the Baltic sea. Department of Botany, Stockholm University, Stockholm.Johnston, A., Fink, D., Reynolds, M.D., Hochachka, W.M., Sullivan, B.L., Bruns, N.E., Hallstein, E., Merrifield, M.S., Matsumoto, S., and Kelling, S. 2015. Abundance models improve spatial and temporal prioritization of conservation resources. Ecol. Appl. 25: 1749-1756.

Juntunen, T., Vanhatalo, J., Peltonen, H. and Mäntyniemi, S. 2012. Bayesian spatial multispecies modelling to assess pelagic fish stocks from acoustic- and trawlsurvey data. ICES J. Mar. Sci. 69: 95-104.

Kallasvuo, M. 2010. Coastal environmental gradients. Key to reproduction habitat mapping of freshwater fish in the Baltic Sea [online]. Ph.D. thesis, University of Helsinki. Available from http://urn.fi/URN:ISBN:978-952-10-6392-3.

Kjellman, J., Lappalainen, J., Urho, L., and Hudd, R. 2003. Early determination of perch and pikeperch recruitment in the northern Baltic sea. Hydrobiologia. 495: 181-191.

Kuikka, S., Vanhatalo, J., Pulkkinen, H., Mäntyniemi, S., and Corander, J. 2014. Experiences in Bayesian inference in Baltic Salmon management. Stat. Sci. 29: 42-49.

Lappalainen, J., Dörner, H., and Wysujack K. 2003. Reproduction biology of pikeperch (Sander lucioperca (L.)) - a review. Ecol. Freshwat. Fish 12: 95-106.

Latimer, A.M., Wu, S., Gelfand, A.E., and Silander, J.A. 2006. Building statistical models to analyze species distributions. Ecol. Appl. 16: 33-50.

Lehtonen, H., Hansson, S., and Winkler, H. 1996. Biology and exploitation of pikeperch, Stizostedion lucioperca (L.), in the Baltic Sea. Ann. Zool. Fennici. 33: 525-535.

Lindén, A., and Mäntyniemi, S. 2011. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 92(7): 1414-1421.

Lipcius, R.N., Eggleston, D.B., Schreiber, S.J., Seitz, R.D., Shen, J., Sisson, M., Stockhausen, W.T., and Wang, H.V. 2008. Importance of metapopulation connectivity to restocking and restoration of marine species. Rev. Fish. Sci. 16(1-3): 101-110. doi: 10.1080/10641260701812574.

Miller, T.J., Crowder, L.B., Rice, J.A., and Marschall, E.A. 1988. Larval size and recruitment mechanisms in fishes: Toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45: 1657-1670.

Myers, R.A. 1998. When do environment-recruitment correlations work? Rev. Fish Biol. Fisher. 8: 285-305.

Parmanne, R., and Sjöblom, V. 1988. The abundance of spring spawning Baltic herring larvae in the seas around Finland in 1982 and 1983, zooplankton abundance and the herring year-class strength. Finnish Fish. Res. 7: 1-11.

Parmanne, R., Rechlin, O., and Sjöstrand, B. 1994. Status and future of herring and sprat stocks in the Baltic Sea. Dana 10: 29-59.

Pekcan-Hekim, Z., Urho, L., Auvinen, H., Heikinheimo, O., Lappalainen, J., Raitaniemi, J., and Söderkultalahti, P. 2011. Climate warming and pikeperch year-class catches in the Baltic Sea. Ambio. 40(5): 447-456. doi: 10.1007/s13280-011-0143-7.

Plate, T.A. 1999. Accuracy versus interpretability in flexible modelling: Implementing a tradeoff using gaussian process models. Behaviourmetrika 26: 29-50.

Rasmussen, C.E. 2004. Gaussian processes for machine learning. In Machine learning. Edited by O. Bousquet. Springer-Verlag, Berlin, Heidenberg. pp. 33-71.

Rasmussen, C.E., and Williams, C.K.I. 2006. Gaussian processes for machine learning. The MIT Press, Massachusetts, USA.

Seitz, R.D., Wennhage, H., Bergström, U., Lipcius, R.N., and Ysebaert, T. 2014. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71(3): 648-665. doi: 10.1093/icesjms/fst152.

Shelton, A.O., Thorson, J.T., Ward, E.J., and Feist, B.E. 2014. Spatial semiparametric models improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71: 1655-1666. doi:10.1139/cjfas-2013-0508

Shpilev, H., Ojaveer, E., and Lankov, A. 2005. Smelt (Osmerus eperlanus L.) in the Baltic Sea. Proc. Estonian Acad. Sci. Biol. Ecol. 54: 230-241.

Simpson, D.P.; Rue, H., Martins, T.G., Riebler, A., and Sørbye, S.H. 2015. Penalising model component complexity: A principled, practical approach to constructing priors [online]. Available from: arXiv:1403.4630v4

Sjöblom, V., and Parmanne, R. 1978. The vertical distribution of Baltic herring larvae (Clupea harengus L.) in the Gulf of Finland. Finnish Fish. Res. 2: 5-18.

Snickars, M., Sundblad, G., Sandström, A., Ljunggren, L., Bergström, U., Johansson, G., and Mattila, J. 2010. Habitat selectivity of substrate-spawning fish: Modelling requirements for the Eurasian perch Perca fluviatilis. Mar. Ecol. Prog. Ser. 398: 235-243.

Söderkultalahti, P. 2015. Ammattikalastus merellä (Commercial fisheries in the northern Baltic Sea) [online]. Natural Resources Institute Finland. Available from: http://stat.luke.fi/ammattikalastus-merell\�\�-2014_fi 16.5.2016.

Sundblad, G., and Bergström, U. 2014. Shoreline development and degradation of coastal fish reproduction habitats. Ambio. 43: 1020-1028. doi: 10.1007/s13280-014-0522-y.

Sundblad, G., Bergström, U., Sandström, A., and Eklöv, P. 2014. Nursery habitat availability limits adult stock sizes of predatory coastal fish. ICES J. Mar. Sci. 71: 672-680. doi: 10.1093/icesjms/fst056.

Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H.J. 2015. Geostatistical deltageneralized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci. 72: 1297-1310. doi:10.1093/icesjms/fst176

Urho, L. 1996: Identification of perch (Perca fluviatilis), pikeperch (Stizostedion lucioperca) and ruffe (Gymпосерhalus cernuиs) larvae. Ann. Zool. Fenn. 33: 658-667

Urho, L. 2002: Characters of larvae - what are they? Folia Zool. 51: 161-186.
Urho, L., and Hildén, M. 1990. Distribution patterns of Baltic herring larvae, Clupea harengus L., in the coastal waters off Helsinki, Finland. J. Plankton Res. 12(1): 41-54. doi: 10.1093/plankt/12.1.41.

Urho, L., Hildén, M., and Hudd, R. 1990. Fish reproduction and the impact of acidification in the Kyrönjoki river estuary in the Baltic Sea. Environ. Biol. Fishes. 27: 273283.

Vanhatalo, J. and Vehtari, A. 2008. Modelling local and lobal phenomena with sparse Gaussian processes [online]. Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, Helsinki. Available at: https://arxiv.org/ftp/arxiv/papers/1206/1206.3290.pdf

Vanhatalo, J., Veneranta, L., and Hudd, R. 2012. Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae. Ecol. Model. 228: 49-58.

Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., and Vehtari, A. 2013. GPstuff: Bayesian modeling with Gaussian processes. J. Mach. Learn. Res. 14: 1175-1179. doi: http://arxiv.org/pdf/1206.5754.pdf.

Vanhatalo, J., Hosack, G. and Sweatman, H. (In press). Spatio-temporal progression of outbreaks of the crown-ofthorns starfish on the Great Barrier Reef, 1985-2014. J. Appl. Ecol.

Vehtari, A., and Ojanen, J. 2012. A survey of Bayesian predictive methods for model assessment, selection and comparison. Stat. Surv. 6: 142-228.

Veneranta, L., Urho, L., Lappalainen, A., and Kallasvuo, M. 2011. Turbidity characterizes the reproduction areas of pikeperch (Sander lucioperca (L.)) in the northern Baltic Sea. Estuar. Coast. Shelf Sci. 95: 199-206.

Voipio, A. 1981. The Baltic Sea. Elsevier, Amsterdam, the Netherlands.

Table 1. Environmental predictor covariates used in species distribution modeling. Range values of the covariates are given for the entire study area.

805

Covariate group	Covariate	Description	Spatial			Unit	Source
			Type	res. (m)	Range		
Depth	depth	Depth from bottom topography	Cont.	20	0.5-275.9	m	Syke
Average depth	dptavg3km	Average depth in a circle of 3 km	Cont.	50	0.5-258.5	m	Luke
	dptavg5km	Average depth in a circle of 5 km	Cont.	50	0.5-251.9	m	Luke
	dptavg 10 km	Average depth in a circle of 10 km	Cont.	50	1.0-232.8	m	Luke
	dptavg 15 km	Average depth in a circle of 15 km	Cont.	50	1.3-210.9	m	Luke
Distance to deep	dist10m	Distance to 10 m depth zone	Cont.	50	0-35.4	km	Luke
water	dist20m	Distance to 20 m depth zone	Cont.	50	0-47.7	km	Luke
	dist30m	Distance to 30 m depth zone	Cont.	50	0-85.1	km	Luke

Influence of rivers	river	Square root of inverse distance to nearest					
		river mouth weighted with annual average					
		runoff	Cont.	50	0.1-3.6	index sum	Luke
Shoreline density	shoreline3km	Shoreline length in a circle of 3 km	Cont.	50	0-10.3	$\mathrm{m} / \mathrm{km}^{2}$	Luke
	shoreline 5 km	Shoreline length in a circle of 5 km	Cont.	50	0-7.5	$\mathrm{m} / \mathrm{km}^{2}$	Luke
	shoreline 10 km	Shoreline length in a circle of 10 km	Cont.	50	0-5.3	$\mathrm{m} / \mathrm{km}^{2}$	Luke
	shoreline 15 km	Shoreline length in a circle of 15 km	Cont.	50	0-4.3	$\mathrm{m} / \mathrm{km}^{2}$	Luke
Exposure	exposure	Log10 of wave exposure	Cont.	25	2.1-6.1	$\log 10\left(\mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$	Aquabiota
Cumulative spring		Cumulative temperature sum from ice-break					
temperature	tempsum	to July 15	Cont.	50	490.1-3109.2	${ }^{\circ} \mathrm{C}$	Luke

Parameter	Prior
Mean log density (intercept), α	$N(0,10)$
Over dispersion, r	Gamma $(2,0.1)$
Variance of spatio-temporal component σ_{ϕ}^{2}	$p\left(\sigma_{\phi}^{2}\right) \propto 1 / \sigma_{\phi}^{2}$
Longitudinal length scale of spatio-temporal component, l_{1}	$w_{d} \sim$ Student ${ }_{+}-t(4,0,100)$
Latitudinal length scale of spatio-temporal component, l_{2}	$w_{d} \sim$ Student ${ }_{+}-t(4,0,100)$
Temporal length scale of spatio-temporal component, l_{3}	$w_{d} \sim \operatorname{Student}{ }_{+}-t(4,0,1)$
Variance of spatial component σ_{ρ}^{2}	$p\left(\sigma_{\rho}^{2}\right) \propto 1 / \sigma_{\rho}^{2}$
Longitudinal length scale of spatial component, λ_{1}	$w_{d} \sim \operatorname{Student}{ }_{+}-t(4,0,100)$
Latitudinal length scale of spatial component, λ_{2}	$w_{d} \sim \operatorname{Student}{ }_{+}-t(4,0,100)$
Variance of the interaction term, σ_{h}^{2}	$p\left(\sigma_{h}^{2}\right) \propto 1 / \sigma_{h}^{2}$
Weights along covariates in the interaction term $\left\{w_{d}\right\}_{d=1}^{D}$	$w_{d} \sim \operatorname{Student}{ }_{+}-t(4,0,1)$
Variance parameters of the additive functions,	$p\left(\sigma_{g_{d}, 0}^{2}\right) \propto 1 / \sigma_{g_{d}, 0}^{2}$
$\left\{\sigma_{g_{d}, 0}^{2}, \sigma_{g_{d}}^{2}\right\}_{d=1}^{D}$	$p\left(\sigma_{g_{d}}^{2}\right) \propto 1 / \sigma_{g_{d}}^{2}$

Table 2. The priors for model parameters. Here, $N(m, \tau)$ is the Gaussian distribution with mean m and variance τ, Student ${ }_{+}-t(v, m, s)$ is the Student $-t$ distribution restricted on nonzero values with v degrees of freedom, location m, and scale s, and $\operatorname{Gamma}(\alpha, \beta)$ is the Gamma distribution with shape α and inverse scale β (Gelman et al. 2013).

Table 3. The posterior median and central 95% credible interval of the overdispersion parameter, variance of the interaction term and parameters of the spatial and spatio-temporal covariance functions.

	Perch	Pikeperch	Baltic herring	Smelt
Mean log density	-3.79	-6.59	-2.77	-3.32
(intercept), α	$(-6.19,-1.40)$	$(-9.16,-4.02)$	$(-4.67,-0.87)$	$(-5.73,0.90)$
Over dispersion, r	1.18	11.48	1.79	2.45
	$(0.80,2.25)$	$(2.53,47.97)$	$(1.26,3.02)$	$(1.28,6.84)$
Variance of spatio-	6.69	0.29	2.39	2.36
temporal component σ_{ϕ}^{2}	$(4.53,11.08)$	$(0.01,1.47)$	$(1.53,3.80)$	$(0.38,5.23)$
Longitudinal length scale	17.80	5.03	12.21	10.25
of spatio-temporal	$(10.47,31.47)$	$(0.42,26.87)$	$(6.76,24.40)$	$(4.60,28.97)$
component, l_{1}				
Latitudinal length scale of	34.11	6.88	16.93	8.53
spatio-temporal	$(17.78,75.70)$	$(0.14,37.91)$	$(9.47,33.13)$	$(2.53,33.58)$
component, l_{2}				
Temporal length scale of	0.88	0.70	0.61	0.66
spatio-temporal	$(0.03,2.73)$	$(0.01,3.71)$	$(0.03,2.26)$	$(0.05,3.48)$
component, l_{3}				
Variance of spatial	0.07	$(0.10$	0.03	1.64
component σ_{ρ}^{2}	$(0.00,1.02)$	$(3.43,13.52)$	$(0.00,0.42)$	$(0.00,4.17)$
Longitudinal length scale	7.34	7.59	10.05	
of spatial component, λ_{1}	$(0.04,36.21)$	$(9.60,35.64)$	$(0.57,32.89)$	$(1.76,31.94)$

Latitudinal length scale of	7.58	18.67	8.56	14.90
spatial component, λ_{2}	$(0.15,31.39)$	$(8.70,46.88)$	$(0.29,42.25)$	$(1.83,49.51)$
Variance of the interaction	0.44	0.19	0.09	0.47
term, σ_{h}^{2}	$(0.01,2.24)$	$(0.00,2.28)$	$(0.00,0.49)$	$(0.01,3.41)$

Table 4. Expected total number of larvae (95% credible interval), percentage of the studied water area suitable for larvae (suitable areas) and producing 80% of larvae (important areas) by species and sea area ($\mathrm{I}=$ Bothnian Bay; $\mathrm{II}=$ Quarken area; $\mathrm{III}=$ Bothnian Sea; $\mathrm{IV}=$ Archipelago Sea; $\mathrm{V}=$ Gulf of Finland). The sea areas sum up to the total study area.

	Total number of larvae x $10^{9}(95 \%$ credible interval)	Percentage of water area suitable for larvae	Percentage of water area producing 80% of larvae
Perch			
I	0.48 (0.22, 0.92)	23.32	5.00
II	0.41 (0.21, 0.71)	16.97	7.12
III	0.26 (0.13, 0.47)	18.59	5.41
IV	0.20 (0.11, 0.35)	7.92	0.84
V	0.20 (0.07, 0.48)	12.89	2.40
Total	1.56 (0.89, 2.55)	13.66	3.03
Pikeperch			
I	0.08 (0.003, 0.39)	2.57	1.10
II	0.02 (0.004, 0.05)	1.79	0.42
III	0.03 (0.01, 0.09)	3.35	0.91
IV	0.31, (0.04, 1.16)	3.88	1.80
V	0.10 (0.02, 0.35)	5.71	1.45
Total	0.54 (0.12, 1.56)	3.68	1.37
Baltic herring			
I	0.72 (0.46, 1.06)	99.81	15.71

II	$0.50(0.34,0.70)$	99.87	16.48
III	$0.57(0.41,0.78)$	99.79	24.71
IV	$4.93(3.01,7.63)$	99.87	74.07
V	$2.00(1.12,3.31)$	99.53	78.90
Total	$8.72(5.65,12.86)$	99.79	52.89
Smelt			
I	$3.30(1.22,7.25)$	70.88	12.12
II	$0.79(0.44,1.32)$	25.49	7.43
III	$0.74(0.23,1.82)$	22.27	4.62
IV	$0.49(0.18,1.06)$	5.91	1.12
V	$0.58(0.20,1.35)$	12.34	2.78
Total	$5.91(2.88,10.81)$	22.50	4.44

Figure legends
 Finland).
Figure 1. The study area (grey), larval fish survey sites (black dots) and the sea area divisions ($\mathrm{I}=$ Bothnian Bay; $\mathrm{II}=$ Quarken area; $\mathrm{III}=$ Bothnian Sea; IV = Archipelago Sea; V = Gulf of

Figure 2. The response of log-transformed larval density along environmental covariates, shown for the four study species. A change in the log density by one unit corresponds to a 2.7-fold increase in the density. The solid and dashed black lines describe, respectively, the average response and the 95% credible interval over all data points. The grey lines show the expected response in 50 randomly chosen locations.

Perch
Pikeperch

Baltic herring
Smelt

Figure 3. Predicted larval density maps of perch, pikeperch, Baltic herring, and smelt classified into three classes: not suitable (no larvae expected), suitable (expected area

Pikeperch

Baltic herring
Smelt

Coefficient of variation
\square 0.3-1.0
$\square 1.0-2.5$
$\square 2.5-5.0$
$\square 5.0-7.5$
$\square 7.5-10.0$
$\square 10.0-12.5$
$\square 12.50-15.0$
$\square 15.0-20.0$
$\square 20.0-25.0$
$\square 25.0-30.9$
producing lowest 20% of all larvae), and important (the smallest expected area producing 80% of all larvae).

Figure 4. The posterior predictive median (larger maps) and coefficient of variation (smaller maps inside the former) of the larval density of perch, pikeperch, Baltic herring, and smelt.

```
Appendix A1
Computational details
```

We applied Bayes' theorem and calculated the posterior distribution of the covariance function parameters and the latent variables (latent function values corresponding to the observation locations) using the Matlab toolbox GPstuff (Vanhatalo et al. 2013). First, we used the expectation propagation (EP) algorithm to search for the (approximate) maximum a posterior estimate of the covariance function parameters and a Gaussian approximation for the latent variables (see Rasmussen and Williams 2006 and Vanhatalo et al. 2010 for details). EP is a fast approximate algorithm, and its accuracy has been shown to be good in the models we were interested in here (Vanhatalo et al. 2010). Hence, it provides an efficient tool for early "model exploration". After this, we conducted a Markov chain Monte Carlo (MCMC) simulation for the full posterior of covariance function parameters and latent variables by alternating the sampling from conditional distribution of latent variables given covariance function parameters, and vice versa. We used elliptical slice sampling (Murray et al. 2010) for the latent variables and slice sampling (Neal 2003) for the parameters of covariance functions. We sampled 20000 samples, from which the first 1000 were removed as burn-in. The convergence was checked by the potential scale reduction factor (Gelman et al. 2013). After, this, we thinned the chain to obtain approximately 200 independent samples with which the final results were calculated.

The interest in this study was in the average larval abundance across the study area. Since the spatio-temporal random effects describe annual changes in larval abundance, we predicted the larval density in grid cells using only the temporally constant terms; that is,
we predicted $\tilde{f}\left(s, x_{s}\right)=\alpha+\sum_{d=1}^{D} g_{d}\left(x_{s, d}\right)+h\left(x_{s}\right)+\rho(s)$ in each grid cell and used this to represent the average log larval density between 2007 and 2014. This corresponds to effectively filtering out the temporal changes in the density and can be calculated straightforwardly as presented by Rasmussen and Williams (2006) and Vanhatalo (2010). We calculated the total larval density in an area, A, by a sum of densities in grid cells in that area; that is, $I_{\text {tot }}=\sum_{s_{i} \in A} e^{\tilde{f}\left(s_{i}, x_{s_{i}}\right)}$, where s_{i} is the coordinate of cell i. Sampling from the posterior distribution of $I_{\text {tot }}$ would require first sampling from the joint posterior of f in all grid cells, during which we would need to form the (posterior) covariance matrix of \tilde{f}. Since we had over 12 million grid cells in the whole study area, this is infeasible. However, we can calculate the posterior mean and variance of the total density exactly; the former is the sum of expectations over grid cells, $E\left[I_{\text {tot }}\right]=\sum_{s_{i} \in A} E\left[e^{\tilde{f}\left(s_{i}, x_{s_{i}}\right)}\right]$, and the latter is the sum of all elements in the covariance matrix $\operatorname{Var}\left[I_{\text {tot }}\right]=$ $\sum_{s_{i}, s_{j} \in A} \operatorname{Cov}\left[e^{\tilde{f}\left(s_{i}, x_{s_{i}}\right)}, e^{\tilde{f}\left(s_{j}, x_{s_{j}}\right)}\right]$. Both summaries can be calculated sequentially or the computation can be parallelized and does not involve forming the full covariance matrix. After solving the mean and variance, we approximated the posterior distribution for the total density by a log-Gaussian distribution (Kelsall and Wakefield 2002). In order to speed up the calculations, we used the EP approximation for the posterior when calculating the posterior for the total density. The error from using EP here is negligible, since it provided a good match with the MCMC approximation for the posterior distributions of the latent variables.

In order to study the effect of covariates on the larval density, we visualized the expected, zero-centered change in the log density along each covariate. That is, we calculated the posterior of $\left.\tilde{f}\left(s, t, x_{s}\right)\right|_{k}=\left.f\left(s, t, x_{s}\right)\right|_{k}-\left.\bar{f}\left(s, t, x_{s}\right)\right|_{k}$ along covariate k where $\left.f\left(s, t, x_{s}\right)\right|_{k}$ is a function of the k th covariate only when all other covariates are fixed at their
values at location s and $\left.\bar{f}\left(s, t, x_{s}\right)\right|_{k}=\frac{1}{u_{k}-l_{k}} \int_{l_{k}}^{u_{k}} f\left(s, t, x_{s}\right) d x_{s, k}$ is the mean of the function over interval $\left[u_{k}, l_{k}\right]$ along covariate k at that location. We approximated the mean of the function by the arithmetic mean over $M=20$ equally spaced values along covariate k. Moreover, we calculated the expected response for 50 random locations in order to visualize the effect of the interaction term.

Comparison of models with and without spatial and spatio-temporal random effects

In order to assess the importance of the spatial and spatio-temporal random effects from the posterior predictive point of view we compared our model with models that were otherwise similar but did not include the random effects. We assessed the model performance by using the approximate leave-one-out cross-validation (Vehtari et al. 2014) with log predictive density diagnostics (Vehtari and Ojanen 2012)

$$
\sum_{i=1}^{n} \ln p\left(y_{i} \mid x_{i}, s_{i}, y_{\backslash i}, x_{\backslash i}, s_{\backslash i}\right)
$$

where $y_{\backslash i}, s_{\backslash i}$ and $x_{\backslash i}$ collect all observations, locations and covariates except those related to the i th data point and $p\left(y_{i} \mid x_{i}, s_{i}, y_{\backslash i}, x_{\backslash i}, s_{\backslash i}\right)$ denotes the posterior predictive density of the i th observation. A larger log predictive density indicated a better model. The log predictive density statistics are summarized in Table A1.

References

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin. D. 2013. Bayesian Data Analysis, Third Edition. Chapman \& Hall / CRC Texts in Statistical Science, Miami, USA.

Kelsall, J., and Wakefield, J. 2002. Modeling spatial variation in disease risk: A geostatistical approach. J. Amer. Statist. Assoc. 97: 692-701.

Murray, I., Adams, R.P., and MacKay, D.J.C. 2010. Elliptical slice sampling. J. Mach. Learn. Res.: Workshop and conference proceedings 9:541-548.

Neal, R.M. 2003. Slice sampling. Ann. Stat. 31: 705-767.
Rasmussen, C.E., and Williams, C.K.I. 2006. Gaussian Processes for Machine Learning. The MIT Press, Massachusetts, USA.

Vanhatalo, J. 2010. Speeding Up the Inference in Gaussian Process Models. PhD Thesis, Aalto University, School of Science and Technology.

Vanhatalo, J., Pietiläinen, V., and Vehtari, A. 2010. Approximate inference for disease mapping with sparse Gaussian processes. Stat. Med. 9: 1580-1607.

Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., and Vehtari A. 2013. GPstuff: Bayesian Modeling with Gaussian Processes. J. Mach. Learn. Res. 14: 1175-1179.

Vehtari, A., and Ojanen, J. 2012. A survey of Bayesian predictive methods for model assessment, selection and comparison. Stat. Surv. 6: 142-228.

Vehtari, A., Tolvanen, V., Mononen, T., and Winther, O. 2014. Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. arXiv:1412.7461v1

940 Table A1. The leave-one-out cross-validation log predictive densities (LPD) and the posterior

944

	Perch	Pikeperch	Baltic herring	Smelt
	LPD (\hat{r})	$\operatorname{LPD}(\hat{r})$	$\operatorname{LPD}(\hat{r})$	$\operatorname{LPD}(\hat{r})$
Full model	$-981.91(1.18)$	$-504.15(14.24)$	$-1296.17(1.76)$	$-1130.33(2.44)$
Full model $-\phi(s, t)$	$-981.87(1.18)$	$-507.80(13.84)$	$-1296.08(1.77)$	$-1132.70(2.14)$
Full model $-\rho(s)$	$-1013.69(0.84)$	$-504.50(9.65)$	$-1319.54(1.18)$	$-1136.20(1.78)$
Full model $-\rho(s)-\phi(s, t)$	$-1058.89(0.50)$	$-574.29(0.82)$	$-1367.01(1.17)$	$-1178.05(0.94)$

945

Figure A1. The response of log-transformed pikeperch larval density along the environmental covariates within the prediction range of the covariates. The solid and dashed black lines describe, respectively, the average response and the 95% credible interval. The histograms show the distribution of covariate values in the data. Notice that when extrapolating the prediction stays at the level where the predictive function was at the end of the data range. This behavior is typical for neural network covariance function. With radial covariance functions, such as the squared exponential, the predictive function would approach prior mean (zero) when extrapolating.

[^0]: ${ }^{1}$ The code to implement the models is given in the Supplementary material.

