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Abstract 24 

 25 

Productive fisheries are strongly linked to the ecological state of the essential habitats. In this 26 

study, we developed a methodology to assess the most important reproduction habitats of fish 27 

by using larval survey data and Bayesian species distribution models that predict the spatial 28 

distribution and abundance of fish larvae. Our case study with four commercially and 29 

ecologically important fish species in the coastal zone of the northern Baltic Sea 30 

demonstrated that the production of fish stocks can be concentrated to an extremely limited 31 

area compared to the entire suitable production area. The area suitable for larval production 32 

varied from 3.7% to 99.8% between species, but the smallest area responsible for 80% of the 33 

cumulative larval production was two to five times more limited, varying from 1.4% to 34 

52.9% between species. Hence, instead of the traditional approach of modeling only habitat 35 

suitability for fish production, marine spatial planning and management should take into 36 

account the areal production potential. Moreover, the developed methodology enables linking 37 

of the total production potential across the whole distribution area to fisheries stock 38 

assessment and management.  39 
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Introduction  40 

 41 

The water areas that fish use for reproduction or as nurseries are referred to as 42 

essential fish habitats (Cross et al. 1997; Benaka 1999), since fish usually have the most 43 

specific habitat demands during spawning and early life-stages. Hence, the size of the 44 

reproduction habitats forms a habitat bottleneck that limits fish production (Halpern et al. 45 

2005; Sundblad et al. 2014). Essential fish habitats often exist in shallow coastal areas (Seitz 46 

et al. 2014), which are also heavily exploited and threatened by various anthropogenic 47 

pressures (Seitz et al. 2014; Sundblad and Bergström 2014). Therefore, there is a growing 48 

need to find concrete tools to manage coastal areas effectively and plan multiple uses and 49 

conservation to ensure that coastal resources and services are utilized sustainably. 50 

During the last two decades, advances in marine habitat mapping and the 51 

development of geographic information system (GIS)-based tools for predicting species and 52 

habitat distributions (Guisan and Zimmermann 2000; Elith et al. 2006) have facilitated a 53 

detailed and explicit assessment of habitat availability. The main objectives in species 54 

distribution modeling are to predict the spatial and temporal occurrence or abundance pattern 55 

over a region of study and to identify the range of environmental covariates that best describe 56 

these patterns (Latimer et al. 2006; Austin 2007; Elith and Leathwick 2009). This information 57 

can also be used to predict species distributions under a changing environment.  58 

Traditionally, species distribution models have focused on occurrence (Elith et 59 

al. 2006, Latimer et al. 2006). However, this approach fails to describe the abundance of a 60 

species, which may vary considerably between regions and habitats, and is essential 61 

information for management (Shelton et al. 2014; Thorson et al. 2015) and also for 62 

conservation purposes (Johnston et al. 2015). When abundance data, such as the number of 63 
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individuals observed at a survey site, are available, it is possible to model the density of a 64 

species, i.e., the number of individuals within a given area (e.g. Vanhatalo et al., in press), or 65 

in the case of fish, in a given volume of water (e.g. Juntunen et al. 2012; Shelton et al. 2014; 66 

Thorson et al. 2015). The modeling outcome can then be presented as density maps that allow 67 

a comprehensive numerical evaluation of the species distribution and essential habitats. For 68 

example, those areas that are the most crucial for the total production of a fish stock can be 69 

identified. 70 

In this study, we used a GIS- and modeling-based, spatially explicit approach to 71 

quantitatively assess the reproduction habitats of four commercially and ecologically 72 

important fish species in the northern Baltic Sea by predicting the distribution and abundance 73 

of their early life stages. We propose a novel approach to visualize and communicate the 74 

results to managers and other end-users by classifying areas based on their predicted 75 

contribution to the total production. As a result, we explicitly identify geographical areas that 76 

host the most productive coastal habitats and show that very limited coastal areas, compared 77 

to the total distribution area, can be crucial for fish production.  78 

 79 

Materials and methods 80 

 81 

Study species 82 

 83 

The study considered four fish species that have both ecological and economic 84 

significance in the northern Baltic Sea area. The Baltic herring (Clupea harengus membras) 85 

is one of the most important pelagic species in the Baltic ecosystem and the most important 86 

species for fisheries in the northern Baltic Sea (Söderkultalahti 2015). The perch (Perca 87 
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fluviatilis) and pikeperch (Sander lucioperca) are top predators and central species in the 88 

coastal system. They are fished commercially and are also highly sought after by recreational 89 

fishers (Söderkultalahti 2015). The smelt (Osmerus eperlanus) is a common species in 90 

estuarine areas (Shpilev et al. 2005), but nowadays mainly fished in the Gulf of Bothnia, the 91 

northernmost part of the Baltic Sea (Söderkultalahti 2015).  92 

Three of the target species, the perch, pikeperch, and smelt, are of freshwater 93 

origin, and the Baltic herring is of marine origin. All the target species spawn in the spring in 94 

shallow (<10 m) coastal waters in the northern Baltic Sea (Aneer 1989; Lappalainen et al. 95 

2003; Shpilev et al. 2005; Snickars et al. 2010). The two predatory species, perch and 96 

pikeperch, have specific habitat requirements for their reproduction, selecting shallow, 97 

vegetated, and sheltered bays that warm up early in the spring (Snickars et al. 2010; 98 

Veneranta et al. 2011). The smelt is perhaps even more selective and exclusively spawns in 99 

low salinity estuaries and river mouths (Urho et al. 1990; Shpilev et al. 2005). The perch, 100 

pikeperch, and smelt usually spawn in one reproductive cohort. The timing mostly depends 101 

on the development of spring temperatures (Lappalainen et al. 2003; Shpilev et al. 2005; 102 

Snickars et al. 2010; Veneranta et al. 2011). The Baltic herring is the most flexible of the 103 

studied species in its reproductive requirements, and spawns in several reproductive cohorts 104 

on both vegetation and hard bottoms in relatively low salinity coastal waters over the entire 105 

northern Baltic Sea (Aneer 1989; Parmanne et al. 1994). Despite some dissimilarity in their 106 

life history, the larvae of all four species use coastal habitats during their entire first summer 107 

(Sjöblom and Parmanne 1978; Urho and Hildén 1990; Sundblad et al. 2014).  108 

Here, our main interest was in the early-stage larvae, which are found in the 109 

open water within the archipelago zone, usually still relatively close to the spawning sites, at 110 

approximately the same time of a year. It is not well known whether the larvae are only 111 
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present in the surface water layer or more uniformly also in the deeper water layers. 112 

However, in the spring, the water temperature is always highest near the surface, which 113 

makes it the most favorable location for the larvae. Therefore, here we sampled fish larvae 114 

only in the surface water layer.  115 

 116 

Study area and data collection 117 

 118 

The study area was located in the northern Baltic Sea, which is one of the 119 

largest brackish semi-enclosed seas in the world. The coastal areas of the northern Baltic Sea 120 

typically consist of extensive, shallow and topographically complex archipelagos, where the 121 

coastline is indented and long, the sea is covered with ice in the winter months, and tides and 122 

strong currents are absent (Voipio 1981). The study area covered the whole Finnish coastal 123 

region (N 59.8–65.8, E 19.1–27.8) of 30 100 km2 in the northern Baltic Sea (Fig. 1). 124 

Environmental gradients are typically strong in the area, both north–south and west–east 125 

along the coastline, and also from inshore to offshore (Kallasvuo 2010). For example, surface 126 

salinity ranges from below 1 to almost 7 ppt and the spring temperature varies strongly 127 

between inner bays and open water areas.  128 

To collect data on the distribution of the larvae of the four target species, an 129 

extensive field survey of the surface water layer was conducted in 2007–2014 with paired 130 

Gulf ichthyoplankton samplers, which have been used to quantitatively monitor the 131 

abundance and spatial occurrence of, for example, Baltic herring larvae (Sjöblom and 132 

Parmanne 1978; Parmanne and Sjöblom 1988; Urho and Hildén 1990) and pikeperch larvae 133 

(Veneranta et al. 2011). The Gulf samplers, with a mouth opening of 0.028 m2, were attached 134 

bilaterally to the bow of the boat. The sampling was systematically conducted during the day 135 
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(8 am to 8 pm) over transects of 400 m (in 2007–2008) or 500 m (in 2009–2014) at a speed of 136 

2.2 kn and only in good weather conditions (wind speed < 8 m/s, wave height < 30 cm). The 137 

paired samplers had fixed depths of 0.5 m and 1.0 m, and the catch and effort were pooled to 138 

form one sample observation with a total effort (volume) of 22.68 m3 and 28.35 m3 per 139 

shorter and longer transect, respectively. In 2014, at 18 very shallow, flad-type sampling 140 

sites, Gulf sampling with a boat was not possible to conduct, and a similar net as in the Gulf 141 

samplers was consequently used as a tow net. The tow net had a mouth opening of 0.166 m2 142 

and it was hauled over five 30-m-long transects per flad. The catch and effort were pooled, 143 

and the total sampling effort of one sample was 24.93 m3. These observations are a proxy 144 

measure of larval abundance in units of count per effort, where the effort is the volume of 145 

sampled water. 146 

All samples were fixed in the field with 4% formaldehyde solution, and species 147 

identification, counting, and measurement took place later in the laboratory. Since the aim 148 

was to describe the distribution of the most sensitive reproduction habitats, not the larger 149 

nursery areas, only early-stage larvae were included in the analysis. Our classification 150 

followed that of Urho (1996; 2002), with a larval size range of 4–23 mm for perch, 5–15 mm 151 

for pikeperch, and 4–36 mm for smelt. For Baltic herring, there is a known landward 152 

movement and concentration of larger larvae in very shallow inner bay areas (Urho and 153 

Hildén 1990), and we therefore used a more restrictive size range of 4–9 mm for Baltic 154 

herring larvae. In 2007 in the Archipelago Sea, length measurements were not available for 155 

Baltic herring larvae and the data from that year were not consequently used for the Baltic 156 

herring model. 157 

The larval fish survey comprised a total of 1788 sampling occasions at 655 158 

distinct sampling sites in 5 sea areas (Fig. 1). Sampling sites were dispersed over the entire 159 
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archipelago gradient, from the inner to the outer archipelago. In order to obtain survey results 160 

that were as representative as possible, the sampling was stratified according to bottom depth 161 

and exposure. Since different species hatch at different times, sampling was conducted two to 162 

four times per year at intervals of about 10–14 days at each site during a period from mid-163 

May to early July. In order to remove sampling occasions that were sampled before or after 164 

the larvae were present, we retained for each species only the sampling occasion with the 165 

largest larval abundance per sampling site and per year, which resulted in 655 observations of 166 

larval abundance per varying sampling effort. Each observation location was defined with 167 

coordinates corresponding to the start location of the sampling transect.  168 

 169 

Spatial environmental data 170 

 171 

The larval fish survey data were linked to 15 environmental predictor covariates 172 

falling into seven groups of covariates: depth, average depth, distance to deep water, 173 

influence of rivers, shoreline density, exposure, and cumulative spring temperature 174 

(summarized in detail in Table 1). The covariate depth corresponded to the actual depth at a 175 

point measured from the depth model at maximum resolution, while the covariate average 176 

depth described the water depth gradient on a large spatial scale. The covariate distance to 177 

deep water indicated the location in the archipelago zone, e.g. sheltered inner bays were 178 

emphasized. The covariate influence of rivers described the influence of freshwater runoff 179 

from the river mouths. The covariate shoreline density, i.e. length of the shoreline in meters 180 

in a grid cell, described the effect of wind exposure and water exchange, while the covariate 181 

exposure described the degree of wave exposure. The covariate cumulative spring 182 
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temperature, i.e. the sum of daily sea surface temperatures from ice break up to July 15th, 183 

described how rapidly the water area warmed up in the spring after ice break-up. 184 

The covariate GIS rasters were mainly constructed during this study by the 185 

authors, exceptions being depth, obtained from the Finnish Environment Institute (E. 186 

Virtanen, Finnish Environment Institute, Helsinki, personal communication, 2015), and 187 

exposure, which was obtained from AquaBiota Water Research (Isæus 2004). The influence 188 

of rivers and shoreline density were calculated based on basic maps (scale 1:5000, National 189 

Land Survey of Finland). The cumulative spring temperature was constructed by modeling 190 

the cumulative temperatures from survey loggers located in the study region and predicting 191 

the cumulative spring temperature for the entire study area (L. Veneranta, Natural Resources 192 

Institute Finland, Vaasa, personal communication, 2015). In order to enable spatial 193 

prediction, all covariates were in GIS raster format with the same extent and spatial 194 

resolution of 50 m and covered the whole geographical extent of the study area (see Fig. 1). 195 

The total number of grid cells across the study area was 12 040 218. Covariate values were 196 

extracted for each observation from the grid cell in which that observation’s starting point 197 

was located. Even though each transect passed through 7-12 grid cells, we did not expect this 198 

spatial misalignment to introduce large bias, since the environmental covariates were 199 

approximately constant along all transects at a sampling site. Most of the environmental 200 

variables were practically uncorrelated (the pairwise correlation in the data was less than 0.3), 201 

but there was greater correlation between the depth, average depth, and distance to deep 202 

water covariates (pairwise correlations ranged from 0.4 to 0.6) and between the influence of 203 

rivers and distance to deep water (pairwise correlation of 0.48). All GIS analyses were 204 

performed using the ESRI ArcGIS (ArcMap 10.2.1 and Spatial Analyst extension). 205 

 206 



11 

 

Species distribution models 207 

 208 

Traditional examples of species distribution models are generalized linear and 209 

additive models (Guisan et al. 2002; Gelfand et al. 2006). Additionally, a wide variety of 210 

other models have been proposed (e.g. Elith et al. 2006; Shelton et al. 2014; Thorson et al. 211 

2015), and some of the most popular are non-parametric (Austin 2007; Elith et al. 2008). 212 

Here, we built Bayesian species distribution models using Gaussian processes (GPs), as 213 

proposed by Vanhatalo et al. (2012). GPs are stochastic processes that define the probability 214 

distribution over functions and can be seen as an extension to linear and additive models 215 

(Rasmussen 2004; Vanhatalo et al. 2012). They have received considerable interest in many 216 

fields of science in recent years due to their semi-parametric nature, which allows flexible 217 

and versatile modeling. 218 

We modeled the conditional distribution for the number of larvae, 𝑦(𝑠, 𝑡), at 219 

sample location 𝑠 (coordinates in kilometers) in year 𝑡 with a negative binomial distribution 220 

𝑦(𝑠, 𝑡)|𝑓(𝑠, 𝑡), 𝑟~Negative − Binomial(𝑧(𝑠, 𝑡)𝑒𝑓(𝑠,𝑡,𝑥𝑠), 𝑟), 221 

where 𝑧(𝑠, 𝑡) is the corresponding sampling effort, the latent function 𝑓(𝑠, 𝑡, 𝑥𝑠) corresponds 222 

to the logarithm of the larval density, 𝑥𝑠 is the spatially indexed vector of 𝐷 covariates (see 223 

Table 1), and 𝑟 is the overdispersion parameter. We parameterized the negative binomial as 224 

in Vanhatalo et al. (2013) with a quadratic mean-variance relationship so that mean 225 

𝐸[𝑦(𝑠, 𝑡)] = 𝑧(𝑠, 𝑡)𝑒𝑓(𝑠,𝑡,𝑥𝑠) and variance 𝑉𝑎𝑟[𝑦(𝑠, 𝑡)] = 𝐸[𝑦(𝑠, 𝑡)] + 𝐸[𝑦(𝑠, 𝑡)]2/𝑟. Hence, 226 

increasing 𝑟 corresponds to decreasing variance, and at the limit, as 𝑟 approaches infinity, the 227 

negative binomial approaches a Poisson distribution. Before modeling, we scaled all the 228 

covariates to have a unit standard deviation and zero mean according to the observed values. 229 
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The larval density should be interpreted as an index proportional to the true 230 

density, since our model does not account for the catchability of the used sampling gear, and 231 

it represents the expected (average) number of larvae per cubic meter of water at a particular 232 

location and time. The catchability of our sampling gear was mostly influenced by the 233 

weather conditions during the sampling occasions. Special attention was paid to standardizing 234 

these conditions as well as possible, and there were no systematic variations in the sampling 235 

conditions between different areas (see also Study area and data collection section). Hence, it 236 

is reasonable to assume that catchability did not vary systematically. However, due to random 237 

variation in the sampling conditions, there might still be random variation in catchability. In 238 

addition to other sources of extra variation, the spatial and spatio-temporal random effects 239 

account for spatially correlated and the overdispersion in negative-binomial distribution for 240 

uncorrelated variation in catchability. Overdispersion may arise from various factors in 241 

addition to the variation in catchability, including a spatially aggregated distribution of 242 

individuals (Lindén and Mäntyniemi 2011).  243 

We assumed that the latent function is additive so that 244 

𝑓(𝑠, 𝑡, 𝑥𝑠) = 𝛼 + ∑ 𝑔𝑑(𝑥𝑠,𝑑)
𝐷

𝑑=1
+ ℎ(𝑥𝑠) + 𝜌(𝑠) + 𝜙(𝑠, 𝑡). 245 

Here, 𝛼 is the intercept, 𝑔𝑑(⋅) is a univariate function of the 𝑑th covariate, ℎ(𝑥𝑠) is a function 246 

of interactions between all the covariates, 𝜌(𝑠) is a spatial random effect, and 𝜙(𝑠, 𝑡) is a 247 

spatio-temporal random effect. Hence, the model is essentially a generalized additive model 248 

with random effects (Hastie and Tibshirani 1990) and the motivation for the chosen model 249 

structure is the following. The intercept describes the average density of larvae across the 250 

study area. The univariate function, 𝑔𝑑(⋅), corresponds to the independent effect of a 251 

covariate d and, hence, describes the average relative change in density with respect to that 252 

covariate across the whole study area. The function of interactions governs the joint effect of 253 
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all the covariates. The lower order interactions were left out in order to reduce the complexity 254 

of the model (see e.g. Plate 1999). This choice was justified, since it was a priori likely that 255 

the independent effects would be stronger than interactions, and because our prior for ℎ(𝑥𝑠) 256 

shrinks the effects of covariates towards zero if the data do not support the full order of 257 

interactions. The spatial random effect captures spatial autocorrelation, which causes 258 

neighboring areas to have similar larval densities because of, for example, associations 259 

unexplained by the available covariates (Latimer et al. 2006; Elith and Leathwick 2009). 260 

Similarly, the spatio-temporal random effect adjusts for annual variation in density that 261 

cannot be described by the temporally constant covariates. 262 

Following Vanhatalo et al. (2012), we gave a Gaussian prior for the intercept 263 

𝛼~𝑁(0, 𝜎𝛼
2) and Gaussian process (GP) priors for all the latent functions 264 

𝑔𝑑(𝑥𝑠,𝑑)~𝐺𝑃(0, 𝑘𝑔𝑑
(𝑥𝑠,𝑑, 𝑥𝑠′,𝑑|𝜃𝑔𝑑

)) 265 

ℎ(𝑥𝑠)~𝐺𝑃(0, 𝑘h(𝑥𝑠, 𝑥𝑠′|𝜃h)) 266 

𝜌(𝑠)~𝐺𝑃 (0, 𝑘𝜌(𝑠, 𝑠′|𝜃𝜌)) 267 

𝜙(𝑠, 𝑡)~𝐺𝑃 (0, 𝑘𝜙((𝑠, 𝑡), (𝑠′, 𝑡′)|𝜃𝜙)). 268 

GP is a stochastic process that defines the probability distribution over functions (Gelfand et 269 

al. 2010; Rasmussen and Williams 2006). It is defined by a mean function, here zero, and a 270 

covariance function, e.g., 𝑘𝑔𝑑
(𝑥𝑠,𝑑, 𝑥𝑠′,𝑑) = 𝐶𝑜𝑣(𝑔𝑑(𝑥𝑠,𝑑), 𝑔𝑑(𝑥𝑠′,𝑑)), which determines the 271 

properties of the process, such as how much and how fast (smoothness) the function varies 272 

along a covariate. Here, 𝑥𝑠,𝑑 and 𝑥𝑠′,𝑑 are the 𝑑th covariate at locations 𝑠 and 𝑠′, respectively. 273 

We used the neural network covariance function for each univariate function, 274 

𝑘𝑔𝑑
(𝑥𝑠,𝑑, 𝑥𝑠′,𝑑|𝜃𝑔𝑑

) =
2

𝜋
sin−1 (

2�̃�𝑠,𝑑
𝑇 𝜃𝑔𝑑

�̃�𝑠′,𝑑

√(1+2�̃�𝑠,𝑑
𝑇 𝜃𝑔𝑑

�̃�𝑠,𝑑)(1+2�̃�𝑠′,𝑑
𝑇 𝜃𝑔𝑑

�̃�𝑠′,𝑑)

) (Rasmussen and Williams 275 
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2006), where �̃�𝑠,𝑑 = [1, 𝑥𝑠,𝑑] and 𝜃𝑔𝑑
= diag(𝜎𝑔𝑑,0

2 , 𝜎𝑔𝑑
2 ). The parameters 𝜎𝑔𝑑

2  and 𝜎𝑔𝑑,0
2  276 

respectively govern how smooth the function is along 𝑥𝑑 and its offset from zero, so that the 277 

larger the variance parameters are, the more quickly the function varies. The neural network 278 

covariance function gives rise to non-linear and non-stationary random processes whose 279 

expected value outside the data range stabilizes (approximately) to the level at which it was at 280 

the end of the data range (Vanhatalo et al. 2012). These properties are justified, since it was a 281 

priori likely that abundance responds to covariates non-linearly, and due to the sampling 282 

design, the density is not expected to change radically from the level at the end of the data 283 

range when moving outside the data range.  284 

The interactions between covariates were modeled by giving ℎ(𝑥𝑠) a squared 285 

exponential covariance function 𝑘ℎ(𝑥𝑠,𝑑, 𝑥𝑠′,𝑑|𝜃h) = 𝜎ℎ
2𝑒− ∑ 𝑤𝑑

2(𝑥𝑠,𝑑−𝑥𝑠′,𝑑)
2

/2𝐷
𝑑=1 , where 𝜃h =286 

[𝜎ℎ
2, 𝑤1, … , 𝑤𝐷], 𝑤𝑑 is the weight (inverse length scale; Rasmussen and Williams 2006) along 287 

covariate d and 𝜎ℎ
2 is the process variance (magnitude). The weight governs how fast the 288 

function varies along 𝑥𝑠,𝑑 and hence its effect in the interaction term. The effect of a covariate 289 

in the interaction term vanishes when the respective weight approaches zero. The magnitude 290 

governs the importance of the interaction term relative to other terms.  291 

For the spatial random effect, we used an exponential covariance function 292 

𝑘𝜌(𝑠, 𝑠′) = 𝜎𝜌
2e

−√∑ (𝑠𝑖−𝑠′𝑖)2/𝜆𝑖
22

𝑖=1 , and for the spatio-temporal random effect we used a 293 

separable covariance function with an exponential form for both the space and the time 294 

components, so that 𝑘𝜙((𝑠, 𝑡), (𝑠′, 𝑡′)) = 𝜎𝜙
2e

−√∑ (𝑠𝑖−𝑠′𝑖)2/𝑙𝑖
22

𝑖=1 e−|𝑡−𝑡′|/𝑙3 . The length-scale 295 

parameters govern the autocorrelation length of the GP along longitude (𝜆1, 𝑙1), latitude (𝜆2, 296 

𝑙2) and time (𝑙3), so that the correlation between two locations drops below 5% of its 297 

maximum when these locations are further than approximately three times the length scale 298 
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apart. The variance parameters 𝜎𝜌
2 and 𝜎𝜙

2 govern the magnitude of the process variation. The 299 

exponential covariance function leads to a stationary process in time and space, and is a 300 

common choice when modeling spatial processes (Gelfand et al. 2010).  301 

We used log-uniform priors for the variance parameters 𝜎𝜌
2, 𝜎𝜙

2, 𝜎ℎ
2 and 302 

{𝜎𝑔𝑑,0
2 , 𝜎𝑔𝑑

2 }
𝑑=1

𝐷
 and weakly informative half Student-t priors (Gelman 2006) for the other 303 

hyper-parameters. For weights 𝑤𝑑 and the temporal length scale, 𝑙3, we used four degrees of 304 

freedom and scale one in the half Student-t prior, and for the spatial length scales 𝜆1, 𝜆1, 𝑙1, 305 

𝑙2 we used four degrees of freedom and scale 100. All the priors are summarized in Table 2. 306 

Since the chosen priors have most of their mass near zero, they favor rigid functional forms 307 

(that is, functions that vary slowly along the covariates) with a low order of interactions and a 308 

short autocorrelation length in the random effects. We conducted a sensitivity test for the 309 

priors by increasing the scale of the half Student-t priors by ten-fold and could conclude that 310 

the results were not sensitive to the chosen priors. 311 

 312 

Inference, prediction, and model assessment 313 

 314 

We built and inferred one model for each of the four target species. We applied 315 

Bayes’ theorem and calculated the posterior distribution of all model parameters and latent 316 

functions using the expectation propagation and Markov chain Monte Carlo algorithms 317 

implemented in the Matlab toolbox GPstuff (Vanhatalo et al. 2013; Appendix A1)1. We 318 

conducted convergence diagnostics for the Markov chains and used the posterior predictive 319 

check (Gelman et al. 2013) for model validation by simulating replicate measurements from 320 

                                                      

1 The code to implement the models is given in the Supplementary material. 
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the posterior predictive distribution of each model and compared the samples with the 321 

measured data. We also assessed the importance of the spatial and spatio-temporal random 322 

effects by comparing our model with similar models without the random effects. See 323 

Appendix A1 for details. 324 

The full set of environmental covariates fell into seven groups of covariates that 325 

were a priori potentially good proxies for the essential environmental characteristics of the 326 

reproduction habitats. Three of the groups contained several similar covariates at varying 327 

spatial scales (Table 1). For example, varying the diameter from 3 km to 15 km for the circles 328 

in which the shoreline density was calculated corresponded to a change from a local to a 329 

more global shoreline density index. On the other hand, changing from the distance to 10-m-330 

deep water to the distance to 30-m-deep water changed the focus from shallow waters to 331 

deeper waters, since in the coastal region of the northern Baltic Sea, the distance from 10-m-332 

deep to 30-m-deep waters may be so large that the latter is not descriptive in the shallowest 333 

regions. For each species, we selected the best environmental covariate from each of the 334 

groups of covariates according to the leave-one-out cross-validated log predictive density 335 

(Vehtari and Ojanen 2012). The final analyses were conducted with the reduced covariate set, 336 

which made the interpretation of the results easier.  337 

After solving for the posterior, we calculated the marginal posterior predictive 338 

distribution of the latent function 𝑓(𝑠, 𝑡, 𝑥𝑠) and, hence, larval density in the surface water 339 

layer of all grid cells in the entire study area. Since we had the spatio-temporal component in 340 

our model, we predicted the mean density over the survey years as detailed in Appendix A1. 341 

For each species, we present the larval density and its coefficient of variation over the study 342 

area. We also approximated the total number of larvae in the surface water layer per sea area 343 

and across the whole study area from the sum of the predictive densities in grid cells in an 344 
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area multiplied by the water volume of the surface water layer up to the depth of 1.5 m in a 345 

grid cell (i.e., 1.5 x 50 x 50 m3). Since we had over 12 million grid cells in the whole study 346 

area, we needed to approximate the posterior distribution of the sum as described in 347 

Appendix A1.  348 

In order to study the relative importance of different parts of the study area for 349 

fish reproduction, we classified the total area into not suitable, suitable, and important areas. 350 

Each grid cell was classified as not suitable if the expected probability for zero observations 351 

in a sample of three transects (the average number of transects per sample) was more than 352 

50%. This limit corresponds to using an occurrence model to classify areas as not suitable 353 

based on a 50% cut-off value. Next, in order to emphasize the most important fish 354 

reproduction areas, we further divided the remaining grid cells into two classes. The 355 

important grid cells are those that were in the smallest subset of grid cells whose expected 356 

cumulative number of larvae was 80% of the total expected number of larvae in all grid cells 357 

that had a presence probability of 50% or more. The rest of the grid cells were classified as 358 

suitable. The rationale for this division is the following. Knowledge of potential species 359 

reproduction areas (areas with 50% or more probability of larval presence) is necessary for 360 

coastal spatial planning and management. However, it is not sufficient information for 361 

efficient management, since the larval density in these areas may vary considerably, and the 362 

importance of these areas for reproduction at the population level may thus range from very 363 

low to very high. Hence, the expected number of larvae produced by an area provides a more 364 

informative summary for management, since it is directly related to that area’s expected 365 

utility for fish production. Here, we chose the cut-off value for demonstrative purposes, and 366 

other values could be more justified in specific management applications. 367 
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Since the latent function includes interactions between covariates, its response 368 

along individual covariates may vary across locations (Vanhatalo et al. 2012). Hence, in order 369 

to examine the effect of covariates on larval density, we visualized the expected, zero-370 

centered change in the log density along each covariate and variation in it over the training 371 

data locations. See Appendix A1 for details.  372 

 373 

Results 374 

 375 

Model assessment and posterior inference 376 

 377 

All models performed well according to the posterior predictive checks. Table 3 378 

summarizes the posterior distribution of the spatial random effects, the overdispersion 379 

parameter, and the variance of the interaction term. The posterior mean of the intercept term 380 

corresponded to an average of 2.3 x 10-2 larvae per m3 for perch, 1.4 x 10-3 larvae per m3 for 381 

pikeperch, 6.3 x 10-2 larvae per m3 for Baltic herring, and 3.6 x 10-2 larvae per m3 for smelt. 382 

In perch, herring, and smelt models, there was clear overdispersion compared to a standard 383 

Poisson model. In the pikeperch model, the overdispersion parameter was higher, but on the 384 

other hand, the length scales of the spatio-temporal random effect in this model were 385 

considerably smaller than in other models. As the length scales approach zero, this random 386 

effect approaches spatially independent overdispersion and takes essentially the same role as 387 

the overdispersion parameter. According to the spatial length scales, the spatial 388 

autocorrelation in the random effects vanished in tens of kilometers. Hence, compared to the 389 

scale of the whole modeled area, the random effects described local corrections to density 390 

predictions made by the covariates only. According to the temporal length scales of the 391 



19 

 

spatio-temporal random effects, the spatio-temporal correlations dropped to approximately 392 

20% of their maximum between consecutive years and practically to zero correlation after 393 

two years. Hence, there were no temporal trends in larval abundances. 394 

According to the cross-validation tests, the models worked significantly better 395 

than otherwise similar models without any random effects and practically as well as or better 396 

than otherwise similar models only having either one of the random effects. Moreover, once 397 

random effects were dropped from a model, its overdispersion parameter tended to decrease, 398 

which indicates that (part of) the variation captured by the random effects was then 399 

transferred to the overdispersion. See Appendix A1 for the comparison results. 400 

Figure 2 shows the posterior predictive response of log density along 401 

environmental covariates for each species. All the responses were mostly additive, since there 402 

was only moderate variation in the responses across the study region. A change in log density 403 

by one unit corresponded to a 2.7-fold increase in the density. Hence, the most significant 404 

covariate effects, with a change in log density by 3–4 units, corresponded to a 20–50-fold 405 

increase in the larval density. The responses of larval densities along environmental 406 

covariates varied between the species. Perch had negative responses to an increasing depth, 407 

average depth and exposure and positive responses to an increasing distance to deep water 408 

(10 m), the influence of rivers, and the cumulative spring temperature. Pikeperch had strong 409 

negative responses to an increasing average depth, shoreline density, and exposure, and 410 

strong positive responses to an increasing distance to deep water (10 m) and the cumulative 411 

spring temperature. Baltic herring had a negative response to the distance to deep water (20 412 

m) and strong positive responses to an increasing average depth, shoreline density, and 413 

exposure. The response of Baltic herring to an increasing cumulative spring temperature was 414 

positive, with a peak at 1200 day-degrees, and at higher cumulative temperatures it turned 415 
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negative. Smelt had strong negative responses to an increasing average depth, negative 416 

responses to shoreline density and exposure, and positive responses to an increasing distance 417 

to deep water (30 m), the influence of rivers, and the cumulative spring temperature.  418 

 419 

Larval density predictions 420 

 421 

Larval habitats for pikeperch, perch, and smelt were characterized as shallow, 422 

sheltered and, thus, areas that warmed relatively rapidly, which were most often found in the 423 

inner archipelago, frequently close to river mouths. A somewhat opposite pattern was typical 424 

for Baltic herring larval habitats, which were characterized as more exposed areas with a 425 

lower cumulative spring temperature compared to other studied species (Figs 2 and 3). 426 

Pikeperch had the most and the Baltic herring the least limited environmental requirements of 427 

the studied species, concerning the environmental covariates used here.  428 

Figure 3 illustrates the predicted larval density classified into three classes: not 429 

suitable, suitable and important. Figure 4 summarizes the posterior predictive median and 430 

coefficient of variation of the larval density, and Table 4 summarizes the total number of 431 

larvae and areas suitable for reproduction across the study region and the five sea areas. 432 

Baltic herring had the highest predicted total number of larvae of the target species in the 433 

studied area; the predicted total number of larvae as a percentage of the total number of Baltic 434 

Herring larvae was 17.9% for perch, 6.2% for pikeperch, and 67.8% for smelt. The total area 435 

suitable for larval production was largest for Baltic herring, covering 99.8% of the studied 436 

coastal area. The most limited larval production area (3.7%) was recorded for pikeperch. The 437 

proportion of the studied coastal area suitable for larval production was 13.7% for perch and 438 

22.5% for smelt. There was, however, variation in the species-specific distribution of larval 439 
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production areas between the five studied sea areas (Table 4); larval production areas for 440 

perch and smelt were proportionally larger in the northern parts of the study area (I–III for 441 

perch, I for smelt), whereas larval production areas for pikeperch and Baltic herring were 442 

proportionally larger in the southern parts of the study area (IV–V). 443 

The important habitats (those that accounted for 80% of larval production) were 444 

more limited than the suitable larval habitats, comprising 3.0% of the studied sea area for 445 

perch, 1.4% for pikeperch, 52.9% for Baltic herring, and 4.4% for smelt (Table 4). The 446 

spatial focus of the important habitats also varied, reflecting the same south–northward 447 

pattern seen for the total larval production areas (Fig. 3).  448 

 449 

Discussion 450 

 451 

By modeling and mapping the reproduction habitats of four common 452 

commercially and ecologically important fish species in the northern Baltic Sea, we 453 

demonstrated that very limited coastal areas can be crucial for fish reproduction. The 454 

availability of suitable larval reproduction habitats is not necessarily a good indicator of 455 

important fish reproduction areas, since some suitable habitats may contribute orders of 456 

magnitude more to the total larval production than others. Therefore, abundance models 457 

should be preferred over occurrence models when studying the reproduction habitats of fish 458 

and their quality and impact on total fish production. Our results support the recent findings 459 

of Johnston et al. (2015) that abundance models are more accurate and thus preferable for 460 

both aggregated and non-aggregated species.  461 

High-resolution prediction maps are a powerful tool that aids visual 462 

communication. However, scaling and setting the right cut-off values for map visualization 463 
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are fundamentally important in order to quantify the interpretation of the maps, prevent 464 

misunderstanding, and enable the comparison and value judgment of different coastal sea 465 

areas for larval fish production. Visualizing maps, as proposed in this work, very clearly 466 

show that the most productive larval habitats can be very limited compared to the entire 467 

suitable reproduction habitats of a species; the areas expected to produce 80% of the species-468 

specific larval production (important areas) were two to five times more limited than the 469 

entire larval production areas (suitable areas), and varied between species from 1.4% to 470 

52.9% of the total study area. This information should be taken into account when planning 471 

management and conservation measures. However, the 80% cut-off level in this work was 472 

chosen for demonstrative purposes and, depending on a species, another level could be more 473 

justified. For example, when analyzing healthy and balanced fish stocks that allow for 474 

exploitation without risk of stock depletion, a lower cut-off level (<80% of the cumulative 475 

larval production) could be enough to present the assumedly extensive larval production 476 

habitats. On the other hand, some endangered fish stocks could demand a much higher cut-off 477 

level (>80% of the cumulative larval production) in order to apply a precautionary approach 478 

when focusing conservation acts. Hence, the cut-off level for the important reproduction 479 

areas should ideally be chosen in parallel with stock assessment and reflect the management 480 

and conservation objectives. Moreover, in some applications, we could be interested in a 481 

more precautionary summary than the expected number of larvae. For example, the important 482 

area could have a cut-off value ensuring that the total number of larvae in that area is greater 483 

than a certain percentage of the total number of larvae in the whole study area with a 484 

probability greater than, for example, 0.9. 485 

We found large differences in the spatial larval habitat distribution between the 486 

four studied fish species. The response of Baltic herring to environmental covariates, i.e. 487 
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environmental requirements, was the least limited of the studied species, and its larval 488 

production area was the widest. The pikeperch, on the other hand, is an example of a species 489 

with very strict environmental requirements in the reproductive stage (Sundblad et al. 2014; 490 

Veneranta et al. 2011), and its total reproduction area was accordingly the most limited. The 491 

specific ecological habitat requirements of each species were also reflected in the responses 492 

of larval densities to the environmental covariates chosen for the species-specific models. For 493 

example, both pikeperch and perch larvae were most abundant in areas that had a high 494 

cumulative spring temperature, which supports the finding that the year-class strength of both 495 

pikeperch and perch is known to largely depend on temperature (Kjellman et al. 2003; 496 

Pekcan-Hekim et al. 2011; Lehtonen et al. 1996). Moreover, the covariates chosen for the 497 

pikeperch model describe very local aspects in the inner archipelago, whereas the covariates 498 

chosen for the herring model describe broader and more pelagic aspects. Overall, the results 499 

emphasized the importance of the shallow parts of the coastal area, but when interpreting the 500 

results one has to keep in mind that the field survey was only conducted in the surface water 501 

layer.  502 

The Baltic herring had the highest predicted total number of larvae according to 503 

our results. This was expected, since it has the highest stock size of the studied species and is 504 

the most important species for fisheries in the northern Baltic Sea (Söderkultalahti 2015). The 505 

Baltic herring is a pelagic species that is known to reproduce over a large area and during a 506 

time period of several months in spring and early summer (Parmanne et al. 1994; Fey 2001; 507 

Hakala et al. 2003). Perch, pikeperch, and smelt, on the other hand, are strictly coastal species 508 

with specific and rather similar reproductive requirements and a reproductive period of some 509 

weeks (Snickars et al. 2010; Sundblad et al. 2014). Therefore, the suitability of the used field 510 

survey and modeling methods probably varied between species. Firstly, sampling should 511 
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optimally have been carried out during the whole summer in order to cover several 512 

reproductive cohorts and enable modeling of the length of the reproduction season for each 513 

species. However, this was not feasible in our survey program, and our model does not 514 

therefore take into account the lengths of the reproductive seasons nor the number of cohorts; 515 

hence, the total numbers of larvae represent the numbers of larvae produced by those cohorts 516 

that our survey covered during the reproduction season. Secondly, only the surface water 517 

layer was sampled and modeled here. Larval perch, pikeperch, and smelt are known to be 518 

abundant in the surface water layer (Urho et al. 1990), but Baltic herring larvae are also found 519 

in deeper water layers (Sjöblom and Parmanne 1978). Therefore, the model should have 520 

taken into account the entire water layer in which larvae are present in order to compare the 521 

total numbers of larvae between species. Since our sampling did not provide information on 522 

the distribution depth, we restricted our study to the surface water layer and assumed that the 523 

distribution depth does not differ significantly between areas. According to earlier studies 524 

(Parmanne and Sjöblom 1988), this assumption is reasonable. Thirdly, our model did not 525 

explicitly account for variation in catchability, but the modeled density accounted for both 526 

catchability and the total abundance of larvae. Hence, systematically varying catchability 527 

would introduce bias in our density estimates. However, we do not expect the catchability to 528 

have varied systematically between areas, since the weather conditions during the surveys 529 

were standardized as well as practically possible. Moreover, the catchability was not expected 530 

to differ significantly between pikeperch, perch, and smelt. However, according to the 531 

posterior distributions of spatial and spatio-temporal random effects and the overdispersion 532 

parameter, the overdispersion compared to the expected density (that is, extra uncertainty) 533 

was significant for all species. This overdispersion is expected to partly arise from varying 534 

catchability due to weather and other sampling conditions. Therefore, the results presented 535 
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here are most robust when examining regional differences in species-specific distribution 536 

areas and densities and, unfortunately, the quantitative comparison of the total number of 537 

larvae between the studied species is only indicative between perch, pikeperch, and smelt and 538 

not possible between herring and other species. It is also important to keep in mind that we 539 

sampled early-stage fish larvae, which still have many bottlenecks to survive before they 540 

recruit to the adult population (Miller et al. 1988; Myers 1998). 541 

The distribution of species-specific reproduction habitats and species 542 

abundances are not static over time, and temporal changes may reduce the long-term 543 

generality of the habitat and abundance predictions. Matching the field sampling with the 544 

occurrence of early-stage larvae is also challenging, producing uncertainty in the probability 545 

of detection. Moreover, constructing good environmental covariates is difficult, and GIS-546 

based environmental covariates can never encode all essential abiotic aspects related to 547 

species distributions (Elith et al. 2006). We have addressed these challenges in both the data 548 

collection and modeling. The temporal fluctuations were accounted for by using field survey 549 

data from multiple years (2007–2014), which allowed us to model the average distribution of 550 

reproduction habitats and the average density over those years. The sampling was performed 551 

multiple times each year so that the probability of matching it with the presence of early-552 

stage larvae was increased. In constructing the environmental covariates, we used only 553 

general environmental descriptors such as depth to increase the generality of the predictions, 554 

as suggested by Sundblad et al. (2014), among others. The annual fluctuations and possible 555 

time mismatch in sampling were also explicitly modeled by the spatio-temporal random 556 

effects component. Moreover, we included the spatial random effect in our model to account 557 

for static patterns in data that were not explained by our covariates. According to the results, 558 

the random effects improved the model performance compared to otherwise similar models 559 
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without the random effects (see Appendix A1). Hence, the inclusion of the random effects 560 

was justified. If a priori justified, we could also model multiple spatial processes at different 561 

scales with a different choice of the covariance functions, such as an additive covariance 562 

function with short and long length scales (Vanhatalo and Vehtari 2008). 563 

GP formalism gives considerable freedom in how to choose the covariance 564 

structure of the predictive model for the covariates (Vanhatalo et al. 2012). Here, we used an 565 

additive structure that included non-linear univariate terms and a function with interactions. 566 

We used neural-network covariance functions for the univariate terms, since they were shown 567 

to work well in extrapolation by Vanhatalo et al. (2012). The squared exponential covariance 568 

function, on the other hand, is a standard choice to model full interactions (see e.g. 569 

Rasmussen and Williams 2006). Our choice of covariance functions proved to be justified 570 

here, since all the responses were non-linear and the interactions were rather weak. The 571 

models also performed well in the posterior predictive checks. However, the interpolation and 572 

extrapolation behavior of a GP depend on the chosen covariance function (Vanhatalo et al., 573 

2012). Some covariance functions, such as the commonly used squared exponential, behave 574 

similarly to splines (which are often used in generalized additive models) so that they 575 

typically perform well when predicting within the data range (interpolation). However, when 576 

extrapolating the prediction outside the data range, the result may be unfavorable, since 577 

predictions approach the prior mean (that is, zero). The neural network covariance function 578 

works differently by allowing non-linear responses and extrapolations that follow the level at 579 

which the predictive function is at the end of the data (see Appendix A1 and Figure A1). 580 

However, if we had strong prior knowledge on the likely response, we could describe this 581 

with a parametric function, such as a linear, bell shaped or, for instance, Michaelis-Menten 582 

functional form (Vanhatalo et al., in press) and use GPs to model possible discrepancies from 583 
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this parametric form. We chose the environmental variables based on their biological 584 

justification and did not transform them in order to remove collinearity, because such 585 

transformations would obscure the interpretation of the responses. Collinearity is not a 586 

problem when predicting the larval distribution. Compared to prediction with one covariate, 587 

in case of strong collinearity between two or more covariates, the predictive contribution is 588 

simply divided between the correlated covariates. However, as in (generalized) linear and 589 

additive models, collinearity is a challenge when inferring the responses along covariates. In 590 

order to remedy this, the hyperparameters of the predictive functions were given weakly 591 

informative priors, which prefer constant functions. Hence, in the case of strong collinearity, 592 

the response along the “weaker” covariates will be shrunk towards zero, whereas the 593 

covariates that explain data better should have a stronger response (see also Simpson et al. 594 

2015 for a more general discussion on penalized complexity priors). However, our prior 595 

structure did not strictly promote sparsity, and theoretically or empirically justified general 596 

rules for choosing the covariance functions for the predictive GP models and priors for their 597 

hyperparameters still provide room for future research. 598 

The methods presented here provide concrete support for environmental 599 

management and the spatial planning of coastal and marine areas by providing a means to 600 

prioritize areas with a high production potential (abundance) over areas that are suitable for 601 

reproduction but do not significantly contribute to larval production. For example, the results 602 

presented here aid in the implementation of the EU Maritime Spatial Planning directive and 603 

local dredging permission procedures in Finland to focus on the most important areas from 604 

the perspective of larval production. Fisheries stock assessment and management could also 605 

benefit from this type of approach, since the results for larval abundance could be used to 606 

describe the reproductive potential of a fish stock, as has been conducted for Baltic Salmon 607 
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(Kuikka et al. 2014), which would not be possible with presence/absence models. Regarding 608 

their short-term utilization, the results of this study will help in the implementation of the new 609 

Finnish Fishing Act (enacted on January 1st, 2016) which involves changes in the spatial 610 

organization of fisheries management in terms of utilization and conservation planning. The 611 

implementation of the new law requires detailed information, among others, on fish 612 

production areas. Moreover, scientific knowledge of the distribution of fish stocks and 613 

important production areas is needed to inform policy makers about the best sustainable 614 

management practices and to assess the current fisheries management policies in general.  615 

Habitat protection is a strategy often proposed in fisheries and environmental 616 

management to help maintain viable populations of exploited or endangered species. Besides 617 

habitat quality, habitat connectivity is also considered an important characteristic in the 618 

protection of essential coastal habitats (Halpern et al. 2005; Lipcius et al. 2008). In this study, 619 

we have shown that species distribution models providing high-resolution predictions for 620 

larval density on a geographically wide scale can be used to numerically compare and value 621 

different sea areas for larval fish production, and therefore provide easy-to-interpret maps for 622 

management and coastal and marine spatial planning purposes. Sundblad et al. (2014) have 623 

suggested that a substantial proportion of the potential production of adult fish can be 624 

estimated by mapping the distribution of essential fish habitats, since habitat bottlenecks in 625 

the early life-stages limit the abundance of later adult stages of predatory fish. Here, we 626 

showed that the production of fish stocks can be concentrated in spatially extremely limited 627 

areas compared to the suitable production areas. Hence, the total production potential 628 

(abundance) of an area should be taken into account in, for example, marine spatial planning. 629 

Future efforts should focus on linking this modeling and mapping approach to catches to 630 
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study the link between essential habitats and stock assessment of the most important coastal 631 

commercial fish species.  632 
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Table 1. Environmental predictor covariates used in species distribution modeling. Range values of the covariates are given for the entire study 803 

area. 804 

 805 

Covariate group Covariate Description Type 

Spatial 

res. (m) Range Unit Source 

Depth depth Depth from bottom topography Cont. 20 0.5-275.9 m Syke 

Average depth dptavg3km Average depth in a circle of 3 km Cont. 50 0.5-258.5 m Luke 

dptavg5km Average depth in a circle of 5 km Cont. 50 0.5-251.9 m Luke 

dptavg10km Average depth in a circle of 10 km Cont. 50 1.0-232.8 m Luke 

dptavg15km Average depth in a circle of 15 km Cont. 50 1.3-210.9 m Luke 

Distance to deep 

water 

dist10m Distance to 10 m depth zone Cont. 50 0-35.4 km Luke 

dist20m Distance to 20 m depth zone Cont. 50 0-47.7 km Luke 

dist30m Distance to 30 m depth zone Cont. 50 0-85.1 km Luke 
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Influence of rivers 

river 

Square root of inverse distance to nearest 

river mouth weighted with annual average 

runoff Cont. 50 0.1-3.6 index sum Luke 

Shoreline density shoreline3km Shoreline length in a circle of 3 km Cont. 50 0-10.3 m/km2 Luke 

shoreline5km Shoreline length in a circle of 5 km Cont. 50 0-7.5 m/km2 Luke 

shoreline10km Shoreline length in a circle of 10 km Cont. 50 0-5.3 m/km2 Luke 

shoreline15km Shoreline length in a circle of 15 km Cont. 50 0-4.3 m/km2 Luke 

Exposure exposure Log10 of wave exposure Cont. 25 2.1-6.1 log10(m2s-1) Aquabiota 

Cumulative spring 

temperature tempsum 

Cumulative temperature sum from ice-break 

to July 15 Cont. 50 490.1-3109.2 ˚C Luke 

 806 
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Table 2. The priors for model parameters. Here, 𝑁(𝑚, 𝜏) is the Gaussian distribution with 807 

mean 𝑚 and variance 𝜏, Student+ − 𝑡(𝜐, 𝑚, 𝑠) is the Student-t distribution restricted on non-808 

zero values with 𝜐 degrees of freedom, location 𝑚, and scale 𝑠, and Gamma(𝛼, 𝛽) is the 809 

Gamma distribution with shape 𝛼 and inverse scale 𝛽 (Gelman et al. 2013). 810 

 811 

Parameter Prior 

Mean log density (intercept), 𝛼  𝑁(0,10) 

Over dispersion, r Gamma(2,0.1) 

Variance of spatio-temporal component σϕ
2  𝑝(σϕ

2 ) ∝ 1/σϕ
2  

Longitudinal length scale of spatio-temporal component, l1 𝑤𝑑~Student+ − 𝑡(4,0,100) 

Latitudinal length scale of spatio-temporal component,l2 𝑤𝑑~Student+ − 𝑡(4,0,100) 

Temporal length scale of spatio-temporal component, 𝑙3 𝑤𝑑~Student+ − 𝑡(4,0,1) 

Variance of spatial component 𝜎𝜌
2 𝑝(𝜎𝜌

2) ∝ 1/𝜎𝜌
2 

Longitudinal length scale of spatial component, 𝜆1 𝑤𝑑~Student+ − 𝑡(4,0,100) 

Latitudinal length scale of spatial component,𝜆2 𝑤𝑑~Student+ − 𝑡(4,0,100) 

Variance of the interaction term, 𝜎ℎ
2 𝑝(𝜎ℎ

2) ∝ 1/𝜎ℎ
2 

Weights along covariates in the interaction term {𝑤𝑑}𝑑=1
𝐷  𝑤𝑑~Student+ − 𝑡(4,0,1) 

Variance parameters of the additive functions, 

{𝜎𝑔𝑑,0
2 , 𝜎𝑔𝑑

2 }
𝑑=1

𝐷
 

𝑝(𝜎𝑔𝑑,0
2 ) ∝ 1/𝜎𝑔𝑑,0

2  

𝑝(𝜎𝑔𝑑
2 ) ∝ 1/𝜎𝑔𝑑

2  

  812 
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Table 3. The posterior median and central 95% credible interval of the overdispersion 813 

parameter, variance of the interaction term and parameters of the spatial and spatio-temporal 814 

covariance functions. 815 

 816 

 Perch Pikeperch Baltic herring Smelt 

Mean log density 

(intercept), 𝛼  

-3.79  

(-6.19, -1.40) 

-6.59  

(-9.16, -4.02) 

-2.77  

(-4.67, -0.87) 

-3.32  

(-5.73, 0.90) 

Over dispersion, r 1.18  

(0.80, 2.25) 

11.48  

(2.53, 47.97) 

1.79  

(1.26, 3.02) 

2.45  

(1.28, 6.84) 

Variance of spatio-

temporal component σϕ
2  

6.69  

(4.53, 11.08) 

0.29  

(0.01, 1.47)  

2.39  

(1.53, 3.80) 

2.36  

(0.38, 5.23) 

Longitudinal length scale 

of spatio-temporal 

component, l1 

17.80  

(10.47, 31.47) 

5.03  

(0.42, 26.87)  

12.21  

(6.76, 24.40) 

10.25  

(4.60, 28.97) 

Latitudinal length scale of 

spatio-temporal 

component,l2 

34.11  

(17.78, 75.70) 

6.88  

(0.14, 37.91) 

16.93  

(9.47, 33.13) 

8.53  

(2.53, 33.58) 

Temporal length scale of 

spatio-temporal 

component, 𝑙3 

0.88  

(0.03, 2.73) 

0.70  

(0.01, 3.71) 

0.61  

(0.03, 2.26) 

0.66  

(0.05, 3.48) 

Variance of spatial 

component 𝜎𝜌
2 

0.07  

(0.00, 1.02) 

6.10  

(3.43, 13.52) 

0.03  

(0.00, 0.42) 

1.64  

(0.00, 4.17) 

Longitudinal length scale 

of spatial component, 𝜆1 

7.34  

(0.04, 36.21) 

17.10  

(9.60, 35.64) 

7.59  

(0.57, 32.89) 

10.05  

(1.76, 31.94) 
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Latitudinal length scale of 

spatial component,𝜆2 

7.58  

(0.15, 31.39) 

18.67  

(8.70, 46.88) 

8.56  

(0.29, 42.25) 

14.90  

(1.83, 49.51) 

Variance of the interaction 

term, 𝜎ℎ
2 

0.44  

(0.01, 2.24) 

0.19  

(0.00, 2.28) 

0.09  

(0.00, 0.49) 

0.47  

(0.01, 3.41) 

  817 
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Table 4. Expected total number of larvae (95% credible interval), percentage of the studied 818 

water area suitable for larvae (suitable areas) and producing 80% of larvae (important areas) 819 

by species and sea area (I = Bothnian Bay; II = Quarken area; III = Bothnian Sea; IV = 820 

Archipelago Sea; V = Gulf of Finland). The sea areas sum up to the total study area. 821 

 822 

  

Total number of larvae 

x 109 (95% credible 

interval) 

Percentage of water 

area suitable for 

larvae 

Percentage of water 

area producing 80% 

of larvae 

Perch 

   
I 0.48 (0.22, 0.92)     23.32 5.00 

II 0.41 (0.21, 0.71) 16.97 7.12 

III 0.26 (0.13, 0.47) 18.59 5.41 

IV 0.20 (0.11, 0.35) 7.92 0.84 

V 0.20 (0.07, 0.48) 12.89 2.40 

Total 1.56 (0.89, 2.55) 13.66 3.03 

Pikeperch 

  
I 0.08 (0.003, 0.39) 2.57 1.10 

II 0.02 (0.004, 0.05) 1.79 0.42 

III 0.03 (0.01, 0.09) 3.35 0.91 

IV 0.31, (0.04, 1.16) 3.88 1.80 

V 0.10 (0.02, 0.35) 5.71 1.45 

Total 0.54 (0.12, 1.56) 3.68 1.37 

Baltic herring 

 
I 0.72 (0.46, 1.06) 99.81 15.71 
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II 0.50 (0.34, 0.70) 99.87 16.48 

III 0.57 (0.41, 0.78) 99.79 24.71 

IV 4.93 (3.01, 7.63) 99.87 74.07 

V 2.00 (1.12, 3.31) 99.53 78.90 

Total 8.72 (5.65, 12.86)  99.79 52.89 

Smelt 

   
I 3.30 (1.22, 7.25) 70.88 12.12 

II 0.79 (0.44, 1.32) 25.49 7.43 

III 0.74 (0.23, 1.82) 22.27 4.62 

IV 0.49 (0.18, 1.06) 5.91 1.12 

V 0.58 (0.20, 1.35) 12.34 2.78 

Total 5.91 (2.88, 10.81) 22.50 4.44 

   823 



44 

 

Figure legends  824 

 825 

 826 

Figure 1. The study area (grey), larval fish survey sites (black dots) and the sea area divisions 827 

(I = Bothnian Bay; II = Quarken area; III = Bothnian Sea; IV = Archipelago Sea; V = Gulf of 828 

Finland). 829 

 830 
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 831 

Figure 2. The response of log-transformed larval density along environmental covariates, 832 

shown for the four study species. A change in the log density by one unit corresponds to a 833 

2.7-fold increase in the density. The solid and dashed black lines describe, respectively, the 834 

average response and the 95% credible interval over all data points. The grey lines show the 835 

expected response in 50 randomly chosen locations.  836 

 837 
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 838 

Figure 3. Predicted larval density maps of perch, pikeperch, Baltic herring, and smelt 839 

classified into three classes: not suitable (no larvae expected), suitable (expected area 840 
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producing lowest 20% of all larvae), and important (the smallest expected area producing 841 

80% of all larvae). 842 

 843 

 844 

Figure 4. The posterior predictive median (larger maps) and coefficient of variation (smaller 845 

maps inside the former) of the larval density of perch, pikeperch, Baltic herring, and smelt. 846 

 847 

 848 
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Appendix A1  849 

 850 

Computational details 851 

 852 

We applied Bayes’ theorem and calculated the posterior distribution of the 853 

covariance function parameters and the latent variables (latent function values corresponding 854 

to the observation locations) using the Matlab toolbox GPstuff (Vanhatalo et al. 2013). First, 855 

we used the expectation propagation (EP) algorithm to search for the (approximate) 856 

maximum a posterior estimate of the covariance function parameters and a Gaussian 857 

approximation for the latent variables (see Rasmussen and Williams 2006 and Vanhatalo et 858 

al. 2010 for details). EP is a fast approximate algorithm, and its accuracy has been shown to 859 

be good in the models we were interested in here (Vanhatalo et al. 2010). Hence, it provides 860 

an efficient tool for early “model exploration”. After this, we conducted a Markov chain 861 

Monte Carlo (MCMC) simulation for the full posterior of covariance function parameters and 862 

latent variables by alternating the sampling from conditional distribution of latent variables 863 

given covariance function parameters, and vice versa. We used elliptical slice sampling 864 

(Murray et al. 2010) for the latent variables and slice sampling (Neal 2003) for the parameters 865 

of covariance functions. We sampled 20 000 samples, from which the first 1000 were 866 

removed as burn-in. The convergence was checked by the potential scale reduction factor 867 

(Gelman et al. 2013). After, this, we thinned the chain to obtain approximately 200 868 

independent samples with which the final results were calculated.  869 

The interest in this study was in the average larval abundance across the study 870 

area. Since the spatio-temporal random effects describe annual changes in larval abundance, 871 

we predicted the larval density in grid cells using only the temporally constant terms; that is, 872 
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we predicted 𝑓(𝑠, 𝑥𝑠) = 𝛼 + ∑ 𝑔𝑑(𝑥𝑠,𝑑)𝐷
𝑑=1 + ℎ(𝑥𝑠) + 𝜌(𝑠) in each grid cell and used this to 873 

represent the average log larval density between 2007 and 2014. This corresponds to 874 

effectively filtering out the temporal changes in the density and can be calculated 875 

straightforwardly as presented by Rasmussen and Williams (2006) and Vanhatalo (2010). 876 

We calculated the total larval density in an area, 𝐴, by a sum of densities in grid 877 

cells in that area; that is, 𝐼tot = ∑ 𝑒 �̃�(𝑠𝑖,𝑥𝑠𝑖
)

𝑠𝑖∈𝐴 , where 𝑠𝑖 is the coordinate of cell 𝑖. Sampling 878 

from the posterior distribution of 𝐼tot would require first sampling from the joint posterior of 879 

𝑓 in all grid cells, during which we would need to form the (posterior) covariance matrix of 880 

𝑓. Since we had over 12 million grid cells in the whole study area, this is infeasible. 881 

However, we can calculate the posterior mean and variance of the total density exactly; the 882 

former is the sum of expectations over grid cells, 𝐸[𝐼tot] = ∑ 𝐸 [𝑒 �̃�(𝑠𝑖,𝑥𝑠𝑖
)]𝑠𝑖∈𝐴 , and the latter 883 

is the sum of all elements in the covariance matrix 𝑉𝑎𝑟[𝐼tot] =884 

∑ 𝐶𝑜𝑣 [𝑒 �̃�(𝑠𝑖,𝑥𝑠𝑖
), 𝑒

�̃�(𝑠𝑗,𝑥𝑠𝑗
)
]𝑠𝑖,𝑠𝑗∈𝐴 . Both summaries can be calculated sequentially or the 885 

computation can be parallelized and does not involve forming the full covariance matrix. 886 

After solving the mean and variance, we approximated the posterior distribution for the total 887 

density by a log-Gaussian distribution (Kelsall and Wakefield 2002). In order to speed up the 888 

calculations, we used the EP approximation for the posterior when calculating the posterior 889 

for the total density. The error from using EP here is negligible, since it provided a good 890 

match with the MCMC approximation for the posterior distributions of the latent variables. 891 

In order to study the effect of covariates on the larval density, we visualized the 892 

expected, zero-centered change in the log density along each covariate. That is, we calculated 893 

the posterior of 𝑓(𝑠, 𝑡, 𝑥𝑠)|
𝑘

= 𝑓(𝑠, 𝑡, 𝑥𝑠)|𝑘 − 𝑓(̅𝑠, 𝑡, 𝑥𝑠)|
𝑘
 along covariate 𝑘 where 894 

𝑓(𝑠, 𝑡, 𝑥𝑠)|𝑘 is a function of the 𝑘th covariate only when all other covariates are fixed at their 895 
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values at location 𝑠 and  𝑓(̅𝑠, 𝑡, 𝑥𝑠)|
𝑘

=
1

𝑢𝑘−𝑙𝑘
∫ 𝑓(𝑠, 𝑡, 𝑥𝑠)𝑑𝑥𝑠,𝑘

𝑢𝑘

𝑙𝑘
 is the mean of the function 896 

over interval [𝑢𝑘 , 𝑙𝑘] along covariate 𝑘 at that location. We approximated the mean of the 897 

function by the arithmetic mean over 𝑀 = 20 equally spaced values along covariate 𝑘. 898 

Moreover, we calculated the expected response for 50 random locations in order to visualize 899 

the effect of the interaction term. 900 

 901 

Comparison of models with and without spatial and spatio-temporal random effects 902 

 903 

In order to assess the importance of the spatial and spatio-temporal random 904 

effects from the posterior predictive point of view we compared our model with models that 905 

were otherwise similar but did not include the random effects. We assessed the model 906 

performance by using the approximate leave-one-out cross-validation (Vehtari et al. 2014) 907 

with log predictive density diagnostics (Vehtari and Ojanen 2012) 908 

∑ ln 𝑝(𝑦𝑖|𝑥𝑖, 𝑠𝑖, 𝑦\𝑖 , 𝑥\𝑖, 𝑠\𝑖) ,

𝑛

𝑖=1

 909 

where 𝑦\𝑖, 𝑠\𝑖 and 𝑥\𝑖 collect all observations, locations and covariates except those related to 910 

the 𝑖th data point and 𝑝(𝑦𝑖|𝑥𝑖, 𝑠𝑖, 𝑦\𝑖, 𝑥\𝑖 , 𝑠\𝑖) denotes the posterior predictive density of 911 

the 𝑖th observation. A larger log predictive density indicated a better model. The log 912 

predictive density statistics are summarized in Table A1.  913 

 914 
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Table A1. The leave-one-out cross-validation log predictive densities (LPD) and the posterior 940 

mode of the overdispersion parameter (�̂�) of the used models and otherwise similar models 941 

from which the spatial and spatio-temporal random effects have been omitted (the higher 942 

values are better). 943 

 944 

 Perch Pikeperch Baltic herring Smelt 

 LPD (�̂�) LPD (�̂�) LPD (�̂�) LPD (�̂�) 

Full model -981.91 (1.18) -504.15 (14.24) -1296.17 (1.76) -1130.33 (2.44) 

Full model −𝜙(𝑠, 𝑡) -981.87 (1.18) -507.80 (13.84) -1296.08 (1.77) -1132.70 (2.14) 

Full model −𝜌(𝑠) -1013.69 (0.84) -504.50 (9.65) -1319.54 (1.18) -1136.20 (1.78) 

Full model −𝜌(𝑠) − 𝜙(𝑠, 𝑡) -1058.89 (0.50) -574.29 (0.82) -1367.01 (1.17) -1178.05 (0.94) 

 945 
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 946 

Figure A1. The response of log-transformed pikeperch larval density along the environmental 947 

covariates within the prediction range of the covariates. The solid and dashed black lines 948 

describe, respectively, the average response and the 95% credible interval. The histograms 949 

show the distribution of covariate values in the data. Notice that when extrapolating the 950 

prediction stays at the level where the predictive function was at the end of the data range. 951 

This behavior is typical for neural network covariance function. With radial covariance 952 

functions, such as the squared exponential, the predictive function would approach prior 953 

mean (zero) when extrapolating. 954 


