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Abstract: Periodontitis are infectious diseases characterized by immune-mediated destruction of
periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases
involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by
emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them
and the myriad of biological processes that they can potentially regulate. The huge complexity of
MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes,
including immunity, inflammation, bone resorption, and wound healing. Evidence points out that
MMPs assemble in activation cascades and besides their classical extracellular matrix substrates,
they cleave several signalling molecules—such as cytokines, chemokines, and growth factors,
among others—regulating their biological functions and/or bioavailability during periodontal
diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators
of periodontal inflammation.
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1. Introduction

Periodontal diseases are common chronic pathologies worldwide that affect periodontal
tissues, which include the gingiva, periodontal ligament, radicular cementum, and alveolar bone.
Bacterial–host interactions at the biofilm–periodontium interface will initially trigger gingival
inflammation, resulting in gingivitis. Over time, it can progress to the immune-mediated loss of
the periodontal supporting tissues, including alveolar bone, determining the destructive character of
the disease [1–3]. Besides representing the first cause of tooth loss in adults, periodontitis contributes
to enhanced susceptibility to other systemic diseases, including cardiovascular diseases, diabetes [4],
and lung inflammation, among others [5,6].

Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal
diseases [7,8]. The 23 existing MMPs are zinc-dependent endopeptidases that belong to the
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metalloproteinase superfamily [9]. The basic structure of MMPs is composed of an auto-inhibitory
prodomain for enzymatic latency, the catalytic domain, and the C-terminal hemopexin-like domain,
often involved in the recognition and positioning of MMP substrates. MMP activity is tightly regulated
through gene expression, proenzyme activation, and enzyme inhibition by endogenous inhibitors,
such as tissue inhibitors of MMPs (TIMPs). The four human TIMPs [1–4] are broad-spectrum MMP
inhibitors, but differ among their specificity for MMPs. Consequently, MMPs can be found in
periodontal tissues as pro-forms, active forms, complexed species, fragmented species, and cell-bound
MMPs [10,11].

MMPs were traditionally regarded to degrade extracellular matrix components and grouped
according to their substrate specificity in collagenases, gelatinases, stromelysins, matrilysins, and
membrane type (MT) MMPs [12]. Because type I collagen represents the bulk component of periodontal
extracellular matrix, special attention has been paid to collagenases—particularly MMP-8 and MMP-13-
and gelatinases—MMP-2, and MMP-9- in periodontitis. In fact, MMP-8 (or collagenase 2) currently
represents one of the most promising biomarkers for periodontitis in oral fluids [6,11]. Nevertheless, the
concept of extracellular matrix-degrading enzymes represents an incomplete vision of MMP biology; on
the one hand, limited proteolysis does not necessarily mean substrate degradation, but transformation
with either gaining or loss of function; on the other hand, MMP substrates are not limited to the
extracellular matrix components. In fact, a more updated concept of MMPs releasing cryptic functions
of matrix proteins and processing of bioactive non-matrix substrates has emerged [13,14].

Overall, the huge complexity of MMP functions positions them into the current concept of
the “protease web”. This implies that far from acting alone, these proteases assemble in cascades
of zymogens, activators, inhibitors, and other bioactive substrates; in which proteolytic cleavage
modulates the potential of the entire system with far-reaching effects, affecting other MMPs, as well as
their substrates and functions. Given their multifaceted properties, MMPs regulate cell proliferation,
adhesion, migration [15], growth factor bioavailability, chemotaxis, and signaling; and they are crucial
for angiogenesis, vasodilation, tumorigenesis [16], metastasis [17], immunity, inflammation, and
wound healing [13].

Despite its infectious etiology, the loss of periodontal supporting tissues during periodontitis is
considered as an ultimate consequence of the host’s immune response. MMPs have been proposed
as master regulators of inflammation, through proteolysis of chemokines, growth factors, receptors
and their binding proteins, proteases, protease inhibitors, as well as intracellular multifunctional
proteins, resulting in pro- or anti-inflammatory functions leading to either tissue homeostasis or
pathology. In fact, MMPs have been associated with a wide range of inflammatory disorders [18].
MMP upregulation and downregulation in response to inflammatory mediators, such as cytokines
and chemokines has been long demonstrated [19,20], but the existence of feedback mechanisms has
been highlighted in recent years [9]. Migration of immune cells by processing extracellular matrix;
stimulation and cessation of immune-cell recruitment by processing chemokines and other chemotactic
molecules; exacerbation and resolution of inflammatory responses by processing complement,
cytokines, and other non-matrix bioactive molecules have been reported [9,12,21–25]. In contrast
to the vast array of literature assessing the potential of collagenolytic MMPs as periodontal disease
biomarkers and effectors of collagen matrix degradation, few investigations have targeted their
regulatory roles within the frame of the protease web of periodontitis. In this review, we provide an
overview of MMP roles as regulators of periodontal inflammation.

2. Matrix Metalloproteinase Activation Cascades

Matrix metalloproteinases are synthesized as pro-enzymes, inactive forms resulting from the
interaction between the cysteine residue of the prodomain and the zinc ion of the catalytic site.
The disruption of this interaction by chemical modification or proteolytic removal of the enzyme’s
prodomain results in enzyme activation, a mechanism known as the ‘cysteine switch’ [26]. Several
MMPs have been detected in their different enzymatic forms in gingival tissue, gingival crevicular fluid
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(GFC), saliva, and mouth rinse, with MMP-8, MMP-13, and MMP-9 as the main proteases involved
periodontal disease destruction [6,11,25,27].

MMP-8 and MMP-9 are the most abundant MMPs in periodontal tissues reflecting periodontal
disease severity, progression, and treatment response [28]. They are secreted by infiltrating
polymorphonuclear leukocytes, but also macrophages, plasma cells, and resident cells—such as
fibroblasts, endothelial cells, keratinocytes and bone cells [29]. MMP-13 is a collagenase that has been
detected in fibroblasts, macrophages, osteoblasts, plasma cells, and gingival epithelial cells. Though
less abundant, MMP-13 has been implicated in periodontal soft tissue destruction and, along with
MMP-9, it has been involved in alveolar bone resorption and periodontal tissue breakdown [25,30].
The mechanisms regulating MMP activation may vary depending on the specific tissue and disease
microenvironment. During periodontitis progression, these MMPs can be activated by independent or
co-operative cascades involving pathogen and host proteases [7,31–33].

MMP proteolytic cascades can lead to widespread periodontal tissue destruction due to
cooperative MMP activation and might represent an interesting target for diagnostics and therapy [32]
(Figure 1). MMP-13 is able to induce proMMP-9 activation and MMP-13 auto-activation by
self-proteolysis in vitro [12]. A previous study from our group reported that MMP-13 induces
proMMP-9 activation in gingival tissues from periodontitis patients [32]. MMP-9, in turn, can activate
proMMP-2 and proMMP-13 in vitro [12,34]. Collagenase levels of MMP-14, MMP-8, and MMP-13,
have been correlated in chronic periodontitis patients, which suggests either a co-operative role and/or
the potential settlement of collagenase activation cascades [35]. MMP-14 can activate MMP-8 and -13
in vitro, as well as MMP-2, and has been correlated in vivo with active MMP-13 in periodontitis
sites [21,31,36]. Altogether, these mechanisms could enhance periodontal tissue breakdown and
consequent chronic periodontitis progression [32].

Additionally, oxidative non-proteolytic MMP activation seems to be pivotal in periodontal
inflammation. Reactive oxygen species (ROS) are able to induce the activation of the key MMPs
in periodontal tissues, through direct enzyme oxidation [37], although indirect mechanisms cannot be
precluded. Neutrophil degranulation is stimulated by periodontopathogenic bacteria, their virulence
factors, cytokines, and prostaglandins and results in the release of myeloperoxidase (MPO) from their
primary granules [35,38–40]. MPO catalyzes the conversion of the potent oxidant hypochlorous acid
(HOCl), and besides its antimicrobial activity, it plays an important role in the regulation of connective
tissue catabolism and degradation, through modifying the proteases/anti-proteases balance [40].
In fact, HOCl can rapidly activate proMMP-8 and proMMP-9 depending on the oxidant/enzyme molar
ratio [37,41,42]. Ex vivo evidence from progressive chronic periodontitis in humans supports a role
for MPO in direct activation of latent MMP-8 and MMP-9, and the inactivation of TIMP-1 [31,43,44].
MPO levels repeatedly correlate not only with total MMP-8 levels, but also with its active isoenzyme
forms [31,45]; and both MPO and MMP-8 show high accuracy for specific site-diagnosis of chronic
periodontitis versus gingivitis and healthy sites [35]. These findings suggest that MPO might play a
critical role enhancing MMP-8 activation during periodontal disease progression.

ROS-mediated MMP activation is also supported in different cell culture systems. Oxidative
stress increases extracellular matrix turnover mediated by MMP-2, -9, and -13 in fibroblastic and
tumor cells [46–48]. Low concentrations of ROS also play a role in cell signal transduction through the
presence of redox-sensitive cysteines activating transcription factors, such as nuclear factor kappa B
(NFκB), and Ca2+ membrane channels [47,49]. Peroxide stimulus can increase the activity of MMP-2
and -9 in fibroblastic cell lines (TIG-7), whereas bacterial-induced activation of MMP-2 can be blocked
by an NFkB inhibitor, supporting the involvement of NFkB signaling pathway [50]. Recently, our group
reported that non-toxic low doses of H2O2 induce MMP-2 and MMP-9 activation involving a cross
talk between NFκB and intracellular calcium signals in periodontal fibroblast primary cultures [51],
evidencing intracellular oxidative-induced signaling for MMP activation.
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Figure 1. Matrix metalloproteinase (MMP) activation cascades in connective tissue catabolism during 
periodontitis. Full and partial circles with their respective number represent latent and activated 
specific MMPs. Brown T bars represent collagen fibers. (A) Tooth and its supporting structures: 
radicular cement, periodontal ligament (PL) and alveolar bone; (B) Membrane bounded MMP-14 
activates proMMP-13 to degrade type I collagen, which constitutes the bulk component of radicular 
cement, periodontal ligament (PL) and alveolar bone extracellular matrix; MMP-13 activates 
proMMP-9, which in turn might activate proMMP-2 and proMMP-13. MMP-2 and MMP-9 further 
process gelatin resulting from collagenase activity. MMP-13 can undergo auto-activation by self-
proteolysis. Reactive oxygen species, such as HOCl and H2O2, from phagocytes can also modify the 
proteases/anti-proteases balance, activating latent MMPs and inactivating the tissue inhibitor of 
MMPs (TIMP)-1. MPO, myeloperoxidase. 

Figure 1. Matrix metalloproteinase (MMP) activation cascades in connective tissue catabolism during
periodontitis. Full and partial circles with their respective number represent latent and activated specific
MMPs. Brown T bars represent collagen fibers. (A) Tooth and its supporting structures: radicular
cement, periodontal ligament (PL) and alveolar bone; (B) Membrane bounded MMP-14 activates
proMMP-13 to degrade type I collagen, which constitutes the bulk component of radicular cement,
periodontal ligament (PL) and alveolar bone extracellular matrix; MMP-13 activates proMMP-9, which
in turn might activate proMMP-2 and proMMP-13. MMP-2 and MMP-9 further process gelatin resulting
from collagenase activity. MMP-13 can undergo auto-activation by self-proteolysis. Reactive oxygen
species, such as HOCl and H2O2, from phagocytes can also modify the proteases/anti-proteases balance,
activating latent MMPs and inactivating the tissue inhibitor of MMPs (TIMP)-1. MPO, myeloperoxidase.

3. MMP-Mediated Regulation of Inflammatory Response

Several signaling molecules such as cytokines, chemokines, and growth factors can be processed
by active MMPs, thus regulating their biological functions and/or bio availability [18,36,52–56].
Cytokines are key modulators of cellular responses during periodontal inflammation and, upon
coupling with their cognate receptors in their cellular targets, they induce intracellular signaling and
modify gene expression. Likewise, chemokines are small signaling molecules responsible for the
regulated trafficking of specific cell types into the inflamed tissues [57]. The balance and relative
abundance of chemokines and cytokines is the ultimate responsible for the tissue changes during the
progression of periodontitis and the tilting of their balance could determine the duration, intensity, and
character of the response [58,59]. Depending on the relative abundance and kinetics of the expression of
these molecular signals the response to periodontal infection can range from subclinical inflammation
to destructive periodontitis [60]. The MMP regulatory mechanisms in periodontal inflammation are
represented in Figure 2.

The persistent secretion of pro inflammatory Th1 cytokines in the periodontal tissues, such as
tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, IL-6, IL-12, and interferon gamma (IFN-γ);
Th17 cytokines, such as interleukin IL-17, together with low levels of regulatory cytokines (Treg),
such as IL-10, and transforming growth factor beta 1 (TGF-β1), has been associated with continued
inflammation and the destruction of the supporting structures of teeth [61]. Similarly, the relative
abundance of chemokines favoring the infiltration of neutrophils (e.g., CXC motif chemokine ligand 8,
a.k.a. CXCL8), macrophages (e.g., CC motif chemokine ligand 2, a.k.a. CCL2), and Th1/Th17
lymphocytes (e.g., CC motif chemokine ligand 20, a.k.a. CCL20) has been associated with the
inflammatory destruction of periodontal tissues. Notably, most of the former signaling molecules are
targets for MMP cleavage and hence their biological activity could be regulated by MMPs [62].
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and favors receptor activator of nuclear factor-κB ligand (RANKL) and TGF-β1 signaling. CK/CC = 
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lymphocytes. 
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Figure 2. MMPs as regulators of periodontal inflammation. MMPs release cytokines/chemokines
from the ECM, increasing their bioavailability and modifying their bioactivity. Conversely, MMPs
can also cleave cytokines/chemokines generating truncated products that can act as competitive
antagonists. The relative abundance of chemokines and cytokines favoring the infiltration of neutrophils
(e.g., CXC motif chemokine ligand 8, a.k.a. CXCL8; LIX/CXCL5), macrophages (e.g., CC motif
chemokine ligand 2, a.k.a. CCL2), and Th1/Th17 lymphocytes (e.g., CC motif chemokine ligand
20, a.k.a. CCL20) is determinant in the inflammatory destruction of periodontal tissues. MMPs can
regulate wound healing, releasing angiogenic factors—such as VEGF A—from the extracellular matrix
or through modifying transforming growth factor (TGF)-β1 signaling. MMPs also regulate bone
resorption. MMP-13 activates osteoclast-secreted proMMP-9, inactivates galectin-3, an inhibitor of
osteoclastogenesis, and favors receptor activator of nuclear factor-κB ligand (RANKL) and TGF-β1
signaling. CK/CC = cytokines/chemokines; OB = osteoblast; OC = osteoclast; MØ = macrophage;
Th = T helper CD4+ lymphocytes.

In a recent article, we demonstrated that MMP activity decreased the secreted levels of IL-6,
while at the same time it was responsible for increasing the secreted levels of CXC motif chemokine
ligand 12 (CXCL12) and vascular endothelial growth factor A (VEGF A), and reduced cell migration in
an in vitro system of human periodontal ligament fibroblasts [63]. The target-specific effect of MMP
activity highlights the complexity of the networks that are at play during the inflammatory process.
Arguably, the increased levels of CXCL12 and VEGF could be the result of the proteolytic modification
either of the matrix or the cell surface and the liberation of trapped molecules to the culture media.

Even though CXCL12 has been described as a substrate for MMP-2 and MMP-9 [55,64], the activity
of these MMPs increased its soluble levels in our model. Nevertheless, it is worth noting that the
difference between the MMP-cleaved and native forms of CXCL12 could be indiscernible depending
on the coupling site of the antibody used for the quantification. In this later case, it is possible that the
increased levels do not necessarily mean increased biological activity, since the MMP-cleaved form of
CXCL12 is significantly less active than the native form [64]. Remarkably, the gelatinases MMP-2 and
MMP-9 appear to be particularly prone to cleave CXC motif chemokines, conferring them a formerly
unrecognized key role in the regulation of cell trafficking in various pathologies characterized by
uncontrolled inflammatory response, such as periodontitis, rheumatoid arthritis, and cancer [65].
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Evidence from experimental periodontitis models shows a more severe disease phenotype in
MMP-8 null mice infected with Porphyromonas gingivalis than their wild type counterparts, along with
significantly lower levels of lipopolysaccharide (LPS)-induced CXC chemokine (LIX/CXCL5) and
reduced neutrophil infiltration. These features suggest an impaired LIX/CXCL5-mediated neutrophil
chemotaxis to the periodontal-biofilm interface, where neutrophils represent the first line of defense
against periodontal pathogens [36,66]. In line with this, several studies support a role for MMP-8 in
neutrophil trafficking and apoptosis in different inflammation models, such as wound healing and
TNFα-induced lethal hepatitis [18,56].

Additionally, several MMPs can cleave CC motif chemokines, producing truncated products that
act as potent antagonist of their cognate CC chemokine receptors. For example, CC chemokine ligand 7
(a.k.a. MCP-3) can be cleaved by MMP-2, MT1-MMP, MMP-1, MMP-13, and MMP-3 [67]. Interestingly,
CC motif chemokines have a fundamental role in the recruitment of monocytes from the circulation to
the periodontal tissues during the progression of periodontitis, and CCL7/MCP-3 has particularly
been shown to be selectively upregulated in progressive sites from chronic periodontitis patients [68].
Since MMPs are upregulated during periodontal inflammation, the proteolytic inactivation of CC
motif chemokines could represent a regulatory feedback mechanism to prevent uncontrolled monocyte
infiltration, contributing to the resolution of inflammation [67].

New in vivo experimental evidence also demonstrates that even during the normal immune
response to infection, MMPs can exert regulatory roles modulating the levels and bio-availability of
cytokines. In a murine model of Staphylococcus aureus-induced septic arthritis it was demonstrated
that the inhibition of MMP-2 activity resulted in significantly decreased serum levels of the pro
inflammatory cytokines TNFα, IL-1β, IL-6, IL-12, IFN-γ and increased levels of the anti-inflammatory
cytokine IL-10 [69]. This evidence emphasizes that the regulatory roles of MMPs can lead to profound
effects that tilt the balance towards resolution or perpetuation of the inflammatory response, and that
these changes are strong enough to be reflected in serum levels of inflammatory biomarkers.

MMPs are also involved in wound healing. Recently, our group reported faster wound closure
in lingual mucosa along with higher TGF-β1 levels in MMP-8 null mice compared to their wild type
controls. MMP-8 showed to degrade TGF-β1 and alter its signaling in vitro, explaining its lower levels
in wild-type animals [70]. Similarly, MMP-9 activity was shown to downregulate TGF-β1 protein
levels in breast cancer cells exposed to tamoxifen [71,72]. Conversely, dermal wound closure was
slower in MMP-8 null mouse model and inflammatory response was altered with a delay in neutrophil
infiltration and persistent inflammation at a later phase. Reduced levels of active TGF-β1 and increased
Smad-2 and Smad-3 signaling were demonstrated in MMP-8−/− when compared to wild type animals,
whereas expression of the CXC motif chemokine ligand 1 (CXCL1) and CXC motif chemokine ligand 2
(CXCL2) was delayed, which might account for the persistent inflammation observed in the model [56].
These results highlight the complexity of the regulatory roles of MMPs, which might also depend on
the tissue specific microenvironment.

MMPs can modulate bone resorption through osteoclast activation and differentiation, besides
direct bone collagen matrix degradation. In vivo and in vitro studies in breast cancer bone metastasis
support that MMP-13 is required for the differentiation of pre-osteoclasts, osteoclast activation, and
osteolysis. Several mechanisms have been reported, which include the activation of osteoclast-secreted
proMMP-9, which further digests denatured collagen derived from MMP-13 activity [73]; cleaving
of galectin-3, a known inhibitor of osteoclastogenesis expressed in the osteoclast surface, that
results in the abrogation of its inhibitory effect; and by regulating the receptor activator of nuclear
factor-κB ligand (RANKL)/osteoprotegerin (OPG) axis, favoring RANKL and TGF-β1 signaling via
phospho-Smad-2 [74,75].

MMP activity is also involved in the regulation of cytokine-independent pathways, such as
nerve/glial antigen 2 (NG2)-mediated apoptosis. NG2 is a recently characterized receptor that induces
apoptosis in cells that have lost their matrix contacts (anoikis) [76]. In an in vitro model of periodontal
ligament fibroblasts, it has been demonstrated that the cleavage of NG2 by MMP-13 is essential
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to terminate the signaling that leads to apoptosis and its inhibition results in increased apoptosis,
coinciding with diminished soluble levels of NG2. This evidence suggests that NG2 needs to be
cleaved and released from the cell membrane by MMP-13 in order to terminate the pro apoptotic
signaling [77].

Interestingly, most of the activating signals for MMPs and pro inflammatory cytokines/
chemokines are common, as well as the signaling pathways that lead to increased transcriptional
activity of their genes. Still, in some cases, there are regulatory networks in place in which the signaling
of a specific cytokine leads to the negative regulation of the transcription of MMP genes. One such
example is the negative regulation of MMP-3 by IL-4. MMP-3 has also been involved in periodontal
matrix degradation and it has been long known that its transcription is controlled by IL-1β-mediated
activation of the transcription factor activating protein 1 (AP-1). A recent report demonstrated that
IL-4 signaling exerts an inhibitory effect on MMP3 gene transcription, and that this is at least partially
mediated by the induction of an alternative assembly of the component dimers of the multiprotein
complex AP-1, decreasing its inherent affinity for the promoter site of the MMP3 gene [78]. In yet
another example of the interplay of MMPs and cytokines, it has been recently reported that MMP-12
regulates the levels of the antiviral cytokine IFN-α by cleaving off the IFN-α receptor 2 binding site of
systemic IFN-α, but also acting as a transcription factor, translocating into the nucleus and directly
binding to the NFKBIA promoter, driving transcription and increasing intracellular levels of IκBα,
which is the main protein responsible for IFN-α extracellular export [79].

This novel role of MMPs as regulators of transcription has also been demonstrated in non-immune
pathways, such as of cell growth and cell metabolism. For example, MMP-3 has been localized in
the nuclei of chondrocytes and it has been demonstrated that it can interact with the transcription
enhancer dominant in chondrocytes (TRENDIC) in the promoter region of the connective tissue growth
factor (CCN2/CTGF) gene and that the overexpression or addition of recombinant MMP-3 increases
the transcriptional activity of CCN2/CTGF [80].

An extensive body of evidence has been published regarding the putative association of
polymorphism affecting the function of diverse MMPs and the risk of periodontitis. Despite some
conflicting reports, recently published systematic reviews including meta-analysis seem to establish
that an association indeed exists. A meta-analysis involving in excess of 6000 individuals established
that MMP-9-753 C/T polymorphism reduced the risk of chronic periodontitis, while MMP-3-1171
5A/6A and MMP-8-799 C/T polymorphisms increased the risk of chronic periodontitis [81]. Similarly,
another meta-analysis including almost 3000 subjects demonstrated that MMP-1-1607 1G/2G
(rs1799750) polymorphism was associated with chronic periodontitis, especially with the severity of
the disease condition [82]. Even though the specific underling mechanism to the association between
MMP genepolymorphisms and periodontitis is still unclear, it probably includes all the regulatory
features discussed in the previous paragraphs.

4. Concluding Remarks

Increasing evidence suggests that MMPs play a much more significant role in inflammation
and immune response regulation than previously recognized. In periodontally inflamed sites, they
are capable of participating in cross-activation and auto-activation cascades, as well as regulating
the availability of many inflammatory signaling molecules. The bidirectional regulation of MMPs
and cytokine/chemokine levels appears to be tightly controlled, but our current understanding of
the process is far from complete. As previously discussed, there are profound interactions between
cytokines and MMP, with mutual regulatory features at all levels, from transcription to proteolytic
modulation of biological functions. Depending on the stimulus and the local environment, MMPs
could increase or decrease the bioavailability of signaling molecules by several different and often
complementary mechanisms that can result in widespread periodontal supporting tissue loss and
sustained inflammation.
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